
Windows XML Event Log (EVTX)

Analysis of EVTX

By Joachim Metz <joachim.metz@gmail.com>

Summary
The Windows XML EventLog (EVTX) format is used by Microsoft Windows to store system log
information. This specification is based the work done by A. Schuster [SCHUSTER11] and on [MS-
EVEN6]. It was complemented by other public available information and reverse engineering of the
file format.

This document is intended as a working document for the Windows XML EventLog (EVXT)
specification. Which should allow existing Open Source forensic tooling to be able to process this
file type.

Special thanks to A. Schuster for his excellent work on the format and test files.

page i

Document information
Author(s): Joachim Metz <joachim.metz@gmail.com>

Abstract: This document contains information about the Windows XML Event Viewer Log
(EVTX) format.

Classification: Public

Keywords: Windows XML Event Viewer Log, EVTX

License
Copyright (c) 2011-2013 Joachim Metz <joachim.metz@gmail.com>.
Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Version
Version Author Date Comments

0.0.1 J.B. Metz September 2011 Initial version.

0.0.2 J.B. Metz March 2012
April 2012

Additional information.

0.0.3 J.B. Metz May 2012 Additional information.

0.0.4 J.B. Metz May 2012 Updates for Windows 8 Consumer Preview.

0.0.5 J.B. Metz October 2012 Additional information regarding formatted messages.

0.0.6 J.B. Metz December 2012 Additional information regarding formatted messages.

0.0.7 J.B. Metz February 2013 Additional information regarding formatted messages.

0.0.8 J.B. Metz February 2013 Additional information regarding chunk offset values seen in
archived EVTX files with thanks to R. Rumble.

0.0.8 J.B. Metz February 2013 Additional information regarding corruption scenarios.

0.0.9 J.B. Metz March 2013 Additional information regarding corruption scenarios.

0.0.10 J.B. Metz May 2013 Additional information regarding corruption scenarios.

0.0.11 J.B. Metz July 2013 Additional information regarding XML escaping with thanks
to G. Torres.

0.0.12 J.B. Metz July 2013 Additional information regarding ProcessingErrorData.

0.0.13 J.B. Metz July 2013 Additional information regarding dirty file with invalid
number of chunks corruption scenario with thanks to
G. Torres.

page ii

Table of Contents
1. Overview...1

1.1. Test version...1
1.2. Event Log files..1

2. File header...4
2.1. File flags..4

3. Chunk..5
3.1. Chunk header..5
3.2. Event record..6

4. Binary XML..6
4.1. Document structure...6

4.1.1. Fragment...6
4.1.2. Fragment header..7
4.1.3. Element..7
4.1.4. Element start...7
4.1.5. Attribute list..8
4.1.6. Attribute..8
4.1.7. Name...9
4.1.8. Content..9
4.1.9. Content string..9
4.1.10. Value text..9
4.1.11. Substitution...10
4.1.12. Normal substitution...10
4.1.13. Optional substitution...11
4.1.14. Character entity reference...11
4.1.15. Entity reference...12
4.1.16. CDATA section...12
4.1.17. Template instance..12
4.1.18. Template definition..13
4.1.19. Template instance data..13
4.1.20. Unicode text string..14
4.1.21. PI...14
4.1.22. PI target...14
4.1.23. PI data...14

4.2. Token types...14
4.3. Value types..15

4.3.1. String...18
4.3.2. Systemtime..18
4.3.3. Floating point..19

5. Event...19
5.1. Event identifier..19
5.2. Level..20
5.3. Keywords..20
5.4. Externally stored values..21

5.4.1. Message strings...22
5.4.1.1. Event resource file...23
5.4.1.2. Message string identifier..24

5.4.1.2.1. Using the event identifier qualifiers..24
5.4.1.2.2. Using the Windows Event Template (WEVT_TEMPLATE) resource...........24

5.4.1.3. Message-table resource event message files..24
5.4.1.4. Multilingual User Interface (MUI) event message files...25

page iii

5.4.1.5. Event data..26
5.4.1.6. Parsing event data..28

5.4.2. Category..29
6. Recovery...29

6.1. Detecting corrupted records...29
7. Corruption scenarios...30

7.1. String value oddities..30
7.2. Corrupted file header with correct checksum...31
7.3. Dirty file with invalid number of chunks...31
7.4. Corrupt event record...31
7.5. Corrupted chunk...32

8. Notes...32
8.1. Normal behavior..32
8.2. Corruption scenario: event record mismatch between size and copy of size..........................33
8.3. Corruption scenario: cross chunk 0-byte values...34

Appendix A. References...36
Appendix B. GNU Free Documentation License..37

page iv

1. Overview
The Windows XML EventLog (EVTX) format is used by Microsoft Windows, as of Windows Vista,
to store system log information.

The EVTX format supersedes the Windows EventLog (EVT) format as used in Windows XP.

File consists of:
• file header
• chunks
• trailing empty values

Characteristics Description

Byte order little-endian

Date and time values Filetime in UTC

Character string ASCII strings are stored in extended ASCII with a codepage.
Unicode strings are stored in UTF-16 little-endian without the byte order
mark (BOM).

1.1. Test version

The following version of programs were used to test the information within this document:
• Windows Vista
• Windows 2008
• Windows 7
• Windows 8 (Consumer Preview)

1.2. Event Log files

The event logs files can normally be found in:
C:\Windows\System32\winevt\Logs\

Filename Description

Application.evtx Application events

DFS Replication.evtx TODO

HardwareEvents.evtx TODO

Internet Explorer.evtx Internet Explorer events

Key Management Service.evtx TODO

Media Center.evtx TODO

Microsoft-Windows-Bits-Client
%4Operational.evtx

TODO

Microsoft-Windows-CodeIntegrity
%4Operational.evtx

TODO

Microsoft-Windows- TODO

page 1

Filename Description

CorruptedFileRecovery-Client
%4Operational.evtx

Microsoft-Windows-
CorruptedFileRecovery-Server
%4Operational.evtx

TODO

Microsoft-Windows-
DateTimeControlPanel
%4Operational.evtx

TODO

Microsoft-Windows-Diagnosis-DPS
%4Operational.evtx

TODO

Microsoft-Windows-Diagnosis-PLA
%4Operational.evtx

TODO

Microsoft-Windows-Diagnostics-
Networking%4Operational.evtx

TODO

Microsoft-Windows-Diagnostics-
Performance%4Operational.evtx

TODO

Microsoft-Windows-DiskDiagnostic
%4Operational.evtx

TODO

Microsoft-Windows-
DiskDiagnosticDataCollector
%4Operational.evtx

TODO

Microsoft-Windows-
DiskDiagnosticResolver
%4Operational.evtx

TODO

Microsoft-Windows-
DriverFrameworks-UserMode
%4Operational.evtx

TODO

Microsoft-Windows-Forwarding
%4Operational.evtx

TODO

Microsoft-Windows-GroupPolicy
%4Operational.evtx

TODO

Microsoft-Windows-Help
%4Operational.evtx

TODO

Microsoft-Windows-International
%4Operational.evtx

TODO

Microsoft-Windows-Kernel-WDI
%4Operational.evtx

TODO

Microsoft-Windows-Kernel-
WHEA.evtx

TODO

Microsoft-Windows-
LanguagePackSetup
%4Operational.evtx

TODO

page 2

Filename Description

Microsoft-Windows-MUI
%4Operational.evtx

TODO

Microsoft-Windows-
NetworkAccessProtection
%4Operational.evtx

TODO

Microsoft-Windows-Program-
Compatibility-Assistant
%4Operational.evtx

TODO

Microsoft-Windows-ReadyBoost
%4Operational.evtx

TODO

Microsoft-Windows-
ReliabilityAnalysisComponent
%4Metrics.evtx

TODO

Microsoft-Windows-
ReliabilityAnalysisComponent
%4Operational.evtx

TODO

Microsoft-Windows-Resource-
Exhaustion-Detector
%4Operational.evtx

TODO

Microsoft-Windows-Resource-
Exhaustion-Resolver
%4Operational.evtx

TODO

Microsoft-Windows-Resource-
Leak-Diagnostic%4Operational.evtx

TODO

Microsoft-Windows-
RestartManager%4Operational.evtx

TODO

Microsoft-Windows-TaskScheduler
%4Operational.evtx

TODO

Microsoft-Windows-
TerminalServices-RDPClient
%4Operational.evtx

TODO

Microsoft-Windows-UAC
%4Operational.evtx

TODO

Microsoft-Windows-UAC-
FileVirtualization
%4Operational.evtx

TODO

Microsoft-Windows-
WindowsUpdateClient
%4Operational.evtx

TODO

Microsoft-Windows-Winlogon
%4Operational.evtx

TODO

Microsoft-Windows-Wired-
AutoConfig%4Operational.evtx

TODO

page 3

Filename Description

Microsoft-Windows-WLAN-
AutoConfig%4Operational.evtx

TODO

ODiag.evtx TODO

OSession.evtx Office sessions events

Security.evtx Security events

Setup.evtx Setup events

System.evtx System events

2. File header
The file header is 4096 bytes of size and consists of:

offset size value description

0 8 “ElfFile\x00” Signature

8 8 First chunk number

16 8 Last chunk number

24 8 Next record identifier

32 4 128 Header size

36 2 1 Minor version

38 2 3 Major version

40 2 4096 Header block size
(or chunk data offset)

42 2 Number of chunks

44 76 Empty values

120 4 File flags
See section: 2.1 File flags

124 4 Checksum
CRC32 of the first 120 bytes of the file
header

128 3968 Empty values

The CRC-32 is describe in RFC 1952 and uses an initial value of 0.

File size = (Number of chunks * 65536) + 4096 ?

2.1. File flags

Value Identifier Description

0x0001 Is dirty

0x0002 Is full

page 4

3. Chunk
The chunk is 65536 bytes of size and consists of:

• chunk header
• array of event records
• unused space

3.1. Chunk header

The chunk header is 512 bytes of size and consists of:

offset size value description

0 8 “ElfChnk\x00” Signature

8 8 First event record number

16 8 Last event record number

24 8 First event record identifier

32 8 Last event record identifier

40 4 128 Header size
(or offset to pointer data)

44 4 Last event record data offset
Offset to the data of the last event record.
The offset is relative to the start of the
chunk header.

48 4 Free space offset
Offset to free space in the chunk. The
offset is relative to the start of the chunk
header.

52 4 Event records checksum
CRC32 of the events records data

56 64 Empty values

120 4 Unknown (flags?)

124 4 Checksum
CRC32 of the first 120 bytes and bytes
128 to 512 of the chunk.

The CRC-32 is describe in RFC 1952 with an uses an initial value of 0.

The free space offset is not the end of event records data offset, is sometimes point to the end of the
chunk, where the chunk after the last event record was filled with 0-byte values. This behavior was
seen in archived EVTX files.

offset size value description

128 64 x 4 =256 Common string offset array
The offsets are relative from the start of

page 5

offset size value description

the chunk

384 32 x 4 = 128 TemplatePtr
Array of 32 x 32-bit values

The common string offset array contains the offsets of strings that are common in the event records
stored in the chunk so that they only have to be stored once in the first event record and can be
referenced from successive event records.

Identifier/Number of first and last event record in chunk

Data after header and before event record?

3.2. Event record

The event record is variable of size and consists of:
offset size value description

0 4 “\x2a\x2a\x00\x00” Signature

4 4 Size
The size of the event record including the
signature and the size

8 8 Event record identifier

16 8 Written date and time
Contains a Filetime
The date and time the event record was
written (logged)

24 … Event
Contains binary XML
See section: 4 Binary XML

... 4 Copy of size

4. Binary XML

4.1. Document structure

According [MS-EVEN6] the binary XML structure should consist of:

The document (BinXMLDocument) consists of:
• Prologue (BinXMLPI) (zero or one)
• Fragment (zero or more)
• Miscellaneous (BinXMLPI) (zero or one)
• End of file token

4.1.1. Fragment

The fragment (BinXMLFragment) consists of:

page 6

• fragment header
• an element or a template instance

TODO: is it valid for a fragment with more then one element?

4.1.2. Fragment header

The fragment header (BinXMLFragmentHeader) is 4 byte of size and consists of:
offset size value description

0 1 0x0f Fragment header token
Should be:
BinXmlFragmentHeaderToken
See section: 4.2 Token types

1 1 0x01 Major version

2 1 0x01 Minor version

3 1 0x00 Flags

4.1.3. Element

An element (BinXMLElement) can either be 'empty' or a 'filled'.

BinXMLEmpyElement:
• element start
• close empty element token

Example of an 'empty' element in textual XML:
<Provider Name="Provider"/>

BinXMLFilledElement:
• element start
• close start element token
• content
• end element token

Example of a 'filled' element in textual XML:
<EventID>400</EventID>

4.1.4. Element start

The element start (BinXMLElementStart) is variable of size and consists of:
offset size value description

0 1 0x01
0x41

Open start element tag token
Should be:
BinXmlTokenOpenStartElementTag
See section: 4.2 Token types

1 2 Dependency identifier

page 7

offset size value description

-1 (0xffff) => not set

3 4 Data size
The size of the data.
This includes the size of the element
name, attribute list, close element tag,
content and end element tag, except for
the first 7 bytes of the element start.

7 4 Element name offset
The offset is relative from the start of the
chunk
See section: 4.1.7 Name

11 ... Attribute list
See section: 4.1.5 Attribute list

A token type of 0x01 indicates that the element start tag contains no elements; a token type of 0x41
indicates that an attribute list can be expected in the element start tag.

Note that the element name can be stored before the attribute list.

The name offset is not used in the binary XML in the Windows Event Template resource.

4.1.5. Attribute list

The attribute (BinXmlAttributeList) is variable of size and consists of:
offset size value description

0 4 Data size
Does not include the 4 byte of the size.

4 ... Array of attributes
See section: 4.1.6 Attribute

TODO: if attribute list is empty it is trailed by 2 bytes? Is this 32-bit alignment padding?

4.1.6. Attribute

The attribute (BinXmlAttribute) is variable of size and consists of:
offset size value description

0 1 0x06
0x46

Attribute token
Should be: BinXmlTokenAttribute
See section: 4.2 Token types

1 4 Attribute name offset
The offset is relative from the start of the
chunk
See section: 4.1.7 Name

5 ... Attribute data

page 8

A token type of 0x46 indicates that there is another attribute in the attribute list; a token type of
0x06 indicates that no more attributes exist.

Note that the attribute name can be stored before the attribute list.

The attribute data (BinXMLAttributeData) can be:
• value text
• substitution
• character entity reference
• entity reference

The name offset is not used in the binary XML in the Windows Event Template resource.

4.1.7. Name

The name (BinXmlName) is variable of size and consists of:
offset size value description

0 4 Unknown

4 2 Name hash
Which hash algorithm?

6 2 Number of characters

8 ... UTF-16 little-endian string with an end-
of-string character

The unknown 4 bytes are not present in the binary XML in the Windows Event Template resource.

4.1.8. Content

The content (BinXMLContent) can be:
• an element
• content string data
• character entity reference
• entity reference
• CDATA section
• PI

4.1.9. Content string

The content string data (BinXMLContentStringData) can be:
• value text
• substitution

TODO: a content string containing an end-of-line character seems to be considered empty by Event
Viewer

4.1.10. Value text

The value text (BinXmlValueText) is variable of size and consists of:

page 9

offset size value description

0 1 0x05
0x45

Value token
Should be: BinXmlTokenValue
See section: 4.2 Token types

1 1 0x01 Value type
Should be: StringType
See section: 4.3 Value types

2 ... Value data
See section: 4.1.20 Unicode text string

A token type of 0x45 indicates that more data can be expected to follow in the current content of the
element or attribute; a token type of 0x05 indicates that no more such data follows.

A value text can be stored spanning multiple value tokens.

4.1.11. Substitution

The substitution (BinXmSubstitution) can be:
• normal substitution
• optional substitution

4.1.12. Normal substitution

The normal substitution (BinXmNormalSubstitution) is 4 byte of size and consists of:
offset size value description

0 1 0x0d Normal substitution token
Should be:
BinXmlTokenNormalSubstitution
See section: 4.2 Token types

1 2 Substitution identifier
Identifier of the value in the template
instance data, where 0 represents the first
value

3 1 Value type
See section: 4.3 Value types

If the value type is an array type (0x80) the substitution is repeated for every element of the array. If
the size of an array type is 0 then a single empty element should be created.

If the value type is Size (0x10) the corresponding substitution value should be a 32-bit hexadecimal
integer (0x14) or 64-bit hexadecimal integer (0x15). The same applies to an array of Size (0x90)
where the substitution value should be an array of 32-bit hexadecimal integer (0x94) or an array of
64-bit hexadecimal integer (0x95).

If the value type is the Binary XML type (0x21) the value data should be either a fragment or a
template instance.

page 10

4.1.13. Optional substitution

The optional substitution (BinXmlOptionalSubstitution) is 4 byte of size and consists of:
offset size value description

0 1 0x0e Optional substitution token
Should be:
BinXmlTokenOptionallSubstitution
See section: 4.2 Token types

1 2 Substitution identifier
Identifier of the value in the template
instance data, where 0 represents the first
value

3 1 Value type
See section: 4.3 Value types

If the value type of the corresponding template value is NULL (0x00) the element should be ignored
and not created.

If the value type is an array type (0x80) the substitution is repeated for every element of the array. If
the size of an array type is 0 then a single empty element should be created.

If the value type is Size (0x10) the corresponding substitution value should be a 32-bit hexadecimal
integer (0x14) or 64-bit hexadecimal integer (0x15). The same applies to an array of Size (0x90)
where the substitution value should be an array of 32-bit hexadecimal integer (0x94) or an array of
64-bit hexadecimal integer (0x95).

If the value type is the Binary XML type (0x21) the value data should be either a fragment or a
template instance.

4.1.14. Character entity reference

The character entity reference (BinXmlCharacterEntityReference) is 3 byte of size and consists of:
offset size value description

0 1 0x08
0x48

Character entity reference token
Should be: BinXmlTokenCharRef
See section: 4.2 Token types

1 2 Character entity value

A token type of 0x48 indicates that more data can be expected to follow in the current content of the
element or attribute; a token type of 0x08 indicates that no more such data follows.

In the resulting XML the character entity is replaced e.g. “38” becomes “&”.

According to [MS-EVEN6] emit the characters '&' and '#' and the decimal string representation of
the value. TODO create a test file.

page 11

4.1.15. Entity reference

The entity reference (BinXmlEntityReference) is 5 bytes of size and consists of:
offset size value description

0 1 0x09
0x49

Entity reference token
Should be: BinXmlTokenEntityRef
See section: 4.2 Token types

1 4 Entity name offset
The offset is relative from the start of the
chunk
See section: 4.1.7 Name

A token type of 0x49 indicates that more data can be expected to follow in the current content of the
element or attribute; a token type of 0x09 indicates that no more such data follows.

In the resulting string the entity is replaced e.g. “amp” becomes & for a Unicode string and “&”
for an XML string.

The name offset is not used in the binary XML in the Windows Event Template resource.

It currently is assumed that the following entity references are supported lt, gt, amp, quot and apos.

4.1.16. CDATA section

The entity reference (BinXmlEntityReference) is variable of size and consists of:
offset size value description

0 1 0x07
0x47

CDATA section token
Should be: BinXmlTokenCDATASection
See section: 4.2 Token types

1 ... CDATA text
See section: 4.1.20 Unicode text string

A token type of 0x47 indicates that more data can be expected to follow in the current content of the
element or attribute; a token type of 0x07 indicates that no more such data follows.

4.1.17. Template instance

The template instance (BinXmlTemplateInstance) is variable of size and consists of:
offset size value description

0 1 0x0c Template instance token
Should be:
BinXmlTokenTemplateInstance
See section: 4.2 Token types

1 ... Template definition

... ... Template instance data

page 12

4.1.18. Template definition

The template definition (BinXmlTemplateDefinition) is variable of size and consists of:
offset size value description

0 1 0x01 Unknown(Version? Or number of
template defs?)

1 4 Unknown (Template identifier?)

5 4 Template definition data offset

Template definition data

9 4 Unknown (Next template definition
offset)
0 if not used

13 16 Template identifier
Contains a GUID

29 4 Data size
The size of the data.
This includes the size of the fragment
header, element and end of file token,
except for the first 33 bytes of the
template definition.

33 ... Fragment header

... ... Element

... 1 End of file token
Should be: BinXmlTokenEOF
See section: 4.2 Token types

Note that the template definition data offset either point to the offset directly after this value or
somewhere previously in the chunk. The template definition can therefore be stored non-continuous.

What does the %b0 in [MS-EVEN6] signify?

4.1.19. Template instance data

The template instance data (BinXmlTemplateInstanceData) is variable of size and consists of:
offset size value description

0 4 Number of template values

4 ... Array of template value descriptors

Array of template value data

The template value descriptor is 4 bytes of size and consists of:
offset size value description

0 2 Value size

2 1 Value type

1 1 0x00 Unknown (Empty value)

page 13

4.1.20. Unicode text string

The Unicode text string is variable of size and consists of:

offset size value description

2 2 Number of characters

4 ... UTF-16 little-endian string without an
end-of-string character

4.1.21. PI

The PI consists of:
• PI target
• PI data

4.1.22. PI target

The PI target (BinXmlPITarget) is 5 bytes of size and consists of:
offset size value description

0 1 0x0a PI target reference token
Should be: BinXmlTokenPITarget
See section: 4.2 Token types

1 4 PI target name offset
The offset is relative from the start of the
chunk
See section: 4.1.7 Name

The name offset is not used in the binary XML in the Windows Event Template resource.

4.1.23. PI data

The entity reference (BinXmlPIData) is variable of size and consists of:
offset size value description

0 1 0x0b PI data token
Should be: BinXmlTokenCDATASection
See section: 4.2 Token types

1 ... PI data text
See section: 4.1.20 Unicode text string

4.2. Token types

Binary XML defines multiple token types.
Value Identifier Description

0x00 BinXmlTokenEOF End of file

page 14

Value Identifier Description

0x01
0x41

BinXmlTokenOpenStartEleme
ntTag

Open start element tag
Indicates the start of a start element, correlates
to '<' in '<Event>'

0x02 BinXmlTokenCloseStartEleme
ntTag

Close start element tag
Indicates the end of a start element, correlates to
'>' in '<Event>'

0x03 BinXmlTokenCloseEmptyElem
entTag

Close empty element tag
Indicates the end of a start element, correlates to
'/>' in '<Event/>'

0x04 BinXmlTokenEndElementTag Close end element tag
Indicates the end of element, correlates to
'</Event>'

0x05
0x45

BinXmlTokenValue Value

0x06
0x46

BinXmlTokenAttribute Attribute

0x07
0x47

BinXmlTokenCDATASection CDATA section

0x08
0x48

BinXmlTokenCharRef Character entity reference

0x09
0x49

BinXmlTokenEntityRef Entity reference

0x0a BinXmlTokenPITarget Processing instructions (PI) target
XML processing instructions

0x0b BinXmlTokenPIData Processing instructions (PI) data
XML processing instructions

0x0c BinXmlTokenTemplateInstanc
e

Template instance

0x0d BinXmlTokenNormalSubstituti
on

Normal substitution

0x0e BinXmlTokenOptionalSubstitut
ion

Optional substitution

0x0f BinXmlFragmentHeaderToken Fragment header token

Some of the token types can contain the has more data flag 0x40.

TODO bitmask of 0x1f ? is this defined in winevt.h ? If so what do the other flags signify?

4.3. Value types

Value Identifier Description

0x00 NullType NULL or empty

page 15

Value Identifier Description

0x01 StringType Unicode string
Stored as UTF-16 little-endian without an end-
of-string character

0x02 AnsiStringType ASCII string
Stored using a codepage without an end-of-
string character

0x03 Int8Type 8-bit integer signed

0x04 UInt8Type 8-bit integer unsigned

0x05 Int16Type 16-bit integer signed

0x06 UInt16Type 16-bit integer unsigned

0x07 Int32Type 32-bit integer signed

0x08 UInt32Type 32-bit integer unsigned

0x09 Int64Type 64-bit integer signed

0x0a UInt64Type 64-bit integer unsigned

0x0b Real32Type Floating point 32-bit (single precision)

0x0c Real64Type Floating point 64-bit (double precision)

0x0d BoolType Boolean
An 32-bit integer that MUST be 0x00 or 0x01
(mapping to true or false, respectively).

0x0e BinaryType Binary data

0x0f GuidType GUID
Stored in little-endian

0x10 SizeTType Size type
Either 32 or 64-bits. This value type should be
pair up with a HexInt32Type or HexInt64Type

0x11 FileTimeType Filetime (64-bit)
Stored in little-endian

0x12 SysTimeType System time (128-bit)
Stored in little-endian

0x13 SidType NT Security Identifier (SID)
See [NTSID]

0x14 HexInt32Type 32-bit integer hexadecimal
32-bit (unsigned) integer that should be
represented in hexadecimal notation

0x15 HexInt64Type 64-bit integer hexadecimal
64-bit (unsigned) integer that should be
represented in hexadecimal notation

0x20 EvtHandle

0x21 BinXmlType Binary XML fragment

page 16

Value Identifier Description

0x23 EvtXml

If the MSB of the value type (0x80) is use to indicate an array type. According to [MSDN] binary
data and binary XML fragment types are not supported. For the string types the end-of-string
character is used as a separator.
Value Identifier Description

0x81 Array of Unicode strings
Individual strings are stored as UTF-16 little-
endian with an end-of-string character

0x82 Array of ASCII strings
Individual strings are stored as ASCII string
using a codepage with an end-of-string character

0x83 Array of 8-bit integer signed
Every 1 byte is an individual value

0x84 Array of 8-bit integer unsigned
Every 1 byte is an individual value

0x85 Array of 16-bit integer signed
Every 2 bytes are an individual value in little-
endian

0x86 Array of 16-bit integer unsigned
Every 2 bytes are an individual value in little-
endian

0x87 Array of 32-bit integer signed
Every 4 bytes are an individual value in little-
endian

0x88 Array of 32-bit integer unsigned
Every 4 bytes are an individual value in little-
endian

0x89 Array of 64-bit integer signed
Every 8 bytes are an individual value in little-
endian

0x8a Array of 64-bit integer unsigned
Every 8 bytes are an individual value in little-
endian

0x8b Array of Floating point 32-bit (single precision)
Every 4 bytes are an individual value in little-
endian

0x8c Array of Floating point 64-bit (double precision)
Every 8 bytes are an individual value in little-
endian

0x8d Array of boolean
Every 4 bytes are an individual value in little-
endian

page 17

Value Identifier Description

0x8f Array of GUID
Every 16 bytes are an individual value in little-
endian

0x90 Array of size type
An individual value is either 32 or 64-bits. This
value type should be pair up with an array of
HexInt32Type or HexInt64Type

0x91 Array of Filetime
Every 8 bytes are an individual value in little-
endian

0x92 Array of system time
Every 16 bytes are an individual value in little-
endian

0x93 Array of NT Security Identifiers (SID)

0x94 Array of 32-bit integer hexadecimal
Every 4 bytes are an individual value in little-
endian

0x95 Array of 64-bit integer hexadecimal
Every 8 bytes are an individual value in little-
endian

4.3.1. String

If in a string the characters: <, >, &, " and ' are not escaped they must respectively be replaced by the
following character entities: <, >, &, " and '. This does not apply to Character
entity reference and Entity reference encoded strings.

Event Viewer will not escape the character entities in the XML view, but will when exported as
XML. Event Viewer seems to apply the XML character entity escaping inside element values for &,
< and > but not for ' and ".

4.3.2. Systemtime

The systemtime is 16 bytes of size and consists of:

offset size value description

0 2 Year

2 2 Month

4 2 Day of week

6 2 Day of month

8 2 Hours

10 2 Minutes

page 18

offset size value description

12 2 Seconds

14 2 Milliseconds

4.3.3. Floating point

Floating point values are represented as the following stings.

Value Identifier Description

-1.#INF Negative infinity/overflow

1.#INF Positive infinity/overflow

-1.#IND Indeterminate

[-]?0 Positive or negative zero

[-]?[0-9]+ Any positive or negative value that can be
represented as an integer

[-]?[0-9]+.[0-9]
{6}

Any positive or negative value that can be
represented in 6 fractional digits

[-]?[0-9]+.[0-9]
{6}e-[0-9]{3}

Any positive or negative value that could not be
represented in 6 fractional digits

TODO validate the highlighted ones; 32-bit fractional of 6, 64-bit fractional of 14

5. Event

5.1. Event identifier

The event identifier is 4 bytes of size and consist of:
offset size value description

0.0 16 bits Code

2.0 12 bits Facility

3.4 1 bit Reserved

3.5 1 bit Customer flags
0 => System code
1 => Customer code

3.6 2 bits Severity
00 => Success
01 => Informational
10 => Warning
11 => Error

page 19

5.2. Level

Value Identifier Description

0x00000000 Identifies an event that should always be logged
(win:LogAlways)
Shown as “Information” in Event Viewer

0x00000001 WINEVENT_LEVEL_CRITI
CAL

Identifies an abnormal exit or termination event
(win:Critical)

0x00000002 WINEVENT_LEVEL_ERRO
R

Identifies a severe error event
(win:Error)

0x00000003 WINEVENT_LEVEL_WARN
ING

Identifies a warning event such as an allocation
failure
(win:Warning)

0x00000004 WINEVENT_LEVEL_INFO Identifies a non-error event such as an entry or
exit event
(win:Informational)

0x00000005 WINEVENT_LEVEL_VERB
OSE

Identifies a detailed trace event
(win:Verbose)

0x00000006 Reserved
(win:ReservedLevel6)

0x00000007 Reserved
(win:ReservedLevel7)

0x00000008 Reserved
(win:ReservedLevel8)

0x00000009 Reserved
(win:ReservedLevel9)

0x0000000a Reserved
(win:ReservedLevel10)

0x0000000b Reserved
(win:ReservedLevel11)

0x0000000c Reserved
(win:ReservedLevel12)

0x0000000d Reserved
(win:ReservedLevel13)

0x0000000e Reserved
(win:ReservedLevel14)

0x0000000f Reserved
(win:ReservedLevel15)

5.3. Keywords

Value Identifier Description

0x0000000000000000 win:AnyKeyword

page 20

Value Identifier Description

0x0000000000010000 Shell

0x0000000000020000 Properties

0x0000000000040000 FileClassStoreAndIconCache

0x0000000000080000 Controls

0x0000000000100000 APICalls

0x0000000000200000 InternetExplorer

0x0000000000400000 ShutdownUX

0x0000000000800000 CopyEngine

0x0000000001000000 Tasks

0x0000000002000000 WDI

0x0000000004000000 StartupPerf

0x0000000008000000 StructuredQuery

0x0001000000000000 win:Reserved

0x0002000000000000 win:WDIContext

0x0004000000000000 win:WDIDiag

0x0008000000000000 win:SQM

0x0010000000000000 win:AuditFailure

0x0020000000000000 win:AuditSuccess

0x0040000000000000 win:CorrelationHint

0x0080000000000000 Classic
win:EventlogClassic

0x0100000000000000 win:ReservedKeyword56

0x0200000000000000 win:ReservedKeyword57

0x0400000000000000 win:ReservedKeyword58

0x0800000000000000 win:ReservedKeyword59

0x1000000000000000 win:ReservedKeyword60

0x2000000000000000 win:ReservedKeyword61

0x4000000000000000 win:ReservedKeyword62

0x8000000000000000 win:ReservedKeyword63
Microsoft-Windows-Shell-Core/Diagnostic

5.4. Externally stored values

Some of the data that Event Viewer shows is stored outside the event log files.

page 21

On Windows XP (and earlier) the first step to determine the location of these values is find the
corresponding “event log type sub key” in the Windows registry under:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Event Log\

Every event log type has its own sub key, e.g.:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Event Log\System

Common event log types are:
• Application
• Security
• System

NOTE: the event log type is also stored in the “Channel” event XML element.

The event log type sub key has a “event source sub key” for every source name, e.g for the source
name “Workstation”:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\EventLog\System\Workstati
on

Note that the source name is case insensitive; so “Workstation” and “workstation” are considered
equivalent.

The source name is stored as an attribute of the “Provider” element within the Event XML, e.g.
<Event xmlns="http://schemas.microsoft.com/win/2004/08/events/event">
 <System>
 <Provider Name="Microsoft-Windows-Search"
 Guid="{CA4E628D-8567-4896-AB6B-835B221F373F}"
 EventSourceName="Windows Search Service"/>

The “EventSourceName” attribute contains the source name. If there is no “EventSourceName”
attribute the “Name” attribute is used.

As of Windows Vista the event log type sub key contains the value “ProviderGuid” which should
contain the same GUID as indicated in the Event XML:
{CA4E628D-8567-4896-AB6B-835B221F373F}

The corresponding provider settings can be found in the event message provider registry key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\WINEVT\Publishers
\{ca4e628d-8567-4896-ab6b-835b221f373f}

On a Windows Vista (or later) system “wevtutil” can be used to determine more about the provider.
E.g.
wevtutil gp Microsoft-Windows-Search

5.4.1. Message strings

The event message strings are stored in event message files.

The event message provider registry key has a value named “EventMessageFile” which contains a

page 22

path specification of the event message file, e.g.
%SystemRoot%\System32\netmsg.dll

Note that the value can contain multiple filenames separated by a semi colon (;) character and that
the name of the event message files is case insensitive.

On Windows XP (and earlier) the event source sub key had a value named “EventMessageFile”
which contains the same path. As of Windows Vista this value is not always present and using the
value “MessageFileName“ in the event message provider registry key seems to be the preferred
method. However it is possible that the event message provider registry key is not present and the
event source sub key is needs to be used instead.

Here “%SystemRoot%” is case insensitive and needs to be expanded to the Windows directory
which is depended on the Windows version:
Value Version

\WINNT35 Windows NT 3.5x

\WINNT Windows NT 3.1, Windows NT 4.0 and Windows 2000 (NT 5.0)

\WINDOWS Windows XP (NT 5.1) and later

The actual value of %SystemRoot% can be found in the Registry value:
Key: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\
Value: SystemRoot

Other placeholders that found to be used are:
%WinDir%

The actual value of e.g. %WinDir% can be found in the Registry value:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session
Manager\Environment\windir

Event message files are PE/COFF executables that contains a resource (“.rsrc ”) section. Event
message files can have various extensions, e.g. “.exe”, “.dll”, “.dll.mui”, “.sys”.

There different types of event message files:
• Message-table resource
• Multilingual User Interface (MUI) resource

Note that event message files can have any combination of these resources. The rules of preference
seems to be:

• use message-table resource if present, before checking MUI resource

5.4.1.1. Event resource file

The event message provider registry key has a value named “ResourceFileName”. It is currently
assumed that this Registry value contains a path specification of the event resource file, e.g.
%SystemRoot%\System32\tquery.dll

page 23

The event resource file should contain a Windows Event Template (WEVT_TEMPLATE) resource.
The MUI resource should also contain a main name type “WEVT_TEMPLATE”.

The information stored in this resource is used to:
• determine the message string identifier
• determine the string identifiers of channels, keywords, levels, opcodes and tasks
• parse Event XML “UserData”

For more detailed information see: [LIBEXE].

5.4.1.2. Message string identifier

On Windows XP (and earlier) the message string identifier was a direct mapping of the event
identifier as of Windows Vista this is no longer the case. There seem to be multiple methods how the
event identifier is mapped to the message string identifier, namely:

• Using the event identifier qualifiers
• Using the Windows Event Template resource

5.4.1.2.1. Using the event identifier qualifiers

If the EventID element in Event XML has the Qualifiers attribute set, e.g.:
<EventID Qualifiers="16384">7036</EventID>

Then the message string identifier can be determined as following:
16384 in hexadecimal is 0x4000
 7036 in hexadecimal is 0x1b7c

message string identifier = (0x4000 << 16) | 0x1b7c = 0x40001b7c

5.4.1.2.2. Using the Windows Event Template (WEVT_TEMPLATE)
resource

If an event resource file has been specified and if the Provider element in the Event XML has the
GUID attribute set, e.g.:
<Provider Name="Microsoft-Windows-UAC"
 Guid="{E7558269-3FA5-46ED-9F4D-3C6E282DDE55}"/>
<EventID>1</EventID>

This GUID can be used to find a corresponding provider in the Windows Event Template
(WEVT_TEMPLATE) resource. This resource should contain an event definition with the same
identifier as the EventID in the Event XML, e.g. in case of the example 1. The event definition will
also contain a reference the the message identifier, e.g. in case of the example 0xb9000001.

5.4.1.3. Message-table resource event message files

In a message-table resource event message file the event message strings are stored in the message-
table resource of the event message file.

page 24

The resource section of a message-table resource event message file contains a message-table
resource which contains the event message strings. E.g. on Windows Vista
C:\Windows\Microsoft.NET\Framework\v2.0.50727\EventLogMessages.dll

The event message strings have identifiers similar to the event identifiers. E.g. if the event identifier
is 0 and the message string identifier 0, the corresponding event message string would be:
%1

The placeholder values %1 represent the first string in the event.

The event strings are stored as “Data” elements in the “EventData” element within the Event XML,
e.g.
 <EventData>
 <Data>Service has been successfully shut down.</Data>
 </EventData>

For a more comprehensive description of how to extract the event strings from the Event XML see
section: 5.4.1.5 Event data. Sometimes the message string can have more placeholder than the event
data contains strings, it seems in such a case the placeholders are not replaced and shown as %# in
the resulting string.

Note that the event message strings are language specific. An event message file can therefore
contain event message strings for multiple languages.

5.4.1.4. Multilingual User Interface (MUI) event message files

The resource section of a Multilingual User Interface (MUI) event message file contains Multilingual
User Interface (MUI) resource. E.g. on Windows Vista
C:\Windows\System32\services.exe

The MUI event message files do not have to contain a message-table resource but forward to a a
language specific message-table resource event message file, e.g. “en-US”:
C:\Windows\System32\en-US\services.exe.mui

It is this file that contains the language specific event message-table resource.

The event message strings have identifiers similar to the event identifiers. E.g. if the event identifier
in XML is:
<EventID Qualifiers="16384">7036</EventID>

This would correspond to the event message string identifier:
16384 in hexadecimal is 0x4000
 7036 in hexadecimal is 0x1b7c

event message string identifier = (0x4000 << 16) | 0x1b7c = 0x40001b7c

The corresponding event message string would be:

page 25

The %1 service entered the %2 state.

The placeholder values %1 and %2 represent the first and second string in the event.

The event strings are stored as “Data” elements in the “EventData” element within the Event XML,
e.g.
 <EventData>
 <Data Name="param1">Volume Shadow Copy</Data>
 <Data Name="param2">stopped</Data>
 </EventData>

5.4.1.5. Event data

As previously mentioned the event strings (and binary data) are stored as “Data” elements in the
“EventData” element within the Event XML. Another way to store the event data is in a “UserData”
element. The information in this section is partially deduced on the behavior of the “General”,
“Details Friendly View” and “Details XML View” of Event Viewer.

Let's start out with the following variant of event data.
 <EventData>
 <Data>SessionEnv</Data>
 <Binary>D9060000</Binary>
 </EventData>

In this case “EventData” in the “Details Friendly View” contains both the value of the “Data” and
the “Binary” tag. The value of the Binary tag is additionally interpreted as “Binary Data”, which is
base16 encoded.

 SessionEnv
 D9060000

If the Data has a corresponding “Name” attribute the “EventData” in the “Details Friendly View”
shows the value of the “Name” attribute followed by the value of the “Data” tag, e.g.

 <EventData>
 <Data Name="param1">86400</Data>
 <Data Name="param2">SuppressDuplicateDuration</Data>
 <Data Name="param3">Software\Microsoft\EventSystem\EventLog</Data>
 </EventData>

 param1 86400
 param2 SuppressDuplicateDuration
 param3 Software\Microsoft\EventSystem\EventLog

The data of an empty “Data” is not ignored but not directly visible int the “Details Friendly View”. In
case of the following example on the value of the “Name” attribute would be shown.

 <EventData>
 <Data Name="ExtraInfo"/>
 </EventData>

page 26

 ExtraInfo

ProcessingErrorData is a variation of EventData:
 <ProcessingErrorData>
 <ErrorCode>15005</ErrorCode>
 <DataItemName>Value</DataItemName>
 <EventPayload>804110C3E253BF01</EventPayload>
 </ProcessingErrorData>

 ErrorCode 15005
 DataItemName Value
 EventPayload 804110C3E253BF01

In some events the data is not stored in a “EventData” tag within the Event XML but in a
“UserData” tag, e.g.
 <UserData>
 <EventXML xmlns:auto-ns2="..." xmlns="LoadPerf">
 <param1>WmiApRpl</param1>
 <param2>WmiApRpl</param2>
 <binaryDataSize>4</binaryDataSize>
 <binaryData>44415441</binaryData>
 </EventXML>
 </UserData>

In this case the “EventData” in the “Details Friendly View” will show the data as:
EventXML
 param1 WmiApRpl
 param2 WmiApRpl
 binaryDataSize 4
 binaryData 44415441

The binary data is not interpreted as the binary data seen with the “EventData” tag.

Here “WmiApRpl” is the first string and “44415441” the fourth.

Event strings can also be stored as attribute values.
 <UserData>
 <EventProcessingFailure xmlns="http://manifests.microsoft.com/...">
 <Error Code="15007"/>
 <EventID>4616</EventID>
 <PublisherID>Microsoft-Windows-Security-Auditing</PublisherID>
 </EventProcessingFailure>
 </UserData>

EventProcessingFailure
 Error
 [Code] 15007
 EventID 4616
 PublisherID Microsoft-Windows-Security-Auditing

The corresponding message string is:

page 27

The event logging service encountered an error while processing an incoming
event published from %3.

Which indicates the attribute value should be considered the first event string.

Some event records have a corresponding template definition in the WEVT_TEMPLATE data.

An example of an event record with a corresponding template definition is:
 <EventData Name="EVENT_HIVE_LEAK">
 <Data Name="Detail">1 user registry handles leaked from ...</Data>
 </EventData>

<EventData Name="EVENT_HIVE_LEAK">
 <Data Name="Detail">Detail</Data>
</EventData>

Note that not all event records have corresponding WEVT_TEMPLATE data or template definition.
Sometimes the template definition does not entirely match the event record e.g. the following
example where the template definition contains Name="%1" but not the event record.
 <EventData>
 <Data>http://www.download.windowsupdate.com/...</Data>
 <Data>The data is invalid.</Data>
 </EventData>

<EventData>
 <Data Name="%1">%1</Data>
 <Data Name="%2">%2</Data>
</EventData>

This however might be a special case of the “EventData”.

5.4.1.6. Parsing event data

In the initial phases of the libevtx project several attempts have been made to uniformly parse the
event data.

Firstly the naive approach. This approach considers the element values of the sub elements of the
“EventData” or “UserData” elements as event string. Alas this approach fails to handle event strings
that are defined as element attributes values mainly seen in “UserData” elements, e.g.
 <UserData>
 <EventProcessingFailure xmlns="http://manifests.microsoft.com/...">
 <Error Code="15007"/>
 <EventID>4616</EventID>
 <PublisherID>Microsoft-Windows-Security-Auditing</PublisherID>
 </EventProcessingFailure>
 </UserData>

The next approach was to use the template definitions, if available, to parse the “EventData” and
“UserData” elements. This approach seemed to solve the issue with the event strings defined as
attribute values. Alas not every template definition seem to match the event record data, at least for
some of the “EventData” elements, e.g.

page 28

 <EventData>
 <Data>http://www.download.windowsupdate.com/...</Data>
 <Data>The data is invalid.</Data>
 </EventData>

<EventData>
 <Data Name="%1">%1</Data>
 <Data Name="%2">%2</Data>
</EventData>

However using the template definitions to parse the event data proved an interesting insight that the
the binary XML substitution tokens of the template definition match those of the event record.
Which is the technique used as of version 20130208.

5.4.2. Category

TODO: CategoryMessageFile

6. Recovery
1. Scan the chunk free space for event records and make sure the size and copy of size match.
2. Ignore any record with an identifier that already exists. Often the free space contains former

versions of existing event records.
3.

How useful are former versions of event records for correcting corrupted event records?

6.1. Detecting corrupted records

Comparing the size and copy of size is a quick way to detect corrupted records but sometimes the
sizes match while the record is not recoverable. The detection of corrupted records can be improved
by looking at:

• the Binary XML data.

TODO what about the identifier is it signed?

According [MS-EVEN6] the binary XML structure should consist of:

The document (BinXMLDocument) consists of:
• Prologue (BinXMLPI) (zero or one)
• Fragment (zero or more)
• Miscellaneous (BinXMLPI) (zero or one)
• End of file token

This translates to the Binary XML data should start with either:
• 0x0a; the data size must be 5 or more bytes (for EVTX)
• 0x0f 0x01 0x01 0x00; the data size must be 4 or more bytes
• 0x00; which means there is no Binary XML data

page 29

7. Corruption scenarios

7.1. String value oddities

This has been seen in PI data and CDATA section structures.

libevtx_binary_xml_document_read_pi_data: type : 0x0b
libevtx_binary_xml_document_read_pi_data: number of characters : 18
libevtx_binary_xml_document_read_pi_data: value data:
00000000: 4d 00 79 00 50 00 69 00 44 00 61 00 74 00 61 00 M.y.P.i. D.a.t.a.
00000010: 3d 00 22 00 76 00 61 00 6c 00 75 00 65 00 22 00 =.".v.a. l.u.e.".
00000020: 01 ff ff 0f 05 ff ff 0f

EventViewer seems to interpret 05 ff ff 0f as part of the string? But 18 x 2 seems to be the correct
data size.

<?MyPiTarget MyPiData="value"！<U+0FFF>！<U+05FF>?>

Even 01 ff ff 0f part of the string looks like valid BinXML.

libevtx_binary_xml_document_read_cdata_section: type : 0x07
libevtx_binary_xml_document_read_cdata_section: number of characters : 110
libevtx_binary_xml_document_read_cdata_section: value data:
00000000: 0d 00 0a 00 66 00 75 00 6e 00 63 00 74 00 69 00 f.u. n.c.t.i.
00000010: 6f 00 6e 00 20 00 6d 00 61 00 74 00 63 00 68 00 o.n. .m. a.t.c.h.
00000020: 77 00 6f 00 28 00 61 00 2c 00 62 00 29 00 0d 00 w.o.(.a. ,.b.)...
00000030: 0a 00 7b 00 0d 00 0a 00 69 00 66 00 20 00 28 00 ..{..... i.f. .(.
00000040: 61 00 20 00 3c 00 20 00 62 00 20 00 26 00 26 00 a. .<. . b. .&.&.
00000050: 20 00 61 00 20 00 3c 00 20 00 30 00 29 00 20 00 .a. .<. .0.). .
00000060: 74 00 68 00 65 00 6e 00 0d 00 0a 00 20 00 20 00 t.h.e.n.
00000070: 7b 00 0d 00 0a 00 20 00 20 00 72 00 65 00 74 00 {..... . .r.e.t.
00000080: 75 00 72 00 6e 00 20 00 31 00 3b 00 0d 00 0a 00 u.r.n. . 1.;.....
00000090: 20 00 20 00 7d 00 0d 00 0a 00 65 00 6c 00 73 00 . .}... ..e.l.s.
000000a0: 65 00 0d 00 0a 00 20 00 20 00 7b 00 0d 00 0a 00 e..... . .{.....
000000b0: 20 00 20 00 72 00 65 00 74 00 75 00 72 00 6e 00 . .r.e. t.u.r.n.
000000c0: 20 00 30 00 3b 00 0d 00 0a 00 20 00 20 00 7d 00 .0.;...}.
000000d0: 0d 00 0a 00 7d 00 0d 00 0a 00 04 04 04 04 }...

 <![CDATA[
function matchwo(a,b)
{
if (a < b && a < 0) then
 {
 return 1;
 }
else
 {
 return 0;
 }
}
Є]]>

EventViewer shows the last line as:
ЄЄ]]>

page 30

Even the 04 04 part of the string looks like valid BinXML.

7.2. Corrupted file header with correct checksum

For some reason in EVTX file the file header was written with incorrect data although the checksum
checks out. As you can see the first chunk number: 206 exceeds last chunk number: 205.

signature : ElfFile\x00
first chunk number : 206
last chunk number : 205
next record identifier : 123510
header size : 128
minor version : 1
major version : 3
header block size : 4096
number of chunks : 1024
flags : 0x00000000
checksum : 0x7fc747e2

TODO check the number of chunks in the file and if the event ids are in sequential order. At first
glance it seems to be this way.

7.3. Dirty file with invalid number of chunks

In the dirty file with invalid offset values scenarios the file header indicates the incorrect number of
chunks in the file; in this case less than the actual number of chunks.
signature : ElfFile\x00
first chunk number : 0
last chunk number : 35
next record identifier : 150158
header size : 128
minor version : 1
major version : 3
header block size : 4096
number of chunks : 36
flags : 0x00000001
checksum : 0x98053517

Event Viewer seems to “correct” files that are dirty and where the number of chunks in the file
header is less than the actual number of chunks.

The approach implemented in libevtx 20130713 to deal with these files is to keep scanning for
chunks after the last chunk indicated by the file header. The records in these chunks are not marked
as recovered records.

7.4. Corrupt event record

Corruption of an event record can occur in multiple ways, the following variant have been seen:
• In the middle of a chunk there is suddenly a large block of 0-byte values directly after an

event record.
• In the middle of a chunk there is an event record that is corrupt e.g. the size of the event

page 31

record does not match the copy of size.

The approach is to start scanning for recoverable event records in the remainder of the chunk. Any
event records found are considered recovered.

7.5. Corrupted chunk

Corruption of an chunk can occur in multiple ways, the following variant have been seen:
• In the middle of a chunk there is suddenly a large block of 0-byte values directly after an

event record. These 0-byte values continue across the next (expected) chunk header.

The approach is to start scanning for recoverable event records until a correct chunk header is found
or the end of file is reached. Any event records found are considered recovered.

8. Notes

8.1. Normal behavior

Lets consider a “normal” Application.evtx file.

EventViewer shows 20568 events.

Using “Save All Events As ...” as an XML file from EventViewer shows 4168 events.

Wevtutil get-log-info shows 20568 events.
wevtutil qli /lf:true file.evtx

TODO behavior of oldestRecordNumber

Wevtutil query-events shows 20568 events.
wevtutil qe /lf:true file.evtx > file.xml

cat file.xml | grep EventRecordID | wc -l

This file has the following header.
signature : ElfFile\x00
first chunk number : 0
last chunk number : 181
next record identifier : 20569
header size : 128
minor version : 1
major version : 3
header block size : 4096
number of chunks : 182
file flags : 0x00000000
checksum : 0x9d4c00e2

In the file the event records are in order, meaning that the first chunk contains the event record with
the lowest event record number.

page 32

signature : ElfChnk\x00
first event record number : 1
last event record number : 117
first event record identifier : 1
last event record identifier : 117
header size : 128
last event record offset : 0x0000e380
free space offset : 0x0000f3b0
event records checksum : 0x731087d8

The number of event records in the chunk should be:
last event record number - first event record number + 1

Successive chunks contain successive event record numbers.
signature : ElfChnk\x00
first event record number : 118
last event record number : 232
first event record identifier : 118
last event record identifier : 232
header size : 128
last event record offset : 0x0000fcc8
free space offset : 0x0000ff30
event records checksum : 0x7fa7a9df

TODO determine if gaps in event record identifiers is normal behavior?

8.2. Corruption scenario: event record mismatch between size and copy
of size

Lets consider a dirty Security.evtx file.

EventViewer shows 4001 events.

Using “Save All Events As ...” as an XML file from EventViewer shows 1180 events.

Wevtutil get-log-info shows 4001 events.
wevtutil qli /lf:true file.evtx

The “oldestRecordNumber” is 1 and does not match the data in the file.

Wevtutil query-events shows 4001 events.
wevtutil qe /lf:true file.evtx > file.xml

cat file.xml | grep EventRecordID | wc -l

Looking at the file in more detail the following chunk seems to be corrupt.
signature : ElfChnk\x00
first event record number : 72431823
last event record number : 72431919
first event record identifier : 72433834
last event record identifier : 72433930

page 33

header size : 128
last event record offset : 0x0000fd18
free space offset : 0x0000ffb0
event records checksum : 0x6df0577c
checksum : 0x5ff97a22

mismatch in chunk: 14 event records CRC-32 checksum (0x6df0577c != 0xd97de631)

In the middle of this chunk the size of the event record does not match the copy of size.
signature : \x2a\x2a\x00\x00
size : 664
identifier : 72433924
written time : Feb 20, 2013 20:50:20.671208000 UTC
size copy : 1694526976

Judging by the data structures the size points in the middle of the binary XML.

In this case scanning for event record signatures in the remainder of the chunk yields 6 results:
• 1x corrupt event record (72433924)
• 5x recoverable event records (73882240 - 73882244)

The discontinuation in event record numbers suggest that the file was copied while event record
72433924 was being written.

By continuing scanning for event records in total 21045 event records were found with the first
event number of 72432422.

8.3. Corruption scenario: cross chunk 0-byte values

Lets consider a dirty Security.evtx file.

EventViewer shows 102019 events.

Using “Save All Events As ...” as an XML file from EventViewer shows 68269 events.

Wevtutil get-log-info shows 102019 events.
wevtutil qli file.evtx /lf:true

The “oldestRecordNumber” is 20496.

Wevtutil query-events shows 19660 events.
wevtutil qe file.evtx /lf:true > file.xml

Failed to read events. The event log file is corrupted.

cat file.xml | grep EventRecordID | wc -l

Recall that in the previous corruption scenario wevtutil did not report it but in this case it does.

page 34

signature : ElfChnk\x00
first event record number : 40163
last event record number : 40261
first event record identifier : 41158
last event record identifier : 41256
header size : 128
last event record offset : 0x0000fba8
free space offset : 0x0000fe18
event records checksum : 0x9981f715
checksum : 0x4931f4a2

mismatch in chunk: 402 event records CRC-32 checksum (0x9981f715 !=
0x31aa1bb0).

signature : \x2a\x2a\x00\x00
size : 624
identifier : 41173
written time : Mar 15, 2012 11:03:23.546212500 UTC
size copy : 0

chunk header data:
00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
...
00000070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

By continuing scanning for event records in total 98927 event records and 1043 recoverable event
records were found.

page 35

Appendix A. References
[CHAPPEL08]
Title: The Shell Core Provider
Author(s): G. Chappel
Date: December 29, 2008
URL: http://www.geoffchappell.com/notes/windows/shell/events/core.htm

[LIBEXE]
Title: MZ, PE-COFF executable file format (EXE)
Author(s): J.B. Metz
Date: October 2011
URL: http://code.google.com/p/libexe/downloads/detail?name=Executable%20%28EXE
%29%20file%20format.pdf

[MS-EVEN6]
Title: EventLog Remoting Protocol Version 6.0 Specification
URL: http://msdn.microsoft.com/en-us/library/cc231282(v=prot.10).aspx

[MSDN]
Title: BinXml
URL: http://msdn.microsoft.com/en-us/library/cc231334(v=prot.10).aspx
URL: http://msdn.microsoft.com/en-us/library/cc231337(v=prot.10).aspx
URL: http://msdn.microsoft.com/en-us/library/cc231339(v=prot.10).aspx
URL: http://msdn.microsoft.com/en-us/library/aa382793%28v=VS.85%29.aspx
URL: http://msdn.microsoft.com/en-us/library/cc238875(v=prot.10).aspx

[NTSID]
Tile: NT security descriptor definitions
URL: https://downloads.sourceforge.net/project/libpff/documentation/MAPI
%20definitions/NT%20security%20descriptor.pdf

[SCHUSTER07]
Title: Introducing the Microsoft Vista Event Log File Format.
Author(s): A. Schuster
Date: 2007
URL: http://www.dfrws.org/2007/proceedings/p65-schuster_pres.pdf

[SCHUSTER10]
Tittle: Linking Event Messages and Resource DLLs
Author(s): A. Schuster
Date: October 5, 2010
URL: http://computer.forensikblog.de/en/2010/10/linking-event-messages-and-resource-
dlls.html

[SCHUSTER11]
Title: Microsoft Windows Event Logging - Dokumentation der Binärformate
Author(s): A. Schuster
Version: 148
Date: February 6, 2011

[W3C]

page 36

Title: Extensible Markup Language (XML) 1.0 (Fifth Edition)
Date: November 26, 2008
URL: http://www.w3.org/TR/REC-xml/

Appendix B. GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful document
"free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any
textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. Such a notice grants
a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated
herein. The "Document", below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document's
overall subject (or to related matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those

page 37

of Invariant Sections, in the notice that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not allowed to be designated as
Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any
Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover
Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is suitable for input to
text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text. A copy
that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats
that can be read and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML, PostScript or
PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means the text near the most
prominent appearance of the work's title, preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here
XYZ stands for a specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you
modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to
the Document are reproduced in all copies, and that you add no other conditions whatsoever to
those of this License. You may not use technical measures to obstruct or control the reading or
further copying of the copies you make or distribute. However, you may accept compensation in
exchange for copies. If you distribute a large enough number of copies you must also follow the

page 38

conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document's license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or with
each Opaque copy a computer-network location from which the general network-using public has
access to download using public-standard network protocols a complete Transparent copy of the
Document, free of added material. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy
will remain thus accessible at the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2
and 3 above, provided that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

• B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has fewer than five), unless
they release you from this requirement.

• C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

• D. Preserve all the copyright notices of the Document.
• E. Add an appropriate copyright notice for your modifications adjacent to the other copyright

notices.
• F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form shown in

page 39

the Addendum below.
• G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts

given in the Document's license notice.
• H. Include an unaltered copy of this License.
• I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at

least the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section Entitled "History" in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

• J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was published at least four years
before the Document itself, or if the original publisher of the version it refers to gives
permission.

• K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

• L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

• M. Delete any section Entitled "Endorsements". Such a section may not be included in the
Modified Version.

• N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with
any Invariant Section.

• O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some
or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of
your Modified Version by various parties—for example, statements of peer review or that the text
has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one
passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you are acting on behalf
of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of
the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice, and that you preserve all their Warranty
Disclaimers.

page 40

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of that section if known, or else a unique
number. Make the same adjustment to the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled
"Endorsements".

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules of this License for verbatim
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the
copyright resulting from the compilation is not used to limit the legal rights of the compilation's users
beyond what the individual works permit. When the Document is included in an aggregate, this
License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed
on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if
the Document is in electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this License and the
original versions of those notices and disclaimers. In case of a disagreement between the translation
and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided

page 41

under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the
violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have
received copies or rights from you under this License. If your rights have been terminated and not
permanently reinstated, receipt of a copy of some or all of the same material does not give you any
rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License "or any later version" applies to it, you have the option
of following the terms and conditions either of that specified version or of any later version that has
been published (not as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not as a draft) by the
Free Software Foundation. If the Document specifies that a proxy can decide which future versions
of this License can be used, that proxy's public statement of acceptance of a version permanently
authorizes you to choose that version for the Document.

11. RELICENSING
"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that
publishes copyrightable works and also provides prominent facilities for anybody to edit those
works. A public wiki that anybody can edit is an example of such a server. A "Massive Multiauthor
Collaboration" (or "MMC") contained in the site means any set of copyrightable works thus
published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit corporation with a principal place of business in
San Francisco, California, as well as future copyleft versions of that license published by that same
organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of another
Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were
first published under this License somewhere other than this MMC, and subsequently incorporated in
whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus
incorporated prior to November 1, 2008.

page 42

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the
same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

page 43

	1. Overview
	1.1. Test version
	1.2. Event Log files

	2. File header
	2.1. File flags

	3. Chunk
	3.1. Chunk header
	3.2. Event record

	4. Binary XML
	4.1. Document structure
	4.1.1. Fragment
	4.1.2. Fragment header
	4.1.3. Element
	4.1.4. Element start
	4.1.5. Attribute list
	4.1.6. Attribute
	4.1.7. Name
	4.1.8. Content
	4.1.9. Content string
	4.1.10. Value text
	4.1.11. Substitution
	4.1.12. Normal substitution
	4.1.13. Optional substitution
	4.1.14. Character entity reference
	4.1.15. Entity reference
	4.1.16. CDATA section
	4.1.17. Template instance
	4.1.18. Template definition
	4.1.19. Template instance data
	4.1.20. Unicode text string
	4.1.21. PI
	4.1.22. PI target
	4.1.23. PI data

	4.2. Token types
	4.3. Value types
	4.3.1. String
	4.3.2. Systemtime
	4.3.3. Floating point

	5. Event
	5.1. Event identifier
	5.2. Level
	5.3. Keywords
	5.4. Externally stored values
	5.4.1. Message strings
	5.4.1.1. Event resource file
	5.4.1.2. Message string identifier
	5.4.1.2.1. Using the event identifier qualifiers
	5.4.1.2.2. Using the Windows Event Template (WEVT_TEMPLATE) resource

	5.4.1.3. Message-table resource event message files
	5.4.1.4. Multilingual User Interface (MUI) event message files
	5.4.1.5. Event data
	5.4.1.6. Parsing event data

	5.4.2. Category

	6. Recovery
	6.1. Detecting corrupted records

	7. Corruption scenarios
	7.1. String value oddities
	7.2. Corrupted file header with correct checksum
	7.3. Dirty file with invalid number of chunks
	7.4. Corrupt event record
	7.5. Corrupted chunk

	8. Notes
	8.1. Normal behavior
	8.2. Corruption scenario: event record mismatch between size and copy of size
	8.3. Corruption scenario: cross chunk 0-byte values

