Compatibility

SDL_bgi has been designed to be functionally compatible with the old Borland
Graphics Interface (GRAPHICS.H) for DOS, and with WinBGIm, which itself is a
mostly complete GRAPHICS.H implementation.

SDL_bgi is a superset of both, and as far as I can say it provides the most
compatible GRAPHICS.H implementation available. It should be noted, however,
that SDL_bgi is not a Turbo C or Borland C++ emulator! Besides, SDL_bgi is
also designed to be portable and to take advantage of modern graphics hardware,
thanks to the SDL2 library.

Compatibility with GRAPHICS.H

Compatibility with the original GRAPHICS.H is nearly perfect, but 100% com-
patibility with old programs written for Turbo C or Borland C++ is simply
impossible to attain. By design, Borland compilers were not portable; they
were specifically designed for the PC/DOS platform. Hence, they implemented
low-level details such as hardware key codes, memory models, DOS and BIOS
calls, online assembly, and so on. Besides, even in the original Turbo C / Borland
C++ different graphic drivers were not fully compatible with one another. For
example, programs written for the IBM8514.BGI driver needed modifications to
compile and run on the EGAVGA.BGI driver.

Full compatibility is only possible in a hardware emulator like DOSBox. If a
program uses CONIO.H, DOS.H, BIOS.H and the like, chances are you won’t be
able to compile it. Please consider using DOSBox and one of the original Borland
compilers that are available as freeware.

That said, SDL_bgi is almost perfectly compatible with the original GRAPHICS.H.
It has been tested on the original BGIDEMO.C included in Turbo C 2.01 and
Borland C++ 1.01, and on the sample programs available here. These sample
programs were copied from the original Borland C Library Reference.

Nearly all functions are correctly implemented and work just like in old BGI; in
most cases, output is pixel-perfect.

Differences

Some of the following differences might be eliminated in future releases of
SDL_bgi.

e colour names with CGA_ and EGA_ prefix have the same value as standard
colours. For example, the EGA_BROWN constant is 6, like BROWN, instead of
20 as in Turbo C or Borland C++. This difference should be irrelevant;

o these functions may be called, but have no effect:

— _graphfreemem() is unneeded;
— _graphgetmem() is unneeded;


https://winbgim.codecutter.org/
http://winbgim.codecutter.org/V6_0/doc

— installuserdriver () makes no sense in SDL2;

— registerbgidriver () only made sense on the DOS platform;
— registerbgifont () only made sense on the DOS platform;

— setaspectratio() makes no sense on modern hardware;

— setgraphbufsize() is unneeded;

e initgraph() always uses the SDL2 graphics driver, regardless of its first
parameter;

o functions registerbgidriver() and installuserdriver() require an
argument that must be defined at compile time. For instance, given this
code:

errorcode = registerbgidriver (EGAVGA_driver);

you must add -D EGAVGA_driver to the gcc command line. You'll get a compiler
warning, but the program will compile and run.

e the size and colors members of struct palette are defined as Uint32
instead of char, because colours are implemented as ARGB integers in
SDL_bgi:
struct palettetype {
Uint32 size; // unsigned char in Turbo C / Borland C++
Uint32 colors[MAXCOLORS + 1]; // signed char in Turbo C / Borland C++
3

e setpalette() and setallpalette() will not change the colours of pixels
that have already been drawn. In other words, these functions only affect
future drawings (no palette cycling);

o putimage () bitwise operations (XOR_PUT, OR_PUT etc.) are applied to RGB
colour components. This is apparently not the same behaviour as in old
Turbo C;

e setusercharsize() also works with DEFAULT_FONT;

e setrgbpalette() works on the extended ARGB palette. To change the
RGB components of colours in the default palette, use setpalette() like
this:

setpalette (RED, COLOR (0xaO, 0x10, 0x10));

Compatibility with WinBGIm

Most extensions introduced by WinBGIm have been implemented, with some
differences; WinBGIm, in fact, is written in C4++, while SDL_bgi is written in
C.

When WinBGIm breaks C compatibility with GRAPHICS.H by providing C++
extensions, SDL_bgi follows the original C syntax.



Differences

e output stream bgiout and related functions outstream() and
outstreamxy () are C++ features. Hence, they are not implemented;

e functions clearmouseclick(), converttorgb(), printimage(),
registermousehandler(), and setmousequeuestatus() are not
currently implemented;

o mouse functions are simplified in SDL_bgi, and do not provide the full
range of options available in WinBGIm,;

o functions getwindowheight () and and getwindowwidth() are Windows-
specific, and can’t be implemented portably;

o function closegraph() has no parameters in SDL_bgi;

e function initwindow() only uses the width and height parameters in
SDL_bgi;

e functions IS_BGI_COLOR() and IS_RGB_COLOR() return a value that de-
pends on the colour being used; their argument is ignored.



	Compatibility
	Compatibility with GRAPHICS.H
	Differences

	Compatibility with WinBGIm
	Differences



