
Documentation for parse.h and parse.c

Steven Andrews, © 2008-2015

Header

#ifndef __parse_h
#define __parse_h

typedef struct ParseFileStruct {
 char *froot; // root of file name
 char *fname; // complete file name, including root
 FILE *fptr; // pointer to open file
 int lctr; // line counter
 char *line; // the line being parsed
 char *linecopy; // copy of the line being parsed
 int incomment; // flag for block comments
 struct ParseFileStruct *prevfile; // previous file in linked list
 int maxdef; // allocated size of define lists
 int ndef; // current length of define lists
 char **defkey; // search keys for defines
 char **defreplace; // replacement text for defines
 int *defgbl; // flag for if define is global
 int inifdef; // counter for depth in ifdefines
 } *ParseFilePtr;

ParseFilePtr Parse_AllocFilePtr(char *fileroot,char *filename);
void Parse_FreeFilePtr(ParseFilePtr pfp);
int Parse_ExpandDefine(ParseFilePtr pfp,int maxdef);
int Parse_AddDefine(ParseFilePtr pfp,const char *key,const char *replace,int
global);
int Parse_RemoveDefine(ParseFilePtr pfp,char *key);
void Parse_DisplayDefine(ParseFilePtr pfp);
int Parse_DoDefine(ParseFilePtr pfp);

int Parse_CmdLineArg(int *argcptr,char **argv,ParseFilePtr pfp) {
ParseFilePtr Parse_Start(char *fileroot,char *filename,char *erstr);
int Parse_ReadLine(ParseFilePtr *pfpptr,char *word,char **line2ptr,char
*erstr);
int Parse_ReadFailure(ParseFilePtr pfp,char *erstr);

#endif

Requires: <stdio.h>, <stdio.h>, <stdlib.h>, "string2.h"

Example program: Smoldyn

History: Spun off from Smoldyn 6/3/08. Added Parse_CmdLineArg 2/9/11. Removed

successive replacements from Parse_DoDefine, added Parse_DisplayDefine, and
some other minor improvements 3/5/11. Added recursion to Parse_DoDefine
2/29/12.
4/16/12 Changed declaration for Parse_AddDefine for C++ conformity.

5/17/15 Fixed a bug in global definitions in which they weren’t being passed to
upstream files.

10/5/15 Fixed a bug that I created in the 5/17/15 bug repair.

Overview

This library provides a data structure and several functions for reading

configuration files in a sequential fashion. These function take care of file opening,
closing, files that read other files, comments within the file, error message generation,
etc. Note that all strings here have STRCHAR (defined in string2.h to be 256) characters.

Recognized text

Several terms are recognized by the parsing function

single-line comment
/* start of a multi-line comment
*/ end of a multi-line comment
end of file reading continues to prior file or terminates
end_file reading continues to prior file or terminates
blank line ignored
read_file reading continues at listed file
define define new macro substitution text
define_global define new macro substitution text with global scope
undefine remove macro subtitution text
ifdefine continue reading if it is defined, otherwise skip to else or endif
ifundefine continue reading if not defined, otherwise skip to else or endif
else toggle reading on or off based on from prior ifdefine or ifundefine
endif if not reading because of ifdefine or ifundefine, then start reading

These are described in more detail in the Smoldyn manual.

Data structure

If there is just one configuration file, then one ParseFileStruct (pfp) is used. On the
other hand, this configuration file might call another, and it might call another, and so on.
This list of dependencies is kept track of with a linked list of pfps. This list takes care of
itself remarkably smoothly. While the configuration file collection might represent a
tree, the pfp data structures are created and freed as needed, so they only trace the current
track down the tree.

The data structure contains information about the file that is currently being read,
including the root of its name (the path), the complete file name, and a pointer to the open
file. Also, there is some information about the reading status, including the line number
that is being parsed, the actual line being parsed and a copy of it, and whether the current
line is within a block comment or not. Because a file can instruct another file to be read,
this leads to a stack of open files, which is stored with a linked list. The prevfile
element links the record for the current file back to the previous file, which is used when
the current one is closed.

It is possible to perform macro substitution in configuration files, which are called
defines. For these, maxdef is the allocated size of the lists for the defines, ndef is the
actual size of the these lists, defkey is the list of macro identification keys, defreplace is
the list of replacement strings, and defgbl is a list of flags which are 1 if the define is
global, meaning that it applies to this file and all files called by this file, or is 0 if the
define is local to just this file. In the data structure, the defines are sorted by the lengths
of the key strings, with the longest ones first. This is done to prevent replacement of
short keys when they are part of longer keys. For example, if the key-replace pairs
include “KEY”, “xx” and “KEY1”, “yy”, then if the parser finds “KEY1” at some point in the
text, it should replace it with “yy” and not with “xx1”.

Functions that should never need to be called from externally

ParseFilePtr Parse_AllocFilePtr(char *fileroot,char *filename);
 This allocates a new parse file structure and initializes it. froot is initialized to

fileroot, fname to a concatanation of fileroot and filename, and other values to 0
or NULL as appropriate. fileroot and/or filename can be entered as NULL, in which
case those components of the internal strings are left as empty strings. A pointer to
the structure is returned unless memory could not be allocated, in which case NULL
is returned.

void Parse_FreeFilePtr(ParseFilePtr pfp);
 Frees a parse file structure, including its members. The previous structure, pointed

to by prevfile, is not freed.

int Parse_ExpandDefine(ParseFilePtr pfp,int maxdef);
 Expands (or shrinks) the size of the define lists in the listed pfp to size maxdef. Any

previous list contents are copied over into the new lists and previous lists are freed
and then replaced with new ones. Returns 0 for success, 1 for inability to allocate
the required memory, and 2 for illegal inputs; maxdef needs to be at least 1.

int Parse_AddDefine(ParseFilePtr pfp,char *key,char *replace,int global);
 Adds a define to the listed pfp. The key text is key, the replacement text is replace,

and it is made global if global is 1 and not if global is 0. replace may be entered as
NULL, in which the replacement text is left as an empty string. Returns 0 for normal
operation, 1 if required memory could not be allocated, or 2 if the new definition
would overwrite an old definition (but this is not done; the old definition is kept).

int Parse_RemoveDefine(ParseFilePtr pfp,char *key);
 Removes the define from the listed pfp that has key equal to key. Returns 1 if a

matching key could be found and 0 if so. If key is set to NULL, this removes all
defines, whether local or global.

void Parse_DisplayDefine(ParseFilePtr pfp);
 Simply prints out the current file path and name, followed by all current definitions.

int Parse_DoDefine(ParseFilePtr pfp);

 Performs all required define substitutions on the current line being parsed, which is
in the line element, using the local and global defines. No substitutions are
performed if the line starts with one of the following strings: “define”, “undefine”,
“ifdefine”, or “ifundefine”. Returns 2 if replacement caused the line to overflow.
Otherwise, returns 0 to indicate success.

 If this function makes replacements, then it calls itself recursively to see if there are

more replacements to be made. It does not recurse more than 10 times.

Functions for normal library use

int Parse_CmdLineArg(int *argcptr,char **argv,ParseFilePtr pfp);
 This function processes arguments that the user enters on the command line. It can

run in either of two modes. In the first, argcptr and argv contain command line
arguments and pfp is NULL; in this case, the arguments are copied and stored
internally. In the second mode, argcptr and argv are NULL while pfp is defined; in
this case, the function copies any stored arguments into the pfp list of definitions.
This function can also work in a combination of the two modes where none of the
inputs are NULL. In this case, arguments are registered directly in the pfp without
using internal storage. Finally, if all inputs are NULL, this function simply returns 0.

 For the first mode, the number of arguments should be pointed to by argcptr and

the arguments should be in argv. At present, this function only recognizes an
argument that equals “--define” and that is then followed by an arguments that has
the format “key=replacement”, where key is the define key and replacement is the
replacement text. If needed, the replacement text can be put in double quotes to
include spaces within it. This function removes parsed arguments from the input
and leaves others in argv (and it updates the contents of argcptr) for processing
elsewhere.

 The function returns 0 for success, 1 for inability to allocate memory (either for

internal use, or for the definitions within the pfp), or 2 for inability to parse the
argument list.

ParseFilePtr Parse_Start(char *fileroot,char *filename,char *erstr);
 Call this to start reading the top level configuration file with the file path in

fileroot and the file name in filename. This takes care of structure allocation,
setting up, and error checking. Returns the pfp for success and NULL for failure. If
there is a failure, an error message is copied into erstr. Possible failures are
memory allocation failure or file not found.

char* Parse_fgets(char *str,int num,FILE *stream);
 This is essentially identical to the standard library fgets function. The only

difference, I think, is that it stops when it finds a ‘\r’ character, which is the return
character. This is the line termination character for Macs and is also in Windows.

int Parse_ReadLine(ParseFilePtr *pfpptr,char *word,char **line2ptr,char
*erstr);

 Reads one line of the current configuration file, preprocesses it slightly, and takes
care of intial parsing things. These include skipping blank lines and dealing with
comments, define statements, and “read_file” and “end_file” statements. Send in
pfpptr pointing to the current pfp, word as an allocated string, line2ptr as a pointer
to a pointer to a character, and erstr as an allocated string. Only the contents of the
first parameter are used; the other parameters are for returned information. Returns
0 if there is nothing more to do with the line, 1 if the word needs processing, 2 if the
configuration file ended, 3 for illegal inputs or a problem with the entry. If 1 is
returned, which is the most common situation, then the first word of the line is
copied into word, while *line2ptr is set to point to the remainder of the line, after
any whitespace. If 3 is returned, the error string describes the problem.

int Parse_ReadFailure(ParseFilePtr pfp,char *erstr);
 Call this if an error arises during file parsing, along with an optional error message

in erstr. erstr needs to be allocated to STRCHAR. This closes all open configuration
files, frees the list of pfps, and concatenates the provided error message with some
more details about the erroneous line and the file. If pfp is entered as NULL, this
returns 0; otherwise, this returns the line number where the error arose.

