PLplot 5.15.0
delaunay.c
Go to the documentation of this file.
1//--------------------------------------------------------------------------
2//
3// File: delaunay.c
4//
5// Created: 04/08/2000
6//
7// Author: Pavel Sakov
8// CSIRO Marine Research
9//
10// Purpose: Delaunay triangulation - a wrapper to triangulate()
11//
12// Description: None
13//
14// Revisions: 10/06/2003 PS: delaunay_build(); delaunay_destroy();
15// struct delaunay: from now on, only shallow copy of the
16// input data is contained in struct delaunay. This saves
17// memory and is consistent with libcsa.
18//
19// Modified: Joao Cardoso, 4/2/2003
20// Adapted for use with Qhull instead of "triangle".
21// Andrew Ross 20/10/2008
22// Fix bug in delaunay_circles_find() when checking
23// whether a circle has been found.
24//
25//--------------------------------------------------------------------------
26
27#define USE_QHULL
28
29#include <stdlib.h>
30#include <stdio.h>
31#include <assert.h>
32#include <math.h>
33#include <string.h>
34#include <limits.h>
35#include <float.h>
36#ifdef USE_QHULL
37#ifdef HAS_LIBQHULL_INCLUDE
38#include <libqhull/qhull_a.h>
39#else
40#include <qhull/qhull_a.h>
41#endif
42#else
43#include "triangle.h"
44#endif
45#include "istack.h"
46#include "nan.h"
47#include "delaunay.h"
48
49int circle_build( circle* c, point* p0, point* p1, point* p2 );
50int circle_contains( circle* c, point* p );
51int delaunay_xytoi( delaunay* d, point* p, int id );
52void delaunay_circles_find( delaunay* d, point* p, int* n, int** out );
53
54#ifdef USE_QHULL
55static int cw( delaunay *d, triangle *t );
56#endif
57
58#ifndef USE_QHULL
59static void tio_init( struct triangulateio* tio )
60{
61 tio->pointlist = NULL;
62 tio->pointattributelist = NULL;
63 tio->pointmarkerlist = NULL;
64 tio->numberofpoints = 0;
65 tio->numberofpointattributes = 0;
66 tio->trianglelist = NULL;
67 tio->triangleattributelist = NULL;
68 tio->trianglearealist = NULL;
69 tio->neighborlist = NULL;
70 tio->numberoftriangles = 0;
71 tio->numberofcorners = 0;
72 tio->numberoftriangleattributes = 0;
73 tio->segmentlist = 0;
74 tio->segmentmarkerlist = NULL;
75 tio->numberofsegments = 0;
76 tio->holelist = NULL;
77 tio->numberofholes = 0;
78 tio->regionlist = NULL;
79 tio->numberofregions = 0;
80 tio->edgelist = NULL;
81 tio->edgemarkerlist = NULL;
82 tio->normlist = NULL;
83 tio->numberofedges = 0;
84}
85
86static void tio_destroy( struct triangulateio* tio )
87{
88 if ( tio->pointlist != NULL )
89 free( tio->pointlist );
90 if ( tio->pointattributelist != NULL )
91 free( tio->pointattributelist );
92 if ( tio->pointmarkerlist != NULL )
93 free( tio->pointmarkerlist );
94 if ( tio->trianglelist != NULL )
95 free( tio->trianglelist );
96 if ( tio->triangleattributelist != NULL )
97 free( tio->triangleattributelist );
98 if ( tio->trianglearealist != NULL )
99 free( tio->trianglearealist );
100 if ( tio->neighborlist != NULL )
101 free( tio->neighborlist );
102 if ( tio->segmentlist != NULL )
103 free( tio->segmentlist );
104 if ( tio->segmentmarkerlist != NULL )
105 free( tio->segmentmarkerlist );
106 if ( tio->holelist != NULL )
107 free( tio->holelist );
108 if ( tio->regionlist != NULL )
109 free( tio->regionlist );
110 if ( tio->edgelist != NULL )
111 free( tio->edgelist );
112 if ( tio->edgemarkerlist != NULL )
113 free( tio->edgemarkerlist );
114 if ( tio->normlist != NULL )
115 free( tio->normlist );
116}
117
118static delaunay* delaunay_create()
119{
120 delaunay* d = malloc( sizeof ( delaunay ) );
121
122 d->npoints = 0;
123 d->points = NULL;
124 d->xmin = DBL_MAX;
125 d->xmax = -DBL_MAX;
126 d->ymin = DBL_MAX;
127 d->ymax = -DBL_MAX;
128 d->ntriangles = 0;
129 d->triangles = NULL;
130 d->circles = NULL;
131 d->neighbours = NULL;
132 d->n_point_triangles = NULL;
133 d->point_triangles = NULL;
134 d->nedges = 0;
135 d->edges = NULL;
136 d->flags = NULL;
137 d->first_id = -1;
138 d->t_in = NULL;
139 d->t_out = NULL;
140
141 return d;
142}
143
144static void tio2delaunay( struct triangulateio* tio_out, delaunay* d )
145{
146 int i, j;
147
148 //
149 // I assume that all input points appear in tio_out in the same order as
150 // they were written to tio_in. I have seen no exceptions so far, even
151 // if duplicate points were presented. Just in case, let us make a couple
152 // of checks.
153 //
154 assert( tio_out->numberofpoints == d->npoints );
155 assert( tio_out->pointlist[2 * d->npoints - 2] == d->points[d->npoints - 1].x && tio_out->pointlist[2 * d->npoints - 1] == d->points[d->npoints - 1].y );
156
157 for ( i = 0, j = 0; i < d->npoints; ++i )
158 {
159 point* p = &d->points[i];
160
161 if ( p->x < d->xmin )
162 d->xmin = p->x;
163 if ( p->x > d->xmax )
164 d->xmax = p->x;
165 if ( p->y < d->ymin )
166 d->ymin = p->y;
167 if ( p->y > d->ymax )
168 d->ymax = p->y;
169 }
170 if ( nn_verbose )
171 {
172 fprintf( stderr, "input:\n" );
173 for ( i = 0, j = 0; i < d->npoints; ++i )
174 {
175 point* p = &d->points[i];
176
177 fprintf( stderr, " %d: %15.7g %15.7g %15.7g\n", i, p->x, p->y, p->z );
178 }
179 }
180
181 d->ntriangles = tio_out->numberoftriangles;
182 if ( d->ntriangles > 0 )
183 {
184 d->triangles = malloc( d->ntriangles * sizeof ( triangle ) );
185 d->neighbours = malloc( d->ntriangles * sizeof ( triangle_neighbours ) );
186 d->circles = malloc( d->ntriangles * sizeof ( circle ) );
187 d->n_point_triangles = calloc( d->npoints, sizeof ( int ) );
188 d->point_triangles = malloc( d->npoints * sizeof ( int* ) );
189 d->flags = calloc( d->ntriangles, sizeof ( int ) );
190 }
191
192 if ( nn_verbose )
193 fprintf( stderr, "triangles:\n" );
194 for ( i = 0; i < d->ntriangles; ++i )
195 {
196 int offset = i * 3;
197 triangle * t = &d->triangles[i];
199 circle * c = &d->circles[i];
200
201 t->vids[0] = tio_out->trianglelist[offset];
202 t->vids[1] = tio_out->trianglelist[offset + 1];
203 t->vids[2] = tio_out->trianglelist[offset + 2];
204
205 n->tids[0] = tio_out->neighborlist[offset];
206 n->tids[1] = tio_out->neighborlist[offset + 1];
207 n->tids[2] = tio_out->neighborlist[offset + 2];
208
209 circle_build( c, &d->points[t->vids[0]], &d->points[t->vids[1]], &d->points[t->vids[2]] );
210
211 if ( nn_verbose )
212 fprintf( stderr, " %d: (%d,%d,%d)\n", i, t->vids[0], t->vids[1], t->vids[2] );
213 }
214
215 for ( i = 0; i < d->ntriangles; ++i )
216 {
217 triangle* t = &d->triangles[i];
218
219 for ( j = 0; j < 3; ++j )
220 d->n_point_triangles[t->vids[j]]++;
221 }
222 if ( d->ntriangles > 0 )
223 {
224 for ( i = 0; i < d->npoints; ++i )
225 {
226 if ( d->n_point_triangles[i] > 0 )
227 d->point_triangles[i] = malloc( d->n_point_triangles[i] * sizeof ( int ) );
228 else
229 d->point_triangles[i] = NULL;
230 d->n_point_triangles[i] = 0;
231 }
232 }
233 for ( i = 0; i < d->ntriangles; ++i )
234 {
235 triangle* t = &d->triangles[i];
236
237 for ( j = 0; j < 3; ++j )
238 {
239 int vid = t->vids[j];
240
241 d->point_triangles[vid][d->n_point_triangles[vid]] = i;
242 d->n_point_triangles[vid]++;
243 }
244 }
245
246 if ( tio_out->edgelist != NULL )
247 {
248 d->nedges = tio_out->numberofedges;
249 d->edges = malloc( d->nedges * 2 * sizeof ( int ) );
250 memcpy( d->edges, tio_out->edgelist, d->nedges * 2 * sizeof ( int ) );
251 }
252}
253#endif
254
255// Builds Delaunay triangulation of the given array of points.
256//
257// @param np Number of points
258// @param points Array of points [np] (input)
259// @param ns Number of forced segments
260// @param segments Array of (forced) segment endpoint indices [2*ns]
261// @param nh Number of holes
262// @param holes Array of hole (x,y) coordinates [2*nh]
263// @return Delaunay triangulation structure with triangulation results
264//
265delaunay* delaunay_build( int np, point points[], int ns, int segments[], int nh, double holes[] )
266#ifndef USE_QHULL
267{
268 delaunay * d = delaunay_create();
269 struct triangulateio tio_in;
270 struct triangulateio tio_out;
271 char cmd[64] = "eznC";
272 int i, j;
273
274 assert( sizeof ( REAL ) == sizeof ( double ) );
275
276 tio_init( &tio_in );
277
278 if ( np == 0 )
279 {
280 free( d );
281 return NULL;
282 }
283
284 tio_in.pointlist = malloc( np * 2 * sizeof ( double ) );
285 tio_in.numberofpoints = np;
286 for ( i = 0, j = 0; i < np; ++i )
287 {
288 tio_in.pointlist[j++] = points[i].x;
289 tio_in.pointlist[j++] = points[i].y;
290 }
291
292 if ( ns > 0 )
293 {
294 tio_in.segmentlist = malloc( ns * 2 * sizeof ( int ) );
295 tio_in.numberofsegments = ns;
296 memcpy( tio_in.segmentlist, segments, ns * 2 * sizeof ( int ) );
297 }
298
299 if ( nh > 0 )
300 {
301 tio_in.holelist = malloc( nh * 2 * sizeof ( double ) );
302 tio_in.numberofholes = nh;
303 memcpy( tio_in.holelist, holes, nh * 2 * sizeof ( double ) );
304 }
305
306 tio_init( &tio_out );
307
308 if ( !nn_verbose )
309 strcat( cmd, "Q" );
310 else if ( nn_verbose > 1 )
311 strcat( cmd, "VV" );
312 if ( ns != 0 )
313 strcat( cmd, "p" );
314
315 if ( nn_verbose )
316 fflush( stderr );
317
318 //
319 // climax
320 //
321 triangulate( cmd, &tio_in, &tio_out, NULL );
322
323 if ( nn_verbose )
324 fflush( stderr );
325
326 d->npoints = np;
327 d->points = points;
328
329 tio2delaunay( &tio_out, d );
330
331 tio_destroy( &tio_in );
332 tio_destroy( &tio_out );
333
334 return d;
335}
336#else // USE_QHULL
337{
338 delaunay* d = malloc( sizeof ( delaunay ) );
339
340 coordT *qpoints; // array of coordinates for each point
341 boolT ismalloc = False; // True if qhull should free points
342 char flags[64] = "qhull d Qbb Qt"; // option flags for qhull
343 facetT *facet, *neighbor, **neighborp; // variables to walk through facets
344 vertexT *vertex, **vertexp; // variables to walk through vertex
345
346 int curlong, totlong; // memory remaining after qh_memfreeshort
347 FILE *outfile = stdout;
348 FILE *errfile = stderr; // error messages from qhull code
349
350 int i, j;
351 int exitcode;
352 int dim, ntriangles;
353 int numfacets, numsimplicial, numridges, totneighbors, numcoplanars, numtricoplanars;
354
355 (void) segments; // Cast to void to suppress compiler warnings about unused parameters
356 (void) holes;
357
358 dim = 2;
359
360 assert( sizeof ( realT ) == sizeof ( double ) ); // Qhull was compiled with doubles?
361
362 if ( np == 0 || ns > 0 || nh > 0 )
363 {
364 fprintf( stderr, "segments=%d holes=%d\n, aborting Qhull implementation, use 'triangle' instead.\n", ns, nh );
365 free( d );
366 return NULL;
367 }
368
369 qpoints = (coordT *) malloc( (size_t) ( np * ( dim + 1 ) ) * sizeof ( coordT ) );
370
371 for ( i = 0; i < np; i++ )
372 {
373 qpoints[i * dim] = points[i].x;
374 qpoints[i * dim + 1] = points[i].y;
375 }
376
377 if ( !nn_verbose )
378 outfile = NULL;
379 if ( nn_verbose )
380 strcat( flags, " s" );
381 if ( nn_verbose > 1 )
382 strcat( flags, " Ts" );
383
384 if ( nn_verbose )
385 fflush( stderr );
386
387 //
388 // climax
389 //
390
391 exitcode = qh_new_qhull( dim, np, qpoints, ismalloc,
392 flags, outfile, errfile );
393
394 if ( !exitcode )
395 {
396 if ( nn_verbose )
397 fflush( stderr );
398
399 d->xmin = DBL_MAX;
400 d->xmax = -DBL_MAX;
401 d->ymin = DBL_MAX;
402 d->ymax = -DBL_MAX;
403
404 d->npoints = np;
405 d->points = malloc( (size_t) np * sizeof ( point ) );
406 for ( i = 0; i < np; ++i )
407 {
408 point* p = &d->points[i];
409
410 p->x = points[i].x;
411 p->y = points[i].y;
412 p->z = points[i].z;
413
414 if ( p->x < d->xmin )
415 d->xmin = p->x;
416 if ( p->x > d->xmax )
417 d->xmax = p->x;
418 if ( p->y < d->ymin )
419 d->ymin = p->y;
420 if ( p->y > d->ymax )
421 d->ymax = p->y;
422 }
423
424 if ( nn_verbose )
425 {
426 fprintf( stderr, "input:\n" );
427 for ( i = 0; i < np; ++i )
428 {
429 point* p = &d->points[i];
430
431 fprintf( stderr, " %d: %15.7g %15.7g %15.7g\n",
432 i, p->x, p->y, p->z );
433 }
434 }
435
436 qh_findgood_all( qh facet_list );
437 qh_countfacets( qh facet_list, NULL, !qh_ALL, &numfacets,
438 &numsimplicial, &totneighbors, &numridges,
439 &numcoplanars, &numtricoplanars );
440
441 ntriangles = 0;
442 FORALLfacets {
443 if ( !facet->upperdelaunay && facet->simplicial )
444 ntriangles++;
445 }
446
447 d->ntriangles = ntriangles;
448 d->triangles = malloc( (size_t) d->ntriangles * sizeof ( triangle ) );
449 d->neighbours = malloc( (size_t) d->ntriangles * sizeof ( triangle_neighbours ) );
450 d->circles = malloc( (size_t) d->ntriangles * sizeof ( circle ) );
451
452 if ( nn_verbose )
453 fprintf( stderr, "triangles:\tneighbors:\n" );
454
455 i = 0;
456 FORALLfacets {
457 if ( !facet->upperdelaunay && facet->simplicial )
458 {
459 triangle * t = &d->triangles[i];
461 circle * c = &d->circles[i];
462
463 j = 0;
464 FOREACHvertex_( facet->vertices )
465 t->vids[j++] = qh_pointid( vertex->point );
466
467 j = 0;
468 FOREACHneighbor_( facet )
469 n->tids[j++] = ( neighbor->visitid > 0 ) ? (int) neighbor->visitid - 1 : -1;
470
471 // Put triangle vertices in counterclockwise order, as
472 // 'triangle' do.
473 // The same needs to be done with the neighbors.
474 //
475 // The following works, i.e., it seems that Qhull maintains a
476 // relationship between the vertices and the neighbors
477 // triangles, but that is not said anywhere, so if this stop
478 // working in a future Qhull release, you know what you have
479 // to do, reorder the neighbors.
480 //
481
482 if ( cw( d, t ) )
483 {
484 int tmp = t->vids[1];
485 t->vids[1] = t->vids[2];
486 t->vids[2] = tmp;
487
488 tmp = n->tids[1];
489 n->tids[1] = n->tids[2];
490 n->tids[2] = tmp;
491 }
492
493 circle_build( c, &d->points[t->vids[0]], &d->points[t->vids[1]],
494 &d->points[t->vids[2]] );
495
496 if ( nn_verbose )
497 fprintf( stderr, " %d: (%d,%d,%d)\t(%d,%d,%d)\n",
498 i, t->vids[0], t->vids[1], t->vids[2], n->tids[0],
499 n->tids[1], n->tids[2] );
500
501 i++;
502 }
503 }
504
505 d->flags = calloc( (size_t) ( d->ntriangles ), sizeof ( int ) );
506
507 d->n_point_triangles = calloc( (size_t) ( d->npoints ), sizeof ( int ) );
508 for ( i = 0; i < d->ntriangles; ++i )
509 {
510 triangle* t = &d->triangles[i];
511
512 for ( j = 0; j < 3; ++j )
513 d->n_point_triangles[t->vids[j]]++;
514 }
515 d->point_triangles = malloc( (size_t) ( d->npoints ) * sizeof ( int* ) );
516 for ( i = 0; i < d->npoints; ++i )
517 {
518 if ( d->n_point_triangles[i] > 0 )
519 d->point_triangles[i] = malloc( (size_t) ( d->n_point_triangles[i] ) * sizeof ( int ) );
520 else
521 d->point_triangles[i] = NULL;
522 d->n_point_triangles[i] = 0;
523 }
524 for ( i = 0; i < d->ntriangles; ++i )
525 {
526 triangle* t = &d->triangles[i];
527
528 for ( j = 0; j < 3; ++j )
529 {
530 int vid = t->vids[j];
531
532 d->point_triangles[vid][d->n_point_triangles[vid]] = i;
533 d->n_point_triangles[vid]++;
534 }
535 }
536
537 d->nedges = 0;
538 d->edges = NULL;
539
540 d->t_in = NULL;
541 d->t_out = NULL;
542 d->first_id = -1;
543 }
544 else
545 {
546 free( d );
547 d = NULL;
548 }
549
550 free( qpoints );
551 qh_freeqhull( !qh_ALL ); // free long memory
552 qh_memfreeshort( &curlong, &totlong ); // free short memory and memory allocator
553 if ( curlong || totlong )
554 fprintf( errfile,
555 "qhull: did not free %d bytes of long memory (%d pieces)\n",
556 totlong, curlong );
557
558 return d;
559}
560
561// returns 1 if a,b,c are clockwise ordered
562static int cw( delaunay *d, triangle *t )
563{
564 point* pa = &d->points[t->vids[0]];
565 point* pb = &d->points[t->vids[1]];
566 point* pc = &d->points[t->vids[2]];
567
568 return ( ( pb->x - pa->x ) * ( pc->y - pa->y ) <
569 ( pc->x - pa->x ) * ( pb->y - pa->y ) );
570}
571
572#endif
573
574// Releases memory engaged in the Delaunay triangulation structure.
575//
576// @param d Structure to be destroyed
577//
579{
580 if ( d == NULL )
581 return;
582
583 if ( d->point_triangles != NULL )
584 {
585 int i;
586
587 for ( i = 0; i < d->npoints; ++i )
588 if ( d->point_triangles[i] != NULL )
589 free( d->point_triangles[i] );
590 free( d->point_triangles );
591 }
592 if ( d->nedges > 0 )
593 free( d->edges );
594#ifdef USE_QHULL
595 // This is a shallow copy if we're not using qhull so we don't
596 // need to free it
597 if ( d->points != NULL )
598 free( d->points );
599#endif
600 if ( d->n_point_triangles != NULL )
601 free( d->n_point_triangles );
602 if ( d->flags != NULL )
603 free( d->flags );
604 if ( d->circles != NULL )
605 free( d->circles );
606 if ( d->neighbours != NULL )
607 free( d->neighbours );
608 if ( d->triangles != NULL )
609 free( d->triangles );
610 if ( d->t_in != NULL )
611 istack_destroy( d->t_in );
612 if ( d->t_out != NULL )
613 istack_destroy( d->t_out );
614 free( d );
615}
616
617// Returns whether the point p is on the right side of the vector (p0, p1).
618//
619static int on_right_side( point* p, point* p0, point* p1 )
620{
621 return ( p1->x - p->x ) * ( p0->y - p->y ) > ( p0->x - p->x ) * ( p1->y - p->y );
622}
623
624// Finds triangle specified point belongs to (if any).
625//
626// @param d Delaunay triangulation
627// @param p Point to be mapped
628// @param seed Triangle index to start with
629// @return Triangle id if successful, -1 otherwhile
630//
631int delaunay_xytoi( delaunay* d, point* p, int id )
632{
633 triangle* t;
634 int i;
635
636 if ( p->x < d->xmin || p->x > d->xmax || p->y < d->ymin || p->y > d->ymax )
637 return -1;
638
639 if ( id < 0 || id > d->ntriangles )
640 id = 0;
641 t = &d->triangles[id];
642 do
643 {
644 for ( i = 0; i < 3; ++i )
645 {
646 int i1 = ( i + 1 ) % 3;
647
648 if ( on_right_side( p, &d->points[t->vids[i]], &d->points[t->vids[i1]] ) )
649 {
650 id = d->neighbours[id].tids[( i + 2 ) % 3];
651 if ( id < 0 )
652 return id;
653 t = &d->triangles[id];
654 break;
655 }
656 }
657 } while ( i < 3 );
658
659 return id;
660}
661
662// Finds all tricircles specified point belongs to.
663//
664// @param d Delaunay triangulation
665// @param p Point to be mapped
666// @param n Pointer to the number of tricircles within `d' containing `p'
667// (output)
668// @param out Pointer to an array of indices of the corresponding triangles
669// [n] (output)
670//
671// There is a standard search procedure involving search through triangle
672// neighbours (not through vertex neighbours). It must be a bit faster due to
673// the smaller number of triangle neighbours (3 per triangle) but can fail
674// for a point outside convex hall.
675//
676// We may wish to modify this procedure in future: first check if the point
677// is inside the convex hall, and depending on that use one of the two
678// search algorithms. It not 100% clear though whether this will lead to a
679// substantial speed gains because of the check on convex hall involved.
680//
681void delaunay_circles_find( delaunay* d, point* p, int* n, int** out )
682{
683 int i;
684
685 if ( d->t_in == NULL )
686 {
687 d->t_in = istack_create();
688 d->t_out = istack_create();
689 }
690
691 //
692 // It is important to have a reasonable seed here. If the last search
693 // was successful -- start with the last found tricircle, otherwhile (i)
694 // try to find a triangle containing (x,y); if fails then (ii) check
695 // tricircles from the last search; if fails then (iii) make linear
696 // search through all tricircles
697 //
698 if ( d->first_id < 0 || !circle_contains( &d->circles[d->first_id], p ) )
699 {
700 //
701 // if any triangle contains (x,y) -- start with this triangle
702 //
703 d->first_id = delaunay_xytoi( d, p, d->first_id );
704
705 //
706 // if no triangle contains (x,y), there still is a chance that it is
707 // inside some of circumcircles
708 //
709 if ( d->first_id < 0 )
710 {
711 int nn = d->t_out->n;
712 int tid = -1;
713
714 //
715 // first check results of the last search
716 //
717 for ( i = 0; i < nn; ++i )
718 {
719 tid = d->t_out->v[i];
720 if ( circle_contains( &d->circles[tid], p ) )
721 break;
722 }
723 //
724 // if unsuccessful, search through all circles
725 //
726 if ( tid < 0 || i == nn )
727 {
728 double nt = d->ntriangles;
729
730 for ( tid = 0; tid < nt; ++tid )
731 {
732 if ( circle_contains( &d->circles[tid], p ) )
733 break;
734 }
735 if ( tid == nt )
736 {
737 istack_reset( d->t_out );
738 *n = 0;
739 *out = NULL;
740 return; // failed
741 }
742 }
743 d->first_id = tid;
744 }
745 }
746
747 istack_reset( d->t_in );
748 istack_reset( d->t_out );
749
750 istack_push( d->t_in, d->first_id );
751 d->flags[d->first_id] = 1;
752
753 //
754 // main cycle
755 //
756 while ( d->t_in->n > 0 )
757 {
758 int tid = istack_pop( d->t_in );
759 triangle* t = &d->triangles[tid];
760
761 if ( circle_contains( &d->circles[tid], p ) )
762 {
763 istack_push( d->t_out, tid );
764 for ( i = 0; i < 3; ++i )
765 {
766 int vid = t->vids[i];
767 int nt = d->n_point_triangles[vid];
768 int j;
769
770 for ( j = 0; j < nt; ++j )
771 {
772 int ntid = d->point_triangles[vid][j];
773
774 if ( d->flags[ntid] == 0 )
775 {
776 istack_push( d->t_in, ntid );
777 d->flags[ntid] = 1;
778 }
779 }
780 }
781 }
782 }
783
784 *n = d->t_out->n;
785 *out = d->t_out->v;
786}
static int on_right_side(point *p, point *p0, point *p1)
Definition: delaunay.c:619
int circle_build(circle *c, point *p0, point *p1, point *p2)
Definition: nncommon.c:68
int circle_contains(circle *c, point *p)
Definition: nncommon.c:98
int delaunay_xytoi(delaunay *d, point *p, int id)
Definition: delaunay.c:631
delaunay * delaunay_build(int np, point points[], int ns, int segments[], int nh, double holes[])
Definition: delaunay.c:265
void delaunay_destroy(delaunay *d)
Definition: delaunay.c:578
void delaunay_circles_find(delaunay *d, point *p, int *n, int **out)
Definition: delaunay.c:681
static int cw(delaunay *d, triangle *t)
Definition: delaunay.c:562
void istack_push(istack *s, int v)
Definition: istack.c:55
istack * istack_create()
Definition: istack.c:32
void istack_reset(istack *s)
Definition: istack.c:40
int istack_pop(istack *s)
Definition: istack.c:67
void istack_destroy(istack *s)
Definition: istack.c:73
int nn_verbose
Definition: nncommon.c:43
point * points
Definition: delaunay.h:48
int npoints
Definition: delaunay.h:47
int ** point_triangles
Definition: delaunay.h:61
double ymin
Definition: delaunay.h:51
int ntriangles
Definition: delaunay.h:54
circle * circles
Definition: delaunay.h:56
double xmax
Definition: delaunay.h:50
int first_id
Definition: delaunay.h:74
istack * t_out
Definition: delaunay.h:77
istack * t_in
Definition: delaunay.h:76
double ymax
Definition: delaunay.h:52
triangle_neighbours * neighbours
Definition: delaunay.h:57
int nedges
Definition: delaunay.h:64
int * edges
Definition: delaunay.h:65
int * n_point_triangles
Definition: delaunay.h:59
double xmin
Definition: delaunay.h:49
triangle * triangles
Definition: delaunay.h:55
int * flags
Definition: delaunay.h:73
int * v
Definition: istack.h:25
int n
Definition: istack.h:23
Definition: csa.h:30
double y
Definition: csa.h:32
double x
Definition: csa.h:31
double z
Definition: csa.h:33
Definition: csa.c:56
int vids[3]
Definition: delaunay.h:25