libstdc++
regex_executor.tcc
Go to the documentation of this file.
1 // class template regex -*- C++ -*-
2 
3 // Copyright (C) 2013-2023 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /**
26  * @file bits/regex_executor.tcc
27  * This is an internal header file, included by other library headers.
28  * Do not attempt to use it directly. @headername{regex}
29  */
30 
31 namespace std _GLIBCXX_VISIBILITY(default)
32 {
33 _GLIBCXX_BEGIN_NAMESPACE_VERSION
34 
35 namespace __detail
36 {
37  template<typename _BiIter, typename _Alloc, typename _TraitsT,
38  bool __dfs_mode>
39  bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
40  _M_search()
41  {
42  if (_M_search_from_first())
43  return true;
44  if (_M_flags & regex_constants::match_continuous)
45  return false;
47  while (_M_begin != _M_end)
48  {
49  ++_M_begin;
50  if (_M_search_from_first())
51  return true;
52  }
53  return false;
54  }
55 
56  // The _M_main function operates in different modes, DFS mode or BFS mode,
57  // indicated by template parameter __dfs_mode, and dispatches to one of the
58  // _M_main_dispatch overloads.
59  //
60  // ------------------------------------------------------------
61  //
62  // DFS mode:
63  //
64  // It applies a Depth-First-Search (aka backtracking) on given NFA and input
65  // string.
66  // At the very beginning the executor stands in the start state, then it
67  // tries every possible state transition in current state recursively. Some
68  // state transitions consume input string, say, a single-char-matcher or a
69  // back-reference matcher; some don't, like assertion or other anchor nodes.
70  // When the input is exhausted and/or the current state is an accepting
71  // state, the whole executor returns true.
72  //
73  // TODO: This approach is exponentially slow for certain input.
74  // Try to compile the NFA to a DFA.
75  //
76  // Time complexity: \Omega(match_length), O(2^(_M_nfa.size()))
77  // Space complexity: \theta(match_results.size() + match_length)
78  //
79  template<typename _BiIter, typename _Alloc, typename _TraitsT,
80  bool __dfs_mode>
81  bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
82  _M_main_dispatch(_Match_mode __match_mode, __dfs)
83  {
84  _M_has_sol = false;
85  *_M_states._M_get_sol_pos() = _BiIter();
86  _M_cur_results = _M_results;
87  _M_dfs(__match_mode, _M_states._M_start);
88  return _M_has_sol;
89  }
90 
91  // ------------------------------------------------------------
92  //
93  // BFS mode:
94  //
95  // Russ Cox's article (http://swtch.com/~rsc/regexp/regexp1.html)
96  // explained this algorithm clearly.
97  //
98  // It first computes epsilon closure (states that can be achieved without
99  // consuming characters) for every state that's still matching,
100  // using the same DFS algorithm, but doesn't re-enter states (using
101  // _M_states._M_visited to check), nor follow _S_opcode_match.
102  //
103  // Then apply DFS using every _S_opcode_match (in _M_states._M_match_queue)
104  // as the start state.
105  //
106  // It significantly reduces potential duplicate states, so has a better
107  // upper bound; but it requires more overhead.
108  //
109  // Time complexity: \Omega(match_length * match_results.size())
110  // O(match_length * _M_nfa.size() * match_results.size())
111  // Space complexity: \Omega(_M_nfa.size() + match_results.size())
112  // O(_M_nfa.size() * match_results.size())
113  template<typename _BiIter, typename _Alloc, typename _TraitsT,
114  bool __dfs_mode>
115  bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
116  _M_main_dispatch(_Match_mode __match_mode, __bfs)
117  {
118  _M_states._M_queue(_M_states._M_start, _M_results);
119  bool __ret = false;
120  while (1)
121  {
122  _M_has_sol = false;
123  if (_M_states._M_match_queue.empty())
124  break;
125  std::fill_n(_M_states._M_visited_states, _M_nfa.size(), false);
126  auto __old_queue = std::move(_M_states._M_match_queue);
127  auto __alloc = _M_cur_results.get_allocator();
128  for (auto& __task : __old_queue)
129  {
130  _M_cur_results = _ResultsVec(std::move(__task.second), __alloc);
131  _M_dfs(__match_mode, __task.first);
132  }
133  if (__match_mode == _Match_mode::_Prefix)
134  __ret |= _M_has_sol;
135  if (_M_current == _M_end)
136  break;
137  ++_M_current;
138  }
139  if (__match_mode == _Match_mode::_Exact)
140  __ret = _M_has_sol;
141  _M_states._M_match_queue.clear();
142  return __ret;
143  }
144 
145  // Return whether now match the given sub-NFA.
146  template<typename _BiIter, typename _Alloc, typename _TraitsT,
147  bool __dfs_mode>
148  bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
149  _M_lookahead(_StateIdT __next)
150  {
151  // Backreferences may refer to captured content.
152  // We may want to make this faster by not copying,
153  // but let's not be clever prematurely.
154  _ResultsVec __what(_M_cur_results);
155  _Executor __sub(_M_current, _M_end, __what, _M_re, _M_flags);
156  __sub._M_states._M_start = __next;
157  if (__sub._M_search_from_first())
158  {
159  for (size_t __i = 0; __i < __what.size(); __i++)
160  if (__what[__i].matched)
161  _M_cur_results[__i] = __what[__i];
162  return true;
163  }
164  return false;
165  }
166 
167  // __rep_count records how many times (__rep_count.second)
168  // this node is visited under certain input iterator
169  // (__rep_count.first). This prevent the executor from entering
170  // infinite loop by refusing to continue when it's already been
171  // visited more than twice. It's `twice` instead of `once` because
172  // we need to spare one more time for potential group capture.
173  template<typename _BiIter, typename _Alloc, typename _TraitsT,
174  bool __dfs_mode>
175  void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
176  _M_rep_once_more(_Match_mode __match_mode, _StateIdT __i)
177  {
178  const auto& __state = _M_nfa[__i];
179  auto& __rep_count = _M_rep_count[__i];
180  if (__rep_count.second == 0 || __rep_count.first != _M_current)
181  {
182  auto __back = __rep_count;
183  __rep_count.first = _M_current;
184  __rep_count.second = 1;
185  _M_dfs(__match_mode, __state._M_alt);
186  __rep_count = __back;
187  }
188  else
189  {
190  if (__rep_count.second < 2)
191  {
192  __rep_count.second++;
193  _M_dfs(__match_mode, __state._M_alt);
194  __rep_count.second--;
195  }
196  }
197  }
198 
199  // _M_alt branch is "match once more", while _M_next is "get me out
200  // of this quantifier". Executing _M_next first or _M_alt first don't
201  // mean the same thing, and we need to choose the correct order under
202  // given greedy mode.
203  template<typename _BiIter, typename _Alloc, typename _TraitsT,
204  bool __dfs_mode>
205  void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
206  _M_handle_repeat(_Match_mode __match_mode, _StateIdT __i)
207  {
208  const auto& __state = _M_nfa[__i];
209 
210  // Greedy.
211  if (!__state._M_neg)
212  {
213  _M_rep_once_more(__match_mode, __i);
214  // If it's DFS executor and already accepted, we're done.
215  if (!__dfs_mode || !_M_has_sol)
216  _M_dfs(__match_mode, __state._M_next);
217  }
218  else // Non-greedy mode
219  {
220  if (__dfs_mode)
221  {
222  // vice-versa.
223  _M_dfs(__match_mode, __state._M_next);
224  if (!_M_has_sol)
225  _M_rep_once_more(__match_mode, __i);
226  }
227  else
228  {
229  // DON'T attempt anything, because there's already another
230  // state with higher priority accepted. This state cannot
231  // be better by attempting its next node.
232  if (!_M_has_sol)
233  {
234  _M_dfs(__match_mode, __state._M_next);
235  // DON'T attempt anything if it's already accepted. An
236  // accepted state *must* be better than a solution that
237  // matches a non-greedy quantifier one more time.
238  if (!_M_has_sol)
239  _M_rep_once_more(__match_mode, __i);
240  }
241  }
242  }
243  }
244 
245  template<typename _BiIter, typename _Alloc, typename _TraitsT,
246  bool __dfs_mode>
247  void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
248  _M_handle_subexpr_begin(_Match_mode __match_mode, _StateIdT __i)
249  {
250  const auto& __state = _M_nfa[__i];
251 
252  auto& __res = _M_cur_results[__state._M_subexpr];
253  auto __back = __res.first;
254  __res.first = _M_current;
255  _M_dfs(__match_mode, __state._M_next);
256  __res.first = __back;
257  }
258 
259  template<typename _BiIter, typename _Alloc, typename _TraitsT,
260  bool __dfs_mode>
261  void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
262  _M_handle_subexpr_end(_Match_mode __match_mode, _StateIdT __i)
263  {
264  const auto& __state = _M_nfa[__i];
265 
266  auto& __res = _M_cur_results[__state._M_subexpr];
267  auto __back = __res;
268  __res.second = _M_current;
269  __res.matched = true;
270  _M_dfs(__match_mode, __state._M_next);
271  __res = __back;
272  }
273 
274  template<typename _BiIter, typename _Alloc, typename _TraitsT,
275  bool __dfs_mode>
276  inline void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
277  _M_handle_line_begin_assertion(_Match_mode __match_mode, _StateIdT __i)
278  {
279  const auto& __state = _M_nfa[__i];
280  if (_M_at_begin())
281  _M_dfs(__match_mode, __state._M_next);
282  }
283 
284  template<typename _BiIter, typename _Alloc, typename _TraitsT,
285  bool __dfs_mode>
286  inline void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
287  _M_handle_line_end_assertion(_Match_mode __match_mode, _StateIdT __i)
288  {
289  const auto& __state = _M_nfa[__i];
290  if (_M_at_end())
291  _M_dfs(__match_mode, __state._M_next);
292  }
293 
294  template<typename _BiIter, typename _Alloc, typename _TraitsT,
295  bool __dfs_mode>
296  inline void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
297  _M_handle_word_boundary(_Match_mode __match_mode, _StateIdT __i)
298  {
299  const auto& __state = _M_nfa[__i];
300  if (_M_word_boundary() == !__state._M_neg)
301  _M_dfs(__match_mode, __state._M_next);
302  }
303 
304  // Here __state._M_alt offers a single start node for a sub-NFA.
305  // We recursively invoke our algorithm to match the sub-NFA.
306  template<typename _BiIter, typename _Alloc, typename _TraitsT,
307  bool __dfs_mode>
308  void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
309  _M_handle_subexpr_lookahead(_Match_mode __match_mode, _StateIdT __i)
310  {
311  const auto& __state = _M_nfa[__i];
312  if (_M_lookahead(__state._M_alt) == !__state._M_neg)
313  _M_dfs(__match_mode, __state._M_next);
314  }
315 
316  template<typename _BiIter, typename _Alloc, typename _TraitsT,
317  bool __dfs_mode>
318  void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
319  _M_handle_match(_Match_mode __match_mode, _StateIdT __i)
320  {
321  const auto& __state = _M_nfa[__i];
322 
323  if (_M_current == _M_end)
324  return;
325  if (__dfs_mode)
326  {
327  if (__state._M_matches(*_M_current))
328  {
329  ++_M_current;
330  _M_dfs(__match_mode, __state._M_next);
331  --_M_current;
332  }
333  }
334  else
335  if (__state._M_matches(*_M_current))
336  _M_states._M_queue(__state._M_next, _M_cur_results);
337  }
338 
339  template<typename _BiIter, typename _TraitsT>
340  struct _Backref_matcher
341  {
342  _Backref_matcher(bool /* __icase */, const _TraitsT& __traits)
343  : _M_traits(__traits) { }
344 
345  bool
346  _M_apply(_BiIter __expected_begin,
347  _BiIter __expected_end, _BiIter __actual_begin,
348  _BiIter __actual_end)
349  {
350  return _M_traits.transform(__expected_begin, __expected_end)
351  == _M_traits.transform(__actual_begin, __actual_end);
352  }
353 
354  const _TraitsT& _M_traits;
355  };
356 
357  template<typename _BiIter, typename _CharT>
358  struct _Backref_matcher<_BiIter, std::regex_traits<_CharT>>
359  {
360  using _TraitsT = std::regex_traits<_CharT>;
361  _Backref_matcher(bool __icase, const _TraitsT& __traits)
362  : _M_icase(__icase), _M_traits(__traits) { }
363 
364  bool
365  _M_apply(_BiIter __expected_begin,
366  _BiIter __expected_end, _BiIter __actual_begin,
367  _BiIter __actual_end)
368  {
369  if (!_M_icase)
370  return _GLIBCXX_STD_A::__equal4(__expected_begin, __expected_end,
371  __actual_begin, __actual_end);
372  typedef std::ctype<_CharT> __ctype_type;
373  const auto& __fctyp = use_facet<__ctype_type>(_M_traits.getloc());
374  return _GLIBCXX_STD_A::__equal4(__expected_begin, __expected_end,
375  __actual_begin, __actual_end,
376  [this, &__fctyp](_CharT __lhs, _CharT __rhs)
377  {
378  return __fctyp.tolower(__lhs)
379  == __fctyp.tolower(__rhs);
380  });
381  }
382 
383  bool _M_icase;
384  const _TraitsT& _M_traits;
385  };
386 
387  // First fetch the matched result from _M_cur_results as __submatch;
388  // then compare it with
389  // (_M_current, _M_current + (__submatch.second - __submatch.first)).
390  // If matched, keep going; else just return and try another state.
391  template<typename _BiIter, typename _Alloc, typename _TraitsT,
392  bool __dfs_mode>
393  void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
394  _M_handle_backref(_Match_mode __match_mode, _StateIdT __i)
395  {
396  __glibcxx_assert(__dfs_mode);
397 
398  const auto& __state = _M_nfa[__i];
399  auto& __submatch = _M_cur_results[__state._M_backref_index];
400  if (!__submatch.matched)
401  return;
402  auto __last = _M_current;
403  for (auto __tmp = __submatch.first;
404  __last != _M_end && __tmp != __submatch.second;
405  ++__tmp)
406  ++__last;
407  if (_Backref_matcher<_BiIter, _TraitsT>(
408  _M_re.flags() & regex_constants::icase,
409  _M_re._M_automaton->_M_traits)._M_apply(
410  __submatch.first, __submatch.second, _M_current, __last))
411  {
412  if (__last != _M_current)
413  {
414  auto __backup = _M_current;
415  _M_current = __last;
416  _M_dfs(__match_mode, __state._M_next);
417  _M_current = __backup;
418  }
419  else
420  _M_dfs(__match_mode, __state._M_next);
421  }
422  }
423 
424  template<typename _BiIter, typename _Alloc, typename _TraitsT,
425  bool __dfs_mode>
426  void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
427  _M_handle_accept(_Match_mode __match_mode, _StateIdT)
428  {
429  if _GLIBCXX17_CONSTEXPR (__dfs_mode)
430  {
431  __glibcxx_assert(!_M_has_sol);
432  if (__match_mode == _Match_mode::_Exact)
433  _M_has_sol = _M_current == _M_end;
434  else
435  _M_has_sol = true;
436  if (_M_current == _M_begin
437  && (_M_flags & regex_constants::match_not_null))
438  _M_has_sol = false;
439  if (_M_has_sol)
440  {
441  if (_M_nfa._M_flags & regex_constants::ECMAScript)
442  _M_results = _M_cur_results;
443  else // POSIX
444  {
445  __glibcxx_assert(_M_states._M_get_sol_pos());
446  // Here's POSIX's logic: match the longest one. However
447  // we never know which one (lhs or rhs of "|") is longer
448  // unless we try both of them and compare the results.
449  // The member variable _M_sol_pos records the end
450  // position of the last successful match. It's better
451  // to be larger, because POSIX regex is always greedy.
452  // TODO: This could be slow.
453  if (*_M_states._M_get_sol_pos() == _BiIter()
454  || std::distance(_M_begin,
455  *_M_states._M_get_sol_pos())
456  < std::distance(_M_begin, _M_current))
457  {
458  *_M_states._M_get_sol_pos() = _M_current;
459  _M_results = _M_cur_results;
460  }
461  }
462  }
463  }
464  else
465  {
466  if (_M_current == _M_begin
467  && (_M_flags & regex_constants::match_not_null))
468  return;
469  if (__match_mode == _Match_mode::_Prefix || _M_current == _M_end)
470  if (!_M_has_sol)
471  {
472  _M_has_sol = true;
473  _M_results = _M_cur_results;
474  }
475  }
476  }
477 
478  template<typename _BiIter, typename _Alloc, typename _TraitsT,
479  bool __dfs_mode>
480  void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
481  _M_handle_alternative(_Match_mode __match_mode, _StateIdT __i)
482  {
483  const auto& __state = _M_nfa[__i];
484 
485  if (_M_nfa._M_flags & regex_constants::ECMAScript)
486  {
487  // TODO: Fix BFS support. It is wrong.
488  _M_dfs(__match_mode, __state._M_alt);
489  // Pick lhs if it matches. Only try rhs if it doesn't.
490  if (!_M_has_sol)
491  _M_dfs(__match_mode, __state._M_next);
492  }
493  else
494  {
495  // Try both and compare the result.
496  // See "case _S_opcode_accept:" handling above.
497  _M_dfs(__match_mode, __state._M_alt);
498  auto __has_sol = _M_has_sol;
499  _M_has_sol = false;
500  _M_dfs(__match_mode, __state._M_next);
501  _M_has_sol |= __has_sol;
502  }
503  }
504 
505  template<typename _BiIter, typename _Alloc, typename _TraitsT,
506  bool __dfs_mode>
507  void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
508  _M_dfs(_Match_mode __match_mode, _StateIdT __i)
509  {
510  if (_M_states._M_visited(__i))
511  return;
512 
513  switch (_M_nfa[__i]._M_opcode())
514  {
515  case _S_opcode_repeat:
516  _M_handle_repeat(__match_mode, __i); break;
517  case _S_opcode_subexpr_begin:
518  _M_handle_subexpr_begin(__match_mode, __i); break;
519  case _S_opcode_subexpr_end:
520  _M_handle_subexpr_end(__match_mode, __i); break;
521  case _S_opcode_line_begin_assertion:
522  _M_handle_line_begin_assertion(__match_mode, __i); break;
523  case _S_opcode_line_end_assertion:
524  _M_handle_line_end_assertion(__match_mode, __i); break;
525  case _S_opcode_word_boundary:
526  _M_handle_word_boundary(__match_mode, __i); break;
527  case _S_opcode_subexpr_lookahead:
528  _M_handle_subexpr_lookahead(__match_mode, __i); break;
529  case _S_opcode_match:
530  _M_handle_match(__match_mode, __i); break;
531  case _S_opcode_backref:
532  _M_handle_backref(__match_mode, __i); break;
533  case _S_opcode_accept:
534  _M_handle_accept(__match_mode, __i); break;
535  case _S_opcode_alternative:
536  _M_handle_alternative(__match_mode, __i); break;
537  default:
538  __glibcxx_assert(false);
539  }
540  }
541 
542  // Return whether now is at some word boundary.
543  template<typename _BiIter, typename _Alloc, typename _TraitsT,
544  bool __dfs_mode>
545  bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
546  _M_word_boundary() const
547  {
548  if (_M_current == _M_begin && (_M_flags & regex_constants::match_not_bow))
549  return false;
550  if (_M_current == _M_end && (_M_flags & regex_constants::match_not_eow))
551  return false;
552 
553  bool __left_is_word = false;
554  if (_M_current != _M_begin
555  || (_M_flags & regex_constants::match_prev_avail))
556  {
557  auto __prev = _M_current;
558  if (_M_is_word(*std::prev(__prev)))
559  __left_is_word = true;
560  }
561  bool __right_is_word =
562  _M_current != _M_end && _M_is_word(*_M_current);
563 
564  return __left_is_word != __right_is_word;
565  }
566 } // namespace __detail
567 
568 _GLIBCXX_END_NAMESPACE_VERSION
569 } // namespace
constexpr std::remove_reference< _Tp >::type && move(_Tp &&__t) noexcept
Convert a value to an rvalue.
Definition: move.h:97
ISO C++ entities toplevel namespace is std.
constexpr iterator_traits< _InputIterator >::difference_type distance(_InputIterator __first, _InputIterator __last)
A generalization of pointer arithmetic.
constexpr match_flag_type match_not_bow
constexpr syntax_option_type ECMAScript
constexpr match_flag_type match_continuous
constexpr syntax_option_type icase
constexpr match_flag_type match_prev_avail
constexpr match_flag_type match_not_eow
constexpr match_flag_type match_not_null
Primary class template ctype facet.
Describes aspects of a regular expression.
Definition: regex.h:97