

Introduction

Here I will discuss some of the new primitives in LuaTgX and LuaMetaTgX, the later being a successor
that permits the ConTgXt folks to experiment with new features. The order is arbitrary. When you
compare LuaTgX with pdfTgX, there are actually quite some differences. Some primitives that pdfTgX
introduced have been dropped in LuaTgX because they can be done better in Lua. Others have been
promoted to core primitives that no longer have a pdf prefix. Then there are lots of new primitives,
some introduce new concepts, some are a side effect of for instance new math font technologies, and
then there are those that are handy extensions to the macro language. The LuaMetaTgX engine drops
quite some primitives, like those related to pdfTEX specific f(r)ont or backend features. It also adds
some new primitives, mostly concerning the macro language.

We also discuss the primitives that fit into the macro programming scope that are present in traditional
TEX and e-TEX but there are for sure better of explanations out there already. Primitives that relate to
typesetting, like those controlling math, fonts, boxes, attributes, directions, catcodes, Lua (functions)
etc are not discussed or discussed in less detail here.

There are for instance primitives to create aliases to low level registers like counters and dimensions,
as well as other (semi-numeric) quantities like characters, but normally these are wrapped into high
level macros so that definitions can't clash too much. Numbers, dimensions etc can be advanced,
multiplied and divided and there is a simple expression mechanism to deal with them. We don't go into
these details here: it's mostly an overview of what the engine provides. If you are new to TgX, you need
to play a while with its mixed bag of typesetting and programming features in order to understand
the difference between this macro language and other languages you might be familiar with.

© 00O bk W -

N NN RNNNNRRRRBRB 2 2 2 92 9=
O WNF O OO U d WN -, O

\<SPaACE> .t i e 11
PP 11
N 11
\above 11
\abovedisplayshortskip 11
\abovedisplayskip 11
\abovewithdelims 12
\accent ... 12
\additionalpageskip 12
\adjdemerits, 12
\adjustspacing 12
\adjustspacingshrink 12
\adjustspacingstep 12
\adjustspacingstretch 12
\advanceciiiiiiiiii 12
\advanceby ... 13
\afterassigned 13
\afterassignment 13
\aftergroupcooiiiiiiiii.. 13
\aftergrouped 13
\aliasediill. 14
\aligncontent 14
\alignmarks. 14
\alignmentcellsource 15

\alignmentwrapsource 15

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

\aligntab 15
\allcrampedstyles 15
\alldisplaystyles 15
\allmainstyles 15
\allmathstyles 15
\allscriptscriptstyles 15
\allscriptstyles 15
\allsplitstyles 15
\alltextstyles 16
\alluncrampedstyles 16
\allunsplitstyles 16
\amcode ... 16
\associateunit 16
\atendoffile 17
\atendoffiled 17
\atendofgroup 17
\atendofgrouped 17
\Natop oo 18
\atopwithdelims 18
\attribute ool 18
\attributedef 18
\automaticdiscretionary 18
\automatichyphenpenalty 18
\automigrationmode 18
\autoparagraphmode 19

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

\badness i, 19
\baselineskip 19
\batchmode 19
\begincsname 19
\begingroupooiiiiiiiiiiinn.. 19
\beginlocalcontrol 20
\beginmathgroup 20
\beginsimplegroup 20
\belowdisplayshortskip 21
\belowdisplayskip 21
\binoppenalty 21
\botmark 21
\botmarks il 21
\boundaryl 22
\DOX i 22
\boxadapt 22
\boxanchor 22
\boxanchors 22
\boxattribute 22
\boxdirection 23
\boxfinalize 23
\boxfreeze 24
\boxgeometry 24
\boxlimit 24
\boxlimitate 24
\boxlimitmode 24
\boxmaxdepth 24
\boxorientation 25
\boxrepack 25
\boxshift 25
\boxshrink 25
\boxsource 25
\boxstretch 26
\boxtarget 26
\boxtotal 26
\boxvadjust, 26
\boxxmove 26
\boxxoffset 26
\boxymove 27
\boxyoffsetiiiit. 27
\brokenpenalty 27
\catcode ..., 27
\catcodetable 27
\cdef ..o 27
\cdefcsname 28
\cfcode i 28
\char ... 28
\chardef 28
\cleaderscooviiiiiiiiiinn.... 28

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

\clearmarks, 28

\clubpenalties 28
\clubpenalty 28
\constantl 29
\constrained 29
NCOPY titetiie ittt e 29
\copymathatomrule 29
\copymathparent 29
\copymathspacing 29
\count ... 29
\countdef, 29
N 30
\crampeddisplaystyle 30
\crampedscriptscriptstyle 30
\crampedscriptstyle 30
\crampedtextstyle 30
AN ool ol 30
\csactive 30
\CSNAME ..ttt eiiieenns 31
\NCSStringcoiiiiiiiiiiiinn, 31
\currentgrouplevel 31
\currentgrouptype 31
\currentifbranch 32
\currentiflevel 32
\currentiftypeoiiiin. 32
\currentloopiterator 33
\currentloopnesting 33
\currentmarks 33
\currentstacksize 33
Nday oo 34
\dbox ... 34
\deadcyclescciiiiiiai... 35
Ndef 35
\defaulthyphenchar 35
\defaultskewchar 35
\defcsname 35
\deferredl... 35
\delcodecoviiiiiiiiiiinnn.. 36
\delimiter, 36
\delimiterfactor 36
\delimitershortfall 36
\detokened 36
\detokenize il 37
\detokenized 37
\dimen 37
\dimendef 37
\dimensiondef 38
\Ndimexpr ..o 38

\dimexpression 38

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

\directluacooviiiiviii.. 38

\discretionary 38
\discretionaryoptions 38
\displayindent 39
\displaylimitscc.uu... 39
\displaystyle 39
\displaywidowpenalties 39
\displaywidowpenalty 39
\displaywidth 39
\divide ...t 39
\divideby i, 40
\doubleadjdemerits 40
\doublehyphendemerits 40
NP o 40
\dpack 40
\dsplit ... 40
NAUMP 40
\edef 40
\edefcsnamecciiiiiin. 41
\edivideooiiiii, 41
\edivideby 41
\efcode, 41
Nelse i 42
\emergencyextrastretch 42
\emergencyleftskip 42
\emergencyrightskip 42
\emergencystretch 42
Nend .. e 42
\endcsnamec.ciiiiiiiiiiiinnn. 42
\endgroupciiiiiiiiiiiiaa. 42
\endinputl 42
\endlinechar 43
\endlocalcontrol 43
\endmathgroup 43
\endsimplegroup 43
\enforcedl 44
\eofinputol 44
=T | o S P 44
\errhelp ..., 44
\ErrmessSageoveeeennnnnnnennn 44
\errorcontextlines 44
\errorstopmode 44
\escapecharciiiiiiiiiin., 44
\etoks ... 45
\etoksappiiiiiii 45
\etokspre ..., 45
\eufactorl 45
\everybeforepar 45

ANCLYZ=T 0V ol 45

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

\everydisplayccciiiiinn.. 46
\everyeof ... 46
\everyhbox 46
\everyjob ...l 46
\everymath 46
\everymathatom 46
ANCAYZ=] 8 oI 1 ol 46
\everytab, 46
\everyvboxo i, 46
\exceptionpenalty 47
\exhyphenchar 47
\exhyphenpenalty 47
\expand ... 47
\expandactive 47
\expandafter 47
\expandafterpars 48
\expandafterspaces 48
\expandcstoken 48
\expanded 49
\expandedafter 49
\expandeddetokenize 50
\expandedendless 50
\expandedloop 50
\expandedrepeat 50
\expandparameter 51
\expandtoken, 51
\expandtoks 52
\explicitdiscretionary 52
\explicithyphenpenalty 52
\explicititaliccorrection 52
\explicitspaceo.... 52
\Nfam ... 53
Nfdl 53
\finalhyphendemerits 53
\firstmark, 53
\firstmarks 53
\firstvalidlanguage 53
\float ... 53
\floatdef 54
\floatexpr i, 54
\floatingpenalty 55
\flushmarks 55
\font ... 55
\fontcharba 55
\fontchardp, 55
\fontcharht 55
\fontcharic il 56
\fontcharta 56
\fontcharwd 56

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

\fontdimen, 56
\fontid il 56
\fontmathcontrol 57
\fontname 57
\fontspecdef 57
\fontspecid 58
\fontspecifiedname 58
\fontspecifiedsize 58
\fontspecscale 59
\fontspecslant 59
\fontspecweight 59
\fontspecxscale 59
\fontspecyscale 59
\fonttextcontrol 59
\forcedleftcorrection 59
\forcedrightcorrection 59
\formatname, 59
\frozen 60
\futurecsname 60
\futuredef 60
\futureexpand 60
\futureexpandis 61
\futureexpandisap 61
\futurelet 61
\gdef .. 62
\gdefcsnamecoiiiiiin, 62
\givenmathstyle 62
\gleaderscciiiiiiiiinnn, 62
\glet ..o 63
\gletcsname 63
\glettonothing 63
\globalccciiiiiiiiiiiinn, 63
\globaldefst 63
\glueexXpr ..ooieiiiiiii i 63
\glueshrinkcooiiiinn.. 64
\glueshrinkorder 64
\gluespecdef 64
\gluestretch 64
\gluestretchorder 64
\gluetomuooiiiiiiiiinnn, 64
\Nglyph ... 64
\glyphdatafield 65
\glyphoptions 65
\glyphscaleccciiinnn.. 65
\glyphscriptfield 65
\glyphscriptscale 65
\glyphscriptscriptscale 65
\glyphslant 65

\glyphstatefield

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

\glyphtextscale 66

\glyphweight 66
\glyphxoffset 66
\glyphxscale 66
\glyphxscaled 66
\glyphyoffset 66
\glyphyscale 66
\glyphyscaled 66
\gtoksapp ... 66
\gtokspre ..., 67
\haligncoiiiiiiiiiiiiiiiinn 67
\hangafter 67
\hangindent 67
\hbadnessl 67
\hbox o, 67
\hccode ..., 67
\hfil o 68
\Nhfill o 68
\hfilneg, 68
\hfuzz 68
\hjcode, 68
\hkerno i 68
\hmcode i, 68
\holdinginserts 69
\holdingmigrations 69
\hpack i 69
\hpenalty 69
\hrule ..., 69
\hsize i 70
\hskip ... 70
\NSS e 70
\Nht 71
\hyphenation 71
\hyphenationmin 71
\hyphenchar 71
\hyphenpenalty 71
1 71
\ifabsdimoal. 72
\ifabsfloat 72
\ifabsnum 72
\ifarguments 73
\ifboolean 73
\ifcase ...l 73
\ifcat ... 73
\ifchkdim 73
\ifchkdimension 74
\ifchknum 74
\ifchknumber 74
\ifcmpdiml 74

345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

\ifcmpnum oL 75
\ifcondition 75
\ifcramped 76
\ifcsnamel 76
\ifcstokl 76
\ifdefined 77
\ifdim ... L 77
\ifdimexpression 77
\ifdimval 77
\ifemptyo i, 78
\iffalse ..., 78
\ifflagsccoiiiiiiii .. 78
\iffloat 79
\iffontchar 79
\ifhaschar 79
\ifhastok, 79
\ifhastoks 79
\ifhasxtoks 79
\ifhbox 80
\ifhmode 80
\ifinalignment 80
\ifincsname, 81
\ifinner i, 81
\ifinsert 81
\ifintervaldim 81
\ifintervalfloat 81
\ifintervalnum 81
\iflastnamedcs 82
\ifmathparameter 82
\ifmathstyle 82
\ifmmode L. 82
\ifnum 82
\ifnumexpression 83
\ifnumval 83
\ifoddo 83
\ifparameter 84
\ifparameters 84
\ifrelaxo, 84
\iftok ... 84
\iftrue 85
\ifvbox 85
\ifvmode, 85
\ifvoido 85
NLfX 85
\ifzerodim 85
\ifzerofloat 86
\ifzeronum 86
\ignorearguments 86

\ignoredepthcriterion

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

\ignorenestedupto 86
\ignoreparscciiiiiiiian... 87
\ignoreresto, 87
\1gnNorespacesccco.... 87
\ignoreuptocoiiiiiiiiiin. 88
\immediate i, 88
\immutable 88
\indent 88
\indexofcharacter 88
\indexofregister 89
\inherited 89
\initcatcodetable 89
\initialpageskip 89
\initialtopskip 89
\input ... 89
\inputlineno 89
\insert ... i 89
\insertbox 90
\insertcopy ... 90
\insertdepth 90
\insertdistance 90
\insertheight 90
\insertheights 90
\insertlimit 90
\insertmaxdepth 90
\insertmodecoiiiiiiin. 90
\insertmultiplier 91
\insertpenalties 91
\insertpenalty 91
\insertprogress 91
\insertstorage 91
\insertstoring 91
\insertunbox 91
\insertuncopy 91
\insertwidth 91
\instancel 91
\integerdef 92
\interactionmode 92
\interlinepenalties 92
\interlinepenalty 92
\jobname 92
\Kern ... 93
\languageiiiiiiiinn... 93
\lastarguments 93
\lastatomclass 93
\lastboundary 93
\lastboxcciiiiiiiiiiia... 93
\lastchkdimension 93
\lastchknumber 94

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

\lastkern 94
\lastleftclass 94
\lastlinefit 94
\lastloopiterator 94
\lastnamedcs 94
\lastnodesubtype 95
\lastnodetype 95
\lastpageextra 95
\lastparcontext 95
\lastpartrigger 95
\lastpenalty 95
\lastrightclass 95
\lastskip ...oviiiiiiiiiiiii.... 95
\lccodeoiiiiiiiiiiiiii 96
\leaderscciiiiiiiiiiinnannn. 96
\left oo 96
\lefthyphenmin 96
\leftmarginkern 96
\leftskip ...viiiiiiiiiii. ... 96
\LegNO ..ot 96
\let 96
\letcharcode 96
\letcsname 97
\letfrozen 97
\letmathatomrule 97
\letmathparent 97
\letmathspacing 97
\letprotected 98
\lettolastnamedcs 98
\lettonothing 98
\limits ..o 98
\linebreakcriterion 99
\linebreakoptional 99
\linebreakpasses 99
\linedirection 99
\linepenalty 99
\lineskip ...oviiiiiiiiiiiiiia.... 99
\lineskiplimit 100
\localcontrol 100
\localcontrolled 100
\localcontrolledendless 101
\localcontrolledloop 101
\localcontrolledrepeat 101
\localleftbox 101
\localleftboxbox 101
\localmiddlebox 102
\localmiddleboxbox 102
\localrightbox 102

\localrightboxbox 102

492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540

\NLONG oo 102
\100SENESSiiiiiiiiiie 102
\lower ... 102
\lowercasecciiiiiin... 102
\lpcodettt 103
\luabytecode 103
\luabytecodecall 103
\luacopyinputnodes 103
\luadef 103
\luaescapestring 104
\luafunction 104
\luafunctioncall 104
\luatexbanner 104
\luatexrevision 104
\luatexversion 104
AMarkK ..o e 105
AMArKS 105
\mathaccent 105
\mathatom 105
\mathatomglue 105
\mathatomskip 105
\mathbackwardpenalties 106
\mathbeginclass 106
\mathbin 106
\mathboundary 106
\mathchar 106
\mathcharclass 106
\mathchardef 106
\mathcharfam 106
\mathcharslot 107
\mathcheckfencesmode 107
\mathchoice 107
\mathclass 107
\mathclose 108
\mathcode, 108
\mathdictgroup 108
\mathdictionary 108
\mathdictproperties 108
\mathdirection 108
\mathdisplaymode 108
\mathdisplaypenaltyfactor 109
\mathdisplayskipmode 109
\mathdoublescriptmode 109
\mathendclass 109
\matheqnogapstep 109
\mathfontcontrol 109
\mathforwardpenalties 110
\mathgluemode 110
\mathgroupingmode 111

541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589

\mathinlinepenaltyfactor 111

\mathinner, 111
\mathleftclass 111
\mathlimitsmode 111
\mathmainstyle 112
\mathnolimitsmode 112
\mathopoovviiiiiiiiiiii 113
\mathopen, 113
\mathord 113
\mathparentstyle 113
\mathpenaltiesmode 113
\mathpretolerance 114
\mathpunct, 114
\mathrel oi.... 114
\mathrightclass 114
\mathrulesfam 114
\mathrulesmode 114
\mathscale 114
\mathscriptsmode 114
\mathslackmode 115
\mathspacingmode 115
\mathstack 115
\mathstackstyle 116
\mathstyle 116
\mathstylefontid 116
\mathsurround 116
\mathsurroundmode 116
\mathsurroundskip 116
\maththreshold 116
\mathtolerance 116
\maxdeadcycles 117
\maxdepth, 117
\Meaningcooviiiiiiiiinnn.. 117
\meaningasis 117
\meaningful 117
\meaningfull 117
\meaningles 117
\meaningless 118
\medmuskipciiiii.L, 118
\MESSAGE .. vvttiiiineeeeenennnnnns 118
\middleooiiiiiiiiiii 118
\mkern ... 118
\month i i, 118
\moveleftccoiiiiiiiiiiit, 118
\moveright 118
AMSKIPp o 118
AMUEXPE et i eiee e 119
\mugluespecdef 119

\multiply ..., 119

590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638

\multiplybyccoiiiiiiiii.. 119
\MUSKIP ..ot 119
\muskipdef 119
\mutable ..., 119
\mutoglue, 119
\nestedloopiterator 119
\newlinechar 120
\noalign ..o 120
\noaligned 120
\noatomruling 120
\noboundary 120
\noexpand, 120
\nohrule 121
\noindentl 121
\nolimitsciiiiiin... 121
\nonscript il 121
\nonstopmode 121
\norelaxcooiiiiiiiiniinn.. 121
\normalizelinemode 122
\normalizeparmode 122
\NOSPACES ..ttt 122
\nosubprescript 123
\nosubscript 123
\nosuperprescript 123
\nosuperscript 123
\novruleccciiiiiiiiiiiiia, 123
\nulldelimiterspace 123
\nullfont iii.t. 123
\number 123
\numericscale 124
\numericscaled 124
\NUMEXPE ettt i i eie e 124
\NUMEXPression 124
\omit ... 125
\optionalboundary 125
AN 1 ol AP 126
\orelseoiiiiiiiiiiiiii, 126
\orphanpenalties 127
\orphanpenalty 127
\orunlessccoiiinnnn. 127
\outer ... 127
\output ... 127
\outputbox 128
\outputpenalty 128
OVl ot e 128
\overfullrule 128
\overlinecciiiiiiinnnnnan, 128
\overloaded 129
\overloadmode 129

639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687

\overshoot, 129
\overwithdelims 130
\pageboundary 130
\pagedepth 130
\pagediscardsu.. 130
\PageexcCessiiiiiiinnnnn. 130
\pageextragoal 130
\pagefilllstretch 130
\pagefillstretch 130
\pagefilstretch 130
\pagefistretch 131
\pagegoall 131
\pagelastdepth 131
\pagelastfilllstretch 131
\pagelastfillstretch 131
\pagelastfilstretch 131
\pagelastfistretch 131
\pagelastheight 131
\pagelastshrink 131
\pagelaststretch 131
\pageshrinkoooouie. 132
\pagestretch 132
\pagetotal 132
\pagevsizeciiiiiiaian.. 132
A 1= 1 APt 132
\parametercount 132
\parameterdef 132
\parameterindex 132
\parametermark 133
\parametermode 133
\parattribute 133
\pardirection 133
\parfillleftskip 133
\parfillrightskip 133
\parfillskip, 133
\parindent 133
\parinitleftskip 133
\parinitrightskip 133
\PaArpassSesiiiiiiiiiiii., 133
\parshapecciiiiiiiiinnn.. 134
\parshapedimen 134
\parshapeindent 134
\parshapelength 134
\parshapewidth 134
\parskip ... 134
\patterns i il 134
\pausingcoiiiiiiiiiiiiin... 134
\penaltyccoiiiiiiiiiiiiin... 134
\permanent, 134

688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736

\pettymuskip 135
\positdef 135
\postdisplaypenalty 135
\postexhyphenchar 135
\posthyphenchar 135
\postinlinepenalty 135
\postshortinlinepenalty 136
\prebinoppenalty 136
\predisplaydirection 136
\predisplaygapfactor 136
\predisplaypenalty 136
\predisplaysize 136
\preexhyphenchar 136
\prehyphenchar 136
\preinlinepenalty 136
\prerelpenalty 136
\preshortinlinepenalty 137
\pretolerance 137
\prevdepth, 137
\prevgraf 137
\previousloopiterator 137
\primescript, 137
\protected 138
\protecteddetokenize 138
\protectedexpandeddetokenize .. 138
\protrudechars 138
\protrusionboundary 138
\pxdimen 138
\quitloopccoiiiiiiit, 138
\quitloopnow 138
\quitvmode 139
\radicaloiiiiiiin.. 139
\raise ... 139
\rdivideciiiiiiiiiiiia., 139
\rdividebyol 139
\realign ..., 140
Nrelax ..t 140
\relpenalty 140
\resetmathspacing 140
\restorecatcodetable 140
\retainedl 142
\retokenized 143
\right oo, 144
\righthyphenmin 144
\rightmarginkern 144
\rightskipot 144
\romannumeral 144
\rpcode ... 144
\savecatcodetable 144

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785

\savinghyphcodes 144
\savingvdiscards 145
\scaledemwidth 145
\scaledexheight 145
\scaledextraspace 145
\scaledfontcharba 145
\scaledfontchardp 145
\scaledfontcharht 145
\scaledfontcharic 145
\scaledfontcharta 145
\scaledfontcharwd 145
\scaledfontdimen 146
\scaledinterwordshrink 146
\scaledinterwordspace 146
\scaledinterwordstretch 146
\scaledmathaxis 146
\scaledmathemwidth 146
\scaledmathexheight 146
\scaledmathstyle 146
\scaledslantperpoint 146
\scantextokens 146
\scantokens, 147
\scriptfont 147
\scriptscriptfont 147
\scriptscriptstyle 147
\scriptspace 147
\scriptspaceafterfactor 147
\scriptspacebeforefactor 147
\scriptspacebetweenfactor 147
\scriptstyle 148
\scrollmode 148
\semiexpand 148
\semiexpanded 148
\semiprotected 148
\sethox ...l 148
\setdefaultmathcodes 149
\setfontid 149
\setlanguage 149
\setmathatomrule 149
\setmathdisplaypostpenalty 150
\setmathdisplayprepenalty 150
\setmathignore 150
\setmathoptions 150
\setmathpostpenalty 151
\setmathprepenalty 151
\setmathspacing 151
\sfcodecoiiiiiiiiiii 151
\shapingpenaltiesmode 151

\shapingpenalty 152

786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834

\shiftedsubprescript 152
\shiftedsubscript 152
\shiftedsuperprescript 152
\shiftedsuperscript 152
\Shipoutcoviiiiiiiiiiinnnn. 153
\shortinlinemaththreshold 153
\shortinlineorphanpenalty 153
\show ... 153
\showbox it 153
\showboxbreadth 153
\showboxdepth 153
\showcodestack 153
\showgroupsccevvvunnnn. 154
\showifso il 154
\showlists 154
\shownodedetails 154
\showstack 154
\showthe 155
\showtokens 155
\singlelinepenalty 155
\skewchar, 155
\NSKIp iviiiiiiiii 155
\skipdef 156
\snapshotpar 156
\spacefactor 156
\spacefactormode 157
\spacefactorshrinklimit 157
\spacefactorstretchlimit 157
\spaceskipcciiiiiiiit. 157
\SPaAN e 157
\splitbotmark 157
\splitbotmarks 158
\splitdiscards 158
\splitfirstmark 158
\splitfirstmarks 158
\splitmaxdepth 158
\splittopskipcovvriuinnnn. 158
\srule ... 158
\string i, 158
\subprescript 158
\subscriptl 158
\superprescript 159
\superscript 159
\supmarkmode 159
\swapcsvalues 159
\tabsize ..., 159
\tabskip il 160
\textdirection 160
\textfont il 160

835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883

\textstyle ool 160
\the ... 160
\thewithoutunit 160
\thickmuskip 161
\thinmuskip 161
\time ... 161
\tinymuskip 161
\tocharacter 161
\todimension 161
\tohexadecimal 161
\tointeger 161
\tokenized 162
\toks . 162
\NtOKSapPP «oiiiiiiii 162
\toksdefl 162
\toksprel 163
\toleranceccoiiiiit. 163
\tolerant 163
\tomathstyle 164
\topmarkl 164
\topmarksl 164
\topskip ..ovviiiii i 164
\toscaled 164
\tosparsedimension 164
\tosparsescaled 164
\tpack ..o 164
\tracingadjusts 164
\tracingalignments 165
\tracingassigns 165
\tracingcommands 165
\tracingexpressions 165
\tracingfullboxes 165
\tracinggroups 165
\tracinghyphenation 165
\tracingifs 165
\tracinginserts 165
\tracinglevels 165
\tracinglists 166
\tracinglostchars 166
\tracingmacros 166
\tracingmarks 166
\tracingmath 166
\tracingnesting 166
\tracingnodes 166
\tracingonline 166
\tracingoutput 166
\tracingpages 167
\tracingparagraphs 167
\tracingpasses 167

10

884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932

\tracingpenalties 167
\tracingrestores 167
\tracingstats 167
\tsplit ... 167
\uccode ... 167
\uchypho i 167
\uleaders 167
\unboundary 168
\undent 168
\underlinecoviiiiiinn. 168
\unexpanded00.... 168
\unexpandedendless 169
\unexpandedloop 169
\unexpandedrepeat 169
\unhboXcoiiiiiiiiiia.. 170
\UNNCOPY vvvviiieee e 170
\unhpackccoiiiiiiiiiiii., 170
\unkern ... 170
\NUNLeSS o e 170
\unletfrozen 170
\unletprotected 170
\unpenalty 171
NUNSKIP .ot 171
\untraced 171
\UNVDOX i 171
NUNVCOPY teeeeeeeiiiiiiiiiiinnnnn 171
\unvpack i 171
\UPPErCaASe ...iiiiieriiinnnnnnn. 172
\vadjust 172
\valign ..., 172
\variablefam 172
\vbadnesscoiiiiiiit, 172
\VbOX ... 172
\vecenter ...l 172
\vfil ..o 172
\VFIll 172
\vfilneg ..., 173
\vfuzz 173
\virtualhrule 173
\virtualvrule 173
\vkern ... 173
\vpack ... 173
\vpenaltyoiiiiiiii... 173
\vrule ... 173
\VSIZE ittt 173
AVSKIP tiiiiiii i 173
\Vsplit ..o 174
VS S ittt i e e 174
AVEOP o 174

933
934
935
936
937
938
939

AW e 174
\widowpenalties 174
\widowpenalty 174
\wordboundary 174
\wWrapuppariiiiiinnn. 174
\xdef ... 174
\xdefcsname 175

11

940
941
942
943
944
945

\xleaderscciiiiiiiiiiiin. 175
\xspaceskipiiiiiiin... 175
\xtoks ... 175
AXtoKSapp ...oviiiii 175
\xtokspre 175
AN VZ=T= 1 P 175

In this document the section titles that discuss the original TgX and e-TgX primitives have a different
color those explaining the LuaTgX and LuaMetaTgX primitives.

Primitives that extend typesetting related functionality, provide control over subsystems (like math),
allocate additional data types and resources, deal with fonts and languages, manipulate boxes and
glyphs, etc. are hardly discussed here, only mentioned. Math for instance is a topic of its own. In this

document we concentrate on the programming aspects.

Most of the new primitives are discussed in specific manuals and often also original primitives are
covered there but the best explanations of the traditional primitives can be found in The TgXbook by
Donald Knuth and TgX by Topic from Victor Eijkhout. I see no need to try to improve on those.

Primitives

1 \<space>

This original TgX primitive is equivalent to the more verbose \explicitspace.

2 \-

This original TgX primitive is equivalent to the more verbose \explicitdiscretionary.

3 \/

This original TgX primitive is equivalent to the more verbose \explicititaliccorrection.

4 \above

This is a variant of \over that doesn't put a rule in between.

5 \abovedisplayshortskip

The glue injected before a display formula when the line above it is not overlapping with the formula.
Watch out for interference with \baselineskip. It can be controlled by \displayskipmode.

6 \abovedisplayskip

The glue injected before a display formula. Watch out for interference with \baselineskip. It can be
controlled by \displayskipmode.

12

7 \abovewithdelims

This is a variant of \atop but with delimiters. It has a more advanced upgrade in \Uabovewithdelims.

8 \accent

This primitive is kind of obsolete in wide engines and takes two arguments: the indexes of an accent
and a base character.

9 \additionalpageskip

This quantity will be added to the current page goal, stretch and shrink after which it will be set to
Zero.

10 \adjdemerits

When TgX considers to lines to be incompatible it will add this penalty to its verdict when considering
this breakpoint.

11 \adjustspacing

This parameter controls expansion (hz). A value 2 expands glyphs and font kerns and a value of 3
only glyphs. Expansion of kerns can have side effects when they are used for positioning by OpenType
features.

12 \adjustspacingshrink

When set to a non zero value this overloads the shrink maximum in a font when expansion is applied.
This is then the case for all fonts.

13 \adjustspacingstep

When set to a non zero value this overloads the expansion step in a font when expansion is applied.
This is then the case for all fonts.

14 \adjustspacingstretch

When set to a non zero value this overloads the stretch maximum in a font when expansion is applied.
This is then the case for all fonts.

15 \advance

Advances the given register by an also given value:

\advance\scratchdimen 10pt
\advance\scratchdimen by 3pt
\advance\scratchcounterone \zerocount
\advance\scratchcounterone \scratchcountertwo

13

The by keyword is optional.

16 \advanceby

This is slightly more efficient variant of \advance that doesn't look for by and therefore, if one is
missing, doesn't need to push back the last seen token. Using \advance with by is nearly as efficient
but takes more tokens.

17 \afterassigned

The \afterassignment primitive stores a token to be injected (and thereby expanded) after an as-
signment has happened. Unlike \aftergroup, multiple calls are not accumulated, and changing that
would be too incompatible. This is why we have \afterassigned, which can be used to inject a bunch
of tokens. But in order to be consistent this one is also not accumulative.

\afterassigned{done}%
\afterassigned{{\bf done}}%
\scratchcounter=123

results in: done being typeset.

18 \afterassignment

The token following \afterassignment, a traditional TgX primitive, is saved and gets injected (and
then expanded) after a following assignment took place.

\afterassignment !\def\MyMacro {}\quad
\afterassignment !\let\MyMacro ?\quad
\afterassignment !\scratchcounter 123\quad
\afterassignment !%

\afterassignment ?\advance\scratchcounter by 1

The \afterassignments are not accumulated, the last one wins:

e

19 \aftergroup

The traditional TgX \aftergroup primitive stores the next token and expands that after the group has
been closed.

Multiple \aftergroups are combined:
before{ ! \aftergroup a\aftergroup f\aftergroup t\aftergroup e\aftergroup r}

before ! after

20 \aftergrouped

The in itself powerful \aftergroup primitives works quite well, even if you need to do more than one
thing: you can either use it multiple times, or you can define a macro that does multiple things and

14

apply that after the group. However, you can avoid that by using this primitive which takes a list of
tokens.

regular
\bgroup
\aftergrouped{regular}s
\bf bold
\egroup

Because it happens after the group, we're no longer typesetting in bold.

regular bold regular

21 \aliased

This primitive is part of the overload protection subsystem where control sequences can be tagged.

\permanent\def\foo{F00}
\let\ofo\foo
\aliased \let\oof\foo

\meaningasis\foo
\meaningasis\ofo
\meaningasis\oof

gives:

\permanent \def \foo {F00}
\def \ofo {FO00}
\permanent \def \oof {F00}

When a something is \let the ‘permanent’, ‘primitive’ and ‘immutable’ flags are removed but the
\aliased prefix retains them.

\let\relaxed\relax

\meaningasis\relax
\meaningasis\relaxed

So in this example the \relaxed alias is not flagged as primitive:

\primitive \relax

\relax

22 \aligncontent

This is equivalent to a hash in an alignment preamble. Contrary to \alignmark there is no need to
duplicate inside a macro definition.

23 \alignmark

When you have the # not set up as macro parameter character cq. align mark, you can use this primitive
instead. The same rules apply with respect to multiple such tokens in (nested) macros and alignments.

15

24 \alignmentcellsource

This sets the source id (a box property) of the current alignment cell.

25 \alignmentwrapsource

This sets the source id (a box property) of the current alignment row (in a \halign) or column (in a
\valign).

26 \aligntab

When you have the & not set up as align tab, you can use this primitive instead. The same rules apply
with respect to multiple such tokens in (nested) macros and alignments.

27 \allcrampedstyles

A symbolic representation of \crampeddisplaystyle, \crampedtextstyle, \crampedscriptstyleand
\crampedscriptscriptstyle; integer representation: 17.

28 \alldisplaystyles

A symbolic representation of \displaystyle and \crampeddisplaystyle; integer representation: 8.

29 \allmainstyles

A symbolic representation of \displaystyle, \crampeddisplaystyle, \textstyle and \cramped-
textstyle; integer representation: 13.

30 \allmathstyles

A symbolic representation of \displaystyle, \crampeddisplaystyle, \textstyle, \crampedtextstyle,
\scriptstyle, \crampedscriptstyle, \scriptscriptstyle and \crampedscriptscriptstyle; inte-
ger representation: 12.

31 \allscriptscriptstyles

A symbolic representation of \scriptscriptstyle and \crampedscriptscriptstyle; integer repre-
sentation: 11.

32 \allscriptstyles

A symbolic representation of \scriptstyle and \crampedscriptstyle; integer representation: 10.

33 \allsplitstyles

A symbolic representation of \displaystyle and \textstylebutnot\scriptstyleand \scriptscript-
style: set versus reset; integer representation: 14.

16

34 \alltextstyles

A symbolic representation of \textstyle and \crampedtextstyle; integer representation: 9.

35 \alluncrampedstyles

A symbolic representation of \displaystyle, \textstyle, \scriptstyle and \scriptscriptstyle;
integer representation: 16.

36 \allunsplitstyles

A symbolic representation of \scriptstyle and \scriptscriptstyle; integer representation: 15.

37 \amcode

38 \associateunit

The TEX engine comes with some build in units, like pt (fixed) and em (adaptive). On top of that a
macro package can add additional units, which is what we do in ConTgXt. In figure 1 we show the
current repertoire.

abcdefghijk1mnopagrs tuvwXxyz

b bp
c cc cd ch cm cw CX
d dd dk
e em es eu ex
f fa fc fd fh fi fo fs ft fw
h hs
i in
1 w
m ma mm mq mu mx
p pc ph pi pt pw px
s sd sh sp st
t th ts tw
u uu
v Vs
tex pdftex luametatex context

Figure 1 Available units

When this primitive is used in a context where a number is expected it returns the origin of the unit
(in the color legend running from 1 upto 4). A new unit is defined as:

\newdimen\MyDimenZA \MyDimenZA=10pt
\protected\def\MyDimenAB{\dimexpr\hsize/2\relax}

\associateunit za \MyDimenZA
\associateunit zb \MyMacroZB

Possible associations are: macros that expand to a dimension, internal dimension registers, register
dimensions (\dimendef, direct dimensions (\dimensiondef) and Lua functions that return a dimen-
sion.

17

One can run into scanning ahead issues where TgX expects a unit and a user unit gets expanded. This
is why for instance in ConTEXt we define the ma unit as:

\protected\def\mathaxisunit{\scaledmathaxis\mathstyle\norelax}
\associateunit ma \mathaxisunit % or \newuserunit \mathaxisunit ma

So that it can be used in rule specifications that themselves look ahead for keywords and therefore
are normally terminated by a \relax. Adding the extra \norelax will make the scanner see one that
doesn't get fed back into the input. Of course a macro package has to manage extra units in order to
avoid conflicts.

39 \atendoffile

The \everyeof primitive is kind of useless because you don't know if a file (which can be a tokenlist
processed as pseudo file) itself includes a file, which then results in nested application of this token
register. One way around this is:

\atendoffile\SomeCommand

This acts on files the same way as \atendofgroup does. Multiple calls will be accumulated and are
bound to the current file.

40 \atendoffiled

This is the multi token variant of \atendoffile. Multiple invocations are accumulated and by default
prepended to the existing list. As with grouping this permits proper nesting. You can force an append
by the optional keyword reverse.

41 \atendofgroup

The token provided will be injected just before the group ends. Because these tokens are collected,
you need to be aware of possible interference between them. However, normally this is managed by
the macro package.

\bgroup
\atendofgroup\unskip
\atendofgroup)%
(but it works okay
\egroup

Of course these effects can also be achieved by combining (extra) grouping with \aftergroup calls,
so this is more a convenience primitives than a real necessity: (but it works okay), as proven here.
42 \atendofgrouped

This is the multi token variant of \atendofgroup. Of course the next example is somewhat naive when
it comes to spacing and so, but it shows the purpose.

\bgroup
\atendofgrouped{\bf QED}%

18

\atendofgrouped{ (indeed)}%
This sometimes looks nicer.
\egroup

Multiple invocations are accumulated: This sometimes looks nicer. QED (indeed).

43 \atop

This one stack two math elements on top of each other, like a fraction but with no rule. It has a more
advanced upgrade in \Uatop.

44 \atopwithdelims

This is a variant of \atop but with delimiters. It has a more advanced upgrade in \Uatopwithdelims.

45 \attribute

The following sets an attribute(register) value:

\attribute 999 = 123

An attribute is unset by assigning -2147483647 to it. A user needs to be aware of attributes being used
now and in the future of a macro package and setting them this way is very likely going to interfere.
46 \attributedef

This primitive can be used to relate a control sequence to an attribute register and can be used to
implement a mechanism for defining unique ones that won't interfere. As with other registers: leave
management to the macro package in order to avoid unwanted side effects!

47 \automaticdiscretionary

This is an alias for the automatic hyphen trigger -.

48 \automatichyphenpenalty

The penalty injected after an automatic discretionary -, when \hyphenationmode enables this.

49 \automigrationmode
This bitset determines what will bubble up to an outer level:

0x01 mark
0x02 insert
0x04 adjust
0x08 pre
0x10 post

The current value is OxFFFF.

19

50 \autoparagraphmode

A paragraph can be triggered by an empty line, a \par token or an equivalent of it. This parameter
controls how \par is interpreted in different scenarios:

0x01 text
0x02 macro
0x04 continue

The current value is 0x1 and setting it to a non-zero value can have consequences for mechanisms
that expect otherwise. The text option uses the same code as an empty line. The macro option checks
a token in a macro preamble against the frozen \

token. The last option ignores the par token.

51 \badness

This one returns the last encountered badness value.

52 \baselineskip

This is the maximum glue put between lines. The depth of the previous and height of the next line are
substracted.

53 \batchmode

This command disables (error) messages which can safe some runtime in situations where TgX's char-
acter-by-character log output impacts runtime. It only makes sense in automated workflows where
one doesn't look at the log anyway.

54 \begincsname
The next code creates a control sequence token from the given serialized tokens:

\csname mymacro\endcsname

When \mymacro is not defined a control sequence will be created with the meaning \relax. A side
effect is that a test for its existence might fail because it now exists. The next sequence will not create
an controil sequence:

\begincsname mymacro\endcsname
This actually is kind of equivalent to:

\ifcsname mymacro\endcsname
\csname mymacro\endcsname
\fi

55 \begingroup

This primitive starts a group and has to be ended with \endgroup. See \beginsimplegroup for more
info.

20

56 \beginlocalcontrol

Once TgX is initialized it will enter the main loop. In there certain commands trigger a function that
itself can trigger further scanning and functions. In LuaMetaTgX we can have local main loops and
we can either enter it from the Lua end (which we don't discuss here) or at the TgX end using this
primitive.

\scratchcounterl00
\edef\whatever{
a
\beginlocalcontrol
\advance\scratchcounter 10
b
\endlocalcontrol
\beginlocalcontrol
C
\endlocalcontrol
d
\advance\scratchcounter 10
}
\the\scratchcounter
\whatever
\the\scratchcounter

A bit of close reading probably gives an impression of what happens here:
bc
110ad 120

The local loop can actually result in material being injected in the current node list. However, where
normally assignments are not taking place in an \edef, here they are applied just fine. Basically we
have a local TgX job, be it that it shares all variables with the parent loop.

57 \beginmathgroup

In math mode grouping with \begingroup and \endgroup in some cases works as expected, but be-
cause the math input is converted in a list that gets processed later some settings can become persis-
tent, like changes in style or family. The engine therefore provides the alternatives \beginmathgroup
and \endmathgroup that restore some properties.

58 \beginsimplegroup

The original TgX engine distinguishes two kind of grouping that at the user end show up as:

\begingroup \endgroup
\bgroup \egroup { }

21

where the last two pairs are equivalent unless the scanner explicitly wants to see a left and/or right
brace and not an equivalent. For the sake of simplify we use the aliases here. It is not possible to mix
these pairs, so:

\bgroup xxx\endgroup
\begingroup xxx\egroup

will in both cases issue an error. This can make it somewhat hard to write generic grouping macros
without somewhat dirty trickery. The way out is to use the generic group opener \beginsimplegroup.

Internally LuaMetaTgX is aware of what group it currently is dealing with and there we distinguish:

simple group \bgroup \egroup

semi simple group \begingroup \endgroup \endsimplegroup

also simple group \beginsimplegroup \egroup \endgroup \endsimplegroup
math simple group \beginmathgroup \endmathgroup

This means that you can say:

\beginsimplegroup xxx\endsimplegroup
\beginsimplegroup xxx\endgroup
\beginsimplegroup xxx\egroup

So a group started with \beginsimplegroup can be finished in three ways which means that the
user (or calling macro) doesn't have take into account what kind of grouping was used to start with.
Normally usage of this primitive is hidden in macros and not something the user has to be aware of.

59 \belowdisplayshortskip

The glue injected aftter a display formula when the line above it is not overlapping with the formula
(TgX can't look ahead). Watch out for interference with \baselineskip. It can be controlled by \dis-
playskipmode.

60 \belowdisplayskip

The glue injected after a display formula. Watch out for interference with \baselineskip. It can be
controlled by \displayskipmode.

61 \binoppenalty

This internal quantity is a compatibility feature because normally we will use the inter atom spacing
variables.

62 \botmark

This is a reference to the last mark on the current page, it gives back tokens.

63 \botmarks

This is a reference to the last mark with the given id (a number) on the current page, it gives back
tokens.

22

64 \boundary

Boundaries are signals added to he current list. This primitive injects a user boundary with the given
(integer) value. Such a boundary can be consulted at the Lua end or with \lastboundary.

65 \box

This is the box register accessor. While other registers have one property a box has many, like \wd,
\ht and \dp. This primitive returns the box and resets the register.

66 \boxadapt

Adapting will recalculate the dimensions with a scale factor for the glue:

\setbox 0 \hbox {test test test}

\setbox 2 \hbox {\red test test test} \boxadapt 0 200
\setbox 4 \hbox {\blue test test test} \boxadapt 0 -200
\ruledhbox{\box0} \vskip-\lineheight

\ruledhbox{\box0} \vskip-\lineheight

\ruledhbox{\box0}

Like \boxfreeze and \boxrepack this primitive has been introduced for experimental usage, although
we do use some in production code.
test test test

67 \boxanchor

This feature is part of an (experimental) mechanism that relates boxes. The engine just tags a box and
it is up to the macro package to deal with it.

\setbox0\hbox anchor "01010202 {test}\tohexadecimal\boxanchor0

This gives: 1010202. Of course this feature is very macro specific and should not be used across
macro packages without coordination. An anchor has two parts each not exceeding OXOFFF.

68 \boxanchors

This feature is part of an (experimental) mechanism that relates boxes. The engine just tags a box and
it is up to the macro package to deal with it.

\setbox0\hbox anchors "0101 "0202 {test}\tohexadecimal\boxanchors0

This gives: 1010202. Of course this feature is very macro specific and should not be used across
macro packages without coordination. An anchor has two parts each not exceeding OxOFFF.

69 \boxattribute

Every node, and therefore also every box gets the attributes set that are active at the moment of
creation. Additional attributes can be set too:

23

\darkred

\setbox0\hbox attr 9999 1 {whatever}
\the\boxattribute 0 \colorattribute
\the\boxattribute 0 9998
\the\boxattribute 0 9999

A macro package should make provide a way define attributes that don't clash the ones it needs itself,
like, in ConTgXt, the ones that can set a color

4
-2147483647
1

The number -2147483647 (-7FFFFFFF) indicates an unset attribute.

70 \boxdirection
The direction of a box defaults to 12r but can be explicitly set:

\setbox0\hbox direction 1 {this is a test}\textdirectionl
\setbox2\hbox direction 0 {this is a test}\textdirection0
\the\boxdirection0: \box0
\the\boxdirection2: \box2

The \textdirection does not influence the box direction:

1: tset a si siht
0: this is a test

71 \boxfinalize

This is special version of \boxfreeze which we demonstrate with an example:

don't recurse
don't recurse
scale glue multiplier by .50
scale glue multiplier by .25
scale glue multiplier by .10

\boxlimitate 0 0
\boxfreeze 2 0
\boxfinalize 4 500
\boxfinalize 6 250
\boxfinalize 8 100

o® o° o° o°

o®

\hpack\bgroup
\copyO\quad\copy2\quad\copy4d\quad\copy6\quad\copy8
\egroup

where the boxes are populated with:

\setbox0\ruledvbox to 3cm{\hsize 2cm test\vskiplOpt plus 10pt test}
\setbox2\copy0\sethox4\copyO\sethox6\copyd\setbhox8\copy0O

test test test test test

st test test
test

test

24

72 \boxfreeze

Glue in a box has a fixed component that will always be used and stretch and shrink that kicks in
when needed. The effective value (width) of the glue is driven by some box parameters that are set
by the packaging routine. This is why we can unbox: the original value is kept. It is the backend that
calculates the effective value. Te \boxfreeze primitive can do the same: turn the flexible glue into a
fixed one.

\setbox 0 \hbox to 6cm {\hss frost}
\setbox 2 \hbox to 6cm {\hss frost}
\boxfreeze 2 0

\ruledhbox{\unhbox 0}
\ruledhbox{\unhbox 2}

The second parameter to \boxfreeze determines recursion. We don't recurse here so just freeze the
outer level:

frost

\ frost

73 \boxgeometry

A box can have an orientation, offsets and/or anchors. These are stored independently but for effi-
ciency reasons we register if one or more of these properties is set. This primitive accesses this state;
it is a bitset:

0x01 offset
0x02 orientation
0x04 anchor

74 \boxlimit

This primitive will freeze the glue in a box but only when there is glue marked with the limit option.

75 \boxlimitate

This primitive will freeze the glue in a box. It takes two arguments, a box number and an number that
when set to non-zero will recurse into nested lists.

76 \boxlimitmode

This variable controls if boxes with glue marked ‘limit’ will be checked and frozen.

77 \boxmaxdepth

You can limit the depth of boxes being constructed. It's one of these parameters that should be used
with care because when that box is filled nested boxes can be influenced.

25

78 \boxorientation

The orientation field can take quite some values and is discussed in one of the low level ConTEXt
manuals. Some properties are dealt with in the TEX engine because they influence dimensions but in
the end it is the backend that does the work.

79 \boxrepack

When a box of to wide or tight we can tweak it a bit with this primitive. The primitive expects a box
register and a dimension, where a positive number adds and a negatie subtracts from the current box
with.

\setbox 0 \hbox {test test test}

\setbox 2 \hbox {\red test test test} \boxrepack0 +.2em
\setbox 4 \hbox {\green test test test} \boxrepackQ® -.2em
\ruledhbox{\box0} \vskip-\lineheight

\ruledhbox{\box0} \vskip-\lineheight

\ruledhbox{\box0}

test test test
We can also use this primitive to check the natural dimensions of a box:

\setbox 0 \hbox spread 10pt {test test test}
\ruledhbox{\box0} (\the\boxrepack0,\the\wd0)

In this context only one argument is expected.
test test test

(0.0pt,0.0pt)

80 \boxshift

Returns or sets how much the box is shifted: up or down in horizontally mode, left or right in vertical
mode.

81 \boxshrink

Returns the amount of shrink found (applied) in a box:

\setbox0\hbox to 4em {m m m m}
\the\boxshrink0

gives: 3.17871pt

82 \boxsource

This feature is part of an (experimental) mechanism that relates boxes. The engine just tags a box and
it is up to the macro package to deal with it.

\setbox0\hbox source 123 {m m m m}

26

\the\boxsource0
This gives: 123. Of course this feature is very macro specific and should not be used across macro
packages without coordination.

83 \boxstretch

Returns the amount of stretch found (applied) in a box:

\setbox0\hbox to 6em {m m m m}
\the\boxstretcho

gives: 4.76807pt

84 \boxtarget

This feature is part of an (experimental) mechanism that relates boxes. The engine just tags a box and
it is up to the macro package to deal with it.

\setbox0\hbox source 123 {m m m m}
\the\boxsource0

This gives: 123. Of course this feature is very macro specific and should not be used across macro
packages without coordination.

85 \boxtotal

Returns the total of height and depth of the given box.

86 \boxvadjust

When used as query this returns a bitset indicating the associated adjust and migration (marks and
inserts) data:

0x1 pre adjusted
0x2 post adjusted
0x4 pre migrated
0x8 post migrated

When used as a setter it directly adds adjust data to the box and it accepts the same keywords as
\vadjust.

87 \boxxmove

This will set the vertical offset and adapt the dimensions accordingly.

88 \boxxoffset

Returns or sets the horizontal offset of the given box.

27

89 \boxymove

This will set the vertical offset and adapt the dimensions accordingly.

90 \boxyoffset

Returns or sets the vertical offset of the given box.

91 \brokenpenalty

This penalty is added after a line that ends with a hyphen; it can help to discourage a page break (or
split in a box).

92 \catcode

Every character can be put in a category, but this is typically something that the macro package
manages because changes can affect behavior. Also, once passed as an argument, the catcode of a
character is frozen. There are 16 different values:

\escapecatcode 0 \begingroupcatcode 1
\endgroupcatcode 2 \mathshiftcatcode 3
\alignmentcatcode 4 \endoflinecatcode 5
\parametercatcode 6 \superscriptcatcode 7
\subscriptcatcode 8 \ignorecatcode 9
\spacecatcode 10 \lettercatcode 11
\othercatcode 12 \activecatcode 13
\commentcatcode 14 \invalidcatcode 15

The first column shows the constant that ConTgXt provides and the name indicates the purpose. Here
are two examples:

\catcodel23=\begingroupcatcode
\catcodel25=\endgroupcatcode

93 \catcodetable

The catcode table with the given index will become active.

94 \cdef

This primitive is like \edef but in some usage scenarios is slightly more efficient because (delayed)
expansion is ignored which in turn saves building a temporary token list.

\edef\FooA{this is foo} \meaningfull\FooA\crlf
\cdef\FooB{this is foo} \meaningfull\FooB\par

macro:this is foo
constant macro:this is foo

28

95 \cdefcsname

This primitive is like \edefcsame but in some usage scenarios is slightly more efficient because (de-
layed) expansion is ignored which in turn saves building a temporary token list.

\edefcsname FooA\endcsname{this is foo} \meaningasis\FooA\crlf
\cdefcsname FooB\endcsname{this is foo} \meaningasis\FooB\par

\def \FooA {this is foo}
\constant \def \FooB {this is foo}

96 \cfcode

This primitive is a companion to \efcode and sets the compression factor. It takes three values: font,
character code, and factor.

97 \char

This appends a character with the given index in the current font.

98 \chardef
The following definition relates a control sequence to a specific character:
\chardef\copyrightsign"A9

However, because in a context where a number is expected, such a \chardef is seen as valid number,
there was a time when this primitive was used to define constants without overflowing the by then
limited pool of count registers. In ¢-TgX aware engines this was less needed, and in LuaMetaTgX we
have \integerdef as a more natural candidate.

99 \cleaders

See \gleaders for an explanation.

100 \clearmarks

This primitive is an addition to the multiple marks mechanism that originates in e-TgX and reset the
mark registers of the given category (a number).

101 \clubpenalties

This is an array of penalty put before the first lines in a paragraph. High values discourage (or even
prevent) a lone line at the end of a page. This command expects a count value indicating the number
of entries that will follow. The first entry is ends up after the first line.

102 \clubpenalty

This is the penalty put before a club line in a paragraph. High values discourage (or even prevent) a
lone line at the end of a next page.

29

103 \constant

This prefix tags a macro (without arguments) as being constant. The main consequence is that in some
cases expansion gets delayed which gives a little performance boost and less (temporary) memory
usage, for instance in \csname like scenarios.

104 \constrained

See previous section about \retained.

105 \copy

This is the box register accessor that returns a copy of the box.

106 \copymathatomrule

This copies the rule bitset from the parent class (second argument) to the target class (first argument).
The bitset controls the features that apply to atoms.

107 \copymathparent

This binds the given class (first argument) to another class (second argument) so that one doesn't
need to define all properties.

108 \copymathspacing

This copies an class spacing specification to another one, so in

\copymathspacing 34 2

class 34 (a user one) get the spacing from class 2 (binary).

109 \count

This accesses a count register by index. This is kind of ‘not done’ unless you do it local and make sure
that it doesn't influence macros that you call.

\count4023=10
In standard TgX the first 10 counters are special because they get reported to the console, and \count0
is then assumed to be the page counter.

110 \countdef

This primitive relates a control sequence to a count register. Compare this to the example in the
previous section.

\countdef\MyCounter4023
\MyCounter=10

30

However, this is also ‘not done’. Instead one should use the allocator that the macro package provides.

\newcount\MyCounter
\MyCounter=10

In LuaMetaTEX we also have integers that don't rely on registers. These are assigned by the primitive
\integerdef:

\integerdef\MyCounterA 10
Or better \newinteger.

\newinteger\MyCounterB
\MyCounterN10

There is a lowlevel manual on registers.

111 \cr

This ends a row in an alignment. It also ends an alignment preamble.

112 \crampeddisplaystyle

A less spacy alternative of \displaystyle; integer representation: 4.

113 \crampedscriptscriptstyle

A less spacy alternative of \scriptscriptstyle; integer representation: 6.

114 \crampedscriptstyle

A less spacy alternative of \scriptstyle; integer representation: 4.

115 \crampedtextstyle

A less spacy alternative of \textstyle; integer representation: 2.

116 \crcr

This ends a row in an alignment when it hasn't ended yet.

117 \csactive

Because LuaTgX (and LuaMetaTgX) are Unicode engines active characters are implemented a bit dif-
ferently. They don't occupy a eight bit range of characters but are stored as control sequence with a
special prefix U+FFFF which never shows up in documents. The \csstring primitive injects the name
of a control sequence without leading escape character, the \csactive injects the internal name of
the following (either of not active) character. As we cannot display the prefix: \csactive~ will inject

31

the utf sequences for U+FFFF and U+007E, so here we get the bytes EFBFBF7E. Basically the next token
is preceded by \string, so when you don't provide a character you are in for a surprise.

118 \csname

This original TgX primitive starts the construction of a control sequence reference. It does a lookup
and when no sequence with than name is found, it will create a hash entry and defaults its meaning
to \relax.

\csname letters and other characters\endcsname

119 \csstring

This primitive returns the name of the control sequence given without the leading escape character
(normally a backslash). Of course you could strip that character with a simple helper but this is more
natural.

\csstring\mymacro

We get the name, not the meaning: mymacro.

120 \currentgrouplevel
The next example gives: [1][2] [3][2] [1].

[\the\currentgrouplevel] \bgroup
[\the\currentgrouplevel] \bgroup
[\the\currentgrouplevel]
\egroup [\the\currentgrouplevel]
\egroup [\the\currentgrouplevel]

121 \currentgrouptype
The next example gives: [22] [1][22] [1] [1]1[23][1][1].

[\the\currentgrouptype] \bgroup
[\the\currentgrouptype] \begingroup
[\the\currentgrouptype]
\endgroup [\the\currentgrouptypel]
[\the\currentgrouptype] \beginmathgroup
[\the\currentgrouptype]
\endmathgroup [\the\currentgrouptypel]
[\the\currentgrouptype] \egroup

The possible values depend in the engine and for LuaMetaTgX they are:

0 bottomlevel 3 adjustedhbox 6 dbox 9 output
1 simple 4 vbox 7 align 10 mathsubformula
2 hbox 5 vtop 8 noalign 11 mathstack

32

12 mathcomponent 18 mathoperator 24 mathfence 30 splitkeep
13 discretionary 19 mathradical 25 mathinline 31 preamble
14 insert 20 mathchoice 26 mathdisplay 32 alignset
15 wvadjust 21 alsosimple 27 mathnumber 33 finishrow
16 vcenter 22 semisimple 28 localbox 34 lua

17 mathfraction 23 mathsimple 29 splitoff

122 \currentifbranch
The next example gives: [0] [1] [-1] [1] [O].

[\the\currentifbranch] \iftrue
[\the\currentifbranch] \iffalse
[\the\currentifbranch]
\else
[\the\currentifbranch]
\fi [\the\currentifbranch]
\fi [\the\currentifbranch]

So when in the ‘then’ branch we get plus one and when in the ‘else’ branch we end up with a minus
one.

123 \currentiflevel
The next example gives: [0] [1][2] [3] [2][1] [O].

[\the\currentiflevel] \iftrue
[\the\currentiflevel]\iftrue
[\the\currentiflevel] \iftrue
[\the\currentiflevel]
\fi [\the\currentiflevel]
\fi [\the\currentiflevel]
\fi [\the\currentiflevel]

124 \currentiftype
The next example gives: [-1] [25][25] [25] [25] [25] [-1].

[\the\currentiftype] \iftrue
[\the\currentiftype]\iftrue
[\the\currentiftype] \iftrue
[\the\currentiftypel
\fi [\the\currentiftype]
\fi [\the\currentiftype]
\fi [\the\currentiftype]

The values are engine dependent:

0 char 2 num 4 zeronum 6 float 8 =zerofloat
1 cat 3 absnum 5 intervalnum 7 absfloat 9 intervalfloat

33

10 dim 15 wvmode 20 hbox 25 true 30 cmpnum

11 absdim 16 hmode 21 vbox 26 false 31 chkdim

12 zerodim 17 mmode 22 tok 27 chknum 32 chkdimension
13 intervaldim 18 inner 23 cstoken 28 chknunber 33 dimval

14 odd 19 wvoid 24 x 29 numval 34 cmpdim

125 \currentloopiterator
Here we show the different expanded loop variants:

\edef\testA{\expandedloop 1 10 1{!}}

\edef\testB{\expandedrepeat 10 {!}}

\edef\testC{\expandedendless {\ifnum\currentloopiterator>10 \quitloop\else !\fi}}
\edef\testD{\expandedendless {\ifnum#I>10 \quitloop\else !\fi}}

All these give the same result:

The #I is a shortcut to the current loop iterator; other shortcuts are #P for the parent iterator value
and #G for the grand parent.

126 \currentloopnesting

This integer reports how many nested loops are currently active. Of course in practice the value only
has meaning when you know at what outer level your nested loop started.

127 \currentmarks

Marks only get updated when a page is split off or part of a box using \vsplit gets wrapped up. This
primitive gives access to the current value of a mark and takes the number of a mark class.

128 \currentstacksize

This is more diagnostic feature than a useful one but we show it anyway. There is some basic overhead
when we enter a group:

\bgroup [\the\currentstacksize]

\bgroup [\the\currentstacksize]
\bgroup [\the\currentstacksize]
[\the\currentstacksize] \egroup

[\the\currentstacksize] \egroup

[\the\currentstacksize] \egroup

[62] [63] [64] [64] [63] [62]

34

As soon as we define something or change a value, the stack gets populated by information needed
for recovery after the group ends.

\bgroup [\the\currentstacksize]
\scratchcounter 1
\bgroup [\the\currentstacksize]
\scratchdimen 1pt
\scratchdimen 2pt
\bgroup [\the\currentstacksize]
\scratchcounter 2
\scratchcounter 3
[\the\currentstacksize] \egroup
[\the\currentstacksize] \egroup
[\the\currentstacksize] \egroup

[62] [64] [66] [67] [65] [63]

The stack also keeps some state information, for instance when a box is being built. In LuaMetaTgX
that is is quite a bit more than in other engines but it is compensated by more efficient save stack
handling elsewhere.

\hbox \bgroup [\the\currentstacksize]

\hbox \bgroup [\the\currentstacksize]
\hbox \bgroup [\the\currentstacksize]
[\the\currentstacksize] \egroup

[\the\currentstacksize] \egroup

[\the\currentstacksize] \egroup

[70]1[79][88] [88] [79] [70]

129 \day

This internal number starts out with the day that the job started.

130 \dbox

A \dbox is just a \vbox (baseline at the bottom) but it has the property ‘dual baseline’ which means
that is some cases it will behave like a \vtop (baseline at the top) too. Like:

box box
hbox &box center
box box top Ucenter
htop center
top

A \dbox behaves like a \vtop when it's appended to a vertical list which means that the height of the
first box or rule determines the (base)line correction that gets applied.

AXXXXXXXXXXX
he Earth, as a habitat for animal life, is in old age

and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or]
not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per

35

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX

‘he Earth, as a habitat for animal life, is in old age|
and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or]
not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per

he Earth, as a habitat for animal life, is in old age|
and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or]
not. But our presence is like the effect of an old-age
patient who smokes many packs of cigarettes per

day—and we humans are the cigarettes.
XXXXXXXXXXXXXXXX

ay—and we humans are the cigarettes

ay—and we humans are the cigarettes.
XXX XXXXXX

XXXXXXXXXXXXXXXX

\vbox \vtop \dbox

131 \deadcycles

This counter is incremented every time the output routine is entered. When \maxdeadcycles is
reached TgX will issue an error message, so you'd better reset its value when a page is done.

132 \def

This is the main definition command, as in:

\def\foo{l me}

with companions like \gdef, \edef, \xdef, etc. and variants like:
\def\foo#1{... #1...}

where the hash is used in the preamble and for referencing. More about that can be found in the low
level manual about macros.

133 \defaulthyphenchar

When a font is loaded its hyphen character is set to this value. It can be changed afterwards. However,
in LuaMetaTgX font loading is under Lua control so these properties can be set otherwise.

134 \defaultskewchar

When a font is loaded its skew character is set to this value. It can be changed afterwards. However,
in LuaMetaTgX font loading is under Lua control so these properties can be set otherwise. Also,
OpenType math fonts have top anchor instead.

135 \defcsname

We now get a series of log clutter avoidance primitives. It's fine if you argue that they are not really
needed, just don't use them.

\expandafter\def\csname MyMacro:1l\endcsname{...}
\defcsname MyMacro:1l\endcsname{...}

The fact that TgX has three (expanded and global) companions can be seen as a signal that less ver-
bosity makes sense. It's just that macro packages use plenty of \csname's.
136 \deferred

This is mostly a compatibility prefix and it can be checked at the Lua end when there is a Lua based
assignment going on. It is the counterpart of \immediate. In the traditional engines a \write is

36

normally deferred (turned into a node) and can be handled \immediate, while a \special does the
opposite.

137 \delcode

This assigns delimiter properties to an eight bit character so it has little use in an OpenType math
setup. WHen the assigned value is hex encoded, the first byte denotes the small family, then we have
two bytes for the small index, followed by three similar bytes for the large variant.

138 \delimiter

This command inserts a delimiter with the given specification. In OpenType math we use a different
command so it is unlikely that this primitive is used in LuaMetaTgX. It takes a number that can best
be coded hexadecimal: one byte for the class, one for the small family, two for the small index, one for
the large family and two for the large index. This demonstrates that it can't handle wide fonts. Also,
in OpenType math fonts the larger sizes and extensible come from the same font as the small symbol.
On top of that, in LuaMetaTgX we have more classes than fit in a byte.

139 \delimiterfactor

This is one of the parameters that determines the size of a delimiter: at least this factor times the
formula height divided by 1000. In OpenType math different properties and strategies are used.

140 \delimitershortfall

This is one of the parameters that determines the size of a delimiter: at least the formula height minus
this parameter. In OpenType math different properties and strategies are used.

141 \detokened

The following token will be serialized into characters with category ‘other’.

\toks0{123}

\def\foo{let's be \relax'd}
\def\oof#l{let's see #1}
\detokened\toks0
\detokened\ foo
\detokened\oof
\detokened\setbhox
\detokened X

Gives:

123

let's be \relax 'd
\oof

\setbox

X

37

Macros with arguments are not shown.

142 \detokenize
This ¢-TEX primitive turns the content of the provides list will become characters, kind of verbatim.

\expandafter\let\expandafter\temp\detokenize{1l} \meaning\temp
\expandafter\let\expandafter\temp\detokenize{A} \meaning\temp

the character U+0031 1
the character U+0041 A

143 \detokenized
The following (single) token will be serialized into characters with category ‘other’.

\toks0{123}

\def\foo{let's be \relax'd}
\def\oof#1l{let's see #1}
\detokenized\toks0O
\detokenized\foo
\detokenized\oof
\detokenized\setbox
\detokenized X

Gives:

\toks 0
\foo
\oof
\setbox
X

It is one of these new primitives that complement others like \detokened and such, and they are often
mostly useful in experiments of some low level magic, which made them stay.

144 \dimen

Like \count this is a register accessor which is described in more detail in a low level manual.
\dimen0=10pt

While TgX has some assumptions with respect to the first ten count registers (as well as the one that
holds the output, normally 255), all dimension registers are treated equal. However, you need to be
aware of clashes with other usage. Therefore you can best use the predefined scratch registers or
define dedicate ones with the \newdimen macro.

145 \dimendef

This primitive is used by the \newdimen macro when it relates a control sequence with a specific
register. Only use it when you know what you're doing.

38

146 \dimensiondef
A variant of \integerdef is:
\dimensiondef\MyDimen = 1234pt

The properties are comparable to the ones described in the section \integerdef.

147 \dimexpr

This primitive is similar to of \numexpr but operates on dimensions instead. Integer quantities are
interpreted as dimensions in scaled points.

\the\dimexpr (1pt + 2pt - 5pt) * 10 / 2 \relax
gives: -10.0pt. You can mix in symbolic integers and dimensions. This doesn't work:

because the engine scans for a dimension and only for an integer (or equivalent) after a * or /.

148 \dimexpression

This command is like \numexpression but results in a dimension instead of an integer. Where \dim-
expr doesn't like 2 * 10pt this expression primitive is quite happy with it.

149 \directlua
This is the low level interface to Lua:

Gives: “Greetings from the lua end!” as expected. In Lua we have access to all kind of internals
of the engine. In LuaMetaTgX the interfaces have been polished and extended compared to Lua-
TeX. Although many primitives and mechanisms were added to the TgX frontend, the main extension
interface remains Lua. More information can be found in documents that come with ConTgXt, in
presentations and in articles.

150 \discretionary

The three snippets given with this command determine the pre, post and replace component of the
injected discretionary node. The penalty keyword permits setting a penalty with this node. The
postword keyword indicates that this discretionary starts a word, and preword ends it. With break
the line break algorithm will prefer a pre or post component over a replace, and with nobreak replace
will win over pre. With class you can set a math class that will determine spacing and such for
discretionaries used in math mode.

151 \discretionaryoptions

Processing of discretionaries is controlled by this bitset:

0x00000000 normalword
0x00000001 preword
0x00000002 postword

39

0x00000010 preferbreak
0x00000020 prefernobreak
0x00000040 noitaliccorrection
Ox00000080 nozeroitaliccorrection
0x00010000 wuserfirst

0x40000000 userlast

These can also be set on \discretionary using the options key.

152 \displayindent

The \displaywidth, \displayindent and \predisplaysize parameters are set by the line break
routine (but can be adapted by the user), so that mid-par display formula can adapt itself to hanging
indentation and par shapes. I order to calculate thee values and adapt the line break state afterwards
such a display formula is assumed to occupy three lines, so basically a rather compact formula.

153 \displaylimits

By default in math display mode limits are place on top while in inline mode they are placed like
scripts, after the operator. Placement can be forced with the \limits and \nolimits modifiers (after
the operator). Because there can be multiple of these in a row there is \displaylimits that forces
the default placement, so effectively it acts here as a reset modifier.

154 \displaystyle

One of the main math styles; integer representation: 0.

155 \displaywidowpenalties

This is a math specific variant of \widowpenalties.

156 \displaywidowpenalty

This is a math specific variant of \widowpenalty.

157 \displaywidth

This parameter determines the width of the formula and normally defaults to the \hsize unless we
are in the middle of a paragraph in which case it is compensated for hanging indentation or the par
shape.

158 \divide

The \divide operation can be applied to integers, dimensions, float, attribute and glue quantities.
There are subtle rounding differences between the divisions in expressions and \divide:

\scratchcounter 1049 \numexpr\scratchcounter / 10\relax : 105
\scratchcounter 1049 \numexpr\scratchcounter : 10\relax : 104
\scratchcounter 1049 \divide\scratchcounter by 10 : 104

40

The : divider in \dimexpr is something that we introduced in LuaTgX.

159 \divideby

This is slightly more efficient variant of \divide that doesn't look for by. See previous section.

160 \doubleadjdemerits

This penalty will be added to the penalty assigned to a breakpoint that results in two incompatible
lines (in LuaMetaTEX we can be more granular with respect to compatible lines and this concerns a
larger delta).

161 \doublehyphendemerits

This penalty will be added to the penalty assigned to a breakpoint that results in two lines ending with
a hyphen.

162 \dp

Returns the depth of the given box.

163 \dpack

This does what \dbox does but without callback overhead.

164 \dsplit

This is the dual baseline variant of \vsplit (see \dbox for what that means).

165 \dump

This finishes an (ini) run and dumps a format (basically the current state of the engine).

166 \edef
This is the expanded version of \def.

\def \foo{foo} \meaning\foo
\def \ofo{\foo\foo} \meaning\ofo
\edef\oof{\foo\foo} \meaning\oof

Because \foo is unprotected it will expand inside the body definition:

macro: foo
macro:\foo \foo
macro: foofoo

41

167 \edefcsname
This is the companion of \edef:

\expandafter\edef\csname MyMacro:1\endcsname{...}
\edefcsname MyMacro:1l\endcsname{...}

168 \edivide

When expressions were introduced the decision was made to round the divisions which is incompatible
with the way \divide works. The expression scanners in LuaMetaTgX compensates that by providing
a : for integer division. The \edivide does the opposite: it rounds the way expressions do.

\the\dimexpr .4999pt : 2 \relax .24994pt
\the\dimexpr .4999pt / 2 \relax .24995pt
\scratchdimen.4999pt \divide \scratchdimen 2 \the\scratchdimen=.24994pt
\scratchdimen.4999pt \edivide\scratchdimen 2 \the\scratchdimen=.24995pt

\the\numexpr 1001 : 2 \relax =500
\the\numexpr 1001 / 2 \relax =501
\scratchcounter1001 \divide \scratchcounter 2 \the\scratchcounter=500
\scratchcounter1001 \edivide\scratchcounter 2 \the\scratchcounter=501

Keep in mind that with dimensions we have a fractional part so we actually rounding applies to the
fraction. For that reason we also provide \rdivide.

0.24994pt=.24994pt
0.24995pt=.24995pt
0.24994pt=.24994pt
0.24995pt=.24995pt

500=500
501=501
500=500
501=501

169 \edivideby

This the by-less variant of \edivide.

170 \efcode

This primitive originates in pdfTgX and can be used to set the expansion factor of a glyph (characters).
This primitive is obsolete because the values can be set in the font specification that gets passed via
Lua to TgX. Keep in mind that setting font properties at the TgX end is a global operation and can
therefore influence related fonts. In LuaMetaTgX the \cf code can be used to specify the compression
factor independent from the expansion factor. The primitive takes three values: font, character code,
and factor.

42

171 \else

This traditional primitive is part of the condition testing mechanism. When a condition matches, TgX
will continue till it sees an \else or \or or \orelse (to be discussed later). It will then do a fast
skipping pass till it sees an \fi.

172 \emergencyextrastretch

This is one of the extended parbuilder parameters. You can you it so temporary increase the permitted
stretch without knowing or messing with the normal value.

173 \emergencyleftskip

This is one of the extended parbuilder parameters (playground). It permits going ragged left in case
of a too bad result.

174 \emergencyrightskip

This is one of the extended parbuilder parameters (playground). It permits going ragged right in case
of a too bad result.

175 \emergencystretch

When set the par builder will run a third pass in order to fit the set criteria.

176 \end

This ends a TgX run, unless of course this primitive is redefined.

177 \endcsname

This primitive is used in combination with \csname, \ifcsname and \begincsname where its end the
scanning for the to be constructed control sequence token.

178 \endgroup

This is the companion of the \begingroup primitive that opens a group. See \beginsimplegroup for
more info.

179 \endinput

The engine can be in different input modes: reading from file, reading from a token list, expanding a
macro, processing something that comes back from Lua, etc. This primitive quits reading from file:

this is seen
\endinput
here we're already quit

43

There is a catch. This is what the above gives:
this is seen
but how about this:

this is seen
before \endinput after
here we're already quit

Here we get:

this is seen before after

Because a token list is one line, the following works okay:
\def\quitrun{\ifsomething \endinput \fi}

but in a file you'd have to do this when you quit in a conditional:

\ifsomething
\expandafter \endinput
\fi

While the one-liner works as expected:

\ifsomething \endinput \fi

180 \endlinechar

This is an internal integer register. When set to positive value the character with that code point will
be appended to the line. The current value is 13. Here is an example:

\endlinechar\hyphenasciicode
line 1
line 2

line 1-line 2-

If the character is active, the property is honored and the command kicks in. The maximum value is
127 (the maximum character code a single byte utf character can carry.)

181 \endlocalcontrol

See \beginlocalcontrol.

182 \endmathgroup

This primitive is the counterpart of \beginmathgroup.

183 \endsimplegroup

This one ends a simple group, see \beginsimplegroup for an explanation about grouping primitives.

44

184 \enforced

The engine can be set up to prevent overloading of primitives and macros defined as \permanent or
\immutable. However, a macro package might want to get around this in controlled situations, which
is why we have a \enforced prefix. This prefix in interpreted differently in so called ‘ini’ mode when
macro definitions can be dumped in the format. Internally they get an always flag as indicator that in
these places an overload is possible.

\permanent\def\foo{original}

\def\oof {\def\foo{fails}}
\def\oof{\enforced\def\foo{succeeds}}

Of course this only has an effect when overload protection is enabled.

185 \eofinput

This is a variant on \input that takes a token list as first argument. That list is expanded when the file
ends. It has companion primitives \atendoffile (single token) and \atendoffiled (multiple tokens).

186 \eqno

This primitive stores the (typeset) content (presumably a number) and when the display formula is
wrapped that number will end up right of the formula.

187 \errhelp

This is additional help information to \errmessage that triggers an error and shows a message.

188 \errmessage

This primitive expects a token list and shows its expansion on the console and/or in the log file, de-
pending on how TgX is configured. After that it will enter the error state and either goes on or waits
for input, again depending on how TgX is configured. For the record: we don't use this primitive in
ConTgXt.

189 \errorcontextlines

This parameter determines the number on lines shown when an error is triggered.

190 \errorstopmode

This directive stops at every opportunity to interact. In ConTgXt we overload the actions in a callback
and quit the run because we can assume that a successful outcome is unlikely.

191 \escapechar

This internal integer has the code point of the character that get prepended to a control sequence
when it is serialized (for instance in tracing or messages).

45

192 \etoks

This assigns an expanded token list to a token register:

\def\temp{less stuff}
\etoks\scratchtoks{a bit \temp}

The orginal value of the register is lost.

193 \etoksapp

A variant of \toksapp is the following: it expands the to be appended content.

\def\temp{more stuff}
\etoksapp\scratchtoks{some \temp}

194 \etokspre

A variant of \tokspre is the following: it expands the to be prepended content.

\def\temp{less stuff}
\etokspre\scratchtoks{a bit \temp}

195 \eufactor

When we introduced the es (2.5cm) and ts (2.5mm) units as metric variants of the in we also added
the eu factor. One eu equals one tenth of a es times the \eufactor. The ts is a convenient offset in
test files, the es a convenient ones for layouts and image dimensions and the eu permits definitions
that scale nicely without the need for dimensions. They also were a prelude to what later became
possible with \associateunit.

196 \everybeforepar

This token register is expanded before a paragraph is triggered. The reason for triggering is available
in \lastpartrigger.

197 \everycr

This token list gets expanded when a row ends in an alignment. Normally it will use \noalign as
wrapper

{\everycr{\noalign{H}} \halign{#\cr test\cr test\cr}}
{\everycr{\noalign{V}} \hsize 4cm \valign{#\cr test\cr test\cr}}

Watch how the \cr ending the preamble also get this treatment:
H
test

H
test

46

H

Vtest Vtest Vv

198 \everydisplay

This token list gets expanded every time we enter display mode. It is a companion of \everymath.

199 \everyeof

The content of this token list is injected when a file ends but it can only be used reliably when one
is really sure that no other file is loaded in the process. So in the end it is of no real use in a more
complex macro package.

200 \everyhbox

This token list behaves similar to \everyvbox so look there for an explanation.

201 \everyjob

This token list register is injected at the start of a job, or more precisely, just before the main control
loop starts.

202 \everymath

Often math needs to be set up independent from the running text and this token list can be used to do
that. There is also \everydisplay.

203 \everymathatom

When a math atom is seen this tokenlist is expanded before content is processed inside the atom body.

204 \everypar

When a paragraph starts this tokenlist is expanded before content is processed.

205 \everytab

This token list gets expanded every time we start a table cell in \halign or \valign.

206 \everyvbox

This token list gets expanded every time we start a vertical box. Like \everyhbox this is not that useful
unless you are certain that there are no nested boxes that don't need this treatment. Of course you
can wipe this register in this expansion, like:

\everyvbox{\kernlOpt\everyvbox{}}

47

207 \exceptionpenalty

In exceptions we can indicate a penalty by [digit] in which case a penalty is injected set by this
primitive, multiplied by the digit.

208 \exhyphenchar

The character that is used as pre component of the related discretionary.

209 \exhyphenpenalty

The penalty injected after - or \ - unless \hyphenationmode is set to force the dedisated penalties.

210 \expand

Beware, this is not a prefix but a directive to ignore the protected characters of the following macro.

\protected \def \testa{\the\scratchcounter}
\edef\testb{\testa}
\edef\testc{\expand\testa}

The meaning of the three macros is:

protected macro:\the \scratchcounter
macro:\testa

macro:123

211 \expandactive

This a bit of an outlier and mostly there for completeness.

\meaningasis~
\edef\foo{~} \meaningasis\foo
\edef\foo{\expandactive~} \meaningasis\foo

There seems to be no difference but the real meaning of the first \ foo is ‘active character 126’ while
the second \ foo ‘protected call ’ is.

\protected \def ~ {\nobreakspace }
\def \foo {~}
\def \foo {~}

Of course the definition of the active tilde is ConTgXt specific and situation dependent.

212 \expandafter

This original TEX primitive stores the next token, does a one level expansion of what follows it, which
actually can be an not expandable token, and reinjects the stored token in the input. Like:

\expandafter\let\csname my weird macro name\endcsname{m w m n}

48

Without \expandafter the \csname primitive would have been let to the left brace (effectively then
a begin group). Actually in this particular case the control sequence with the weird name is injected
and when it didn't yet exist it will get the meaning \relax so we sort of have two assignments in a
row then.

213 \expandafterpars

Here is another gobbler: the next token is reinjected after following spaces and par tokens have been
read. So:

[\expandafterpars 1 2]
[\expandafterpars 3

4]

[\expandafterpars 5

6]

gives us: [12] [34] [56], because empty lines are like \par and therefore ignored.

214 \expandafterspaces

This is a gobbler: the next token is reinjected after following spaces have been read. Here is a simple
example:

[\expandafterspaces 1 2]
[\expandafterspaces 3

4]

[\expandafterspaces 5

6]

We get this typeset: [12] [34] [5

6], because a newline normally is configured to be a space (and leading spaces in a line are normally
being ingored anyway).

215 \expandcstoken

The rationale behind this primitive is that when we \let a single token like a character it is hard to
compare that with something similar, stored in a macro. This primitive pushes back a single token
alias created by \let into the input.

\let\tempA + \meaning\tempA

\let\tempB X \meaning\tempB \crlf
\let\tempC $ \meaning\tempC \par

\edef\temp {\tempA} \doifelse{\temp}{+}{Y}{N} \meaning\temp \crlf
\edef\temp {\tempB} \doifelse{\temp}{X}{Y}{N} \meaning\temp \crlf
\edef\temp {\tempC} \doifelse{\temp}{X}{Y}{N} \meaning\temp \par

\edef\temp{\expandcstoken\tempA} \doifelse{\temp}{+}{Y}{N} \meaning\temp \crlf

49

\edef\temp{\expandcstoken\tempB} \doifelse{\temp}{X}{Y}{N} \meaning\temp \crlf
\edef\temp{\expandcstoken\tempC} \doifelse{\temp}{$}{Y}{N} \meaning\temp \par

\doifelse{\expandcstoken\tempA}{+}{Y}{N}
\doifelse{\expandcstoken\tempB}{X}{Y}{N}
\doifelse{\expandcstoken\tempC}{$}{Y}{N} \par

The meaning of the \let macros shows that we have a shortcut to a character with (in this case)
catcode letter, other (here ‘other character’ gets abbreviated to ‘character’), math shift etc.

the character U+002B 'plus sign'

the letter U+0058 X
math shift character U+0024 'dollar sign'

N macro:\tempA
N macro:\tempB
N macro:\tempC

Y macro:+
Y macro:X
Y macro:$

YYY

Here we use the ConTgXt macro \doifelse which can be implemented in different ways, but the only
property relevant to the user is that the expanded content of the two arguments is compared.

216 \expanded

This primitive complements the two expansion related primitives mentioned in the previous two sec-
tions. This time the content will be expanded and then pushed back into the input. Protected macros
will not be expanded, so you can use this primitive to expand the arguments in a call. In ConTgXt you
need to use \normalexpanded because we already had a macro with that name. We give some exam-
ples:

\def\A{!}
\def\B#1{\string#1} \B{\A}
\def\B#1{\string#1} \normalexpanded{\noexpand\B{\A}}
\protected\def\B#1{\string#1} \B{\A}
\A
!
\A

217 \expandedafter
The following two lines are equivalent:

\def\foo{123}
\expandafter[\expandafter[\expandafter\secondofthreearguments\foo]]
\expandedafter{[[\secondofthreearguments}\foo]]

50

In ConTEXt MKIV the number of times that one has multiple \expandafters is much larger than in
ConTgXt LMTX thanks to some of the new features in LuaMetaTgX, and this primitive is not really
used yet in the core code.

(1211

[[21

218 \expandeddetokenize

This is a companion to \detokenize that expands its argument:

\def\foo{12#H3}

\def\oof{\foo}

\detokenize {\foo} \detokenize {\oof}
\expandeddetokenize{\foo} \expandeddetokenize{\oof}
\edef\ofo{\expandeddetokenize{\foo}} \meaningless\ofo
\edef\ofo{\expandeddetokenize{\oof}} \meaningless\ofo

This is a bit more convenient than
\detokenize \expandafter {\normalexpanded {\foo}}
kind of solutions. We get:

\foo \oof

12#3 12#3

12#3

12#3

219 \expandedendless

This one loops forever but because the loop counter is not set you need to find a way to quit it.

220 \expandedloop

This variant of the previously introduced \localcontrolledloop doesn't enter a local branch but
immediately does its work. This means that it can be used inside an expansion context like \edef.

\edef\whatever
{\expandedloop 1 10 1
{\scratchcounter=\the\currentloopiterator\relax}}

\meaningasis\whatever

\def \whatever {\scratchcounter =1\relax \scratchcounter =2\relax \scratchcounter =3\relax \scratchcounter
=4\relax \scratchcounter =5\relax \scratchcounter =6\relax \scratchcounter =7\relax \scratchcounter =8\relax

\scratchcounter =9\relax \scratchcounter =10\relax }

221 \expandedrepeat

This one takes one instead of three arguments which is sometimes more convenient.

51

222 \expandparameter
This primitive is a predecessor of \parameterdef so we stick to a simple example.

\def\ foo#1#2%
{\integerdef\MyIndexOne\parameterindex\plusone % 1
\integerdef\MyIndexTwo\parameterindex\plustwo % 2
\oof{P}\oof{Q}\oof{R}\norelax}

\def\oof#1%
{<1l:\expandparameter\MyIndexOne><1:\expandparameter\MyIndexOne>%
#1%
<2:\expandparameter\MyIndexTwo><2:\expandparameter\MyIndexTwo>}

\foo{A}{B}

In principle the whole parameter stack can be accessed but often one never knows if a specific macro
is called nested. The original idea behind this primitive was tracing but it can also be used to avoid
passing parameters along a chain of calls.

<1l:A><1:A>P<2:B><2:B><1:A><1:A>Q<2:B><2:B><1:A><1:A>R<2:B><2:B>

223 \expandtoken

This primitive creates a token with a specific combination of catcode and character code. Because it
assumes some knowledge of TgX we can show it using some \expandafter magic:

\expandafter\let\expandafter\temp\expandtoken 11 "X \meaning\temp
\expandafter\let\expandafter\temp\expandtoken 12 "X \meaning\temp

The meanings are:

the letter U+0058 X
the character U+0058 X

Using other catcodes is possible but the results of injecting them into the input directly (or here by
injecting \temp) can be unexpected because of what TgX expects. You can get messages you normally
won't get, for instance about unexpected alignment interference, which is a side effect of TgX using
some catcode/character combinations as signals and there is no reason to change those internals.
That said:

\xdef\tempA{\expandtoken 9 "X} \meaning\tempA
\xdef\tempB{\expandtoken 10 "X} \meaning\tempB
\xdef\tempC{\expandtoken 11 "X} \meaning\tempC
\xdef\tempD{\expandtoken 12 "X} \meaning\tempD

are all valid and from the meaning you cannot really deduce what's in there:

macro:X
macro:X
macro:X
macro:X

52

But you can be assured that:

[AB: \ifx\tempA\tempB Y\else N\fi]
[AC: \ifx\tempA\tempC Y\else N\fi]
[AD: \ifx\tempA\tempD Y\else N\fi]
[BC: \ifx\tempB\tempC Y\else N\fi]
[BD: \ifx\tempB\tempD Y\else N\fi]
[CD: \ifx\tempC\tempD Y\else N\fi]

makes clear that they're different: [AB: N] [AC: N] [AD: N] [BC: N] [BD: N] [CD: N], and in case you
wonder, the characters with catcode 10 are spaces, while those with code 9 are ignored.

224 \expandtoks

This is a more efficient equivalent of \the applied to a token register, so:

\scratchtoks{just some tokens}

\edef\TestA{[\the \scratchtoks]}
\edef\TestB{[\expandtoks\scratchtoks]}

[\the \scratchtoks] [\TestA] \meaning\TestA
[\expandtoks\scratchtoks] [\TestB] \meaning\TestB

does the expected:

[just some tokens] [[just some tokens]] macro:[just some tokens]
[just some tokens] [[just some tokens]] macro:[just some tokens]

The \expandtoken primitive avoid a copy into the input when there is no need for it.

225 \explicitdiscretionary

This is the verbose alias for one of TEX's single character control sequences: \ -.

226 \explicithyphenpenalty

The penalty injected after an automatic discretionary \ -, when \hyphenationmode enables this.

227 \explicititaliccorrection

This is the verbose alias for one of TgX's single character control sequences: \/. Italic correction is a
character property specific to TgX and the concept is not present in modern font technologies. There
is a callback that hooks into this command so that a macro package can provide its own solution to
this (or alternatively it can assign values to the italic correction field.

228 \explicitspace

This is the verbose alias for one of TgX's single character control sequences: \. A space is inserted
with properties according the space related variables. There is look-back involved in order to deal
with space factors.

53

When \nospaces is set to 1 no spaces are inserted, when its value is 2 a zero space is inserted.

229 \fam

In a numeric context it returns the current family number, otherwise it sets the given family. The
number of families in a traditional engine is 16, in LuaTgX it is 256 and in LuaMetaTgX we have at
most 64 families. A future version can lower that number when we need more classes.

230 \fi

This traditional primitive is part of the condition testing mechanism and ends a test. So, we have:

\ifsomething ... \else ... \fi

\ifsomething ... \or ... \or ... \else ... \fi

\ifsomething ... \orelse \ifsometing ... \else ... \fi
\ifsomething ... \or ... \orelse \ifsometing ... \else ... \fi

The \orelse is new in LuaMetaTgX and a continuation like we find in other programming languages
(see later section).

231 \finalhyphendemerits

This penalty will be added to the penalty assigned to a breakpoint when that break results in a pre-
last line ending with a hyphen.

232 \firstmark

This is a reference to the first mark on the (split off) page, it gives back tokens.

233 \firstmarks

This is a reference to the first mark with the given id (a number) on the (split off) page, it gives back
tokens.

234 \firstvalidlanguage

Language id's start at zero, which makes it the first valid language. You can set this parameter to
indicate the first language id that is actually a language. The current value is 1, so lower values will
not trigger hyphenation.

235 \float

In addition to integers and dimensions, which are fixed 16.16 integer floats we also have ‘native’ floats,
based on 32 bit posit unums.

\float® = 123.456 \the\float0
\float2 = 123.456 \the\float0
\advance \float0 by 123.456 \the\float0
\advance \float0 by \float2 \the\float0®

54

\divideby\float0® 3 \the\float0®
They come with the same kind of support as the other numeric data types:

123.45600032806396484
123.45600032806396484
246.91200065612792969
370.36800384521484375
123.45600128173828125

We leave the subtle differences between floats and dimensions to the user to investigate:

\dimen00 = 123.456pt \the\dimen0
\dimen02 = 123.456pt \the\dimen0
\advance \dimen0 by 123.456pt \the\dimen0
\advance \dimen0 by \dimen2 \the\dimen0
\divideby\dimen0 3 \the\dimen0

The nature of posits is that they are more accurate around zero (or smaller numbers in general).

123.456pt
123.456pt
246.91199pt
370.36798pt
123.456pt

This also works:

\float0=123.456e4

\float2=123.456 \multiply\float2 by 10000
\the\float0

\the\float2

The values are (as expected) the same:
1234560

1234560

236 \floatdef

This primitive defines a symbolic (macro) alias to a float register, just like \countdef and friends do.

237 \floatexpr
This is the companion of \numexpr, \dimexpr etc.

\scratchcounter 200

\the \floatexpr 123.456/456.123 \relax
\the \floatexpr 1l.2*\scratchcounter \relax
\the \floatexpr \scratchcounter/3 \relax
\number\floatexpr \scratchcounter/3 \relax

55

Watch the difference between \the and \number:

0.27066383324563503265
240
66.666666984558105469

67

238 \floatingpenalty

When an insertion is split (across pages) this one is added to to accumulated \insertpenalties. In
LuaMetaTgX this penalty can be stored per insertion class.

239 \flushmarks

This primitive is an addition to the multiple marks mechanism that originates in ¢-TgX and inserts a
reset signal for the mark given category that will perform a clear operation (like \clearmarks which
operates immediately).

240 \font

This primitive is either a symbolic reference to the current font or in the perspective of an assignment
is used to trigger a font definitions with a given name (cs) and specification. In LuaMetaTgX the
assignment will trigger a callback that then handles the definition; in addition to the filename an
optional size specifier is checked (at or scaled).

In LuaMetaTgX all font loading is delegated to Lua, and there is no loading code built in the engine.
Also, instead of \font in ConTEXt one uses dedicated and more advanced font definition commands.

241 \fontcharba

Fetches the bottom anchor of a character in the given font, so:

results in: 4.8025pt. However, this anchor is only available when it is set and it is not part of OpenType;
it is something that ConTgXt provides for math fonts.

242 \fontchardp

Fetches the depth of a character in the given font, so:

results in: 2.22168pt.

243 \fontcharht

Fetches the width of a character in the given font, so:

results in: 5.33203pt.

56

244 \fontcharic

Fetches the italic correction of a characterin the given font, but because it is not an OpenType property
it is unlikely to return something useful. Although math fonts have such a property in ConTgXt we deal
with it differently.

245 \fontcharta

Fetches the top anchor of a character in the given font, so:

results in: 4.8025pt. This is a specific property of math characters because in text mark anchoring is
driven by a feature.

246 \fontcharwd

Fetches the width of a character in the given font, so:

results in: 6.40137pt.

247 \fontdimen

A traditional TgX font has a couple of font specific dimensions, we only mention the seven that come
with text fonts:

1.

I S

The slant (slope) is an indication that we have an italic shape. The value divided by 65.536 is
a fraction that can be compared with for instance the slanted operator in MetaPost. It is used
for positioning accents, so actually not limited to oblique fonts (just like italic correction can be a
property of any character). It is not relevant in the perspective of OpenType fonts where we have
glyph specific top and bottom anchors.

Unless is it overloaded by \spaceskip this determines the space between words (or actually any-
thing separated by a space).

This is the stretch component of \fontdimen 2(space).

This is the shrink component of \fontdimen 2(space).

The so called ex-height is normally the height of the ‘x’ and is also accessible as em unit.

The so called em-width or in TgX speak quad width is about the with of an ‘M’ but in many fonts
just matches the font size. It is also accessible as em unit.

This is a very TgX specific property also known as extra space. It gets added to the regular space
after punctuation when \spacefactor is 2000 or more. It can be overloaded by \xspaceskip.

This primitive expects a a number and a font identifier. Setting a font dimension is a global operation
as it directly pushes the value in the font resource.

248 \fontid

Returns the (internal) number associated with the given font:

{\bf \xdef\MyFontA{\the\fontid\font}}
{\s1 \xdef\MyFontB{\setfontid\the\fontid\font}}

with:

57

test {\setfontid\MyFontA test} test {\MyFontB test} test

gives: test test test test test.

249 \fontmathcontrol

The \mathfontcontrol parameter controls how the engine deals with specific font related properties
and possibilities. It is set at the TEX end. It makes it possible to fine tune behavior in this mixed
traditional and not perfect OpenType math font arena. One can also set this bitset when initializing
(loading) the font (at the Lua end) and the value set there is available in \fontmathcontrol. The bits
set in the font win over those in \mathfontcontrol. There are a few cases where we set these options
in the (so called) goodie files. For instance we ignore font kerns in Libertinus, Antykwa and some more.

modern 0x0
pagella 0x0
antykwa Ox37EF3FF
libertinus Ox37EF3FF

250 \fontname

Depending on how the font subsystem is implemented this gives some information about the used font:

{\tf \fontname\font}
{\bf \fontname\font}
{\sl \fontname\font}

DejaVuSerif at 10.0pt
DejaVuSerif-Bold at 10.0pt
DejaVuSerif-Italic at 10.0pt

251 \fontspecdef

This primitive creates a reference to a specification that when triggered will change multiple parame-
ters in one go.

\fontspecdef\MyFontSpec

\fontid\font

scale 1200

xscale 1100

yscale 800

weight 200

slant 500
\relax

is equivalent to:

\fontspecdef\MyFontSpec
\fontid\font
all 1200 1100 800 200 500
\relax

58

while

\fontspecdef\MyFontSpec

\fontid\font

all \glyphscale \glyphxscale \glyphyscale \glyphslant \glyphweight
\relax

is the same as

\fontspecdef\MyFontSpec
\fontid\font
\relax

The engine adapts itself to these glyph parameters but when you access certain quantities you have to
make sure that you use the scaled ones. The same is true at the Lua end. This is somewhat fundamental
in the sense that when one uses these sort of dynamic features one also need to keep an eye on code
that uses font specific dimensions.

252 \fontspecid

Internally a font reference is a number and this primitive returns the number of the font bound to the
specification.

253 \fontspecifiedname

Depending on how the font subsystem is implemented this gives some information about the (original)
definition of the used font:

{\tf \fontspecifiedname\font}
{\bf \fontspecifiedname\font}
{\sl \fontspecifiedname\font}

Serifsa 1
SerifBold sa 1
SerifSlanted sa 1

254 \fontspecifiedsize

Depending on how the font subsystem is implemented this gives some information about the (original)
size of the used font:

{\tf \the\fontspecifiedsize\font : \the\glyphscale}
{\bfa \the\fontspecifiedsize\font : \the\glyphscale}
{\slx \the\fontspecifiedsize\font : \the\glyphscale}

Depending on how the font system is setup, this is not the real value that is used in the text because
we can use for instance \glyphscale. So the next lines depend on what font mode this document is
typeset.

10.0pt: 1000
10.0pt: 1200

59

10.0pt: 800

255 \fontspecscale

This returns the scale factor of a fontspec where as usual 1000 means scaling by 1.

256 \fontspecslant

This returns the slant factor of a font specification, usually between zero and 1000 with 1000 being
maximum slant.

257 \fontspecweight

This returns the weight of the font specification. Reasonable values are between zero and 500.

258 \fontspecxscale

This returns the scale factor of a font specification where as usual 1000 means scaling by 1.

259 \fontspecyscale

This returns the scale factor of a font specification where as usual 1000 means scaling by 1.

260 \fonttextcontrol
This returns the text control flags that are set on the given font, here 0x8. Bits that can be set are:

0x01 collapsehyphens
0x02 baseligaturing
0x04 basekerning
0x08 noneprotected
0x10 hasitalics

0x20 autoitalics

261 \forcedleftcorrection

This is a callback driven left correction signal similar to italic corrections.

262 \forcedrightcorrection

This is a callback driven right correction signal similar to italic corrections.

263 \formatname

It is in the name: cont-en, but we cheat here by only showing the filename and not the full path, which
in a ConTgXt setup can span more than a line in this paragraph.

60

264 \frozen

You can define a macro as being frozen:
\frozen\def\MyMacro{...}

When you redefine this macro you get an error:
I You can't redefine a frozen macro.

This is a prefix like \global and it can be combined with other prefixes.!

265 \futurecsname
In order to make the repertoire of def, let and futurelet primitives complete we also have:

\futurecsname MyMacro:1\endcsname\MyAction

266 \futuredef

We elaborate on the example of using \futurelet in the previous section. Compare that one with the
next:

\def\MySpecialToken{[}
\def\DoWhatever{\ifx\NextToken\MySpecialToken YES\else NOP\fi : }
\futurelet\NextToken\DoWhatever [A]\crlf
\futurelet\NextToken\DoWhatever (A)\par

This time we get:

NOP: [A]
NOP: (A)

It is for that reason that we now also have \futuredef:

\def\MySpecialToken{[}
\def\DoWhatever{\ifx\NextToken\MySpecialToken YES\else NOP\fi : }
\futuredef\NextToken\DoWhatever [A]\crlf
\futuredef\NextToken\DoWhatever (A)\par

So we're back to what we want:
YES: [A]

NOP: (A)

267 \futureexpand

This primitive can be used as an alternative to a \futurelet approach, which is where the name
comes from.?

! The \outer and \long prefixes are no-ops in LuaMetaTgX and LuaTgX can be configured to ignore them.
2 In the engine primitives that have similar behavior are grouped in commands that are then dealt with together, code wise.

61

\def\variantone<#1>{(#1)}
\def\varianttwo#1{[#1]1}
\futureexpand<\variantone\varianttwo<one>
\futureexpand<\variantone\varianttwo{two}

So, the next token determines which of the two variants is taken:
(one) [two]

Because we look ahead there is some magic involved: spaces are ignored but when we have no match
they are pushed back into the input. The next variant demonstrates this:

\def\variantone<#1>{(#1)}

\def\varianttwo{}
\def\temp{\futureexpand<\variantone\varianttwo}
[\temp <one>]

[\temp {two}]

[\expandafter\temp\space <one>]
[\expandafter\temp\space {two}]

This gives us:

[(one)] [two] [(one)] [two]

268 \futureexpandis

We assume that the previous section is read. This variant will not push back spaces, which permits a
consistent approach i.e. the user can assume that macro always gobbles the spaces.

\def\variantone<#1>{(#1)}

\def\varianttwo{}
\def\temp{\futureexpandis<\variantone\varianttwo}
[\temp <one>]

[\temp {two}]

[\expandafter\temp\space <one>]
[\expandafter\temp\space {two}]

So, here no spaces are pushed back. This is in the name of this primitive means ‘ignore spaces’, but
having that added to the name would have made the primitive even more verbose (after all, we also
don't have \expandeddef but \edef and no \globalexpandeddef but \xdef.

[(one)] [two] [(one)] [two]

269 \futureexpandisap

This primitive is like the one in the previous section but also ignores par tokens, so isap means ‘ignore
spaces and paragraphs’.

270 \futurelet

The original TgX primitive \futurelet can be used to create an alias to a next token, push it back into
the input and then expand a given token.

62

\let\MySpecialTokenL][

\let\MySpecialTokenR] % nicer for checker
\def\DoWhatever{\ifx\NextToken\MySpecialTokenL YES\else NOP\fi : }
\futurelet\NextToken\DoWhatever [A]\crlf
\futurelet\NextToken\DoWhatever (A)\par

This is typically the kind of primitive that most users will never use because it expects a sane follow
up handler (here \DoWhatever) and therefore is related to user interfacing.

YES: [A]
NOP: (A)
271 \gdef

The is the global companion of \def.

272 \gdefcsname
As with standard TgX we also define global ones:

\expandafter\gdef\csname MyMacro:1\endcsname{...}
\gdefcsname MyMacro:1l\endcsname{...}

273 \givenmathstyle

This primitive expects a math style and returns it when valid or otherwise issues an error.

274 \gleaders

Leaders are glue with special property: a box, rule of (in LuaMetaTgX) glyph, like:

x MMx
xx MM xx

xMMMx
xx MMM xx

xMMMx
xMMMxx

xMMMXx
xx MMM xx

Leaders fill the available space. The \leaders command starts at the left edge and stops when there
is no more space. The blobs get centered when we use \cleaders: excess space is distributed before
and after a blob while \x1leaders also puts space between the blobs.

When a rule is given the advance (width or height and depth) is ignored, so these are equivalent.

x\leaders \hrule \hfill x
x\leaders \hrule width 1cm \hfill x

63

When a box is used one will normally have some alignment in that box.

x\leaders \hbox {\hss.\hss} \hfill X
x\leaders \hbox {\hss.\hss} \hskip 6cm \relax x

The reference point is the left edge of the current (outer) box and the effective glue (when it has
stretch or shrink) depends on that box. The \gleaders variant takes the page as reference. That
makes it possible to ‘align’ across boxes.

275 \glet

This is the global companion of \1let. The fact that it is not an original primitive is probably due to
the expectation for it not it not being used (as) often (as in ConTEXt).

276 \gletcsname

Naturally LuaMetaTgX also provides a global variant:

\expandafter\global\expandafter\let\csname MyMacro:1l\endcsname\relax
\expandafter \glet\csname MyMacro:1l\endcsname\relax
\gletcsname MyMacro:1l\endcsname\relax

So, here we save even more.

277 \glettonothing

This is the global companion of \lettonothing.

278 \global

This is one of the original prefixes that can be used when we define a macro of change some register.

\bgroup
\def\MyMacroA{a}
\global\def\MyMacroB{a}
\gdef\MyMacroC{a}

\egroup

The macro defined in the first line is forgotten when the groups is left. The second and third definition
are both global and these definitions are retained.

279 \globaldefs

When set to a positive value, this internal integer will force all definitions to be global, and in a complex
macro package that is not something a user will do unless it is very controlled.

280 \glueexpr

This is a more extensive variant of \dimexpr that also handles the optional stretch and shrink compo-
nents.

64

281 \glueshrink

This returns the shrink component of a glue quantity. The result is a dimension so you need to apply
\the when applicable.

282 \glueshrinkorder

This returns the shrink order of a glue quantity. The result is a integer so you need to apply \the when
applicable.

283 \gluespecdef

A variant of \integerdef and \dimensiondef is:

\gluespecdef\MyGlue = 3pt plus 2pt minus 1lpt

The properties are comparable to the ones described in the previous sections.

284 \gluestretch

This returns the stretch component of a glue quantity. The result is a dimension so you need to apply
\the when applicable.

285 \gluestretchorder

This returns the stretch order of a glue quantity. The result is a integer so you need to apply \the
when applicable.

286 \gluetomu

The sequence \the\gluetomu 20pt plus 10pt minus 5pt gives 20.0mu plus 10.0mu minus 5.0mu.

287 \glyph

This is a more extensive variant of \char that permits setting some properties if the injected character
node.

\ruledhbox{\glyph
scale 2000 xscale 9000 yscale 1200
slant 700 weight 200
xoffset 10pt yoffset -5pt left 10pt right 20pt
123}
\quad
\ruledhbox{\glyph
scale 2000 xscale 9000 yscale 1200
slant 700 weight 200
125}

In addition one can specify font (symbol), id (valid font id number), an options (bit set) and raise.

65

When no parameters are set, the current ones are used. More details and examples of usage can be
found in the ConTgXt distribution.

288 \glyphdatafield

The value of this parameter is assigned to data field in glyph nodes that get injected. It has no meaning
in itself but can be used at the Lua end.

289 \glyphoptions

The value of this parameter is assigned to the options field in glyph nodes that get injected.

0x00000000 normal
0x00000001 noleftligature
0x00000002 norightligature
0x00000004 noleftkern

Ox00000080 nozeroitaliccorrection
0x00000100 applyxoffset
0x00000200 applyyoffset
0x00000400 mathdiscretionary

0x00000008 mnorightkern 0x00000800 mathsitalicstoo
0x00000010 noexpansion 0x00001000 mathartifact
0x00000020 noprotrusion 0x00010000 wuserfirst

0x00000040 noitaliccorrection 0x40000000 wuserlast

290 \glyphscale

An integer parameter defining the current glyph scale, assigned to glyphs (characters) inserted into
the current list.

291 \glyphscriptfield

The value of this parameter is assigned to script field in glyph nodes that get injected. It has no
meaning in itself but can be used at the Lua end.

292 \glyphscriptscale

This multiplier is applied to text font and glyph dimension properties when script style is used.

293 \glyphscriptscriptscale

This multiplier is applied to text font and glyph dimension properties when script script style is used.

294 \glyphslant

An integer parameter defining the current glyph slant, assigned to glyphs (characters) inserted into
the current list.

66

295 \glyphstatefield

The value of this parameter is assigned to script state in glyph nodes that get injected. It has no
meaning in itself but can be used at the Lua end.

296 \glyphtextscale

This multiplier is applied to text font and glyph dimension properties when text style is used.

297 \glyphweight

An integer parameter defining the current glyph weight, assigned to glyphs (characters) inserted into
the current list.

298 \glyphxoffset

An integer parameter defining the current glyph x offset, assigned to glyphs (characters) inserted into
the current list. Normally this will only be set when one explicitly works with glyphs and defines a
specific sequence.

299 \glyphxscale

An integer parameter defining the current glyph x scale, assigned to glyphs (characters) inserted into
the current list.

300 \glyphxscaled

This primitive returns the given dimension scaled by the \glyphscale and \glyphxscale.

301 \glyphyoffset

An integer parameter defining the current glyph x offset, assigned to glyphs (characters) inserted into
the current list. Normally this will only be set when one explicitly works with glyphs and defines a
specific sequence.

302 \glyphyscale

An integer parameter defining the current glyph y scale, assigned to glyphs (characters) inserted into
the current list.

303 \glyphyscaled

This primitive returns the given dimension scaled by the \glyphscale and \glyphyscale.

304 \gtoksapp

This is the global variant of \toksapp.

67

305 \gtokspre

This is the global variant of \tokspre.

306 \halign

This command starts horizontally aligned material. Macro packages use this command in table mech-
anisms and math alignments. It starts with a preamble followed by entries (rows and columns).

307 \hangafter

This parameter tells the par builder when indentation specified with \hangindent starts. A negative
value does the opposite and starts indenting immediately. So, a value of —2 will make the first two
lines indent.

308 \hangindent

This parameter relates to \hangafter and sets the amount of indentation. When larger than zero
indentation happens left, otherwise it starts at the right edge.

309 \hbadness

This sets the threshold for reporting a horizontal badness value, its current value is 0.

310 \hbox

This constructs a horizontal box. There are a lot of optional parameters so more details can be found
in dedicated manuals. When the content is packed a callback can kick in that can be used to apply for
instance font features.

311 \hccode

The TgX engine is good at hyphenating but traditionally that has been limited to hyphens. Some
languages however use different characters. You can set up a different \hyphenchar as well as pre
and post characters, but there's also a dedicated code for controlling this.

\hccode"2013 "2013

\hsize 50mm test\char"2013test\par
\hsize 1mm test\char"2013test\par

\hccode"2013 !

\hsize 50mm test\char"2013test\par
\hsize 1mm test\char"2013test\par

This example shows that we can mark a character as hyphen-like but also can remap it to something
else:

test-test

68

test-
test
test-test
test!
test

312 \hfil

This is a shortcut for \hskip plus 1 fil (first order filler).

313 \hfill

This is a shortcut for \hskip plus 1 fill (second order filler).

314 \hfilneg

This is a shortcut for \hskip plus - 1 fil so it can compensate \hfil.

315 \hfuzz

This dimension sets the threshold for reporting horizontal boxes that are under- or overfull. The
current value is 0.1pt.

316 \hjcode

The so called lowercase code determines if a character is part of a to-be-hyphenated word. In LuaTgX
we introduced the ‘hyphenation justification’ code as replacement. When a language is saved and no
\hjcode is set the \lccode is used instead. This code serves a second purpose. When the assigned
value is greater than 0 but less than 32 it indicated the to be used length when checking for left- and
righthyphenmin. For instance it make sense to set the code to 2 for characters like ce.

317 \hkern

This primitive is like \kern but will force the engine into horizontal mode if it isn't yet.

318 \hmcode

The hm stands for ‘hyphenation math’. When bit 1 is set the characters will be repeated on the next
line after a break. The second bit concerns italic correction but is of little relevance now that we
moved to a different model in ConTEgXt. Here are some examples, we also show an example of \math-
discretionary because that is what this code triggers:

test $ \dorecurse {50} {
a \discretionary class 2 {$\darkred +$}{$\darkgreen +$}{$\darkblue +$}
} b$

test $ a \mathdiscretionary class 1 {-}{-}{-} b$

69

\bgroup

\hmcode"002B=1 % +

\hmcode"002D=1 % -

\hmcode"2212=1 % -

test $ \dorecurse{50}{a + b - } c$
\egroup

testa+
+a+b

testa—>b

tessa+b-a+b-a+b-a+b-a+b-a+b-a+b-a+b-a+b-a+b-a+b—-a+b—-a+b-
-a+b-a+b-a+b-a+b-a+b-a+b-a+b-a+b-a+b-a+b-a+b—-a+b—-a+b—-a+
+b-a+b-a+b-a+b-a+b-a+b-a+b-a+b-a+b—-a+b—-a+b—-a+b—-a+b—-a+b-
-a+b-a+b-a+b-a+b-a+b-a+b—-a+b—-a+b-a+b—-a+b-c

319 \holdinginserts

When set to a positive value inserts will be kept in the stream and not moved to the insert registers.

320 \holdingmigrations

When set to a positive value marks (and adjusts) will be kept in the stream and not moved to the outer
level or related registers.

321 \hpack

This primitive is like \hbox but without the callback overhead.

322 \hpenalty

This primitive is like \penalty but will force the engine into horizontal mode if it isn't yet.

323 \hrule

This creates a horizontal rule. Unless the width is set it will stretch to fix the available width. In
addition to the traditional width, height and depth specifiers some more are accepted. These are
discussed in other manuals. To give an idea:

h\hrule width 10mm height 2mm depth 1mm \relax rule
h\hrule width 10mm height 2mm depth 1mm xoffset 30mm yoffset -10mm \relax rule
vivrule width 10mm height 2mm depth 1mm \relax rule
vivrule width 10mm height 2mm depth 1mm xoffset 30mm yoffset 10mm \relax rule

The \relax stops scanning and because we have more keywords we get a different error report than
in traditional TEX when a lookahead confuses the engine. On separate lines we get the following.

70

I
h
rule I
VEEEETule
A rule
324 \hsize

This sets (or gets) the current horizontal size.

\hsize 40pt \setbox0\vbox{x} hsize: \the\wd0
\setbox0\vbox{\hsize 40pt x} hsize: \the\wd0

In both cases we get the same size reported but the first one will also influence the current paragraph
when used ungrouped.

hsize: 40.0pt
hsize: 40.0pt

325 \hskip

The given glue is injected in the horizontal list. If possible horizontal mode is entered.

326 \hss

In traditional TEX glue specifiers are shared. This makes a lot of sense when memory has to be saved.
For instance spaces in a paragraph of text are often the same and a glue specification has at least an
amount, stretch, shrink, stretch order and shrink order field plus a leader pointer; in LuaMetaTgX we
have even more fields. In LuaTgX these shared (and therefore referenced) glue spec nodes became
just copies.

x\hbox to Opt{\hskip Opt plus 1 fil minus 1 fil\relax test}x
x\hbox to Opt{\hss test}x
x\hbox to Opt{test\hskip Opt plus 1 fil minus 1 fil\relax}x
x\hbox to Opt{test\hss}x

The \hss primitives injects a glue node with one order stretch and one order shrink. In traditional
TgX this is a reference to a shared specification, and in LuaTgX just a copy of a predefined specifier.
The only gain is now in tokens because one could just be explicit or use a glue register with that value
because we have plenty glue registers.

testx

testx
xkest
xkest

We could have this:

\permanent\protected\untraced\def\hss
{\hskipOpt plus 1 fil minus 1 fil\relax}

or this:

71

\gluespecdef\hssglue Opt plus 1 fil minus 1 fil

\permanent\protected\untraced\def\hss
{\hskip\hssglue}

but we just keep the originals around.

327 \ht

Returns the height of the given box.

328 \hyphenation

The list passed to this primitive contains hyphenation exceptions that get bound to the current lan-
guage. In LuaMetaTgX this can be managed at the Lua end. Exceptions are not stored in the format
file.

329 \hyphenationmin

This property (that also gets bond to the current language) sets the minimum length of a word that
gets hyphenated.

330 \hyphenchar

This is one of the font related primitives: it returns the number of the hyphen set in the given font.

331 \hyphenpenalty

Discretionary nodes have a related default penalty. The \hyphenpenalty is injected after a regular dis-
cretionary, and \exhyphenpenalty after \ - or -. The later case is called an automatic discretionary. In
LuaMetaTgX we have two extra penalties: \explicithyphenpenalty and \automatichyphenpenalty
and these are used when the related bits are set in \hyphenationmode.

332 \if

This traditional TgX conditional checks if two character codes are the same. In order to understand
unexpanded results it is good to know that internally TEX groups primitives in a way that serves the
implementation. Each primitive has a command code and a character code, but only for real characters
the name character code makes sense. This condition only really tests for character codes when we
have a character, in all other cases, the result is true.

\def\A{A}\def\B{B} \chardef\C="C \chardef\D="D \def\AA{AA}

[\if AA YES \else NOP \fi] [\if AB YES \else NOP \fi]
[\if \A\B YES \else NOP \fi] [\if \A\A YES \else NOP \fi]
[\if \C\D YES \else NOP \fi] [\if \C\C YES \else NOP \fi]
[\if \count\dimen YES \else NOP \fi] [\if \AA\A YES \else NOP \fi]

The last example demonstrates that the tokens get expanded, which is why we get the extra A:

72

[YES] [NOP] [NOP] [YES J[YES] [YES] [YES] [AYES]

333 \ifabsdim

This test will negate negative dimensions before comparison, as in:

\def\TestA#1{\ifdim #1<2pt too smalllorelse\ifdim #1>4pt too large\else okay\fi}
\def\TestB#1{\ifabsdim#1<2pt too smalllorelse\ifabsdim#1>4pt too large\else okay\fi}

\TestA {1pt}\quad\TestA {3pt}\quad\TestA {5pt}\crif
\TestB {lpt}\quad\TestB {3pt}\quad\TestB {5pt}\crlf
\TestB{-1pt}\quad\TestB{-3pt}\quad\TestB{-5pt}\par

So we get this:

too small okay too large
too small okay too large
too small okay too large

334 \ifabsfloat

This test will negate negative floats before comparison, as in:

\def\TestA#1{\iffloat #1<2.46 smalllorelse\iffloat #1>4.68 large\else medium\fi}
\def\TestB#1{\ifabsfloat#1<2.46 smalllorelse\ifabsfloat#1>4.68 large\else medium\fi}

\TestA {1.23}\quad\TestA {3.45}\quad\TestA {5.67}\crlf
\TestB {1.23}\quad\TestB {3.45}\quad\TestB {5.67}\crlf
\TestB{-1.23}\quad\TestB{-3.45}\quad\TestB{-5.67}\par

So we get this:

small medium large
small medium large
small medium large

335 \ifabsnum

This test will negate negative numbers before comparison, as in:

\def\TestA#1{\ifnum #1<100 too smalllorelse\ifnum #1>200 too large\else okay\fi}
\def\TestB#1{\ifabsnum#1<100 too smalll\orelse\ifabsnum#1>200 too large\else okay\fi}

\TestA {10}\quad\TestA {150}\quad\TestA {210}\crlf
\TestB {10}\quad\TestB {150}\quad\TestB {210}\crlf
\TestB{-10}\quad\TestB{-150}\quad\TestB{-210}\par

Here we get the same result each time:

too small okay too large
too small okay too large
too small okay too large

73

336 \ifarguments
This is a variant of \ifcase were the selector is the number of arguments picked up. For example:

\def\MyMacro#l#2#3{\ifarguments\0\orl\or2\or3\else ?\fi} \MyMacro{A}{B}{C}
\def\MyMacro#l1#0#3{\ifarguments\0\orl\or2\or3\else ?\fi} \MyMacro{A}{B}{C}
\def\MyMacro#l#-#2{\ifarguments\0\orl\or2\or3\else ?\fi} \MyMacro{A}{B}{C}\par

Watch the non counted, ignored, argument in the last case. Normally this test will be used in combi-
nation with \ignorearguments.

332

337 \ifboolean

This tests a number (register or equivalent) and any nonzero value represents true, which is nicer
than using an \unless\ifcase.

338 \ifcase

This numeric TgX conditional takes a counter (literal, register, shortcut to a character, internal quan-
tity) and goes to the branch that matches.

\ifcase 3 zero\or one\or two\or three\or four\else five or more\fi

Indeed: three equals three. In later sections we will see some LuaMetaTgX primitives that behave like
an \ifcase.

339 \ifcat

Another traditional TgX primitive: what happens with what gets read in depends on the catcode of a
character, think of characters marked to start math mode, or alphabetic characters (letters) versus
other characters (like punctuation).

\def\A{A}\def\B{,} \chardef\C="C \chardef\D=", \def\AA{AA}

[\ifcat $! YES \else NOP \fi] [\ifcat () YES \else NOP \fi]
[\ifcat AA YES \else NOP \fi] [\ifcat AB YES \else NOP \fi]
[\ifcat \A\B YES \else NOP \fi] [\ifcat \A\A YES \else NOP \fi]
[\ifcat \C\D YES \else NOP \fi] [\ifcat \C\C YES \else NOP \fi]
[\ifcat \count\dimen YES \else NOP \fi] [\ifcat \AA\A YES \else NOP \fi]

Close reading is needed here:
[NOP][YESI[YES][YES][NOP]IYES][YES J[YES J[YES] [AYES]

This traditional TEX condition as a well as the one in the previous section are hardly used in ConTgXt,
if only because they expand what follows and we seldom need to compare characters.

340 \ifchkdim

A variant on the checker in the previous section is a dimension checker:

74

\ifchkdim oeps \or okay\else error\fi\quad
\ifchkdim 12 \or okay\else error\fi\quad
\ifchkdim 12pt \or okay\else error\fi\quad

\ifchkdim 12pt or more\or okay\else error\fi
We get:

error error okay okay

341 \ifchkdimension

COntrary to \ifchkdim this test doesn't accept trailing crap:

\ifchkdimension oeps \or okay\else error\fi\quad
\ifchkdimension 12 \or okay\else error\fi\quad
\ifchkdimension 12pt \or okay\else error\fi\quad

\ifchkdimension 12pt or more\or okay\else error\fi
reports:

error error okay error

342 \ifchknum

In ConTgXt there are quite some cases where a variable can have a number or a keyword indicating
a symbolic name of a number or maybe even some special treatment. Checking if a valid number is
given is possible to some extend, but a native checker makes much sense too. So here is one:

\ifchknum oeps \or okay\else error\fi\quad
\ifchknum 12 \or okay\else error\fi\quad
\ifchknum 12pt \or okay\else error\fi\quad

\ifchknum 12pt or more\or okay\else error\fi
The result is as expected:

error okay okay okay

343 \ifchknumber

This check is more restrictive than \ifchknum discussed in the previous section:

\ifchknumber oeps \or okay\else error\fi\quad
\ifchknumber 12 \or okay\else error\fi\quad
\ifchknumber 12pt \or okay\else error\fi\quad

\ifchknumber 12pt or more\or okay\else error\fi
Here we get:

error okay error error

344 \ifcmpdim

This conditional compares two dimensions and the resulting \ifcase reflects their relation:

75

[1pt 2pt : \ifcmpdim 1pt 2pt less\or equallor more\fi]\quad
[1pt 1pt : \ifcmpdim 1lpt 1pt less\or equallor more\fi]\quad
[2pt 1pt : \ifcmpdim 2pt 1pt less\or equallor more\fi]

This gives:

[1pt 2pt: less] [1pt 1pt: equal] [2pt 1pt: more]

345 \ifcmpnum
This conditional compares two numbers and the resulting \ifcase reflects their relation:

[1 2 : \ifcmpnum 1 2 less\or equallor more\fi]\quad
[1 1 : \ifcmpnum 1 1 less\or equallor more\fi]\quad
[2 1 : \ifcmpnum 2 1 less\or equallor more\fi]

This gives:

[12:1ess] [11:equall] [21: more]

346 \ifcondition

The conditionals in TEX are hard coded as primitives and although it might look like \newif creates
one, it actually just defined three macros.

\newif\ifMyTest

\meaning\MyTesttrue \crlf
\meaning\MyTestfalse \crlf
\meaning\ifMyTest \crlf \MyTesttrue
\meaning\ifMyTest \par

protected macro:\always \let \ifMyTest \iftrue
protected macro:\always \let \ifMyTest \iffalse
\iffalse
\iftrue

This means that when you say:
\ifMytest ... \else ... \fi
You actually have one of:

\iftrue ... \else ... \fi
\iffalse ... \else ... \fi

and because these are proper conditions nesting them like:
\ifnum\scratchcounter > 0 \ifMyTest A\else B\fi \fi
will work out well too. This is not true for macros, so for instance:

\scratchcounter =1
\unexpanded\def\ifMyTest{\iftrue}

76

\ifnum\scratchcounter > 0 \ifMyTest A\else B\fi \fi

will make a run fail with an error (or simply loop forever, depending on your code). This is where
\ifcondition enters the picture:

\def\MyTest{\iftrue} \scratchcountero
\ifnum\scratchcounter > 0
\ifcondition\MyTest A\else B\fi
\else
X
\fi

This primitive is seen as a proper condition when TgX is in “fast skipping unused branches” mode but
when it is expanding a branch, it checks if the next expanded token is a proper tests and if so, it deals
with that test, otherwise it fails. The main condition here is that the \MyTest macro expands to a
proper true or false test, so, a definition like:

\def\MyTest{\ifnum\scratchcounter<10 }

is also okay. Now, is that neat or not?

347 \ifcramped

Depending on the given math style this returns true of false:

\ifcramped\mathstyle no \fi
\ifcramped\crampedtextstyle yes \fi
\ifcramped\textstyle no \fi

\ifcramped\displaystyle yes \fi

gives: yes.

348 \ifcsname
This is an e-TgX conditional that complements the one on the previous section:

\expandafter\ifx\csname MyMacro\endcsname\relax ... \else ... \fi
\ifcsname MyMacro\endcsname ... \else ... \fi

Here the first one has the side effect of defining the macro and defaulting it to \relax, while the
second one doesn't do that. Just think of checking a few million different names: the first one will
deplete the hash table and probably string space too.

In LuaMetaTgX the construction stops when there is no letter or other character seen (TgX expands on
the go so expandable macros are dealt with). Instead of an error message, the match is simply false
and all tokens till the \endcsname are gobbled.

349 \ifcstok

A variant on the primitive mentioned in the previous section is one that operates on lists and macros:

\def\a{a} \def\b{b} \def\c{a}

77

This:

\ifcstok\a\b Y\else N\fi\space
\ifcstok\a\c Y\else N\fi\space
\ifcstok{\a}\c Y\else N\fi\space
\ifcstok{a}\c Y\else N\fi

will giveus: NYYY.

350 \ifdefined

In traditional TEX checking for a macro to exist was a bit tricky and therefore &-TgX introduced a
convenient conditional. We can do this:

\ifx\MyMacro\undefined ... \else ... \fi
but that assumes that \undefined is indeed undefined. Another test often seen was this:
\expandafter\ifx\csname MyMacro\endcsname\relax ... \else ... \fi

Instead of comparing with \undefined we need to check with \relax because the control sequence
is defined when not yet present and defaults to \relax. This is not pretty.

351 \ifdim
Dimensions can be compared with this traditional TEX primitive.
\scratchdimen=1pt \scratchcounter=65536

\ifdim\scratchdimen=\scratchcounter sp YES \else NOP\fi
\ifdim\scratchdimen=1 pt YES \else NOP\fi

The units are mandate:

YES YES

352 \ifdimexpression
The companion of the previous primitive is:

This matches when the result is non zero, and you can mix calculations and tests as with normal
expressions. Contrary to the number variant units can be used and precision kicks in.

353 \ifdimval

This conditional is a variant on \ifchkdim and provides some more detailed information about the
value:

[-12pt : \ifdimval-12pt\or negative\or zero\or positive\else error\fi]\quad
[Opt : \ifdimval Opt\or negative\or zero\or positive\else error\fi]\quad
[12pt : \ifdimval 12pt\or negative\or zero\or positive\else error\fil\quad
[oeps : \ifdimval oeps\or negative\or zero\or positive\else error\fi]

This gives:

[-12pt : ne

354 \if

gative] [Opt : zero]

empty

[12pt : positive]

78

This conditional checks if a control sequence is empty:

is \ifempty\MyMacro \else not \fi empty

It is basically a shortcut of:

is \ifx\MyMacro\empty \else not \fi empty

with:

\def\empt

y{}

Of course this is not empty at all:

\def\note

355 \if

mpty#1{}

false

[oeps : error]

Here we have a traditional TgX conditional that is always false (therefore the same is true for any
macro that is \let to this primitive).

356 \if

flags

This test primitive relates to the various flags that one can set on a control sequence in the perspective
of overload protection and classification.

\protected\untraced\tolerant\def\foo[#1]{...#1...}
\permanent\constant \def\oof{okay}

flag \foo \oof flag \foo \oof
frozen N N permanent N Y
immutable N N mutable N N
noaligned N N instance N N
untraced Y N global N N
tolerant Y N constant N Y
protected Y N semiprotected N N

Instead of checking against a prefix you can test against a bitset made from:

0Ox1
0x10
0x100
0x1000
0x10000

frozen 0x2
mutable 0x20
global 0x200
aliased 0x2000

semiprotected 0x20000

permanent 0x4
noaligned 0x40
tolerant 0x400
immediate 0x4000
inherited 0x40000

immutable 0x8
instance 0x80
protected 0x800
conditional 0x8000
constant 0x80000

primitive
untraced
overloaded
value
deferred

79

357 \iffloat

This test does for floats what \ifnum, \ifdim do for numbers and dimensions: comparing two of them.

358 \iffontchar

This is an ¢-TgX conditional. It takes a font identifier and a character number. In modern fonts simply
checking could not be enough because complex font features can swap in other ones and their index
can be anything. Also, a font mechanism can provide fallback fonts and characters, so don't rely on
this one too much. It just reports true when the font passed to the frontend has a slot filled.

359 \ifhaschar
This one is a simplified variant of the above:
\ifhaschar !{this ! works} yes \else no \fi

and indeed we get: yes! Of course the spaces in this this example code are normally not present in
such a test.

360 \ifhastok

This conditional looks for occurrences in token lists where each argument has to be a proper list.

\def\scratchtoks{x}

\ifhastoks{yz} {xyz} Y\else N\fi\quad
\ifhastoks\scratchtoks {xyz} Y\else N\fi

We get:

Y Y

361 \ifhastoks
This test compares two token lists. When a macro is passed it's meaning gets used.

\def\x {x}
\def\xyz{xyz}

\ifhastoks {x} {xyz}Y\else N\fi)\quad
\ifhastoks {\x} {xyz}Y\else N\fi)\quad
\ifhastoks \x {xyz}Y\else N\fi)\quad
\ifhastoks {y} {xyz}Y\else N\fi)\quad
\ifhastoks {yz} {xyz}Y\else N\fi)\quad
\ifhastoks {yz} {\xyz}Y\else N\fi)

P

) M & & ¥ N)

362 \ifhasxtoks

This primitive is like the one in the previous section but this time the given lists are expanded.

\def\x {x}

\def\xyz{\x yz}

80

(\ifhasxtoks {x} {xyz}Y\else N\fi)\quad
(\ifhasxtoks {\x} {xyz}Y\else N\fi)\quad
(\ifhastoks \ X {xyz}Y\else N\fi)\quad
(\ifhasxtoks {y} {xyz}Y\else N\fi)\quad
(\ifhasxtoks {yz} {xyz}Y\else N\fi)\quad
(\ifhasxtoks {yz} {\xyz}Y\else N\fi)

Y))) (v) (V) (V)
This primitive has some special properties.
\edef\+{\expandtoken 9 "+}

\ifhasxtoks {xy} {xyz}Y\else N\fi\quad
\ifhasxtoks {x\+y} {xyz}Y\else N\fi

Here the first argument has a token that has category code ‘ignore’ which means that such a character
will be skipped when seen. So the result is:

Y Y
This permits checks like these:
\edef\, {\expandtoken 9 ",}

\ifhasxtoks{\,x\,} {,x,y,z,}Y\else N\fi\quad
\ifhasxtoks{\,y\,} {,x,y,z,}Y\else N\fi\quad
\ifhasxtoks{\,z\,} {,x,y,z,}Y\else N\fi\quad
\ifhasxtoks{\,x\,} {,xy,z,}Y\else N\fi

I admit that it needs a bit of a twisted mind to come up with this, but it works ok:

Y Y Y N

363 \ifhbox

This traditional conditional checks if a given box register or internal box variable represents a hori-
zontal box,

364 \ifhmode

This traditional conditional checks we are in (restricted) horizontal mode.

365 \ifinalignment

As the name indicates, this primitive tests for being in an alignment. Roughly spoken, the engine is
either in a state of align, handling text or dealing with math.

81

366 \ifincsname

This conditional is sort of obsolete and can be used to check if we're inside a \csname or \ifcsname
construction. It's not used in ConTgXt.

367 \ifinner

This traditional one can be confusing. It is true when we are in restricted horizontal mode (a box),
internal vertical mode (a box), or inline math mode.

test \ifhmode \ifinner INNER\fi HMODE\fi\crlf
\hbox{test \ifhmode \ifinner INNER \fi HMODE\fi} \par

\ifvmode \ifinner INNER\fi VMODE \fi\crlf
\vbox{\ifvmode \ifinner INNER \fi VMODE\fi} \crlf
\vbox{\ifinner INNER \ifvmode VMODE \fi \fi} \par

Watch the last line: because we typeset INNER we enter horizontal mode:

test HMODE
test INNER HMODE

VMODE

INNER VMODE
INNER

368 \ifinsert

This is the equivalent of \ifvoid for a given insert class.

369 \ifintervaldim

This conditional is true when the intervals around the values of two dimensions overlap. The first
dimension determines the interval.

[\ifintervaldimlpt 20pt 21pt \else no \fi overlap]
[\ifintervaldimlpt 18pt 20pt \else no \fi overlap]

So here: [overlap] [no overlap]

370 \ifintervalfloat

This one does with floats what we described under \ifintervaldim.

371 \ifintervalnum

This one does with integers what we described under \ifintervaldim.

82

372 \iflastnamedcs

When a \csname is constructed and succeeds the last one is remembered and can be accessed with
\lastnamedcs. It can however be an undefined one. That state can be checked with this primitive. Of
course it also works with the \ifcsname and \begincsname variants.

373 \ifmathparameter

This is an \ifcase where the value depends on if the given math parameter is zero, (0), set (1), or
unset (2).

\ifmathparameter\Umathpunctclosespacing\displaystyle
zero \or
nonzero \or
unset \fi

374 \ifmathstyle

This is a variant of \ifcase were the number is one of the seven possible styles: display, text, cramped
text, script, cramped script, script script, cramped script script.

\ifmathstyle
display
\or
text
\or
cramped text
\else
normally smaller than text
\fi

375 \ifmmode

This traditional conditional checks we are in (inline or display) math mode mode.

376 \ifnum

This is a frequently used conditional: it compares two numbers where a number is anything that can
be seen as such.

\scratchcounter=65 \chardef\A=65

\ifnum65="A YES \else NOP\fi
\ifnum\scratchcounter=65 YES \else NOP\fi
\ifnum\scratchcounter=\A YES \else NOP\fi

Unless a number is an unexpandable token it ends with a space or \relax, so when you end up in the
true branch, you'd better check if TgX could determine where the number ends.

YES YES YES

83

On top of these ascii combinations, the engine also accepts some Unicode characters. This brings the
full repertoire to:

character operation
0x003C < less

0x003D = equal

Ox003E > more

0x2208 € element of
0x2209 & not element of
0x2260 # != notequal
0x2264 < !> less equal
0x2265 = I< greater equal
0x2270 % not less equal
0x2271 b not greater equal

This also applied to \ifdim although in the case of element we discard the fractional part (read: divide
the numeric representation by 65536).

377 \ifnumexpression

Here is an example of a conditional using expressions:

This matches when the result is non zero, and you can mix calculations and tests as with normal
expressions.

378 \ifnumval

This conditional is a variant on \ifchknum. This time we get some more detail about the value:

[-12 : \ifnumval -12\or negative\or zero\or positive\else error\fi]\quad
[0 : \ifnumval 0\or negative\or zero\or positive\else error\fi]\quad
[12 : \ifnumval 12\or negative\or zero\or positive\else error\fi]\quad

[oeps : \ifnumval oeps\or negative\or zero\or positive\else error\fi]
This gives:

[-12 : negative] [0 : zero] [12 : positive] [oeps : error]

379 \ifodd

One reason for this condition to be around is that in a double sided layout we need test for being on
an odd or even page. It scans for a number the same was as other primitives,

\ifodd65 YES \else NO\fi &
\ifodd B YES \else NO\fi .

So: YES & NO.

84

380 \ifparameter

In a macro body #1 is a reference to a parameter. You can check if one is set using a dedicated
parameter condition:

\tolerant\def\foo[#1]#*[#2]%
{\ifparameter#1\or one\else no one\fi\enspace
\ifparameter#2\or two\else no two\fi\emspace}

\foo
\foo[1]
\foo[1][2]

We get:

no one no two one no two one two

381 \ifparameters

This is equivalent to an \ifcase with as value the number of parameters passed to the current macro.

382 \ifrelax

This is a convenient shortcut for \ifx\relax and the motivation for adding this one is (as with some
others) to get less tracing.

383 \iftok

When you want to compare two arguments, the usual way to do this is the following:

\edef\tempA{#1}
\edef\tempb{#2}
\ifx\tempA\tempB
the same
\else
different
\fi

This works quite well but the fact that we need to define two macros can be considered a bit of a
nuisance. It also makes macros that use this method to be not so called ‘fully expandable’. The next
one avoids both issues:

\iftok{#1}{#2}
the same
\else
different
\fi

Instead of direct list you can also pass registers, so given:

\scratchtoks{a}%

85

\toks0{a}%

This:

\iftok 0 \scratchtoks Y\else N\fi\space
\iftok{a}\scratchtoks Y\else N\fi\space

\iftok\scratchtoks\scratchtoks Y\else N\fi

gives: YYY.

384 \iftrue

Here we have a traditional TgX conditional that is always true (therefore the same is true for any macro
that is \let to this primitive).

385 \ifvbox

This traditional conditional checks if a given box register or internal box variable represents a vertical
box,

386 \ifvmode

This traditional conditional checks we are in (internal) vertical mode.

387 \ifvoid

This traditional conditional checks if a given box register or internal box variable has any content.

388 \ifx

We use this traditional TgX conditional a lot in ConTgXt. Contrary to \if the two tokens that are
compared are not expanded. This makes it possible to compare the meaning of two macros. Depending
on the need, these macros can have their content expanded or not. A different number of parameters
results in false.

Control sequences are identical when they have the same command code and character code. Because
a \let macro is just a reference, both let macros are the same and equal to \relax:

\let\one\relax \let\two\relax

The same is true for other definitions that result in the same (primitive) or meaning encoded in the
character field (think of \chardefs and so).

389 \ifzerodim
This tests for a dimen (dimension) being zero so we have:

\ifdim<dimension>=0pt
\ifzerodim<dimension>
\ifcase<dimension register>

86

390 \ifzerofloat
As the name indicated, this tests for a zero float value.

[\scratchfloat\zerofloat \ifzerofloat\scratchfloat \else not \fi zero]
[\scratchfloat\plusone \ifzerofloat\scratchfloat \else not \fi zero]
[\scratchfloat 0.01 \ifzerofloat\scratchfloat \else not \fi zero]
[\scratchfloat 0.0e0 \ifzerofloat\scratchfloat \else not \fi zero]
[\scratchfloat \zeropoint\ifzerofloat\scratchfloat \else not \fi zero]

So: [zero] [not zero] [not zero] [zero] [zero]

391 \ifzeronum
This tests for a number (integer) being zero so we have these variants now:

\ifnum<integer or equivalent>=0
\ifzeronum<integer or equivalent>
\ifcase<integer or equivalent>

392 \ignorearguments

This primitive will quit argument scanning and start expansion of the body of a macro. The number
of grabbed arguments can be tested as follows:

\def\MyMacro[#1] [#2] [#3]%
{\ifarguments zero\or one\or two\or three \else hm\fi}

\MyMacro \ignorearguments \quad
\MyMacro [1]1\ignorearguments \quad
\MyMacro [11[2]\ignorearguments \quad

\MyMacro [1][2][3]\ignorearguments \par
zero one two three

Todo: explain optional delimiters.

393 \ignoredepthcriterion

When setting the \prevdepth (either by TgX or by the current user) of the current vertical list the
value 1000pt is a signal for special treatment of the skip between ‘lines’. There is an article on that in
the distribution. It also demonstrates that \ignoredepthcriterion can be used to change this special
signal, just in case it is needed.

394 \ignorenestedupto

This primitive gobbles following tokens and can deal with nested ‘environments’, for example:

\def\startfoo{\ignorenestedupto\startfoo\stopfoo}

(before

87

\startfoo
test \startfoo test \stopfoo
{test \startfoo test \stopfoo}
\stopfoo
after)

delivers:

(before after)

395 \ignorepars

This is a variant of \ignorespaces: following spaces and \par equivalent tokens are ignored, so for
instance:

one + \ignorepars

two = \ignorepars \par
three

renders as: one + two = three. Traditionally TgX has been sensitive to \par tokens in some of its
building blocks. This has to do with the fact that it could indicate a runaway argument which in the
times of slower machines and terminals was best to catch early. In LuaMetaTgX we no longer have
long macros and the mechanisms that are sensitive can be told to accept \par tokens (and ConTgXt
set them such that this is the case).

396 \ignorerest
An example shows what this primitive does:

\tolerant\def\foo [#1]#*[#2]%

{1234

\ifparameter#1\or\else
\expandafter\ignorerest

\fi

/#1/

\ifparameter#2\or\else
\expandafter\ignorerest

\fi

/#2/ '}

\foo test \foo[456] test \foo[456][789] test

As this likely makes most sense in conditionals you need to make sure the current state is properly fin-
ished. Because \expandafter bumps the input state, here we actually quit two levels; this is because
so called ‘backed up text’ is intercepted by this primitive.

1234 test 1234 /456/ test 1234 /456/ /789/ test

397 \ignorespaces

This traditional TgX primitive signals the scanner to ignore the following spaces, if any. We mention it
because we show a companion in the next section.

88

398 \ignoreupto
This ignores everything upto the given token, so
\ignoreupto \foo not this but\foo only this

will give: only this.

399 \immediate

This one has no effect unless you intercept it at the Lua end and act upon it. In original TEX immediate
is used in combination with read from and write to file operations. So, this is an old primitive with a
new meaning.

400 \immutable

This prefix flags what follows as being frozen and is usually applied to for instance \integerdef'd con-
trol sequences. In that respect is is like \permanent but it makes it possible to distinguish quantities
from macros.

401 \indent

In engines other than LuaMetaTgX a paragraph starts with an indentation box. The width of that
(empty) box is determined by \parindent. In LuaMetaTEX we can use a dedicated indentation skip
instead (as part of paragraph normalization). An indentation can be zero'd with \undent.

402 \indexofcharacter
This primitive is more versatile variant of the backward quote operator, so instead of:

\number |
\number ~
\number \a
\number " \q

you can say:

\the\indexofcharacter |
\the\indexofcharacter -~
\the\indexofcharacter \a
\the\indexofcharacter \q

In both cases active characters and unknown single character control sequences are valid. In addition
this also works:

\chardef \foo 128
\mathchardef\oof 130

\the\indexofcharacter \foo
\the\indexofcharacter \oof

89

An important difference is that \indexofcharacter returns an integer and not a serialized number. A
negative value indicates no valid character.
403 \indexofregister

You can use this instead of \number for determining the index of a register but it also returns a number
when a register value is seen. The result is an integer, not a serialized number.

404 \inherited

When this prefix is used in a definition using \ let the target will inherit all the properties of the source.

405 \initcatcodetable

This initializes the catcode table with the given index.

406 \initialpageskip

When a page starts the value of this register are used to initialize \pagetotal, \pagestretch and
\pageshrink. This make nicer code than using a \topskip with weird values.

407 \initialtopskip

When set this one will be used instead of \topskip. The rationale is that the \topskip is often also
used for side effects and compensation.

408 \input

There are several ways to use this primitive:

\input test
\input {test}
\input "test"
\input 'test’

When no suffix is given, TgX will assume the suffix is . tex. The second one is normally used.

409 \inputlineno

This integer holds the current linenumber but it is not always reliable.

410 \insert

This stores content in the insert container with the given index. In LuaMetaTgX inserts bubble up to
outer boxes so we don't have the ‘deeply buried insert issue’.

90

411 \insertbox

This is the accessor for the box (with results) of an insert with the given index. This is equivalent to
the \box in the traditional method.

412 \insertcopy

This is the accessor for the box (with results) of an insert with the given index. It makes a copy so the
original is kept. This is equivalent to a \copy in the traditional method.

413 \insertdepth

This is the (current) depth of the inserted material with the given index. It is comparable to the \dp
in the traditional method.

414 \insertdistance

This is the space before the inserted material with the given index. This is equivalent to \glue in the
traditional method.

415 \insertheight

This is the (current) depth of the inserted material with the given index. It is comparable to the \ht
in the traditional method.

416 \insertheights

This is the combined height of the inserted material.

417 \insertlimit

This is the maximum height that the inserted material with the given index can get. This is equivalent
to \dimen in the traditional method.

418 \insertmaxdepth

This is the maximum depth that the inserted material with the given index can get.

419 \insertmode

In traditional TgX inserts are controlled by a \box, \dimen, \glue and \count register with the same
index. The allocators have to take this into account. When this primitive is set to one a different model
is followed with its own namespace. There are more abstract accessors to interface to this.?

3 The old model might be removed at some point.

91

420 \insertmultiplier

This is the height (contribution) multiplier for the inserted material with the given index. This is
equivalent to \count in the traditional method.

421 \insertpenalties

This dual purpose internal counter holds the sum of penalties for insertions that got split. When we're
the output routine in reports the number of insertions that is kept in store.

422 \insertpenalty

This is the insert penalty associated with the inserted material with the given index.

423 \insertprogress

This returns the current accumulated insert height of the insert with the given index.

424 \insertstorage

The value passed will enable (one) or disable (zero) the insert with the given index.

425 \insertstoring

The value passed will enable (one) or disable (zero) inserts.

426 \insertunbox

This is the accessor for the box (with results) of an insert with the given index. It makes a copy so
the original is kept. The content is unpacked and injected. This is equivalent to an \unvbox in the
traditional method.

427 \insertuncopy

This is the accessor for the box (with results) of an insert with the given index. It makes a copy so
the original is kept. The content is unpacked and injected. This is equivalent to the \unvcopy in the
traditional method.

428 \insertwidth

This is the (current) width of the inserted material with the given index. It is comparable to the \wd
in the traditional method.

429 \instance

This prefix flags a macro as an instance which is mostly relevant when a macro package want to
categorize macros.

92

430 \integerdef

You can alias to a count (integer) register with \countdef:
\countdef\MyCountl134

Afterwards the next two are equivalent:

99
99

\MyCount
\count1234

where \MyCount can be a bit more efficient because no index needs to be scanned. However, in terms
of storage the value (here 99) is always in the register so \MyCount has to get there. This indirectness
has the benefit that directly setting the value is reflected in the indirect accessor.

\integerdef\MyCount = 99

This primitive also defines a numeric equivalent but this time the number is stored with the equivalent.
This means that:

\let\MyCopyOfCount = \MyCount

will store the current value of \MyCount in \MyCopy0OfCount and changing either of them is not reflected
in the other.

The usual \advance, \multiply and \divide can be used with these integers and they behave like
any number. But compared to registers they are actually more a constant.

431 \interactionmode

This internal integer can be used to set or query the current interaction mode:

\batchmode 0 omits all stops and terminal output

\nonstopmode 1 omits all stops

\scrollmode 2 omits error stops

\errorstopmode 3 stops at every opportunity to interact

432 \interlinepenalties

This is a more granular variant of \interlinepenalty: an array of penalties to be put between suc-
cessive line from the start of a paragraph. The list starts with the number of penalties that gets passed.

433 \interlinepenalty

This is the penalty that is put between lines.

434 \jobname

This gives the current job name without suffix: primitives.

93

435 \kern

A kern is injected with the given dimension. For variants that switch to a mode we have \hkern and
\vkern.

436 \language

Sets (or returns) the current language, a number. In LuaTgX and LuaMetaTgX the current language
is stored in the glyph nodes.

437 \lastarguments

\def\MyMacro #1{\the\lastarguments (#1) } \MyMacro{1} \crlf
\def\MyMacro #1#2{\the\lastarguments (#1) (#2)} \MyMacro{1}{2} \crlf
\def\MyMacro#1#2#3{\the\lastarguments (#1) (#2) (#3)} \MyMacro{1}{2}{3} \par
\def\MyMacro #1{ (#1) \the\lastarguments} \MyMacro{1l} \crlf
\def\MyMacro #1#2{(#1) (#2) \the\lastarguments} \MyMacro{1}{2} \crlf

\def\MyMacro#l#2#3{ (#1) (#2) (#3) \the\lastarguments} \MyMacro{1}{2}{3} \par

The value of \lastarguments can only be trusted in the expansion until another macro is seen and
expanded. For instance in these examples, as soon as a character (like the left parenthesis) is seen,
horizontal mode is entered and \everypar is expanded which in turn can involve macros. You can see
that in the second block (that is: unless we changed \everypar in the meantime).

1(1)
2(1) (2)
3(1) (2) (3)

(1o
(1) (2) 2
(1)(2)@3)3

438 \lastatomclass

This returns the class number of the last atom seen in the math input parser.

439 \lastboundary

This primitive looks back in the list for a user boundary injected with \boundary and when seen it
returns that value or otherwise zero.

440 \lastbox

When issued this primitive will, if possible, pull the last box from the current list.

441 \lastchkdimension

When the last check for a dimension with \ifchkdimension was successful this primitive returns the
value.

94

442 \lastchknumber

When the last check for an integer with \ifchknumber was successful this primitive returns the value.

443 \lastkern

This returns the last kern seen in the list (if possible).

444 \lastleftclass

This variable registers the first applied math class in a formula.

445 \lastlinefit

The e-TgX manuals explains this parameter in detail but in practice it is enough to know that when set
to 1000 spaces in the last line might match those in the previous line. Basically it counters the strong
push of a \parfillskip.

446 \lastloopiterator

In addition to \currentloopiterator we have a variant that stores the value in case an unexpanded
loop is used:

\localcontrolledrepeat 8 { [\the\currentloopiterator\eq\the\lastloopiterator] }
\expandedrepeat 8 { [\the\currentloopiterator\eq\the\lastloopiterator] }
\unexpandedrepeat 8 { [\the\currentloopiterator\ne\the\lastloopiterator] }

[1=1] [2=2] [3=3] [4=4] [5=5] [6=6] [7=7] [8=8]
[1=1] [2=2] [3=3] [4=4] [5=5] [6=6] [7=7] [8=8]
[0#1] [0+2] [0+£3] [0+£4] [0£5] [0#£6] [0#7] [0+8]

447 \lastnamedcs

The example code in the previous section has some redundancy, in the sense that there to be looked
up control sequence name mymacro is assembled twice. This is no big deal in a traditional eight bit TgX
but in a Unicode engine multi-byte sequences demand some more processing (although it is unlikely
that control sequences have many multi-byte utf8 characters).

\ifcsname mymacro\endcsname
\csname mymacro\endcsname
\fi

Instead we can say:

\ifcsname mymacro\endcsname
\lastnamedcs
\fi

Although there can be some performance benefits another advantage is that it uses less tokens and
parsing. It might even look nicer.

95

448 \lastnodesubtype

When possible this returns the subtype of the last node in the current node list. Possible values can
be queried (for each node type) via Lua helpers.

449 \lastnodetype

When possible this returns the type of the last node in the current node list. Possible values can be
queried via Lua helpers.

450 \lastpageextra

This reports the last applied (permitted) overshoot.

451 \lastparcontext

When a paragraph is wrapped up the reason is reported by this state variable. Possible values are:

0x00 normal 0x04 dbox 0x08 output 0x0B span
0x01 vmode 0x05 vcenter 0x09 align 0x0C reset
0x02 vbox 0x06 vadjust 0x0A noalign

0x03 vtop 0x07 insert

452 \lastpartrigger

There are several reasons for entering a paragraphs and some are automatic and triggered by other
commands that force TgX into horizontal mode.

0x00 normal 0x04 mathchar 0x08 math 0x0C wvalign
0x01 force 0x05 char 0x09 kern 0x0D vrule
0x02 indent 0x06 boundary 0x0A hskip
0x03 noindent 0x07 space 0x0B unhbox

453 \lastpenalty

This returns the last penalty seen in the list (if possible).

454 \lastrightclass

This variable registers the last applied math class in a formula.

455 \lastskip

This returns the last glue seen in the list (if possible).

96

456 \lccode

When the \lowercase operation is applied the lowercase code of a character is used for the replace-
ment. This primitive is used to set that code, so it expects two character number. The code is also
used to determine what characters make a word suitable for hyphenation, although in LuaTgX we in-
troduced the \hj code for that.

457 \leaders

See \gleaders for an explanation.

458 \left

Inserts the given delimiter as left fence in a math formula.

459 \lefthyphenmin

This is the minimum number of characters after the last hyphen in a hyphenated word.

460 \leftmarginkern

The dimension returned is the protrusion kern that has been added (if at all) to the left of the content
in the given box.
461 \leftskip

This skip will be inserted at the left of every line.

462 \leqno

This primitive stores the (typeset) content (presumably a number) and when the display formula is
wrapped that number will end up left of the formula.

463 \let

Where a \def creates a new macro, either or not with argument, a \let creates an alias. You are not
limited to aliasing macros, basically everything can be aliased.

464 \letcharcode

Assigning a meaning to an active character can sometimes be a bit cumbersome; think of using some
documented uppercase magic that one tends to forget as it's used only a few times and then never
looked at again. So we have this:

{\letcharcode 65 1 \catcode 65 13 A : \meaning A}\crlf
{\letcharcode 65 2 \catcode 65 13 A : \meaning A}\par

here we define A as an active charcter with meaning 1 in the first line and 2 in the second.

97

1 : the character U+0031 1
2 : the character U+0032 2

Normally one will assign a control sequence:

{\letcharcode 66 \bf \catcode 66 13 {B bold}: \meaning B}\crlf
{\letcharcode 73 \it \catcode 73 13 {I italic}: \meaning I}\par

Of course \bf and \it are ConIgXt specific commands:

bold: protected macro:\ifmmode \expandafter \mathbf \else \expandafter \normalbf \fi
italic: protected macro:\ifmmode \expandafter \mathit \else \expandafter \normalit \fi
465 \letcsname

It is easy to see that we save two tokens when we use this primitive. As with the ..defcs.. variants
it also saves a push back of the composed macro name.

\expandafter\let\csname MyMacro:1l\endcsname\relax
\letcsname MyMacro:1l\endcsname\relax

466 \letfrozen

You can explicitly freeze an unfrozen macro:

\def\MyMacro{...}
\letfrozen\MyMacro

A redefinition will now give:

! You can't redefine a frozen macro.

467 \letmathatomrule

You can change the class for a specific style. This probably only makes sense for user classes. It's one
of those features that we used when experimenting with more control.

\letmathatomrule 4
\letmathatomrule 5

4400
5500

This changes the classes 4 and 5 into class O in the two script styles and keeps them the same in
display and text. We leave it to the reader to ponder how useful this is.

468 \letmathparent

This primitive takes five arguments: the target class, and four classes that determine the pre penalty
class, post penalty class, options class and a dummy class for future use.

469 \letmathspacing

By default inter-class spacing inherits from the ordinary class but you can remap specific combinations
is you want:

98

\letmathspacing \mathfunctioncode
\mathordinarycode \mathordinarycode
\mathordinarycode \mathordinarycode

The first value is the target class, and the nest four tell how it behaves in display, text, script and script
script style. Here \mathfunctioncode is a ConTgXt specific class (26), one of the many.

470 \letprotected
Say that you have these definitions:

\def \MyMacroA{alpha}
\protected \def \MyMacroB{beta}
\edef \MyMacroC{\MyMacroA\MyMacroB}

\letprotected \MyMacroA

\edef \MyMacroD{\MyMacroA\MyMacroB}
\meaning \MyMacroC\crlf
\meaning \MyMacroD\par

The typeset meaning in this example is:

macro:alpha\MyMacroB
macro:\MyMacroA \MyMacroB

471 \lettolastnamedcs

The \lastnamedcs primitive is somewhat special as it is a (possible) reference to a control sequence
which is why we have a dedicated variant of \let.

\csname relax\endcsname\let \foo\lastnamedcs \meaning\foo
\csname relax\endcsname\expandafter\let\expandafter \oof\lastnamedcs \meaning\oof
\csname relax\endcsname\lettolastnamedcs \ofo \meaning\ofo

These give the following where the first one obviously is not doing what we want and the second one
is kind of cumbersome.

\lastnamedcs
\relax
\relax

472 \lettonothing

This one let's a control sequence to nothing. Assuming that \empty is indeed empty, these two lines
are equivalent.

\let \foo\empty
\lettonothing\oof

473 \limits

This is a modifier: it flags the previous math atom to have its scripts above and below the (summation,
product, integral etc.) symbol. In LuaMetaTgX this can be any atom (that is: any class). In display
mode the location defaults to above and below.

99

Like any modifier it looks back for a math specific element. This means that the following will work
well:

\sum \limits "2 3
\sum "2 \limits 3
\sum "2 3 \limits
\sum ~2 3 \limits \nolimits \limits

because scripts are bound to these elements so looking back just sees the element.

474 \linebreakcriterion

The par builder has a concept of ‘compatible’ lines, and has categories for that: loose, decent and tight.
In LuaMetaTgX we also have semi-loose and semi-tight as intermediate categories. This parameter
can set the ranges for those, using four double bytes:

Ox7F000000 semitight 12
OX007FO000 decent 12
Ox00007FO0 semiloose 12
0x0000007F loose 99

The (decimal) default values are given in the last column. Don't expect a big influence from changing
these and this option is mostly a side effect of experiments.

475 \linebreakoptional

This selects the optional text range that is to be used. Optional content is marked with optionalbound-
ary nodes.

476 \linebreakpasses

When set to a positive value it will apply additional line break runs defined with \parpasses until the
criteria set in there are met. When set to —1 it will signal a final pass

477 \linedirection

This sets the text direction (1 for r21) to the given value but keeps preceding glue into the range.

478 \linepenalty

Every line gets this penalty attached, so normally it is a small value, like here: 10.

479 \lineskip

This is the amount of glue that gets added when the distance between lines falls below \line-
skiplimit.

100

480 \lineskiplimit

When the distance between two lines becomes less than \lineskiplimit a \lineskip glue item is
added.

\ruledvbox{
\lineskiplimit Opt \lineskip3pt \baselineskipOpt
\ruledhbox{line 1}
\ruledhbox{line 2}
\ruledhbox{\tx line 3}
}

Normally the \baselineskip kicks in first but here we've set that to zero, so we get two times a 3pt
glue injected.

ine 1

ine 2
me

481 \localcontrol

This primitive takes a single token:

\edef\testa{\scratchcounterl23 \the\scratchcounter}
\edef\testc{\testa \the\scratchcounter}
\edef\testd{\localcontrol\testa \the\scratchcounter}

The three meanings are:
123

\testa macro:\scratchcounter 123 123
\testc macro:\scratchcounter 123 123123
\testd macro:123

The \localcontrol makes that the following token gets expanded so we don't see the yet to be ex-
panded assignment show up in the macro body.
482 \localcontrolled

The previously described local control feature comes with two extra helpers. The \localcontrolled
primitive takes a token list and wraps this into a local control sidetrack. For example:

\edef\testa{\scratchcounterl23 \the\scratchcounter}
\edef\testb{\localcontrolled{\scratchcounterl23}\the\scratchcounter}

The two meanings are:

\testa macro:\scratchcounter 123 123
\testb macro:123

The assignment is applied immediately in the expanded definition.

101

483 \localcontrolledendless

As the name indicates this will loop forever. You need to explicitly quit the loop with \quitloop or
\quitloopnow. The first quitter aborts the loop at the start of a next iteration, the second one tries to
exit immediately, but is sensitive for interference with for instance nested conditionals.

484 \localcontrolledloop

As with more of the primitives discussed here, there is a manual in the lowlevel’ subset that goes into
more detail. So, here a simple example has to do:

\localcontrolledloop 1 100 1 {%
\ifnum\currentloopiterator>6\relax
\quitloop
\else
[\number\currentloopnesting:\number\currentloopiterator]
\localcontrolledloop 1 8 1 {%
(\number\currentloopnesting:\number\currentloopiterator)
Hpar
\fi
}

Here we see the main loop primitive being used nested. The code shows how we can \quitloop and
have access to the \currentloopiterator as well as the nesting depth \currentloopnesting.

[1:1](2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)
[1:2] (2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)
[1:3] (2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)
[1:4] (2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)
[1:5] (2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)
[1:6] (2:1) (2:2) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)

Be aware of the fact that \quitloop will end the loop at the next iteration so any content after it will
show up. Normally this one will be issued in a condition and we want to end that properly. Also keep
in mind that because we use local control (a nested TEX expansion loop) anything you feed back can
be injected out of order.

The three numbers can be separated by an equal sign which is a trick to avoid look ahead issues that
can result from multiple serialized numbers without spaces that indicate the end of sequence of digits.

485 \localcontrolledrepeat

This one takes one instead three arguments which looks a bit better in simple looping.

486 \localleftbox

This sets the box that gets injected at the left of every line.

487 \localleftboxbox

This returns the box set with \localleftbox.

102

488 \localmiddlebox

This sets the box that gets injected at the left of every line but its width is ignored.

489 \localmiddleboxbox

This returns the box set with \localmiddlebox.

490 \localrightbox

This sets the box that gets injected at the right of every line.

491 \localrightboxbox

This returns the box set with \localrightbox.

492 \long

This original prefix gave the macro being defined the property that it could not have \par (or the often
equivalent empty lines) in its arguments. It was mostly a protection against a forgotten right curly
brace, resulting in a so called run-away argument. That mattered on a paper terminal or slow system
where such a situation should be catched early. In LuaTgX it was already optional, and in LuaMetaTgX
we dropped this feature completely (so that we could introduce others).

493 \looseness

The number fo lines in the current paragraph will be increased by given number of lines. For this to
succeed there need to be enough stretch in the spacing to make that happen. There is some wishful
thinking involved.

494 \lower

This primitive takes two arguments, a dimension and a box. The box is moved down. The operation
only succeeds in horizontal mode.

495 \lowercase

This token processor converts character tokens to their lowercase counterparts as defined per \1lc-
code. In order to permit dirty tricks active characters are also processed. We don't really use this
primitive in ConTgXt, but for consistency we let it respond to \expand:*

\edef \foo {\lowercase{tex TeX \TEX}} \meaningless\foo
\lowercase{\edef\foo {tex TeX \TEX}} \meaningless\foo
\edef \foo{\expand\lowercase{tex TeX \TEX}} \meaningless\foo

Watch how \lowercase is not expandable but can be forced to. Of course, as the logo macro is pro-
tected the TgX logo remains mixed case.

4 Instead of providing \lowercased and \uppercased primitives that would clash with macros anyway.

103

\lowercase {tex TeX \TEX }
tex tex \TEX

tex tex \TEX

496 \lpcode

This one can be used to set the left protrusion factor of a glyph in a font and takes three arguments:
font, character code and factor. It is kind of obsolete because we can set up vectors at definition time
and tweaking from TgX can have side effects because it globally adapts the font.

497 \luabytecode

This behaves like \luafunction but here the number is a byte code register. These bytecodes are in
the lua.bytecode array.

498 \luabytecodecall

This behaves like \luafunctioncall but here the number is a byte code register. These bytecodes
are in the lua.bytecode array.

499 \luacopyinputnodes

When set to a positive value this will ensure that when nodes are printed from Lua to TEX copies are
used.

500 \luadef

This command relates a (user) command to a Lua function registered in the lua.lualib get func-
tions table(), so after:

\luadef\fo00123

the \foo command will trigger the function at index 123. Of course a macro package has to make
sure that these definitions are unique.®

This command is accompanied by \luafunctioncall and \luafunction. When we have funciton 123
defined as

function() tex.sprint("!") end
the following:

(\luafunctioncall \foocode ?)
(\normalluafunction\foocode ?)
(\foo ?)

gives three times (!?). But this:

5 Plain TgX established a norm for allocating registers, like \newdimen but there is no such convention for Lua functions.

104

\edef\oof{\foo } \meaning\oof % protected
\edef\oof{\luafunctioncall \foocode} \meaning\oof % protected
\edef\oof{\normalluafunction\foocode} \meaning\oof % expands

returns:

macro: !
macro:\luafunctioncall 1740
macro:!

Because the definition command is like any other
\permanent\protected\luadef\foo0l23
boils down to:

permanent protected luacall 123

501 \luaescapestring

This command converts the given (token) list into something that is acceptable for Lua. It is inherited
from LuaTgX and not used in ConTgXt.

\directlua { tex.print ("\luaescapestring {{\tt This is a "test™.}}") }

Results in: This is a "test". (Watch the grouping.)

502 \luafunction

The integer passed to this primitive is the index in the table returned by lua.lualib get func-
tions table(). Of course a macro package has to provide reliable management for this. This is a so
called convert command so it expands in an expansion context (like an \edef).

503 \luafunctioncall

The integer passed to this primitive is the index in the table returned by lua.lualib get func-
tions table(). Of course a macro package has to provide reliable management for this. This primi-
tive doesn't expand in an expansion context (like an \edef).

504 \luatexbanner

This gives: This is LuaMetaTeX, Version 2.11.02.

505 \luatexrevision

This is an integer. The current value is: 11.

506 \luatexversion

This is an integer. The current value is: 211.

105

507 \mark

The given token list is stored in a node in the current list and might become content of \topmark,
\botmark or \firstmark when a page split off, or in the case of a box split in \splitbotmark or
\splitfirstmark. In LuaMetaTgX deeply burried marks bubbly up to an outer box level.

508 \marks

This command is similar to \mark but first expects a number of a mark register. Multiple marks were
introduced in &-TgX.

509 \mathaccent

This takes a number and a math object to put the accent on. The four byte number has a dummy class
byte, a family byte and two index bytes. It is replaced by \Umathaccent that handles wide fonts.

510 \mathatom

This operation wraps following content in a atom with the given class. It is part of LuaMetaTgX's
extended math support. There are three class related key/values: class, leftclass and rightclass
(or all for all of them). When none is given this command expects a class number before scanning
the content. The options key expects a bitset but there are also direct option keys, like limits,
nolimits, unpack, unroll, single, nooverflow, void and phantom. A source id can be set, one
or more attr assigned, and for specific purposes textfont and mathfont directives are accepted.
Features like this are discussed in dedicated manuals.

511 \mathatomglue

This returns the glue that will be inserted between two atoms of a given class for a specific style.

\the\mathatomglue \textstyle 11
\the\mathatomglue \textstyle 0 2
\the\mathatomglue \scriptstyle 1 1
\the\mathatomglue \scriptstyle 0 2

1.66667mu

2.22223mu plus 1.11111mu minus 1.11111mu
1.66667mu

0.55556mu minus 0.27777mu

512 \mathatomskip

This injects a glue with the given style and class pair specification: xx x x x x xx xx.

$X X$

$x \mathatomskip \textstyle 11 x$
$x \mathatomskip \textstyle 0 2 x$
$x \mathatomskip \scriptstyle 1 1 x$
$x \mathatomskip \scriptstyle 0 2 x$

106

513 \mathbackwardpenalties

See \mathforwardpenalties for an explanation.

514 \mathbeginclass

This variable can be set to signal the class that starts the formula (think of an imaginary leading atom).

515 \mathbin

This operation wraps following content in a atom with class ‘binary’.

516 \mathboundary

This primitive is part of an experiment with granular penalties in math. When set nested fences will
use the \mathdisplaypenaltyfactor or \mathinlinepenaltyfactor to increase nested penalties. A
bit more control is possible with \mathboundary:

begin factor 1000
end factor 1000
begin given factor
end given factor

W N = O

These will be used when the mentioned factors are zero.

517 \mathchar

Replaced by \Umathchar this old one takes a four byte number: one byte for the class, one for the
family an two for the index. The specified character is appended to to the list.

518 \mathcharclass

Returns the slot (in the font) of the given math character.

\the\mathcharclass\Umathchar 4 2 123

The first passed number is the class, so we get: 4.

519 \mathchardef

Replaced by \Umathchardef this primitive relates a control sequence with a four byte number: one
byte for the class, one for the family an two for the index. The defined command will insert that
character.

520 \mathcharfam
Returns the family number of the given math character.

\the\mathcharfam\Umathchar 4 2 123

107

The second passed number is the family, so we get: 2.

521 \mathcharslot
Returns the slot (or index in the font) of the given math character.
\the\mathcharslot\Umathchar 4 2 123

The third passed number is the slot, so we get: 123.

522 \mathcheckfencesmode

When set to a positive value there will be no warning if a right fence (\right or \Uright) is missing.

523 \mathchoice

This command expects four subformulas, for display, text, script and scriptscript and it will eventually
use one of them depending on circumstances later on. Keep in mind that a formula is first scanned
and when that is finished the analysis and typesetting happens.

524 \mathclass

There are build in classes and user classes. The first possible user class is 20 and the last one is 60.
You can better not touch the special classes ‘all’ (61), ‘begin’ (62) and ‘end’ (63). The basic 8 classes
that original TgX provides are of course also present in LuaMetaTgX. In addition we have some that
relate to constructs that the engine builds.

ordinary ord 0 the default

operator op 1 small and large operators

binary bin 2

relation rel 3

open 4

close 5

punctuation punct 6

variable 7 adapts to the current family

active 8 character marked as such becomes active
inner 9 this class is not possible for characters
under 10

over 11

fraction 12

radical 13

middle 14

accent 16

fenced 17

ghost 18

vcenter 19

108

There is no standard for user classes but ConTgXt users should be aware of quite some additional ones
that are set up. The engine initialized the default properties of classes (spacing, penalties, etc.) the
same as original TgX.

Normally characters have class bound to them but you can (temporarily) overload that one. The
\mathclass primitive expects a class number and a valid character number or math character and
inserts the symbol as if it were of the given class; so the original class is replaced.

\ruledhbox{(x)} and \ruledhbox{$\mathclass 1 " (x\mathclass 1 ")$}

Changing the class is likely to change the spacing, compare and [(x).

525 \mathclose

This operation wraps following content in a atom with class ‘close’.

526 \mathcode

This maps a character to one in a family: the assigned value has one byte for the class, one for the
family and two for the index. It has little use in an OpenType math setup.

527 \mathdictgroup

This is an experimental feature that in due time will be explored in ConTEXt. It currently has no
consequences for rendering.

528 \mathdictionary

This is an experimental feature that in due time will be explored in ConTgXt. It currently has no
consequences for rendering.

529 \mathdictproperties

This is an experimental feature that in due time will be explored in ConIgXt. It currently has no
consequences for rendering.

530 \mathdirection

When set to 1 this will result in r21 typeset math formulas but of course you then also need to set up
math accordingly (which is the case in ConTgXt).

531 \mathdisplaymode

Display mode is entered with two dollars (other characters can be used but the dollars are a con-
vention). Mid paragraph display formulas get a different treatment with respect to the width and
indentation than stand alone. When \mathdisplaymode is larger than zero the double dollars (or
equivalents) will behave as inline formulas starting out in \displaystyle and with \everydisplay
expanded.

109

532 \mathdisplaypenaltyfactor

This one is simular to \mathinlinepenaltyfactor but is used when we're in display style.

533 \mathdisplayskipmode

A display formula is preceded and followed by vertical glue specified by \abovedisplayskip and \be-
lowdisplayskip or \abovedisplayshortskip and \belowdisplayshortskip. Spacing ‘above’ is al-
ways inserted, even when zero, but the spacing ‘below’ is only inserted when it is non-zero. There's
also \baselineskip involved. The way spacing is handled can be influenced with \mathdisplayskip-
mode, which takes the following values:

does the same as any TgX engine
idem

only insert spacing when it is not zero
never insert spacing

W N~ O

534 \mathdoublescriptmode

When this parameter has a negative value double scripts trigger an error, so with \superscript, \no-
superscript, \shiftedsuperscript, \superprescript, \nosuperprescript, \shiftedsuperprescript,
\subscript, \nosubscript, \shiftedsubscript, \subprescript, \nosubprescript, \shiftedsub-
prescript and \primescript, as well as their (multiple) and " aliases.

A value of zero does the normal and inserts a dummy atom (basically a {}) but a positive value is more
interesting. Compare these:

{\mathdoublescriptmode 0 $x X x$}
{\mathdoublescriptmode"000000 $x x x$}
{\mathdoublescriptmode"030303 $x x x$}
{$x x x$}

The three pairs of bytes indicate the main class, left side class and right side class of the inserted
atom, so we get this: xyx Xxx Xx x Xxx- The last line gives what ConTgXt is configured for.

535 \mathendclass

This variable can be set to signal the class that ends the formula (think of an imaginary trailing atom).

536 \matheqgnogapstep

The display formula number placement heuristic puts the number on the same line when there is place
and then separates it by a quad. In LuaTgX we decided to keep that quantity as it can be tight into the
math font metrics but introduce a multiplier \matheqnogapstep that defaults to 1000.

537 \mathfontcontrol

This bitset controls how the math engine deals with fonts, and provides a way around dealing with
inconsistencies in the way they are set up. The \fontmathcontrol makes it possible to bind options

110

ot a specific math font. In practice, we just set up the general approach which ii possible because we
normalize the math fonts and ‘fix’ issues at runtime.

0x00000001
0x00000002
0x00000004
0x00000008
0x00000010
0x00000020
0x00000040
0x00000080
0x00000100
0x00000200
0x00000400
0x00000800
0x00001000
0x00002000
0x00004000
0x00008000
0x00010000
0x00020000
0x00040000
0x00080000
0x00100000
0x00200000
0x00400000
0x00800000
0x01000000
0x02000000

usefontcontrol

overrule

underrule

radicalrule

fractionrule
accentskewhalf
accentskewapply
applyordinarykernpair
applyverticalitalickern
applyordinaryitalickern
applycharitalickern
reboxcharitalickern
applyboxeditalickern
staircasekern
applytextitalickern
checktextitalickern
checkspaceitalickern
applyscriptitalickern
analyzescriptnucleuschar
analyzescriptnucleuslist
analyzescriptnucleusbox
accenttopskewwithoffset
ignorekerndimensions
ignoreflataccents
extendaccents
extenddelimiters

538 \mathforwardpenalties

Inline math can have multiple atoms and constructs and one can configure the penalties between then
bases on classes. In addition it is possible to configure additional penalties starting from the beginning
or end using \mathforwardpenalties and \mathbackwardpenalties. This is one the features that we
added in the perspective of breaking paragraphs heavy on math into lines. It not that easy to come
up with useable values.

539 \mathgluemode

We can influence the way math glue is handled. By default stretch and shrink is applied but this
variable can be used to change that. The limit option ensures that the stretch and shrink doesn't go
beyond their natural values.

0x01 stretch
0x02 shrink
0x04 limit

111

540 \mathgroupingmode

Normally a {} or \bgroup-\egroup pair in math create a math list. However, users are accustomed
to using it also for grouping and then a list being created might not be what a user wants. As an al-
ternative to the more verbose \begingroup-\endgroup or even less sensitive \beginmathgroup-\end-
mathgroup you can set the math grouping mode to a non zero value which makes curly braces (and
the aliases) behave as expected.

541 \mathinlinepenaltyfactor

A math formula can have nested (sub)formulas and one might want to discourage a line break inside
those. If this value is non zero it becomes a mulitiplier, so a value of 1000 will make an inter class
penalty of 100 into 200 when at nesting level 2 and 500 when at level 5.

542 \mathinner

This operation wraps following content in a atom with class ‘inner’. In LuaMetaTgX we have more
classes and this general wrapper one is therefore kind of redundant.

543 \mathleftclass

When set this class will be used when a formula starts.

544 \mathlimitsmode

When this parameter is set to a value larger than zero real dimensions are used and longer limits will
not stick out, which is a traditional TgX feature. We could have more advanced control but this will
do.

Compare the zero setting:

T, TTTTTTITY 1T TTTTITY TITITY Ty AR e TN

/’ L/]? /‘ u/ /1 /1'/11/'1%

e e e AL i ANl Al " " 1

f

| nm | iy | 1!1!!1!!| | 1!!!!1!!!!!!!1|. for demandingj
| || ! |muu | | i l ntegral freaks

with the positive variant:

TTrrrrrTT TrrrrrT TrrrrrTT T TTTTTy T T T m m T

e e renm e m mnn mnm " m " !

112

TITTITT | [TUOTTTTe TITTTTTTT | [y TOTTTTT ey ‘ for demanding

/I |
/11

| Inum | ||mm I Iintegralfreaks |

i
[

i !

Here we switched to Latin Modern because it's font dependent how serious this issue is. In Pagella
all is fine in both modes.

545 \mathmainstyle

This inspector returns the outermost math style (contrary to \mathstyle), as we can see in the next
examples where use these snippets:

\def\foo{(\the\mathmainstyle, \the\mathstyle)}
\def\oof{\sqrt[\foo]l{\foo}}
\def\ofo{\frac{\foo}{\foo}}
\def\fof{\mathchoice{\foo}{\foo}{\foo}{\foo}}

When we use the regular math triggers we get this:

$\displaystyle \foo + \oof + \ofo$

$\textstyle \foo + \oof + \ofo$

$\displaystyle \foo + \fof$

$\textstyle \foo + \fof$

$\scriptstyle \foo + \fof$

$\scriptscriptstyle\foo + \fof$

(20)+Z§(11)+§%§

(2,2) + (2,3)+ G5

(2,0)+(2,0)

(2,2)+(2,2)

(2,4)+(2,4)

(2,6)+(2,6)

But we can also do this:

\Ustartmathmode \displaystyle \foo + \oof + \ofo \Ustopmathmode
\Ustartmathmode \textstyle \foo + \oof + \ofo \Ustopmathmode
\Ustartmathmode \displaystyle \foo + \fof \Ustopmathmode
\Ustartmathmode \textstyle \foo + \fof \Ustopmathmode
\Ustartmathmode \scriptstyle \foo + \fof \Ustopmathmode
\Ustartmathmode \scriptscriptstyle\foo + \fof \Ustopmathmode

(0,0) + YO0, T) + 52

(2,2) + *3(2,3) + 32
(0,0) +(0,0)
(2,2)+(2,2)

(4,4)+(4,4)

(6,6)+(6,6)

546 \mathnolimitsmode

This parameter influences the placement of scripts after an operator. The reason we have this lays in
the fact that traditional TgX uses italic correction and OpenType math does the same but fonts are not

113

consistent in how they set this up. Actually, in OpenType math it's the only reason that there is italic
correction. Say that we have a shift 6 determined by the italic correction:

mode top bottom
0 0 -6
1 6 x fi 6 x fp
2 0 0
3 0 -6/2
4 6/2 -6/2
> 15 0 —nx6/1000

Mode 1 uses two font parameters: f,: \Umathnolimitsubfactor and f;: \Umathnolimitsupfactor.

547 \mathop

This operation wraps following content in a atom with class ‘operator’.

548 \mathopen

This operation wraps following content in a atom with class ‘open’.

549 \mathord

This operation wraps following content in a atom with class ‘ordinary’.

550 \mathparentstyle

This inspector returns the math style used in a construct, so is is either equivalent to \mathmainstyle
or a nested \mathstyle. For instance in a nested fraction we get this (in ConTEXt) in display formulas:

0,1,1)

QLD (0,0,0)

(0,1,1)
(0,1, 1)

o
[
N

o
N

s 4,

(=] (=]
===
=]

but this in inline formulas:

(2,5,7)

o5t (2,2,2)

(2,5,7)

where the first element in a nested fraction.

551 \mathpenaltiesmode

Normally the TgX math engine only inserts penalties when in textstyle. You can force penalties in
displaystyle with this parameter. In inline math we always honor penalties, with mode 0 and mode 1
we get this:

#:0 P:700 WP:500 HP:0

x+2x=1

:0 :700 MP:500 HP:0

114

However in ConIgXt, where all is done in inline math mode, we set this this parameter to 1, otherwise
we wouldn't get these penalties, as shown next:

XxX+2x=0
x+2x=1

¥P:700 1P:500

If one uses a callback it is possible to force penalties from there too.

552 \mathpretolerance

This is used instead of \pretolerance when a breakpoint is calculated when a math formula starts.

553 \mathpunct

This operation wraps following content in a atom with class ‘punctuation’.

554 \mathrel

This operation wraps following content in a atom with class ‘relation’.

555 \mathrightclass

When set this class will be used when a formula ends.

556 \mathrulesfam

When set, this family will be used for setting rule properties in fractions, under and over.

557 \mathrulesmode

When set to a non zero value rules (as in fractions and radicals) will be based on the font parameters
in the current family.

558 \mathscale

In LuaMetaTgX we can either have a family of three (text, script and scriptscript) fonts or we can use
one font that we scale and where we also pass information about alternative shapes for the smaller
sizes. When we use this more compact mode this primitive reflects the scale factor used.

What gets reported depends on how math is implemented, where in ConTEXt we can have either normal
or compact mode: 1000 700 sso 1000 700 sso. In compact mode we have the same font three times so
then it doesn't matter which of the three is passed.

559 \mathscriptsmode

There are situations where you don't want TgX to be clever and optimize the position of super- and
subscripts by shifting. This parameter can be used to influence this.

115

O: x5+ yX+zo+wd RxZ+yi+zo4+4wd x5+ yX+z,+w?

0: xbk+yX+ze+wl B:xb+yX+ze+w!

2 xh+yx+ 24w

1 over O 2 over O 2 over 1

The next table shows what parameters kick in when:

or (1) and (2) otherwise
super sup shift up sup shift up sup shift up, sup bot min
sub sub shift down sub sup shift down sub shift down, sub top max
both sub shift down sub sup shift down sub sup shift down, sub sup vgap, sup sub bot max

560 \mathslackmode

When positive this parameter will make sure that script spacing is discarded when there is no reason
to add it.

X% + x%x?% x% + x%x?% x?% + x?% x*

disabled (0) enabled (1) enabled over disabled

561 \mathspacingmode

Zero inter-class glue is not injected but setting this parameter to a positive value bypasses that check.
This can be handy when checking (tracing) how (and what) spacing is applied. Keep in mind that glue
in math is special in the sense that it is not a valid breakpoint. Line breaks in (inline) math are driven
by penalties.

562 \mathstack

There are a few commands in TgX that can behave confusing due to the way they are scanned. Compare
these:

$ 1 \over 2 $

$ 1+ x \over 2 + x$

$ {1 + x} \over {2 + x}$

$ {{1 + x} \over {2 + x}}$

A single 1 is an atom as is the curly braced 1 + x. The two arguments to \over eventually will get
typeset in the style that this fraction constructor uses for the numerator and denominator but on might
actually also like to relate that to the circumstances. It is comparable to using a \mathchoice. In order
not to waste runtime on four variants, which itself can have side effects, for instance when counters
are involved, LuaTgX introduced \mathstack, used like:

$\mathstack {1 \over 2}$

This \mathstack command will scan the next brace and opens a new math group with the correct (in
this case numerator) math style. The \mathstackstyle primitive relates to this feature that defaults
to ‘smaller unless already scriptscript’.

116

563 \mathstackstyle

This returns the (normally) numerator style but the engine can be configured to default to another
style. Although all these in the original TgX engines hard coded style values can be changed in Lua-
MetaTgX it is unlikely to happen. So this primitive will normally return the (current) style ‘smaller
unless already scriptscript’.

564 \mathstyle

This returns the current math style, so $\the\mathstyle$ gives 2.

565 \mathstylefontid

This returns the font id (a number) of a style/family combination. What you get back depends on how
a macro package implements math fonts.

(\the\mathstylefontid\textstyle \fam)
(\the\mathstylefontid\scriptstyle \fam)
(\the\mathstylefontid\scriptscriptstyle\fam)

In ConTgXt gives: (2) (2) (2).

566 \mathsurround

The kern injected before and after an inline math formula. In practice it will be set to zero, if only
because otherwise nested math will also get that space added. We also have \mathsurroundskip
which, when set, takes precedence. Spacing is controlled by \mathsurroundmode.

567 \mathsurroundmode

The possible ways to control spacing around inline math formulas in other manuals and mostly serve
as playground.

568 \mathsurroundskip

When set this one wins over \mathsurround.

569 \maththreshold

This is a glue parameter. The amount determines what happens: when it is non zero and the inline
formula is less than that value it will become a special kind of box that can stretch and/ or shrink
within the given specification. The par builder will use these stretch and/ or shrink components but
it is up to one of the Lua callbacks to deal with the content eventually (if at all). As this is somewhat
specialized, more details can be found on ConTEXt documentation.

570 \mathtolerance

This is used instead of \tolerance when a breakpoint is calculated when a math formula starts.

117

571 \maxdeadcycles

When the output routine is called this many times and no page is shipped out an error will be triggered.
You therefore need to reset its companion counter \deadcycles if needed. Keep in mind that LuaMeta-
TEX has no real \shipout because providing a backend is up to the macro package.

572 \maxdepth

The depth of the page is limited to this value.

573 \meaning

We start with a primitive that will be used in the following sections. The reported meaning can look a
bit different than the one reported by other engines which is a side effect of additional properties and
more extensive argument parsing.

\tolerant\permanent\protected\gdef\foo [#1]#*[#2]1{(#1) (#2)} \meaning\foo

tolerant protected macro:[#1]#*[#2]->(#1)(#2)

574 \meaningasis

Although it is not really round trip with the original due to information being lost this primitive tries
to return an equivalent definition.

\tolerant\permanent\protected\gdef\foo [#1]1#*[#2]1{(#1) (#2)} \meaningasis\foo

\permanent \tolerant \protected \def \foo [#1]#*[#2]{(#1)(#2)}

575 \meaningful
This one reports a bit less than \meaningful.
\tolerant\permanent\protected\gdef\foo [#1]#*[#2]{(#1) (#2)} \meaningful\foo

permanent tolerant protected macro

576 \meaningfull
This one reports a bit more than \meaning.
\tolerant\permanent\protected\gdef\foo [#1]#*[#2]{(#1) (#2)} \meaningfull\foo

permanent tolerant protected macro:[#1]#*[#2]->(#1)(#2)

577 \meaningles
This one reports a bit less than \meaningless.

\tolerant\permanent\protected\gdef\foo [#1]#*[#2]1{(#1) (#2)} \meaningles\foo

118

[#1]#*[#2]

578 \meaningless
This one reports a bit less than \meaning.
\tolerant\permanent\protected\gdef\foo [#1]1#*[#2]1{(#1) (#2)} \meaningless\foo

[#11#*[#2]->(#1)(#2)

579 \medmuskip

A predefined mu skip register that can be used in math (inter atom) spacing. The current value is
4.0mu plus 2.0mu minus 2.0mu. In traditional TEX most inter atom spacing is hard coded using the
predefined registers.

580 \message

Prints the serialization of the (tokenized) argument to the log file and/or console.

581 \middle

Inserts the given delimiter as middle fence in a math formula. In LuaMetaTgX it is a full blown fence
and not (as in £-TgX) variation of \open.

582 \mkern

This one injects a kern node in the current (math) list and expects a value in so called mu units.

583 \month

This internal number starts out with the month that the job started.

584 \moveleft

This primitive takes two arguments, a dimension and a box. The box is moved to the left. The operation
only succeeds in vertical mode.

585 \moveright

This primitive takes two arguments, a dimension and a box. The box is moved to the right. The
operation only succeeds in vertical mode.

586 \mskip

The given math glue (in mu units) is injected in the horizontal list. For this to succeed we need to be
in math mode.

119

587 \muexpr

This is a companion of \glueexpr so it handles the optional stretch and shrink components. Here
math units (mu) are expected.

588 \mugluespecdef
A variant of \gluespecdef that expects mu units is:
\mugluespecdef\MyGlue = 3mu plus 2mu minus 1lmu

The properties are comparable to the ones described in the previous sections.

589 \multiply

The given quantity is multiplied by the given integer (that can be preceded by the keyword ‘by’, like:

\scratchdimen=10pt \multiply\scratchdimen by 3

590 \multiplyby

This is slightly more efficient variant of \multiply that doesn't look for by. See previous section.

591 \muskip

This is the accessor for an indexed muskip (muglue) register.

592 \muskipdef

This command associates a control sequence with a muskip (math skip) register (accessed by number).

593 \mutable

This prefix flags what follows can be adapted and is not subjected to overload protection.

594 \mutoglue

The sequence \the\mutoglue 20mu plus 10mu minus 5mu gives 20.0pt plus 10.0pt minus 5.0pt.

595 \nestedloopiterator
This is one of the accessors of loop iterators:

\expandedrepeat 2 {%
\expandedrepeat 3 {%
(n=\the\nestedloopiterator 1,
p=\the\previousloopiteratorl,
c=\the\currentloopiterator)

120

}%
Gives:
(n=1, p=1, c=1) (n=2, p=1, c=2) (n=3, p=1, ¢c=3) (n=1, p=2, c=1) (n=2, p=2, c=2) (n=3, p=2, c=3)

Where a nested iterator starts relative to innermost loop, the previous one is relative to the outer loop
(which is less predictable because we can already be in a loop).

596 \newlinechar

When something is printed to one of the log channels the character with this code will trigger a
linebreak. That also resets some counters that deal with suppressing redundant ones and possible
indentation. Contrary to other engines LuaMetaTgX doesn't bother about the length of lines.

597 \noalign

The token list passed to this primitive signals that we don't enter a table row yet but for instance in
a \halign do something between the lines: some calculation or injecting inter-row material. In Lua-
MetaTgX this primitive can be used nested.

598 \noaligned

The alignment mechanism is kind of special when it comes to expansion because it has to look ahead
for a \noalign. This interferes with for instance protected macros, but using this prefix we get around
that. Among the reasons to use protected macros inside an alignment is that they behave better inside
for instance \expanded.

599 \noatomruling

Spacing in math is based on classes and this primitive inserts a signal that there is no ruling in place
here. Basically we have a zero skip glue tagged as non breakable because in math mode glue is not a
valid breakpoint unless we have configured inter-class penalties.

600 \noboundary

This inserts a boundary node with no specific property. It can still serve as boundary but is not inter-
preted in special ways, like the others.

601 \noexpand

This prefix prevents expansion in a context where expansion happens. Another way to prevent expan-
sion is to define a macro as \protected.

\def\foo{foo} \edef\oof{we expanded \foo} \meaning\oof
\def\foo{foo} \edef\oof{we keep \noexpand\foo} \meaning\oof
\protected\def\foo{foo} \edef\oof{we keep \foo} \meaning\oof

121

macro:we expanded foo
macro:we keep \foo
macro:we keep \foo

602 \nohrule

This is a rule but flagged as empty which means that the dimensions kick in as for a normal rule but
the backend can decide not to show it.

603 \noindent

This starts a paragraph. In LuaTgX (and LuaMetaTEX) a paragraph starts with a so called par node
(see \indent on how control that. After that comes either \parindent glue or a horizontal box. The
\indent makes gives them some width, while \noindent keeps that zero.

604 \nolimits

This is a modifier: it flags the previous math atom to have its scripts after the the atom (contrary
to \limits. In LuaMetaTgX this can be any atom (that is: any class). In display mode the location
defaults to above and below.

605 \nonscript

This prevents TEX from adding inter-atom glue at this spot in script or scriptscript mode. It actually
is a special glue itself that serves as signal.

606 \nonstopmode

This directive omits all stops.

607 \norelax
The rationale for this command can be shown by a few examples:

\dimen0 1lpt \dimen2 1pt \dimen4 2pt
\edef\testa{\ifdim\dimenO=\dimen2\norelax N\else Y\fi}
\edef\testb{\ifdim\dimenO=\dimen2\relax N\else Y\fi}
\edef\testc{\ifdim\dimenO=\dimen4\norelax N\else Y\fi}
\edef\testd{\ifdim\dimenO=\dimen4\relax N\else Y\fi}
\edef\teste{\norelax}

The five meanings are:

\testa macro:N

\testb macro:\relax N
\testc macro:Y

\testd macro:Y

\teste macro:

122

So, the \norelax acts like \relax but is not pushed back as usual (in some cases).

608 \normalizelinemode

The TEX engine was not designed to be opened up, and therefore the result of the linebreak effort can
differ depending on the conditions. For instance not every line gets the left- or rightskip. The first and
last lines have some unique components too. When LuaTgX made it possible too get the (intermediate)
result manipulating the result also involved checking what one encountered, for instance glue and its
origin. In LuaMetaTgX we can normalize lines so that they have for instance balanced skips.

0x0001 normalizeline 0x0020 removemarginkerns
0x0002 parindentskip 0x0040 clipwidth

0x0004 swaphangindent 0x0080 flattendiscretionaries
0x0008 swapparshape 0x0100 discardzerotabskips
0x0010 breakafterdir 0x0200 flattenhleaders

The order in which the skips get inserted when we normalize is as follows:

\lefthangskip the hanging indentation (or zero)
\leftskip the value even when zero
\parfillleftskip only on the last line
\parinitleftskip only on the first line
\indentskip the amount of indentation

e the (optional) content
\parinitrightskip only on the first line
\parfillrightskip only on the last line
\correctionskip the correction needed to stay within the \hsize
\rightskip the value even when zero
\righthangskip the hanging indentation (or zero)

The init and fill skips can both show up when we have a single line. The correction skip replaces the
traditional juggling with the right skip and shift of the boxed line.

For now we leave the other options to your imagination. Some of these can be achieved by callbacks
(as we did in older versions of ConTgXt) but having the engine do the work we get a better performance.
609 \normalizeparmode

For now we just mention the few options available. It is also worth mentioning that LuaMetaTgX tries
to balance the direction nodes.

0x01 normalizepar 0x04 limitprevgraf
0x02 flattenvleaders

610 \nospaces

When \nospaces is set to 1 no spaces are inserted, when its value is 2 a zero space is inserted. The
default value is 0 which means that spaces become glue with properties depending on the font, specific

123

parameters and/or space factors determined preceding characters.

611 \nosubprescript
This processes the given script in the current style, so:

comes out as: yx + 2X +2X.

612 \nosubscript
This processes the given script in the current style, so:

comes out as: xo + X9 + X2.

613 \nosuperprescript
This processes the given script in the current style, so:
2

comes out as: 2x + 2x + 2x.

614 \nosuperscript
This processes the given script in the current style, so:

comes out as: X2 + 2x + 2x.

615 \novrule

This is a rule but flagged as empty which means that the dimensions kick in as for a normal rule but
the backend can decide not to show it.

616 \nulldelimiterspace

In fenced math delimiters can be invisible in which case this parameter determines the amount of
space (width) that ghost delimiter takes.

617 \nullfont

This a symbolic reference to a font with no glyphs and a minimal set of font dimensions.

618 \number
This TgX primitive serializes the next token into a number, assuming that it is indeed a number, like

\number A
\number65
\number\scratchcounter

124

For counters and such the \the primitive does the same, but when you're not sure if what follows is a
verbose number or (for instance) a counter the \number primitive is a safer bet, because \the 65 will
not work.

619 \numericscale
This primitive can best be explained by a few examples:

\the\numericscale 1323
\the\numericscale 1323.0
\the\numericscale 1.323
\the\numericscale 13.23

In several places TgX uses a scale but due to the lack of floats it then uses 1000 as 1.0 replacement.
This primitive can be used for ‘real’ scales:

1323000
1323000
1323
13230

620 \numericscaled

This is a variant if \numericscale:

\scratchcounter 1000

\the\numericscaled 1323 \scratchcounter
\the\numericscaled 1323.0 \scratchcounter
\the\numericscaled 1.323 \scratchcounter
\the\numericscaled 13.23 \scratchcounter

The second number gets multiplied by the first fraction:

1323000

1323000

1323

13230

621 \numexpr

This primitive was introduced by &-TgX and supports a simple expression syntax:

\the\numexpr 10 * (1 + 2 - 5) / 2 \relax

gives: -10. You can mix in symbolic integers and dimensions.

622 \numexpression

The normal \numexpr primitive understands the +, -, * and / operators but in LuaMetaTgX we also
can use : for a non rounded integer division (think of Lua's //). if you want more than that, you can
use the new expression primitive where you can use the following operators.

125

add +

subtract -

multiply *

divide /

mod % mod
band & band
bxor ~ bxor
bor | v bor
and && and
or | or
setbit <undecided> bset
resetbit <undecided> breset
left <<

right >>

less <

lessequal <=

equal = ==
moreequal >=

more >

unequal <> = ~=

not I~ not

An example of the verbose bitwise operators is:

\scratchcounter = \numexpression
"00000 bor "00001 bor "00020 bor "00400 bor "08000 bor "FO000
\relax

In the table you might have notices that some operators have equivalents. This makes the scanner a
bit less sensitive for catcode regimes.

When \tracingexpressions is set to one or higher the intermediate ‘reverse polish notation’ stack
that is used for the calculation is shown, for instance:

4:8: {numexpression rpn: 2 5 >4 5 > and}
When you want the output on your console, you need to say:

\tracingexpressions 1
\tracingonline 1

623 \omit
This primitive cancels the template set for the upcoming cell. Often it is used in combination with
\span.

624 \optionalboundary

This boundary is used to mark optional content. An positive \optionalboundary starts a range and
a zero one ends it. Nesting is not supported. Optional content is considered when an additional
paragraph pass enables it as part of its recipe.

126

625 \or

This traditional primitive is part of the condition testing mechanism and relates to an \ifcase test (or
a similar test to be introduced in later sections). Depending on the value, TgX will do a fast scanning
till the right \or is seen, then it will continue expanding till it sees a \or or \else or \orelse (to be
discussed later). It will then do a fast skipping pass till it sees an \fi.

626 \orelse

This primitive provides a convenient way to flatten your conditional tests. So instead of

\ifnum\scratchcounter<-10
too small
\else\ifnum\scratchcounter>10
too large
\else
just right
\fi\fi

You can say this:

\ifnum\scratchcounter<-10
too small
\orelse\ifnum\scratchcounter>10
too large
\else
just right
\fi

You can mix tests and even the case variants will work in most cases®

\ifcase\scratchcounter zZero

\or one

\or two
\orelse\ifnum\scratchcounter<10® less than ten
\else ten or more
\fi

Performance wise there are no real benefits although in principle there is a bit less housekeeping
involved than with nested checks. However you might like this:

\ifnum\scratchcounter<-10
\expandafter\toosmall

\orelse\ifnum\scratchcounter>10
\expandafter\toolarge

\else
\expandafter\justright

\fi

6 1 just play safe because there are corner cases that might not work yet.

127

over:

\ifnum\scratchcounter<-10
\expandafter\toosmall
\else\ifnum\scratchcounter>10
\expandafter\expandafter\expandafter\toolarge
\else
\expandafter\expandafter\expandafter\justright
\fi\fi

or the more ConTgXt specific:

\ifnum\scratchcounter<-10
\expandafter\toosmall
\else\ifnum\scratchcounter>10
\doubleexpandafter\toolarge
\else
\doubleexpandafter\justright
\fi\fi

But then, some TgXies like complex and obscure code and throwing away working old code that took
ages to perfect and get working and also showed that one masters TgX might hurt.
627 \orphanpenalties

This an (single entry) array parameter: first the size is given followed by that amount of penalties.
These penalties are injected before spaces, going backward from the end of a paragraph. When we
see a math node with a penalty set then we take the max and jump over a (preceding) skip.

628 \orphanpenalty

This penalty is inserted before the last space in a paragraph, unless \orphanpenalties mandates
otherwise.

629 \orunless

This is the negated variant of \orelse (prefixing that one with \unless doesn't work well.

630 \outer

An outer macro is one that can only be used at the outer level. This property is no longer supported.
Like \long, the \outer prefix is now an no-op (and we don't expect this to have unfortunate side
effects).

631 \output

This token list register holds the code that will be expanded when TgX enters the output routine. That
code is supposed to do something with the content in the box with number \outputbox. By default
this is box 255 but that can be changed with \outputbox.

128

632 \outputhox

This is where the split off page contend ends up when the output routine is triggered.

633 \outputpenalty

This is the penalty that triggered the output routine.

634 \over

This math primitive is actually a bit of a spoiler for the parser as it is one of the few that looks back.
The \Uover variant is different and takes two arguments. We leave it to the user to predicts the results
of:

$ {1} \over {x} $
$ 1 \over x $
$ 12 \over x /vy $
$a+ 1 \over {x} $

and:

$ \textstyle 1 \over x $
$ {\textstyle 1} \over x $
$ \textstyle {1 \over x} $

It's one of the reasons why macro packages provide \frac.

635 \overfullrule

When an overfull box is encountered a rule can be shown in the margin and this parameter sets its
width. For the record: ConTgXt does it different.

636 \overline

This is a math specific primitive that draws a line over the given content. It is a poor mans replacement
for a delimiter. The thickness is set with \Umathoverbarrule, the distance between content and rule
is set by \Umathoverbarvgap and \Umathoverbarkern is added above the rule. The style used for the
content under the rule can be set with \Umathoverlinevariant

Because ConIgXt set up math in a special way, the following example:

\normaloverline {
\blackrule[color=red, height=1lex,depth=0ex,width=2cm]%
\kern-2cm
\blackrule[color=blue, height=0ex,depth=.5ex,width=2cm]
X + X

}

gives: X + X, While:

\mathfontcontrol\zerocount

129

\Umathoverbarkern\allmathstylesl0Opt
\Umathoverbarvgap\allmathstyles5pt
\Umathoverbarrule\allmathstyles2.5pt
\Umathoverlinevariant\textstyle\scriptstyle

|
gives this: m We have to disable the related \mathfontcontrol bits because otherwise
the thickness is taken from the font. The variant is just there to overload the (in traditional TgX
engines) default.

637 \overloaded

This prefix can be used to overload a frozen macro.

638 \overloadmode

The overload protection mechanism can be used to prevent users from redefining a control sequence.
The mode can have several values, the higher the more strict we are:

immutable permanent primitive frozen instance

1 warning + + +

2 error + + +

3 warning + + + +

4 error + + + +

5 warning + + + + +
6 error + + + + +

When you set a high error value, you can of course temporary lower or even zero the mode. In Con-
TeXt all macros and quantities are tagged so there setting the mode to 6 gives a proper protection
against overloading. We need to zero the mode when we load for instance tikz, so when you use that
generic package, you loose some.

639 \overshoot
This primitive is a companion to \badness and reports how much a box overflows.

\setbox0\hbox to lem {mmm} \the\badness\quad\the\overshoot
\setbox0\hbox {mm} \the\badness\quad\the\overshoot
\setbox0\hbox to 3em {m} \the\badness\quad\the\overshoot

This reports:

1000000 18.44727pt
0 0.0pt
10000 0.0pt

When traditional TgX wraps up the lines in a paragraph it uses a mix of shift (a box property) to
position the content suiting the hanging indentation and/or paragraph shape, and fills up the line
using right skip glue, also in order to silence complaints in packaging. In LuaMetaTgX the lines can
be normalized so that they all have all possible skips to the left and right (even if they're zero). The

130

\overshoot primitive fits into this picture and is present as a compensation glue. This all fits better
in a situation where the internals are opened up via Lua.

640 \overwithdelims

This is a variant of \over but with delimiters. It has a more advanced upgrade in \Uoverwithdelims.

641 \pageboundary

In order to avoid side effects of triggering the page builder with a specific penalty we can use this
primitive which expects a value that actually gets inserted as zero penalty before triggering the page
builder callback. Think of adding a no-op to the contribution list. We fake a zero penalty so that all
gets processed. The main rationale is that we get a better indication of what we do. Of course a
callback can remove this node so that it is never seen. Triggering from the callback is not doable.
Consider this experimental code (which is actually used in ConTgXt anyway).

642 \pagedepth

This page property holds the depth of the page.

643 \pagediscards

The left-overs after a page is split of the main vertical list when glue and penalties are normally
discarded. The discards can be pushed back in (for instance) trial runs.

644 \pageexcess

This page property hold the amount of overflow when a page break occurs.

645 \pageextragoal

This (experimental) dimension will be used when the page overflows but a bit of overshoot is consid-
ered okay.

646 \pagefilllstretch

The accumulated amount of third order stretch on the current page.

647 \pagefillstretch

The accumulated amount of second order stretch on the current page.

648 \pagefilstretch

The accumulated amount of first order stretch on the current page.

131

649 \pagefistretch

The accumulated amount of zero order stretch on the current page.

650 \pagegoal

The target height of a page (the running text). This value will be decreased by the height of inserts
something to keep into mind when messing around with this and other (pseudo) page related parame-
ters like \pagetotal.

651 \pagelastdepth

The accumulated depth of the current page.

652 \pagelastfilllstretch

The accumulated amount of third order stretch on the current page. Contrary to \pagefilllstretch
this is the really contributed amount, not the upcoming.

653 \pagelastfillstretch

The accumulated amount of second order stretch on the current page. Contrary to \pagefillstretch
this is the really contributed amount, not the upcoming.

654 \pagelastfilstretch

The accumulated amount of first order stretch on the current page. Contrary to \pagefilstretch this
is the really contributed amount, not the upcoming.

655 \pagelastfistretch

The accumulated amount of zero order stretch on the current page. Contrary to \pagefistretch this
is the really contributed amount, not the upcoming.

656 \pagelastheight

The accumulated height of the current page.

657 \pagelastshrink

The accumulated amount of shrink on the current page. Contrary to \pageshrink this is the really
contributed amount, not the upcoming.

658 \pagelaststretch

The accumulated amount of stretch on the current page. Contrary to \pagestretch this is the really
contributed amount, not the upcoming.

132

659 \pageshrink

The accumulated amount of shrink on the current page.

660 \pagestretch

The accumulated amount of stretch on the current page.

661 \pagetotal

The accumulated page total (height) of the current page.

662 \pagevsize
This parameter, when set, is used as the target page height. This lessens the change of \vsize inter-

fering.

663 \par

This is the explicit ‘finish paragraph’ command. Internally we distinguish a par triggered by a new
line, as side effect of another primitive or this \par command.

664 \parametercount

The number of parameters passed to the current macro.

665 \parameterdef
Here is an example of binding a variable to a parameter. The alternative is of course to use an \edef.

\def\ foo#1#2%
{\parameterdef\MyIndexOne\plusone % 1
\parameterdef\MyIndexTwo\plustwo % 2
\oof{P}\oof{Q}\oof{R}\norelax}

\def\oof#1%
{<1:\MyIndex0One><1:\MyIndex0ne>%
#1%
<2:\MyIndexTwo><2:\MyIndexTwo>}

\foo{A}{B}
The outcome is:

<1l:A><1:A>P<2:B><2:B><1:A><1:A>Q<2:B><2:B><1:A><1:A>R<2:B><2:B>

666 \parameterindex

This gives the zero based position on the parameter stack. One reason for introducing \parameterdef
is that the position remains abstract so there we don't need to use \parameterindex.

133

667 \parametermark

This is an equivalent for #.

668 \parametermode

Setting this internal integer to a positive value (best use 1 because future versions might use bit set)
will enable the usage of # for escaped in the main text and body of macros.

669 \parattribute

This primitive takes an attribute index and value and sets that attribute on the current paragraph.

670 \pardirection

This set the text direction for the whole paragraph which in the case of r21 (1) makes the right edge
the starting point.

671 \parfillleftskip

The glue inserted at the start of the last line.

672 \parfillrightskip

The glue inserted at the end of the last line (aka \parfillskip).

673 \parfillskip

The glue inserted at the end of the last line.

674 \parindent

The amount of space inserted at the start of the first line. When bit 2 is set in \normalizelinemode a
glue is inserted, otherwise an empty \hbox with the given width is inserted.

675 \parinitleftskip

The glue inserted at the start of the first line.

676 \parinitrightskip

The glue inserted at the end of the first line.

677 \parpasses

Specifies one or more recipes for additional second linebreak passes. Examples can be found in the
ConTgXt distribution.

134

678 \parshape

Stores a shape specification. The first argument is the length of the list, followed by that amount of
indentation-width pairs (two dimensions).

679 \parshapedimen

This oddly named (&-TgX) primitive returns the width component (dimension) of the given entry (an
integer). Obsoleted by \parshapewidth.

680 \parshapeindent

Returns the indentation component (dimension) of the given entry (an integer).

681 \parshapelength

Returns the number of entries (an integer).

682 \parshapewidth

Returns the width component (dimension) of the given entry (an integer).

683 \parskip

This is the amount of glue inserted before a new paragraph starts.

684 \patterns

The argument to this primitive contains hyphenation patterns that are bound to the current language.
In LuaTgX and LuaMetaTgX we can also manage this at the Lua end. In LuaMetalgX we don't store
patterns in te format file

685 \pausing

In LuaMetaTgX this variable is ignored but in other engines it can be used to single step thought the
input file by setting it to a positive value.

686 \penalty

The given penalty (a number) is inserted at the current spot in the horizontal or vertical list. We also
have \vpenalty and \hpenalty that first change modes.

687 \permanent

This is one of the prefixes that is part of the overload protection mechanism. It is normally used to
flag a macro as being at the same level as a primitive: don't touch it. primitives are flagged as such

135

but that property cannot be set on regular macros. The similar \immutable flag is normally used for
variables.

688 \pettymuskip

A predefined mu skip register that can be used in math (inter atom) spacing. The current value is
1.0mu minus 0.5mu. This one complements \thinmuskip, \medmuskip, \thickmuskip and the new
\tinymuskip.

689 \positdef

The engine uses 32 bit integers for various purposes and has no (real) concept of a floating point
quantity. We get around this by providing a floating point data type based on 32 bit unums (posits).
These have the advantage over native floats of more precision in the lower ranges but at the cost of a
software implementation.

The \positdef primitive is the floating point variant of \integerdef and \dimensiondef: an efficient
way to implement named quantities other than registers.

\positdef \MyFloatA 5.678
\positdef \MyFloatB 567.8
[\the\MyFloatA] [\todimension\MyFloatA] [\tointeger\MyFloatA]
[\the\MyFloatB] [\todimension\MyFloatB] [\tointeger\MyFloatB]

For practical reasons we can map posit (or float) onto an integer or dimension:
[5.6780000030994415283] [5.678pt] [6]

[567.8000030517578125] [567.80005pt] [568]

690 \postdisplaypenalty

This is the penalty injected after a display formula.

691 \postexhyphenchar

This primitive expects a language number and a character code. A negative character code is equiva-
lent to ignore. In case of an explicit discretionary the character is injected at the beginning of a new
line.

692 \posthyphenchar

This primitive expects a language number and a character code. A negative character code is equiv-
alent to ignore. In case of an automatic discretionary the character is injected at the beginning of a
new line.

693 \postinlinepenalty

When set this penalty is inserted after an inline formula unless we have a short formula and \post-
shortinlinepenalty is set.

136

694 \postshortinlinepenalty
When set this penalty is inserted after a short inline formula. The criterium is set by \shortinline-

maththreshold but only applied when it is enabled for the class involved.

695 \prebinoppenalty

This internal quantity is a compatibility feature because normally we will use the inter atom spacing
variables.

696 \predisplaydirection

This is the direction that the math sub engine will take into account when dealing with right to left
typesetting.

697 \predisplaygapfactor

The heuristics related to determine if the previous line in a formula overlaps with a (display) formula
are hard coded but in LuaTgX to be two times the quad of the current font. This parameter is a
multiplier set to 2000 and permits you to change the overshoot in this heuristic.

698 \predisplaypenalty

This is the penalty injected before a display formula.

699 \predisplaysize

This parameter holds the length of the last line in a paragraph when a display formula is part of it.

700 \preexhyphenchar

This primitive expects a language number and a character code. A negative character code is equiv-
alent to ignore. In case of an explicit discretionary the character is injected at the end of the line.
701 \prehyphenchar

This primitive expects a language number and a character code. A negative character code is equiv-
alent to ignore. In case of an automatic discretionary the character is injected at the end of the line.
702 \preinlinepenalty

When set this penalty is inserted before an inline formula unless we have a short formula and \preshort-
inlinepenalty is set.

703 \prerelpenalty

This internal quantity is a compatibility feature because normally we will use the inter atom spacing
variables.

137

704 \preshortinlinepenalty
When set this penalty is inserted before a short inline formula. The criterium is set by \shortinline-

maththreshold but only applied when it is enabled for the class involved.

705 \pretolerance

When the badness of a line in a paragraph exceeds this value a second linebreak pass will be enabled.

706 \prevdepth

The depth of current list. It can also be set to special (signal) values in order to inhibit line corrections.
It is not an internal dimension but a (current) list property.

707 \prevgraf

The number of lines in a previous paragraph.

708 \previousloopiterator

\edef\testA{
\expandedrepeat 2 {%
\expandedrepeat 3 {%
(\the\previousloopiteratorl:\the\currentloopiterator)

}%s
}%
}
\edef\testB{
\expandedrepeat 2 {%
\expandedrepeat 3 {%
(#P:#I1) % #G is two levels up
}%
}%
}

These give the same result:

\def \testA { (1:1) () (1 (2:1) (2:2)

1:2 :3) :3) }
\def \testB { (1:1) (1:2) (1:3) (2:1) (2:2) (2:3) }

—
NN

The number indicates the number of levels we go up the loop chain.

709 \primescript

This is a math script primitive dedicated to primes (which are somewhat troublesome on math). It
complements the six script primitives (like \subscript and \presuperscript).

138

710 \protected

A protected macro is one that doesn't get expanded unless it is time to do so. For instance, inside an
\edef it just stays what it is. It often makes sense to pass macros as-is to (multi-pass) file (for tables
of contents).

In ConTgXt we use either \protected or \unexpanded because the later was the command we used to
achieve the same results before ¢-TgX introduced this protection primitive. Originally the \protected
macro was also defined but it has been dropped.

711 \protecteddetokenize

This is a variant of \protecteddetokenize that uses some escapes encoded as body parameters, like
#H for a hash.

712 \protectedexpandeddetokenize

This is a variant of \expandeddetokenize that uses some escapes encoded as body parameters, like
#H for a hash.

713 \protrudechars

This variable controls protrusion (into the margin). A value 2 is comparable with other engines, while
a value of 3 does a bit more checking when we're doing right-to-left typesetting.

714 \protrusionboundary

This injects a boundary with the given value:

0x00 skipnone
0x01 skipnext
0x02 skipprevious
0x03 skipboth

This signal makes the protrusion checker skip over a node.

715 \pxdimen

The current numeric value of this dimension is 65781, 1.00374pt: one bp. We kept it around because
it was introduced in pdfTgX and made it into LuaTgX, where it relates to the resolution of included
images. In ConTEXt it is not used.

716 \quitloop

There are several loop primitives and they can be quit with \quitloop at the next the next iteration.
An immediate quit is possible with \quitloopnow. An example is given with \localcontrolledloop.
717 \quitloopnow

There are several loop primitives and they can be quit with \quitloopnow at the spot.

139

718 \quitvmode

This primitive forces horizontal mode but has no side effects when we're already in that mode.

719 \radical

This old school radical constructor is replaced by \Uradical. It takes a number where the first byte
is the small family, the next two index of this symbol from that family, and the next three the family
and index of the first larger variant.

720 \raise

This primitive takes two arguments, a dimension and a box. The box is moved up. The operation only
succeeds in horizontal mode.

721 \rdivide

This is variant of \divide that rounds the result. For integers the result is the same as \edivide.

\the\dimexpr .4999pt : 2 \relax =.,24994pt
\the\dimexpr .4999pt / 2 \relax =.24995pt
\scratchdimen.4999pt \divide \scratchdimen 2 \the\scratchdimen =.24994pt
\scratchdimen.4999pt \edivide\scratchdimen 2 \the\scratchdimen =.24995pt
\scratchdimen 4999pt \rdivide\scratchdimen 2 \the\scratchdimen =2500.0pt
\scratchdimen 5000pt \rdivide\scratchdimen 2 \the\scratchdimen =2500.0pt
\the\numexpr 1001 : 2 \relax =500

\the\numexpr 1001 / 2 \relax =501

\scratchcounterl001 \divide \scratchcounter 2 \the\scratchcounter=500
\scratchcounterl1001 \edivide\scratchcounter 2 \the\scratchcounter=501
\scratchcounterl001 \rdivide\scratchcounter 2 \the\scratchcounter=501

0.24994pt=.24994pt
0.24995pt=.24995pt
0.24994pt=.24994pt
0.24995pt=.24995pt
2500.0pt=2500.0pt
2500.0pt=2500.0pt

500=500
501=501
500=500
501=501
501=501

722 \rdivideby

This is the by-less companion to \rdivide.

140

723 \realign

Where \omit suspends a preamble template, this one overloads is for the current table cell. It expects
two token lists as arguments.

724 \relax

This primitive does nothing and is often used to end a verbose number or dimension in a comparison,
for example:

\ifnum \scratchcounter = 123\relax
which prevents a lookahead. A variant would be:
\ifnum \scratchcounter = 123 %

assuming that spaces are not ignored. Another application is finishing an expression like \numexpr or
\dimexpr. I is also used to prevent lookahead in cases like:

\vrule height 3pt depth 2pt width 5pt\relax
\hskip 5pt plus 3pt minus 2pt\relax

Because \relax is not expandable the following:

\edef\foo{\relax} \meaningfull\foo
\edef\oof{\norelax} \meaningfull\oof

gives this:

macro:\relax
macro:

A \norelax disappears here but in the previously mentioned scenarios it has the same function as
\relax. It will not be pushed back either in cases where a lookahead demands that.

725 \relpenalty

This internal quantity is a compatibility feature because normally we will use the inter atom spacing
variables.

726 \resetmathspacing

This initializes all parameters to their initial values.

727 \restorecatcodetable

This is an experimental feature that should be used with care. The next example shows usage. It was
added when debugging and exploring a side effect.

\tracingonlinel

\bgroup

141

\catcode 6 = 11 \catcode 7 = 11
\bgroup
\tracingonlinel
current: \the\catcodetable
original: \the\catcode 6\quad \the\catcode 7
\catcode 6 = 11 \catcode 7 = 11
\showcodestack\catcode
assigned: \the\catcode 6\quad \the\catcode 7
\showcodestack\catcode
\catcodetable\ctxcatcodes switched: \the\catcodetable
stored: \the\catcode 6\quad \the\catcode 7
\showcodestack\catcode
\restorecatcodetable\ctxcatcodes
\showcodestack\catcode
restored: \the\catcode 6\quad \the\catcode 7
\showcodestack\catcode
\egroup
\catcodetable\ctxcatcodes
inner: \the\catcode 6\quad\the\catcode 7
\egroup
outer: \the\catcode 6\quad\the\catcode 7
In ConTgXt this typesets:

current: 9
original: 11 11
assigned: 11 11
switched: 9
stored: 11 11
restored: 12 12
inner: 11 11
outer; 12 12

and on the console we see:

3:3: [codestack 1, size 3]

142

[1: level 2, code 54, value 12]
[2: level 2, code 55, value 12]
[3: level 3, code 54, value 11]
[4: level 3, code 55, value 11]
[codestack 1 bottom]
[codestack 1, size 3]
[1: level 2, code 54, value 12]
[2: level 2, code 55, value 12]
[3: level 3, code 54, value 11]
[4: level 3, code 55, value 11]
[codestack 1 bottom]
[codestack 1, size 3]
[1: level 2, code 54, value 12]
[2: level 2, code 55, value 12]
[3: level 3, code 54, value 11]
[4: level 3, code 55, value 11]
[codestack 1 bottom]
[codestack 1, size 7]

[1: level 2, code 54, value 12]
[2: level 2, code 55, value 12]
[3: level 3, code 54, value 11]
[4: level 3, code 55, value 11]
[5: level 3, code 55, value 11]
[6: level 3, code 54, value 11]
[7: level 3, code 55, value 11]
[8: level 3, code 54, value 11]

[codestack 1 bottom]
[codestack 1, size 7]

[1: level 2, code 54, value 12]
[2: level 2, code 55, value 12]
[3: level 3, code 54, value 11]
[4: level 3, code 55, value 11]
[5: level 3, code 55, value 11]
[6: level 3, code 54, value 11]
[7: level 3, code 55, value 11]
[8: level 3, code 54, value 11]

W wwwwwwwwwwwwwwwwwwwwwuwwwuwwwwwwwwwwwuw
W wwwwwwwwwwwwwwwwwuwwwwwwwuwwwwwwwwwwwuw

[codestack 1 bottom]

So basically \restorecatcodetable brings us (temporarily) back to the global settings.

728 \retained

When a value is assigned inside a group TgX pushes the current value on the save stack in order to
be able to restore the original value after the group has ended. You can reach over a group by using
the \global prefix. A mix between local and global assignments can be achieved with the \retained
primitive.

\MyDim 15pt \bgroup \the\MyDim \space
\bgroup
\bgroup

143

\bgroup \advance\MyDimlOpt \the\MyDim \egroup\space
\bgroup \advance\MyDimlOpt \the\MyDim \egroup\space
\egroup
\bgroup
\bgroup \advance\MyDimlOpt \the\MyDim \egroup\space
\bgroup \advance\MyDimlOpt \the\MyDim \egroup\space
\egroup
\egroup
\egroup \the\MyDim

\MyDim 15pt \bgroup \the\MyDim \space
\bgroup
\bgroup
\bgroup \global\advance\MyDimlOpt \the\MyDim \egroup\space
\bgroup \global\advance\MyDimlOpt \the\MyDim \egroup\space
\egroup
\bgroup
\bgroup \global\advance\MyDimlOpt \the\MyDim \egroup\space
\bgroup \global\advance\MyDimlOpt \the\MyDim \egroup\space
\egroup
\egroup
\egroup \the\MyDim

\MyDim 15pt \bgroup \the\MyDim \space
\constrained\MyDim\zeropoint
\bgroup
\bgroup \retained\advance\MyDim10pt \the\MyDim \egroup\space
\bgroup \retained\advance\MyDimlOpt \the\MyDim \egroup\space
\egroup
\bgroup
\bgroup \retained\advance\MyDimlOpt \the\MyDim \egroup\space
\bgroup \retained\advance\MyDiml0pt \the\MyDim \egroup\space
\egroup
\egroup \the\MyDim

These lines result in:

15.0pt 25.0pt 25.0pt 25.0pt 25.0pt 15.0pt
15.0pt 25.0pt 35.0pt 45.0pt 55.0pt 55.0pt
15.0pt 10.0pt 20.0pt 30.0pt 40.0pt 15.0pt

Because LuaMetaTgX avoids redundant stack entries and reassignments this mechanism is a bit fragile
but the \constrained prefix makes sure that we do have a stack entry. If it is needed depends on the
usage pattern.

729 \retokenized

This is a companion of \tokenized that accepts a catcode table, so the whole repertoire is:

\tokenized {test x test: current}
\tokenized catcodetable \ctxcatcodes {test x test: context}

144

\tokenized catcodetable \vrbcatcodes {test x test: verbatim}
\retokenized \ctxcatcodes {test x test: context}
\retokenized \vrbcatcodes {test x test: verbatim}

Here we pass the numbers known to ConTgXt and get:

test x test: current
test x test: context
test x test: verbatim
test x test: context
test x test: verbatim

730 \right

Inserts the given delimiter as right fence in a math formula.

731 \righthyphenmin

This is the minimum number of characters before the first hyphen in a hyphenated word.

732 \rightmarginkern

The dimension returned is the protrusion kern that has been added (if at all) to the left of the content
in the given box.

733 \rightskip

This skip will be inserted at the right of every line.

734 \romannumeral

This converts a number into a sequence of characters representing a roman numeral. Because the
Romans had no zero, a zero will give no output, a fact that is sometimes used for hacks and showing
off ones macro coding capabilities. A large number will for sure result in a long string because after
thousand we start duplicating.

735 \rpcode

This is the companion of \lpcode (see there) and also takes three arguments: font, character code
and factor.

736 \savecatcodetable

This primitive stores the currently set catcodes in the current table.

737 \savinghyphcodes

When set to non-zero, this will trigger the setting of \hjcodes from \lccodes for the current font.
These codes determine what characters are taken into account when hyphenating words.

145

738 \savingvdiscards

When set to a positive value the page builder will store the discarded items (like glues) so that they
can later be retrieved and pushed back if needed with \pagediscards or \splitdiscards.

739 \scaledemwidth

Returns the current (font specific) emwidth scaled according to \glyphscale and \glyphxscale.

740 \scaledexheight

Returns the current (font specific) exheight scaled according to \glyphscale and \glyphyscale.

741 \scaledextraspace

Returns the current (font specific) extra space value scaled according to \glyphscale and \glyphxs-
cale.

742 \scaledfontcharba

Returns the bottom accent position of the given font-character pair scaled according to \glyphscale
and \glyphyscale.

743 \scaledfontchardp

Returns the depth of the given font-character pair scaled according to \glyphscale and \glyphyscale.

744 \scaledfontcharht

Returns the height of the given font-character pair scaled according to \glyphscale and \glyphyscale.

745 \scaledfontcharic

Returns the italic correction of the given font-character pair scaled according to \glyphscale and
\glyphxscale. This property is only real for traditional fonts.

746 \scaledfontcharta

Returns the top accent position of the given font-character pair scaled according to \glyphscale and
\glyphxscale.

747 \scaledfontcharwd

Returns width of the given font-character pair scaled according to \glyphscale and \glyphxscale.

146

748 \scaledfontdimen

Returns value of a (numeric) font dimension of the given font-character pair scaled according to
\glyphscale and \glyphxscale and/or \glyphyscale.

749 \scaledinterwordshrink

Returns the current (font specific) shrink of a space value scaled according to \glyphscale and
\glyphxscale.

750 \scaledinterwordspace

Returns the current (font specific) space value scaled according to \glyphscale and \glyphxscale.

751 \scaledinterwordstretch

Returns the current (font specific) stretch of a space value scaled according to \glyphscale and
\glyphxscale.

752 \scaledmathaxis

This primitive returns the math axis of the given math style. It's a dimension.

753 \scaledmathemwidth

Returns the emwidth of the given style scaled according to \glyphscale and \glyphxscale.

754 \scaledmathexheight

Returns the exheight of the given style scaled according to \glyphscale and \glyphyscale.

755 \scaledmathstyle

This command inserts a signal in the math list that tells how to scale the (upcoming) part of the formula.
$ x + {\scaledmathstyle900 x} + x$

We get: x + x+x. Of course using this properly demands integration in the macro packages font
system.

756 \scaledslantperpoint

This primitive is equivalent to \scaledfontdimenl\font where ‘scaled’ means that we multiply by the
glyph scales.

757 \scantextokens

This primitive scans the input as if it comes from a file. In the next examples the \detokenize primitive
turns tokenized code into verbatim code that is similar to what is read from a file.

147

\edef\whatever{\detokenize{This is {\bf bold} and this is not.}}
\detokenize {This is {\bf bold} and this is not.}\crlf
\scantextokens{This is {\bf bold} and this is not.}\crlf
\scantextokens{\whatever}\crlf
\scantextokens\expandafter{\whatever}\par

This primitive does not have the end-of-file side effects of its precursor \scantokens.

This is {\bf bold} and this is not.
This is bold and this is not.
This is {\bf bold} and this is not.
This is bold and this is not.

758 \scantokens

Just forget about this e-TgX primitive, just take the one in the next section.

759 \scriptfont

This primitive is like \font but with a family number as (first) argument so it is specific for math. It
is the middle one of the three family members; its relatives are \textfont and \scriptscriptfont.

760 \scriptscriptfont

This primitive is like \font but with a family number as (first) argument so it is specific for math. It
is the smallest of the three family members; its relatives are \textfont and \scriptfont.

761 \scriptscriptstyle

One of the main math styles, normally one size smaller than \scriptstyle: integer representation:
6.

762 \scriptspace

The math engine will add this amount of space after subscripts and superscripts. It can be seen as
compensation for the often too small widths of characters (in the traditional engine italic correction
is used too). It prevents scripts from running into what follows.

763 \scriptspaceafterfactor

This is a (1000 based) multiplier for \Umathspaceafterscript.

764 \scriptspacebeforefactor

This is a (1000 based) multiplier for \Umathspacebeforescript.

765 \scriptspacebetweenfactor

This is a (1000 based) multiplier for \Umathspacebetweenscript.

148

766 \scriptstyle

One of the main math styles, normally one size smaller than \displaystyle and \textstyle; integer
representation: 4.

767 \scrollmode

This directive omits error stops.

768 \semiexpand

This command expands the next macro when it is protected with \semprotected. See that primitive
there for an example.

769 \semiexpanded

This command expands the tokens in the given list including the macros protected by with \sempro-
tected. See that primitive there for an example.

770 \semiprotected
The working of this prefix can best be explained with an example. We define a few macros first:

\def\TestA{A}
\semiprotected\def\TestB{B}
\protected\def\TestC{C}

\edef\TestD{\TestA \TestB \TestC}
\edef\TestE{\TestA\semiexpand\TestB\semiexpand\TestC}
\edef\TestF{\TestA\expand \TestB\expand \Test(C}

\edef\TestG{\normalexpanded {\TestA\TestB\TestC}}
\edef\TestH{\normalsemiexpanded{\TestA\TestB\TestC}}

The meaning of the macros that are made from the other three are:

Here we use the \normal. . variants because (currently) we still have the macro with the \expanded
in the ConTgXt core.

A\TestB \TestC
AB\TestC

ABC

A\TestB \TestC
AB\TestC

771 \setbox

This important primitive is used to set a box register. It expects a number and a box, like \hbox
or \box. There is no \boxdef primitive (analogue to other registers) because it makes no sense but
numeric registers or equivalents are okay as register value.

149

772 \setdefaultmathcodes

This sets the math codes of upper- and lowercase alphabet and digits and the delimiter code of the
period. It's not so much a useful feature but more just an accessor to the internal initializer.

773 \setfontid

Internally a font instance has a number and this number is what gets assigned to a glyph node. You
can get the number with \fontid an set it with \setfontid.

\setfontid\fontid\font

The code above shows both primitives and effectively does nothing useful but shows the idea.

774 \setlanguage

In LuaTgX and LuaMetaTgX this is equivalent to \language because we carry the language in glyph
nodes instead of putting triggers in the list.

775 \setmathatomrule

The math engine has some built in logic with respect to neighboring atoms that change the class. The
following combinations are intercepted and remapped:

old first old second new first new second

begin binary ordinary ordinary
operator binary operator ordinary
open binary open ordinary
punctuation binary punctuation ordinary
binary end ordinary ordinary
binary binary binary ordinary
binary close ordinary close
binary punctuation ordinary punctuation
binary relation ordinary relation
relation binary relation ordinary
relation close ordinary close

relation punctuation ordinary punctuation
You can change this logic if needed, for instance:
\setmathatomrule 1 2 \allmathstyles 1 1

Keep in mind that the defaults are what users expect. You might set them up for additional classes
that you define but even then you probably clone an existing class and patch its properties. Most extra
classes behave like ordinary anyway.

150

776 \setmathdisplaypostpenalty

This penalty is inserted after an item of a given class but only in inline math when display style is used,
for instance:

\setmathdisplayprepenalty 2 750

777 \setmathdisplayprepenalty

This penalty is inserted before an item of a given class but only in inline math when display style is
used, for instance:

\setmathdisplayprepenalty 2 750

778 \setmathignore
You can flag a math parameter to be ignored, like:

\setmathignore \Umathxscale 2
\setmathignore \Umathyscale 2
\setmathignore \Umathspacebeforescript 1
\setmathignore \Umathspacebetweenscript 1
\setmathignore \Umathspaceafterscript 1

A value of two will not initialize the variable, so its old value (when set) is kept. This is somewhat
experimental and more options might show up.

779 \setmathoptions

This primitive expects a class (number) and a bitset.

0x00000001 nopreslack 0x00004000 raiseprime

0x00000002 nopostslack 0x00008000 carryoverlefttopkern
0x00000004 lefttopkern 0x00010000 carryoverrighttopkern
0x00000008 righttopkern 0x00020000 carryoverleftbottomkern
0x00000010 leftbottomkern 0x00040000 carryoverrightbottomkern
0x00000020 rightbottomkern 0x00080000 preferdelimiterdimensions
0x00000040 lookaheadforend 0x00100000 autoinject

0x00000080 noitaliccorrection 0x00200000 removeitaliccorrection
0x00000100 checkligature 0x00400000 operatoritaliccorrection
0x00000200 checkitaliccorrection 0x00800000 shortinline

0x00000400 checkkernpair 0x01000000 pushnesting

0x00000800 flatten 0x02000000 popnesting

0x00001000 omitpenalty 0x04000000 obeynesting

0x00002000 unpack

151

780 \setmathpostpenalty

This penalty is inserted after an item of a given class but only in inline math when text, script or
scriptscript style is used, for instance:

\setmathpostpenalty 2 250

781 \setmathprepenalty

This penalty is inserted before an item of a given class but only in inline math when text, script or
scriptscript style is used, for instance:

\setmathprepenalty 2 250

782 \setmathspacing

More details about this feature can be found in ConTgXt but it boils down to registering what spacing
gets inserted between a pair of classes. It can be defined per style or for a set of styles, like:

\inherited\setmathspacing
\mathimplicationcode \mathbinarycode
\alldisplaystyles \thickermuskip

\inherited\setmathspacing
\mathradicalcode \mathmiddlecode
\allunsplitstyles \pettymuskip

Here the \inherited prefix signals that a change in for instance \pettymuskip is reflected in this
spacing pair. In ConTgXt there is a lot of granularity with respect to spacing and it took years of
experimenting (and playing with examples) to get at the current stage. In general users are not
invited to mess around too much with these values, although changing the bound registers (here
\pettymuskip and thickermuskip) is no problem as it consistently makes related spacing pairs follow.

783 \sfcode

You can set a space factor on a character. That factor is used when a space factor is applied (as part of
spacing). It is (mostly) used for adding a different space (glue) after punctuation. In some languages
different punctuation has different factors.

784 \shapingpenaltiesmode

Shaping penalties are inserted after the lines of a \parshape and accumulate according to this mode,
a bitset of:

0x01 interlinepenalty
0x02 widowpenalty
0x04 clubpenalty
0x08 brokenpenalty

152

785 \shapingpenalty

In order to prevent a \parshape to break in unexpected ways we can add a dedicated penalty, specified
by this parameter.

786 \shiftedsubprescript

This primitive (or) puts a flag on the script but renders the same:
$
x \shiftedsuperprescript{2} \subprescript {2} +
X \superprescript {2} \shiftedsubprescript{2} +
X \superprescript {2} {2} =
X \superprescript {2} \subprescript {2}
$
Gives: 2x + 2x + 3x = 3x.

787 \shiftedsubscript

This primitive (or) puts a flag on the script but renders the same:

$
x \shiftedsuperscript{2} \subscript {2} +
x \superscript {2} \shiftedsubscript{2} +
X \superscript {2} {2} =
x \superscript {2} \subscript {2}

$

Gives: X3 + x5 + x3 = x5.

788 \shiftedsuperprescript

This primitive (or ~~"~") puts a flag on the script but renders the same:

$
x \shiftedsuperprescript{2} \subprescript {2} +
X "N {2} \subprescript {2} +
x \superprescript {2} \shiftedsubprescript{2} =
X \superprescript {2} \subprescript {2}

$

Gives: 3x + 32X + 3x = 3x.

789 \shiftedsuperscript
This primitive (or ") puts a flag on the script but renders the same:

$
x \shiftedsuperscript{2} \subscript {2} +

153

X " {2} \subscript {2} +
X \superscript {2} \shiftedsubscript{2} =
X \superscript {2} \subscript {2}

$

Gives: X3 + X2 + x3 = x3.

790 \shipout

Because there is no backend, this is not supposed to be used. As in traditional TgX a box is grabbed
but instead of it being processed it gets shown and then wiped. There is no real benefit of turning it
into a callback.

791 \shortinlinemaththreshold

This parameter determines when an inline formula is considered to be short. This criterium is used
for for \preshortinlinepenalty and \postshortinlinepenalty.

792 \shortinlineorphanpenalty

Short formulas at the end of a line are normally not followed by something other than punctuation.
This penalty will discourage a break before a short inline formula. In practice one can set this penalty
to e.g. a relatively low 200 to get the desired effect.

793 \show

Prints to the console (and/or log) what the token after it represents.

794 \showbox

The given box register is shown in the log and on te console (depending on \tracingonline. How
much is shown depends on \showboxdepth and \showboxbreadth. In LuaMetaTgX we show more
detailed information than in the other engines; some specific information is provided via callbacks.

795 \showboxbreadth

This primitives determine how much of a box is shown when asked for or when tracing demands it.

796 \showboxdepth

This primitives determine how deep tracing a box goes into the box. Some boxes, like the ones that
has the assembled page.

797 \showcodestack

This inspector is only useful for low level debugging and reports the current state of for instance the
current catcode table: \showcodestack\catcode. See \restorecatcodes for an example.

154

798 \showgroups
This primitive reports the group nesting. At this spot we have a not so impressive nesting:

2:3: simple group entered at line 9375:
1:3: semisimple group: \begingroup

0:3: bottomlevel

799 \showifs

This primitive will show the conditional stack in the log file or on the console (assuming \tracin-
gonline being non-zero). The shown data is different from other engines because we have more
conditionals and also support a more flat nesting model

800 \showlists

This shows the currently built list.

801 \shownodedetails

When set to a positive value more details will be shown of nodes when applicable. Values larger than
one will also report attributes. What gets shown depends on related callbacks being set.

802 \showstack

This tracer is only useful for low level debugging of macros, for instance when you run out of save
space or when you encounter a performance hit.

test\scratchcounter® \showstack
{test\scratchcounterl \showstack}
{{test\scratchcounterl \showstack}}

reports

1:3: [savestack size 0]

1:3: [savestack bottom]

2:3: [savestack size 2]

2:3: [1: restore, level 1, cs \scratchcounter=integer 1]

2:3: [0: boundary, group 'bottomlevel', boundary 0, attrlist 3600, line 0]
2:3: [savestack bottom]

[savestack size 3]

[2: restore, level 1, cs \scratchcounter=integer 1]

[1: boundary, group 'simple', boundary 0, attrlist 3600, line 12]

[0: boundary, group 'bottomlevel', boundary 0, attrlist 3600, line 0]
[savestack bottom]

w w w ww
w w w ww

test\scratchcounterl \showstack

155

{test\scratchcounterl \showstack}
{{test\scratchcounterl \showstack}}

shows this:

1:3: [savestack size 0]
1:3: [savestack bottom]

2:3: [savestack size 1]

2:3: [0: boundary, group 'bottomlevel', boundary 0, attrlist 3600, line 0]
2:3: [savestack bottom]

3:3: [savestack size 2]

3:3: [1: boundary, group 'simple', boundary 0, attrlist 3600, line 16]

3:3: [0: boundary, group 'bottomlevel', boundary 0, attrlist 3600, line 0]
3:3: [savestack bottom]

Because in the second example the value of \scratchcounter doesn't really change inside the group
there is no need for a restore entry on the stack. In LuaMetaTgX there are checks for that so that we
consume less stack space. We also store some states (like the line number and current attribute list
pointer) in a stack boundary.

803 \showthe

Prints to the console (and/or log) the value of token after it.

804 \showtokens

This command expects a (balanced) token list, like
\showtokens{a few tokens}

Depending on what you want to see you need to expand:
\showtokens\expandafter{\the\everypar}

which is equivalent to \showthe\everypar. It is an e-TEX extension.

805 \singlelinepenalty

This is a penalty that gets injected before a paragraph that has only one line. It is a one-shot parameter,
so like \looseness it only applies to the upcoming (or current) paragraph.

806 \skewchar

This is an (imaginary) character that is used in math fonts. The kerning pair between this character
and the current one determines the top anchor of a possible accent. In OpenType there is a dedicated
character property for this (but for some reason not for the bottom anchor).

807 \skip

This is the accessor for an indexed skip (glue) register.

156

808 \skipdef

This command associates a control sequence with a skip register (accessed by number).

809 \snapshotpar

There are many parameters involved in typesetting a paragraph. One complication is that parameters
set in the middle might have unpredictable consequences due to grouping, think of:

text text <some setting> text text \par
text {text <some setting> text } text \par

This makes in traditional TEX because there is no state related to the current paragraph. But in Lua-
TEX we have the initial so called par node that remembers the direction as well as local boxes. In
LuaMetaTgX we store way more when this node is created. That means that later settings no longer
replace the stored ones.

The \snapshotpar takes a bitset that determine what stored parameters get updated to the current
values.

0x00000001 hsize 0x00000200 looseness 0x00040000 line

0x00000002 skip 0x00000400 lastline 0x00080000 hyphenation
0x00000004 hang 0x00000800 linepenalty 0x00100000 shapingpenalty
0x00000008 indent 0x00001000 clubpenalty 0x00200000 orphanpenalty
0x00000010 parfill 0x00002000 widowpenalty 0x00400000 emergency
0x00000020 adjust 0x00004000 displaypenalty Ox00800000 parpasses
0x00000040 protrude 0x00008000 brokenpenalty 0x01000000 singlelinepenalty
0x00000080 tolerance 0x00010000 demerits

0x00000100 stretch 0x00020000 shape

One such value covers multiple values, so for instance skip is good for storing the current \leftskip
and \rightskip values. More about this feature can be found in the ConTgXt documentation.

The list of parameters that gets reset after a paragraph is longer than for pdfIgX and LuaMeta-
TeX: \emergencyleftskip, \emergencyrightskip, \hangafter, \hangindent, \interlinepenalties,
\localbrokenpenalty, \localinterlinepenalty, \localpretolerance, \localtolerance, \loose-
ness, \parshape and \singlelinepenalty.

810 \spacefactor

The space factor is a somewhat complex feature. When during scanning a character is appended that
has a \sfcode other than 1000, that value is saved. When the time comes to insert a space triggered
glue, and that factor is 2000 or more, and when \xspaceskip is nonzero, that value is used and we're
done.

If these criteria are not met, and \spaceskip is nonzero, that value is used, otherwise the space
value from the font is used. Now, it if the space factor is larger than 2000 the extra space value
from the font is added to the set value. Next the engine is going to tweak the stretch and shrink if
that value and in LuaMetaTgX that can be done in different ways, depending on \spacefactormode,
\spacefactorstretchlimit and \spacefactorshrinklimit.

157

First the stretch. When the set limit is 1000 or more and the saved space factor is also 1000 or more,
we multiply the stretch by the limit, otherwise the saved space factor is used.

Shrink is done differently. When the shrink limit and space factor are both 1000 or more, we will scale
the shrink component by the limit, otherwise we multiply by the saved space factor but here we have
three variants, determined by the value of \spacefactormode.

In the first case, when the limit kicks in, a mode value 1 will multiply by limit and divides by 1000. A
value of 2 multiplies by 2000 and divides by the limit. Other mode values multiply by 1000 and divide
by the limit. When the limit is not used, the same happens but with the saved space factor.

If this sounds complicated, here is what regular TgX does: stretch is multiplied by the factor and
divided by 1000 while shrink is multiplied by 1000 and divided by the saved factor. The (new) mode
driven alternatives are the result of extensive experiments done in the perspective of enhancing the
rendering of inline math as well as additional par builder passes. For sure alternative strategies are
possible and we can always add more modes.

A better explanation of the default strategy around spaces can be found in (of course) The TgXbook
and TgX by Topic.

811 \spacefactormode

Its setting determines the way the glue components (currently only shrink) adapts itself to the current
space factor (determined by by the character preceding a space).

812 \spacefactorshrinklimit

This limit is used when \spacefactormode is set. See \spacefactor for a bit more explanation.

813 \spacefactorstretchlimit

This limit is used when \spacefactormode is set. See \spacefactor for a bit more explanation.

814 \spaceskip

Normally the glue inserted when a space is encountered is taken from the font but this parameter can
overrule that.

815 \span

This primitive combined two upcoming cells into one. Often it is used in combination with \omit.
However, in the preamble it forces the next token to be expanded, which means that nested \tabskips
and align content markers are seen.

816 \splitbotmark

This is a reference to the last mark on the currently split off box, it gives back tokens.

158

817 \splitbotmarks

This is a reference to the last mark with the given id (a number) on the currently split off box, it gives
back tokens.

818 \splitdiscards

When a box is split off, items like glue are discarded. This internal register keeps the that list so that
it can be pushed back if needed.

819 \splitfirstmark

This is a reference to the first mark on the currently split off box, it gives back tokens.

820 \splitfirstmarks

This is a reference to the first mark with the given id (a number) on the currently split off box, it gives
back tokens.

821 \splitmaxdepth

The depth of the box that results from a \vsplit.

822 \splittopskip

This is the amount of glue that is added to the top of a (new) split of part of a box when \vsplit is
applied.

823 \srule

This inserts a rule with no width. When a font and a char are given the height and depth of that
character are taken. Instead of a font fam is also accepted so that we can use it in math mode.

824 \string

We mention this original primitive because of the one in the next section. It expands the next token
or control sequence as if it was just entered, so normally a control sequence becomes a backslash
followed by characters and a space.

825 \subprescript

Instead of three or four characters with catcode 8 (or) this primitive can be used. It will add
the following argument as lower left script to the nucleus.

826 \subscript

Instead of one or two characters with catcode 7 (_ or) this primitive can be used. It will add the
following argument as upper left script to the nucleus.

827 \superprescript

(/\/\/\

Instead of three or four characters with catcode 7 or ~"”") this primitive can be used. It will add
the following argument as upper left script to the nucleus.

828 \superscript

Instead of one or two character with catcode 7 (* or *")this primitive can be used. It will add the
following argument as upper right script to the nucleus.

829 \supmarkmode

As in other languages, TEX has ways to escape characters and get whatever character needed into the
input. By default multiple ~ are used for this. The dual ~" variant is a bit weird as it is not continuous
but ~~** and ~""""" provide four or six byte hexadecimal references ot characters. The single " is
also used for superscripts but because we support prescripts and indices we get into conflicts with
the escapes.

When this internal quantity is set to zero, multiple *'s are interpreted in the input and produce char-
acters. Other values disable the multiple parsing in text and/or math mode:

\normalsupmarkmode® $ X~58 \quad X"~58 $ ~"58
\normalsupmarkmodel $ X*58 \quad X~"58 $ ~"58
\normalsupmarkmode2 $ X"58 \quad X*"58 $ % ~"58 : error

"In ConTgXt we default to one but also have the \catcode set to 12and the \amcode to 7.
X°8 XXX

X°8 X°8X

X°8 X°8

830 \swapcsvalues

Because we mention some def and let primitives here, it makes sense to also mention a primitive that
will swap two values (meanings). This one has to be used with care. Of course that what gets swapped|
has to be of the same type (or at least similar enough not to cause issues). Registers for instance store
their values in the token, but as soon as we are dealing with token lists we also need to keep an eye
on reference counting. So, to some extend this is an experimental feature.

831 \tabsize

This primitive can be used in the preamble of an alignment and sets the size of a column, as in:

\halign{%
\aligncontent \aligntab
\aligncontent\tabsize 3cm \aligntab
\aligncontent \aligntab

\aligncontent\tabsize 0cm \cr
1 \aligntab 111\aligntab 1111\aligntab 11\cr
222\aligntab 2 \aligntab 2222\aligntab 22\cr

160

}

As with \tabskip you need to reset the value explicitly, so that is why we get two wide columns:

2222 \P222 22

832 \tabskip

This traditional primitive can be used in the preamble of an alignment and sets the space added
between columns, for example:

\halign{%
\aligncontent \aligntab
\aligncontent\tabskip 3cm \aligntab
\aligncontent \aligntab

\aligncontent\tabskip Ocm \cr

1 \aligntab 111\aligntab 1111\aligntab 11\cr

222\aligntab 2 \aligntab 2222\aligntab 22\cr
}

You need to reset the skip explicitly, which is why we get it applied twice here:

1 117 J1111] 111
2222 1 2222 22

833 \textdirection

This set the text direction to 12r (0) or r21 (1). It also triggers additional checking for balanced
flipping in node lists.

834 \textfont

This primitive is like \ font but with a family number as (first) argument so it is specific for math. It is
the largest one of the three family members; its relatives are \scriptfont and \scriptscriptfont.

835 \textstyle

One of the main math styles; integer representation: 2.

836 \the

The \the primitive serializes the following token, when applicable: integers, dimensions, token reg-
isters, special quantities, etc. The catcodes of the result will be according to the current settings, so
in \the\dimen0, the pt will have catcode ‘letter’ and the number and period will become ‘other’.

837 \thewithoutunit

The \the primitive, when applied to a dimension variable, adds a pt unit. because dimensions are
the only traditional unit with a fractional part they are sometimes used as pseudo floats in which

161

case \thewithoutunit can be used to avoid the unit. This is more convenient than stripping it off
afterwards (via an expandable macro).

838 \thickmuskip

A predefined mu skip register that can be used in math (inter atom) spacing. The current value is
5.0mu plus 3.0mu minus 1.0mu. In traditional TEX most inter atom spacing is hard coded using the
predefined registers.

839 \thinmuskip

A predefined mu skip register that can be used in math (inter atom) spacing. The current value is
3.0mu. In traditional TgX most inter atom spacing is hard coded using the predefined registers.

840 \time

This internal number starts out with minute (starting at midnight) that the job started.

841 \tinymuskip

A predefined mu skip register that can be used in math (inter atom) spacing. The current value is
2.0mu minus 1.0mu. This one complements \thinmuskip, \medmuskip, \thickmuskip and the new
\pettymuskip

842 \tocharacter

The given number is converted into an utf-8 sequence. In LuaTgX this one is named \Uchar.

843 \todimension

The following code gives this: 1234.0pt and like its numeric counterparts accepts anything that re-
sembles a number this one goes beyond (user, internal or pseudo) registers values too.

\scratchdimen = 1234pt \todimension\scratchdimen

844 \tohexadecimal
The following code gives this: 4D2 with uppercase letters.

\scratchcounter = 1234 \tohexadecimal\scratchcounter

845 \tointeger
The following code gives this: 1234 and is equivalent to \number.

\scratchcounter = 1234 \tointeger\scratchcounter

162

846 \tokenized

Just as \expanded has a counterpart \unexpanded, it makes sense to give \detokenize a companion:

\edef\foo{\detokenize{\inframed{foo}}}
\edef\oof{\detokenize{\inframed{oof}}}

\meaning\foo \crlf \dontleavehmode\foo
\edef\foo{\tokenized{\foo\foo}}
\meaning\foo \crlf \dontleavehmode\foo
\dontleavehmode\tokenized{\ foo\oof}

macro:\inframed {foo}
\inframed {foo}

macro:\inframed {foo}\inframed {foo}
foo|foo

foo|fooloof

This primitive is similar to:
\def\tokenized#1{\scantextokens\expandafter{\normalexpanded{#1}}}

and should be more efficient, not that it matters much as we don't use it that much (if at all).

847 \toks

This is the accessor of a token register so it expects a number or \toksdef'd macro.

848 \toksapp
One way to append something to a token list is the following:
\scratchtoks\expandafter{\the\scratchtoks more stuff}

This works all right, but it involves a copy of what is already in \scratchtoks. This is seldom a real
issue unless we have large token lists and many appends. This is why LuaTgX introduced:

\toksapp\scratchtoks{more stuff}
\toksapp\scratchtoksone\scratchtokstwo

At some point, when working on LuaMetaTgX, I realized that primitives like this one and the next
appenders and prependers to be discussed were always on the radar of Taco and me. Some were
even implemented in what we called eetex: extended e-TgX, and we even found back the prototypes,
dating from pre-pdfTEX times.

849 \toksdef

The given name (control sequence) will be bound to the given token register (a number). Often this
primitive is hidden in a high level macro that manages allocation.

163

850 \tokspre

Where appending something is easy because of the possible \expandafter trickery a prepend would
involve more work, either using temporary token registers and/or using a mixture of the (no)expansion
added by &-TgX, but all are kind of inefficient and cumbersome.

\tokspre\scratchtoks{less stuff}
\tokspre\scratchtoksone\scratchtokstwo

This prepends the token list that is provided.

851 \tolerance

When the par builder runs into a line with a badness larger than this value and when \emergencys-
tretch is set a third pass is enabled. In LuaMetaTgX we can have more than one second pass and
there are more parameters that influence the process.

852 \tolerant

This prefix tags the following macro as being tolerant with respect to the expected arguments. It only
makes sense when delimited arguments are used or when braces are mandate.

\tolerant\def\foo [#1]#*[#2]1{(#1) (#2)}
This definition makes \ foo tolerant for various calls:
\foo \foo[1l] \foo [1] \foo[1l] [2] \foo [1] [2]

these give: ()()(1)()(1)()(1)(2) (1)(2). The spaces after the first call disappear because the macro name
parser gobbles it, while in the second case the #* gobbles them. Here is a variant:

\tolerant\def\foo[#1]#, [#2]{'#1'#2'}

\foo[?] X
\foo[?] [?] X

\tolerant\def\foo[#1]#*[#2]{!#1!#2!}

\foo[?] x
\foo[?] [?] X

We now get the following:

Here the #, remembers that spaces were gobbles and they will be put back when there is no further
match. These are just a few examples of this tolerant feature. More details can be found in the lowlevel
manuals.

164

853 \tomathstyle

Internally math styles are numbers, where \displaystyle is 0 and \crampedscriptscriptstyle is
7. You can convert the verbose style to a number with \tomathstyle.

854 \topmark

This is a reference to the last mark on the previous (split off) page, it gives back tokens.

855 \topmarks

This is a reference to the last mark with the given id (a number) on the previous page, it gives back
tokens.

856 \topskip

This is the amount of glue that is added to the top of a (new) page.

857 \toscaled

The following code gives this: 1234.0 is similar to \todimension but omits the pt so that we don't
need to revert to some nasty stripping code.

\scratchdimen = 1234pt \toscaled\scratchdimen

858 \tosparsedimension

The following code gives this: 1234pt where ‘sparse’ indicates that redundant trailing zeros are not
shown.

\scratchdimen = 1234pt \tosparsedimension\scratchdimen

859 \tosparsescaled

The following code gives this: 1234 where ‘sparse’ means that redundant trailing zeros are omitted.

\scratchdimen = 1234pt \tosparsescaled\scratchdimen

860 \tpack

This primitive is like \vtop but without the callback overhead.

861 \tracingadjusts

In LuaMetaTgX the adjust feature has more functionality and also is carried over. When set to a positive
values \vadjust processing reports details. The higher the number, the more you'll get.

165

862 \tracingalignments

When set to a positive value the alignment mechanism will keep you informed about what is done in
various stages. Higher values unleash more information, including what callbacks kick in.

863 \tracingassigns

When set to a positive values assignments to parameters and variables are reported on the console
and/or in the log file. Because LuaMetaTgX avoids redundant assignments these don't get reported.

864 \tracingcommands

When set to a positive values the commands (primitives) are reported on the console and/or in the log
file.

865 \tracingexpressions

The extended expression commands like \numexpression and \dimexpression can be traced by set-
ting this parameter to a positive value.

866 \tracingfullboxes

When set to a positive value the box will be shown in case of an overfull box. When a quality callback
is set this will not happen as all reporting is then delegated.

867 \tracinggroups

When set to a positive values grouping is reported on the console and/or in the log file.

868 \tracinghyphenation

When set to a positive values the hyphenation process is reported on the console and/or in the log file.

869 \tracingifs

When set some details of what gets tested and what results are seen is reported.

870 \tracinginserts

A positive value enables tracing where values larger than 1 will report more details.

871 \tracinglevels
The lines in a log file can be prefixed with some details, depending on the bits set:

0x1 current group
0x2 current input
0x4 catcode table

166

872 \tracinglists

At various stages the lists being processed can be shown. This is mostly an option for developers.

873 \tracinglostchars

When set to one characters not present in a font will be reported in the log file, a value of two will also
report this on the console.

874 \tracingmacros

This parameter controls reporting of what macros are seen and expanded.

875 \tracingmarks

Marks are information blobs that track states that can be queried when a page is handled over to the
shipout routine. They travel through the system in a bit different than traditionally: like like adjusts
and inserts deeply buried ones bubble up to outer level boxes. This parameters controls what progress
gets reported.

876 \tracingmath

The higher the value, the more information you will get about the various stages in rendering math.
Because tracing of nodes is rather verbose you need to know a bit what this engine does. Conceptually
there are differences between the LuaMetaTgX and traditional engine, like more passes, inter-atom
spacing, different low level mechanisms. This feature is mostly meant for developers who tweak the
many available parameters.

877 \tracingnesting

A positive value triggers log messages about the current level.

878 \tracingnodes

When set to a positive value more details about nodes (in boxes) will be reported. Because this is also
controlled by callbacks what gets reported is macro package dependent.

879 \tracingonline

The engine has two output channels: the log file and the console and by default most tracing (when
enabled) goes to the log file. When this parameter is set to a positive value tracing will also happen
in the console. Messages from the Lua end can be channeled independently.

880 \tracingoutput

Values larger than one result in some information about what gets passed to the output routine.

167

881 \tracingpages

Values larger than one result in some information about the page building process. In LuaMetaTgX
there is more info for higher values.

882 \tracingparagraphs

Values larger than one result in some information about the par building process. In LuaMetaTgX
there is more info for higher values.

883 \tracingpasses

In LuaMetaTgX you can configure additional second stage par builder passes and this parameter con-
trols what gets reported on the console and/or in the log file.

884 \tracingpenalties

This setting triggers reporting of actions due to special penalties in the page builder.

885 \tracingrestores

When set to a positive values (re)assignments after grouping to parameters and variables are reported
on the console and/or in the log file. Because LuaMetaTgX avoids redundant assignments these don't
get reported.

886 \tracingstats

This parameter is a dummy in LuaMetaTgX. There are anyway some statistic reported when the format
is made but for a regular run it is up to the macro package to come up with useful information.

887 \tsplit

This splits like \vsplit but it returns a \vtop box instead.

888 \uccode

When the \uppercase operation is applied the uppercase code of a character is used for the replace-
ment. This primitive is used to set that code, so it expects two character number.

889 \uchyph

When set to a positive number words that start with a capital will be hyphenated.

890 \uleaders

This leader adapts itself after a paragraph has been typeset. Here are a few examples:

168

test \leaders \hbox {xI\hfill\ test
test \uleaders \hbox{x x x x}\hfill\ test
test \hbox{x x x x}\hskip 3cm plus lcm\ test

test \uleaders \hbox{x x x x}\hskip 3cm plus 1cm\ test
When an \uleaders is used the glue in the given box will be adapted to the available space.

test XXXXXXXXXXXXXXXXXXXX XXX XXX XX XXX XXX XX XXX XX XXX XX XXX XX XXX XXX XX XXX XX XXX XXX XXXXXXKXXXXXXX test

test x X X X test
test xxx X test
test x X X X test

Optionally the callback followed by a number can be given, in which case a callback kicks in that gets
that the node, a group identifier, and the number passed. It permits (for instance) adaptive graphics:

1=1 W) 6=vi W 11=xi W™ 16=xvi W 21=xxi WP} 26=xxvi WY 31=xxxi WP} 36=xxxvi WM 41=xli
46=xlvi VN 51=1i V) 56=1vi YW} 61=1xi VPN 66=1xvi VBN 71=Ixxi VY 76=Ixxvi Y} 81=Ixxxi
86=Ixxxvi W™ 91=xci WP 96=xcvi W} .

891 \unboundary

When possible a preceding boundary node will be removed.

892 \undent

When possible the already added indentation will be removed.

893 \underline

This is a math specific primitive that draws a line under the given content. It is a poor mans replace-
ment for a delimiter. The thickness is set with \Umathunderbarrule, the distance between content
and rule is set by \Umathunderbarvgap and \Umathunderbarkern is added above the rule. The style
used for the content under the rule can be set with \Umathunderlinevariant. See \overline for
what these parameters do.

894 \unexpanded

This is an &-TgX enhancement. The content will not be expanded in a context where expansion is
happening, like in an \edef. In ConIgXt you need to use \normalunexpanded because we already had
a macro with that name.

\def \A{!} \meaning\A
\def \B{?} \meaning\B
\edef\C{\A\B} \meaning\C

\edef\C{\normalunexpanded{\A}\B} \meaning\C

macro: !
macro:?
macro:!?
macro:\A ?

169

895 \unexpandedendless

This one loops forever so you need to quit explicitly.

896 \unexpandedloop
As follow up on \expandedloop we now show its counterpart:

\edef\whatever
{\unexpandedloop 1 10 1
{\scratchcounter=\the\currentloopiterator\relax}}

\meaningasis\whatever

\def \whatever {\scratchcounter =0\relax \scratchcounter =0\relax \scratchcounter =0\relax \scratchcounter
=0\relax \scratchcounter =0\relax \scratchcounter =0\relax \scratchcounter =0\relax \scratchcounter =0\relax

\scratchcounter =0\relax \scratchcounter =0\relax }

The difference between the (un)expanded loops and a local controlled one is shown here. Watch the
out of order injection of A's.

\edef\TestA{\localcontrolledloop 1 5 1 {A}} % out of order
\edef\TestB{\expandedloop 151 {B}}
\edef\TestC{\unexpandedloop 151 {C\relax}}

AAAAA
We show the effective definition as well as the outcome of using them

\meaningasis\TestA
\meaningasis\TestB
\meaningasis\TestC

A: \TestA
B: \TestB
C: \TestC

\def \TestA {}
\def \TestB {BBBBB}
\def \TestC {C\relax C\relax C\relax C\relax C\relax }

A:
B: BBBBB
C: Ccccc

Watch how because it is empty \TestA has become a constant macro because that's what deep down
empty boils down to.

897 \unexpandedrepeat

This one takes one instead of three arguments which looks better in simple loops.

170

898 \unhbox

A box is a packaged list and once packed travels through the system as a single object with properties,
like dimensions. This primitive injects the original list and discards the wrapper.

899 \unhcopy

This is like \unhbox but keeps the original. It is one of the more costly operations.

900 \unhpack

This primitive is like \unhbox but without the callback overhead.

901 \unkern

This removes the last kern, if possible.

902 \unless

This e-TEX prefix will negate the test (when applicable).

\ifx\one\two YES\else NO\fi
\unless\ifx\one\two NO\else YES\fi

This primitive is hardly used in ConTEgXt and we probably could get rid of these few cases.

903 \unletfrozen

A frozen macro cannot be redefined: you get an error. But as nothing in TgX is set in stone, you can
do this:

\frozen\def\MyMacro{...}
\unletfrozen\MyMacro

and \MyMacro is no longer protected from overloading. It is still undecided to what extend ConTgXt
will use this feature.

904 \unletprotected

The complementary operation of \letprotected can be used to unprotect a macro, so that it gets
expandable.

\def \MyMacroA{alpha}

\protected \def \MyMacroB{beta}

\edef \MyMacroC{\MyMacroA\MyMacroB}
\unletprotected \MyMacroB

\edef \MyMacroD{\MyMacroA\MyMacroB}
\meaning \MyMacroC\crlf

\meaning \MyMacroD\par

171

Compare this with the example in the previous section:
macro:alpha\MyMacroB

macro:alphabeta

905 \unpenalty

This removes the last penalty, if possible.

906 \unskip

This removes the last glue, if possible.

907 \untraced

Related to the meaning providers is the \untraced prefix. It marks a macro as to be reported by name
only. It makes the macro look like a primitive.

\def\foo{}
\untraced\def\oof{}

\scratchtoks{\foo\foo\oof\oof}
\tracingall \the\scratchtoks \tracingnone

This will show up in the log as follows:

1:4: {\the}
1:5: \foo ->
1:5: \foo ->
1:5: \oof
1:5: \oof

This is again a trick to avoid too much clutter in a log. Often it doesn't matter to users what the
meaning of a macro is (if they trace at all).”

908 \unvbox

A box is a packaged list and once packed travels through the system as a single object with properties,
like dimensions. This primitive injects the original list and discards the wrapper.

909 \unvcopy

This is like \unvbox but keeps the original. It is one of the more costly operations.

910 \unvpack

This primitive is like \unvbox but without the callback overhead.

7 An earlier variant could also hide the expansion completely but that was just confusing.

172

911 \uppercase

See its counterpart \lowercase for an explanation.

912 \vadjust

This injects a node that stores material that will injected before or after the line where it has become
part of. In LuaMetaTgX there are more features, driven by keywords.

913 \valign

This command starts vertically aligned material. Its counterpart \halign is used more frequently.
Most macro packages provide wrappers around these commands. First one specifies a preamble
which is then followed by entries (rows and columns).

914 \variablefam

In traditional TgX sets the family of what are considered variables (class 7) to the current family
(which often means that they adapt to the current alphabet) and then injects a math character of class
ordinary. This parameter can be used to obey the given class when the family set for a character is
the same as this parameter. So we then use the given class with the current family. It is mostly there
for compatibility with LuaTgX and experimenting (outside ConTgXt).

915 \vbadness

This sets the threshold for reporting a (vertical) badness value, its current value is 0.

916 \vbox

This creates a vertical box. In the process callbacks can be triggered that can preprocess the content,
influence line breaking as well as assembling the resulting paragraph. More can be found in dedicated
manuals. The baseline is at the bottom.

917 \vcenter

In traditional TgX this box packer is only permitted in math mode but in LuaMetaTgX it also works in
text mode. The content is centered in the vertical box.

918 \vfil

This is a shortcut for \vskip plus 1 fil (first order filler).

919 \vfill

This is a shortcut for \vskip plus 1 fill (second order filler).

173

920 \vfilneg

This is a shortcut for \vskip plus - 1 fil so it can compensate \vfil.

921 \vfuzz

This dimension sets the threshold for reporting vertical boxes that are under- or overfull. The current
value is 0.1pt.

922 \virtualhrule

This is a horizontal rule with zero dimensions from the perspective of the frontend but the backend
can access them as set.

923 \virtualvrule

This is a vertical rule with zero dimensions from the perspective of the frontend but the backend can
access them as set.

924 \vkern

This primitive is like \kern but will force the engine into vertical mode if it isn't yet.

925 \vpack

This primitive is like \vbox but without the callback overhead.

926 \vpenalty

This primitive is like \penalty but will force the engine into vertical mode if it isn't yet.

927 \vrule

This creates a vertical rule. Unless the height and depth are set they will stretch to fix the available
space. In addition to the traditional width, height and depth specifiers some more are accepted.
These are discussed in other manuals. See \hrule for a simple example.

928 \vsize

This sets (or gets) the current vertical size. While setting the \hsize inside a \vbox has consequences,
setting the \vsize mostly makes sense at the outer level (the page).

929 \vskip

The given glue is injected in the vertical list. If possible vertical mode is entered.

174

930 \vsplit

This operator splits a given amount from a vertical box. In LuaMetaTgX we can split to but also upto,
so that we don't have to repack the result in order to see how much is actually in there.

931 \vss

This is the vertical variant of \hss. See there for what it means.

932 \vtop

This creates a vertical box. In the process callbacks can be triggered that can preprocess the content,
influence line breaking as well as assembling the resulting paragraph. More can be found in dedicated
manuals. The baseline is at the top.

933 \wd

Returns the width of the given box.

934 \widowpenalties

This is an array of penalty put before the last lines in a paragraph. High values discourage (or even
prevent) a lone line at the beginning of a next page. This command expects a count value indicating
the number of entries that will follow. The first entry is ends up before the last line.

935 \widowpenalty

This is the penalty put before a widow line in a paragraph. High values discourage (or even prevent)
a lone line at the beginning of a next page.

936 \wordboundary

The hypenation routine has to decide where a word begins and ends. If you want to make sure that
there is a proper begin or end of a word you can inject this boundary.

937 \wrapuppar

What this primitive does can best be shown with an example:

some text\wrapuppar{one} and some\wrapuppar{two} more

We get:

some text and some more twoone

So, it is a complementary command to \everypar. It can only be issued inside a paragraph.

938 \xdef

This is an alternative for \global\edef:

175

\xdef\MyMacro{...}

939 \xdefcsname
This is the companion of \xdef:

\expandafter\xdef\csname MyMacro:1\endcsname{...}
\xdefcsname MyMacro:1\endcsname{...}

940 \xleaders

See \gleaders for an explanation.

941 \xspaceskip

Normally the glue inserted when a space is encountered after a character with a space factor other
than 1000 is taken from the font (fontdimen 7) unless this parameter is set in which case its value is
added.

942 \xtoks

This is the global variant of \etoks.

943 \xtoksapp

This is the global variant of \etoksapp.

944 \xtokspre

This is the global variant of \etokspre.

945 \year

This internal number starts out with the year that the job started.

Obsolete

The LuaMetaTgX engine has more than its LuaTgX ancestor but it also has less. Because in the end
the local control mechanism performed quite okay I decided to drop the \immediateassignment and
\immediateassigned variants. They sort of used the same trick so there isn't much to gain and it was
less generic (read: error prone).

176

Syntax
1 accent 1 \multiplyby
quantity quantity
t \accent 1 \rdivide
[xoffset dimension] [yoffset quantity quantity
dimension] integer character 1 \rdivideby

quantity quantity

2 aftersomething

5 association
1 \afterassigned

{ tokens} 1 \associateunit
t \afterassignment \cs [=] integer
token > \cs : integer
t \aftergroup
token o
1 \aftergrouped 6 auxiliary
{ tokens} .
1 \atendoffile L \insertmode
token integer
1 \atendoffiled : integer

[reverse] { tokens} e \interactionmode

1 \atendofgroup integer
token : Integer
1 \atendofgrouped t \prevdepth
{tokens} dimension
: dimension
t \prevgraf
3 alignmenttab integer
: Integer
1 \aligntab t \spacefactor
integer
. . : integer
4 arithmic
t \advance 7 begingroup
quantity [by] quantity
1 \advanceby t \begingroup
quantity quantity 1 \beginmathgroup
t \divide 1 \beginsimplegroup
quantity [by] quantity
1 \divideby
quantity quantity 8 beginlocal
1 \edivide
quantity quantity 1 \beginlocalcontrol
1 \edivideby 1 \expandedendless
quantity quantity { tokens}
t \multiply 1 \expandedloop
quantity [by] quantity integer integer integer { tokens }
1 \expandedrepeat

integer { tokens }

9

r+

\localcontrol

tokens\endlocalcontrol
\localcontrolled

{ tokens}
\localcontrolledendless

{tokens}
\localcontrolledloop

see \expandedloop
\localcontrolledrepeat

integer { tokens }
\unexpandedendless

{ tokens}
\unexpandedloop

see \expandedloop
\unexpandedrepeat

integer { tokens }

beginparagraph

\indent
\noindent
\parattribute

integer [=] integer
\quitvmode
\snapshotpar

cardinal

: Integer

\undent
\wrapuppar

[reverse] {tokens}

10 boundary

1

\boundary

[=] integer
\mathboundary

[=] integer
\noboundary
\optionalboundary

[=] integer
\pageboundary

[=] integer
\protrusionboundary

[=] integer
\wordboundary

177

11 boxproperty

1 \boxadapt
(index | box) [=] integer
> (index | box) : dimension
1 \boxanchor
see \boxadapt
1 \boxanchors
(index | box) [=] integer integer
> (index | box) : integer
1 \boxattribute
(index | box) integer [=] integer
> (index | box) integer : integer
1 \boxdirection
see \boxadapt
1 \boxfinalize
see \boxadapt
1 \boxfreeze
see \boxadapt
1 \boxgeometry
see \boxadapt
1 \boxlimit
TODO
1 \boxlimitate
see \boxadapt
1 \boxorientation
see \boxadapt
1 \boxrepack
(index | box)
> (index | box) : dimension
1 \boxshift
(index | box) [=] dimension
> (index | box) : dimension
1 \boxshrink
see \boxrepack
1 \boxsource
see \boxadapt
1 \boxstretch
see \boxrepack
1 \boxtarget
see \boxadapt
1 \boxtotal
see \boxrepack
1 \boxvadjust
(index | box) {tokens}
> (index | box) : cardinal
1 \boxxmove
see \boxshift

1 \boxxoffset

see \boxshift
1 \boxymove

see \boxshift
1 \boxyoffset

see \boxshift
t \dp

see \boxshift
t \ht

see \boxshift
t \wd

see \boxshift

12 caseshift

t \lowercase
{ tokens}

t \uppercase
{ tokens}

13 catcodetable

1 \initcatcodetable
integer

1 \restorecatcodetable
TODO

1 \savecatcodetable
integer

14 charnumber

t \char
integer

1 \glyph
[xoffset dimension] [yoffset
dimension] [scale integer] [xscale
integer] [yscale integer] [left
dimension] [right dimension] [raise
dimension] [options integer] [font
integer] [id integer] integer

15 combinetoks

1 \etoks

toks { tokens}
1 \etoksapp

toks { tokens }

178

1 \etokspre

toks { tokens}
1 \gtoksapp

toks { tokens }
1 \gtokspre

toks { tokens}
1 \toksapp

toks { tokens}
1 \tokspre

toks { tokens }
1 \xtoks

toks { tokens}
1 \xtoksapp

toks { tokens}
1 \xtokspre

toks { tokens }

16 convert

1 \csactive
> token : tokens
\csstring
> token : tokens
1 \detokened
> (\cs | {tokens} | toks) : tokens
1 \detokenized
> { tokens} : tokens
1 \directlua
> { tokens} : tokens
1 \expanded
> { tokens} : tokens
t \fontname
> (font | integer) : tokens

P

1 \fontspecifiedname

> (font | integer) : tokens
1 \formatname

: tokens
t \jobname

: tokens
1 \luabytecode

> integer : tokens
1 \luaescapestring

> { tokens} : tokens
1 \luafunction

> integer : tokens
1 \luatexbanner

: tokens
t \meaning

> token : tokens

1 \meaningasis
> token : tokens
1 \meaningful
> token : tokens
1 \meaningfull
> token : tokens
1 \meaningles
> token : tokens
1 \meaningless
> token : tokens
t \number
> integer : tokens
t \romannumeral
> integer : tokens
1 \semiexpanded
> { tokens } : tokens
t \string
> token : tokens
1 \tocharacter
> integer : tokens
1 \todimension
> dimension : tokens
1 \tohexadecimal
> integer : tokens
1 \tointeger
> integer : tokens
1 \tomathstyle
> mathstyle : tokens
1 \toscaled
> dimension : tokens
1 \tosparsedimension
> dimension : tokens
1 \tosparsescaled
> dimension : tokens

17 csname

1 \begincsname
tokens\endcsname
t \csname
tokens\endcsname
1 \futurecsname
tokens\endcsname
1 \lastnamedcs

18 def

1 \cdef
\cs [preamble] { tokens}

179

\cdefcsname

tokens\endcsname [preamble] { tokens}
\def

\cs [preamble] { tokens}
\defcsname

tokens\endcsname [preamble] { tokens}
\edef

\cs [preamble] { tokens}
\edefcsname

tokens\endcsname [preamble] { tokens}
\gdef

\cs [preamble] { tokens}
\gdefcsname

tokens\endcsname [preamble] { tokens}
\xdef

\cs [preamble] { tokens}
\xdefcsname

tokens\endcsname [preamble] { tokens}

19 definecharcode

1 \Udelcode

integer [=] integer
> integer : integer
\Umathcode
integer [=] integer
> integer : integer
\amcode
integer [=] integer
> integer : integer
\catcode
integer [=] integer
> integer : integer
\delcode
integer [=] integer
> integer : integer
\hccode
integer [=] integer
> integer : integer
\hmcode
integer [=] integer
> integer : integer
\lccode
integer [=] integer
> integer : integer
\mathcode
integer [=] integer
> integer : integer

t \sfcode
integer [=] integer
> integer : integer
t \uccode
integer [=] integer
> integer : integer

20 definefamily

t \scriptfont
family (font | integer)
> family : integer
t \scriptscriptfont
see \scriptfont
t \textfont
see \scriptfont

21 definefont

t \font
\cs ({filename} | filename) [(at
dimension | scaled integer)]

. tokens

22 delimiternumber

1 \Udelimiter

integer integer integer
t \delimiter

integer

23 discretionary

t \-

1 \automaticdiscretionary

t \discretionary
[penalty] [postword] [preword]
[break] [nobreak] [options] [class]
{ tokens} { tokens} { tokens}

1 \explicitdiscretionary

24 endcsname

t \endcsname

25 endgroup

t \endgroup

180

1 \endmathgroup
1 \endsimplegroup

26 endjob

t \dump
t \end

27 endlocal

1 \endlocalcontrol

28 endparagraph

t \par

29 endtemplate

\aligncontent
\cr
\crcr
\noalign

{ tokens}
t \omit
1 \realign

TODO

t \span

+ + + ~

30 equationnumber

t \eqno

{ tokens}
t \leqgno

{ tokens}

31 expandafter

1 \expand
token

1 \expandactive
token

t \expandafter
token token

1 \expandafterpars
token

1 \expandafterspaces
token

1 \expandcstoken
token

1 \expandedafter
token { tokens }

1 \expandparameter
integer

1 \expandtoken
token

1 \expandtoks
{ tokens}

1 \futureexpand
token token token

1 \futureexpandis
TODO

1 \futureexpandisap
TODO

1 \semiexpand
token

e \unless

32 explicitspace

t\
1 \explicitspace
TODO

33 fontproperty

1 \cfcode
(font | integer) integer [=] integer
> (font | integer) integer : integer
\efcode
see \cfcode
t \fontdimen

-~

(font | integer) integer [=] dimension

> (font | integer) integer : dimension
\hyphenchar
(font|integer) [=] integer
> (font | integer) : integer
\1lpcode
see \fontdimen
\rpcode
see \fontdimen
1 \scaledfontdimen
see \hyphenchar

r+

-l

~

181

t \skewchar
see \hyphenchar

34 getmark

t \botmark

e \botmarks
integer

1 \currentmarks
integer

t \firstmark

e \firstmarks
integer

t \splitbotmark

e \splitbotmarks
integer

t \splitfirstmark

e \splitfirstmarks
integer

t \topmark

e \topmarks
integer

35 halign

t \halign
[attr integer integer] [callback
integer] [discard] [noskips]
[reverse] [to dimension] [spread
dimension] { tokens}

36 hmove

t \moveleft
dimension box

t \moveright
dimension box

37 hrule

t \hrule

[attr integer [=] integer] [width
dimension] [height dimension] [depth
dimension] [left dimension] [right
dimension] [top dimension] [bottom
dimension] [xoffset dimension]

[yoffset dimension] [font integer]
[fam integer] [char integer]

1 \nohrule
see \hrule

1 \virtualhrule
[attr integer [=] integer] [width
dimension] [height dimension] [depth
dimension] [left dimension] [right
dimension] [top dimension] [bottom
dimension] [xoffset dimension]
[yoffset dimension]

38 hskip

\hfil

\hfill

\hfilneg

\hskip
dimension [plus
(dimension | fi[n*1])] [minus
(dimension | fi[n*1])]

t \hss

+ + ~+ +

39 hyphenation

1 \hjcode
integer [=] integer

t \hyphenation
{tokens}

1 \hyphenationmin
[=] integer

t \patterns
{ tokens}

1 \postexhyphenchar
[=] integer

1 \posthyphenchar
[=] integer

1 \preexhyphenchar
[=] integer

1 \prehyphenchar
[=] integer

40 iftest

t \else

t \fi

t \if

1 \ifabsdim
dimension

(t]<|=|>]€|¢|=]|=|=]%]2)

182

P

dimension
\ifabsfloat

float (1 |<|=|>|€|€|=|<|=|%|#)

float
\ifabsnum

integer

(t]<]=]>Ile]=|=|=]#]2)

integer
\ifarguments
\ifboolean

integer
\ifcase

integer
\ifcat

token
\ifchkdim

tokens\or
\ifchkdimension

tokens\or
\ifchknum

tokens\or
\ifchknumber

tokens\or
\ifcmpdim

dimension dimension
\ifcmpnum

integer integer
\ifcondition

\if...
\ifcramped

TODO
\ifcsname

tokens\endcsname
\ifcstok

tokens\relax
\ifdefined

token
\ifdim

see \ifabsdim
\ifdimexpression

tokens\relax
\ifdimval

tokens\or
\ifempty

(token | {tokens})
\iffalse
\ifflags

\cs

\iffloat

see \ifabsfloat
\iffontchar

integer integer
\ifhaschar

token { tokens }
\ifhastok

token { tokens }
\ifhastoks

tokens\relax
\ifhasxtoks

tokens\relax
\ifhbox

(index | box)
\ifhmode
\ifinalignment
\ifincsname

tokens\endcsname
\ifinner
\ifinsert

integer
\ifintervaldim

dimension dimension dimension
\ifintervalfloat

integer integer integer
\ifintervalnum

float float float
\iflastnamedcs
\ifmathparameter

integer
\ifmathstyle

mathstyle
\ifmmode
\ifnum

see \ifabsnum
\ifnumexpression

tokens\relax
\ifnumval

tokens\or
\ifodd

integer
\ifparameter

parameter\or
\ifparameters
\ifrelax

token
\iftok

tokens\relax
\iftrue

183

t \ifvbox
see \ifhbox
t \ifvmode
t \ifvoid
see \ifhbox
t \ifx
token
1 \ifzerodim
dimension
1 \ifzerofloat
float
1 \ifzeronum
integer
t \or
\orelse
1 \orunless

P

41 ignoresomething

1 \ignorearguments

1 \ignorenestedupto
token

1 \ignorepars

1 \ignorerest

t \ignorespaces

1 \ignoreupto
token

42 input

t \endinput
t \eofinput

{tokens} ({filename} | filename)

t \input
({filename} | filename)
1 \quitloop
1 \quitloopnow
1 \retokenized
[catcodetable] { tokens}
1 \scantextokens
{ tokens}
e \scantokens
{ tokens}
1 \tokenized
{ tokens}

43 insert

t \insert
integer

44 interaction

t \batchmode

t \errorstopmode
t \nonstopmode

t \scrollmode

45 internaldimension

t \boxmaxdepth
[=] dimension
: dimension
t \delimitershortfall
[=] dimension
: dimension
t \displayindent
[=] dimension
: dimension
t \displaywidth
[=] dimension
: dimension
t \emergencyextrastretch
[=] dimension
: dimension
t \emergencystretch
[=] dimension
: dimension
1 \glyphxoffset
[=] dimension
: dimension
1 \glyphyoffset
[=] dimension
: dimension
t \hangindent
[=] dimension
: dimension
t \hfuzz
[=] dimension
: dimension
t \hsize
[=] dimension
: dimension
1 \ignoredepthcriterion
[=] dimension

184

: dimension
\lineskiplimit
[=] dimension
: dimension
\mathsurround
[=] dimension
: dimension
\maxdepth
[=] dimension
: dimension
\nulldelimiterspace
[=] dimension
: dimension
\overfullrule
[=] dimension
: dimension
\pageextragoal
[=] dimension
: dimension
\parindent
[=] dimension
: dimension
\predisplaysize
[=] dimension
: dimension
\pxdimen
[=] dimension
: dimension
\scriptspace
[=] dimension
: dimension
\shortinlinemaththreshold
[=] dimension
: dimension
\splitmaxdepth
[=] dimension
: dimension
\tabsize
[=] dimension
: dimension
\vfuzz
[=] dimension
: dimension
\vsize
[=] dimension
: dimension

46 internalglue

t \abovedisplayshortskip

[=] gtlue
: glue
\abovedisplayskip
[=] gtlue
: glue
\additionalpageskip
[=] gtlue
: glue
\baselineskip
[=] gtlue
: glue
\belowdisplayshortskip
[=] gtlue
: glue
\belowdisplayskip
[=] gtlue
: glue
\emergencyleftskip
[=] gtlue
: glue
\emergencyrightskip
[=] gtlue
: glue
\initialpageskip
[=] gtlue
: glue
\initialtopskip
[=] gtlue
: glue
\leftskip
[=] gtlue
: glue
\lineskip
[=] gtlue
: glue
\mathsurroundskip
[=] gtlue
: glue
\maththreshold
[=] gtlue
: glue
\parfillleftskip
[=] gtlue
: glue
\parfillrightskip
[=] gtlue

185

: glue
t \parfillskip
[=] gtlue
: glue
1 \parinitleftskip
[=] glue
: glue
1 \parinitrightskip
[=] glue
: glue
t \parskip
[=] glue
: glue
t \rightskip
[=] glue
: glue
t \spaceskip
[=] glue
: glue
t \splittopskip
[=] glue
: glue
t \tabskip
[=] glue
: glue
t \topskip
[=] glue
: glue
t \xspaceskip
[=] glue
: glue

47 internalinteger

t \adjdemerits
[=] integer
: Integer
1 \adjustspacing
[=] integer
: Integer
1 \adjustspacingshrink
[=] integer
: Integer
1 \adjustspacingstep
[=] integer
: Integer
1 \adjustspacingstretch
[=] integer
: Integer

\alignmentcellsource
[=] integer
: Integer
\alignmentwrapsource
[=] integer
: Integer
\automatichyphenpenalty
[=] integer
: Integer
\automigrationmode
[=] integer
: Integer
\autoparagraphmode
[=] integer
: Integer
\binoppenalty
[=] integer
: Integer
\boxlimitmode
TODO
\brokenpenalty
[=] integer
: integer
\catcodetable
[=] integer
: integer
\clubpenalty
[=] integer
: Integer
\day
[=] integer
: Integer
\defaulthyphenchar
[=] integer
: Integer
\defaultskewchar
[=] integer
: Integer
\delimiterfactor
[=] integer
: integer
\discretionaryoptions
[=] integer
: integer
\displaywidowpenalty
[=] integer
: integer
\doubleadjdemerits
[=] integer

186

: Integer
\doublehyphendemerits
[=] integer
: Integer
\endlinechar
[=] integer
: Integer
\errorcontextlines
[=] integer
: Integer
\escapechar
[=] integer
: Integer
\eufactor
[=] integer
: Integer
\exceptionpenalty
[=] integer
: Integer
\exhyphenchar
[=] integer
: Integer
\exhyphenpenalty
[=] integer
: Integer
\explicithyphenpenalty
[=] integer
: Integer
\fam
[=] integer
: integer
\finalhyphendemerits
[=] integer
: integer
\firstvalidlanguage
[=] integer
: integer
\floatingpenalty
[=] integer
: integer
\globaldefs
[=] integer
: integer
\glyphdatafield
[=] integer
: integer
\glyphoptions
[=] integer
: integer

\glyphscale
[=] integer
: Integer
\glyphscriptfield
[=] integer
: Integer
\glyphscriptscale
[=] integer
: Integer

\glyphscriptscriptscale

[=] integer
: Integer
\glyphslant
[=] integer
: Integer
\glyphstatefield
[=] integer
: Integer
\glyphtextscale
[=] integer
: iInteger
\glyphweight
[=] integer
: Integer
\glyphxscale
[=] integer
: Integer
\glyphyscale
[=] integer
: Integer
\hangafter
[=] integer
: Integer
\hbadness
[=] integer
: Integer
\holdinginserts
[=] integer
: Integer
\holdingmigrations
[=] integer
: Integer
\hyphenationmode
[=] integer
: Integer
\hyphenpenalty
[=] integer
: Integer

187

\interlinepenalty
[=] integer
: integer
\language
[=] integer
: Integer
\lastlinefit
[=] integer
: Integer
\lefthyphenmin
[=] integer
: Integer
\linebreakcriterion
[=] integer
: Integer
\linebreakoptional
[=] integer
: Integer
\linebreakpasses
[=] integer
: Integer
\linedirection
[=] integer
: Integer
\linepenalty
[=] integer
: Integer
\localbrokenpenalty
[=] integer
: Integer

\localinterlinepenalty

[=] integer
: Integer
\localpretolerance
[=] integer
: Integer
\localtolerance
[=] integer
: Integer
\looseness
[=] integer
: Integer
\luacopyinputnodes
[=] integer
: Integer
\mathbeginclass
[=] integer
: iInteger

\mathcheckfencesmode
[=] integer
: Integer
\mathdictgroup
[=] integer
: Integer
\mathdictproperties
[=] integer
: Integer
\mathdirection
[=] integer
: Integer
\mathdisplaymode
[=] integer
: Integer

\mathdisplaypenaltyfactor

[=] integer
: Integer
\mathdisplayskipmode
[=] integer
: iInteger
\mathdoublescriptmode
[=] integer
: Integer
\mathendclass
[=] integer
: Integer
\matheqnogapstep
[=] integer
: Integer
\mathfontcontrol
[=] integer
: Integer
\mathgluemode
[=] integer
: Integer
\mathgroupingmode
[=] integer
: Integer
\mathinlinepenaltyfactor
[=] integer
: Integer
\mathleftclass
[=] integer
: Integer
\mathlimitsmode
[=] integer
: Integer

188

\mathnolimitsmode
[=] integer
: integer
\mathpenaltiesmode
[=] integer
: Integer
\mathpretolerance
[=] integer
: Integer
\mathrightclass
[=] integer
: Integer
\mathrulesfam
[=] integer
: Integer
\mathrulesmode
[=] integer
: Integer
\mathscriptsmode
[=] integer
: Integer
\mathslackmode
[=] integer
: Integer
\mathspacingmode
[=] integer
: Integer
\mathsurroundmode
[=] integer
: Integer
\mathtolerance
[=] integer
: Integer
\maxdeadcycles
[=] integer
: Integer
\month
[=] integer
: Integer
\newlinechar
[=] integer
: Integer
\normalizelinemode
[=] integer
: Integer
\normalizeparmode
[=] integer
: iInteger

\nospaces
[=] integer
: Integer
\orphanpenalty
[=] integer
: Integer
\outputbox
[=] integer
: Integer
\outputpenalty
[=] integer
: Integer
\overloadmode
[=] integer
: Integer
\parametermode
[=] integer
: Integer
\pardirection
[=] integer
: iInteger
\pausing
[=] integer
: Integer
\postdisplaypenalty
[=] integer
: Integer
\postinlinepenalty
[=] integer
: Integer

\postshortinlinepenalty

[=] integer
: Integer
\prebinoppenalty
[=] integer
: Integer
\predisplaydirection
[=] integer
: Integer
\predisplaygapfactor
[=] integer
: Integer
\predisplaypenalty
[=] integer
: Integer
\preinlinepenalty
[=] integer
: Integer

189

\prerelpenalty
[=] integer
: integer
\preshortinlinepenalty
[=] integer
: Integer
\pretolerance
[=] integer
: Integer
\protrudechars
[=] integer
: Integer
\relpenalty
[=] integer
: Integer
\righthyphenmin
[=] integer
: Integer
\savinghyphcodes
[=] integer
: Integer
\savingvdiscards
[=] integer
: Integer
\scriptspaceafterfactor
TODO
\scriptspacebeforefactor
TODO
\scriptspacebetweenfactor
TODO
\setfontid
[=] integer
: Integer
\setlanguage
[=] integer
: Integer
\shapingpenaltiesmode
[=] integer
: Integer
\shapingpenalty
[=] integer
: Integer
\shortinlineorphanpenalty
[=] integer
: Integer
\showboxbreadth
[=] integer
: iInteger

\showhoxdepth
[=] integer
: Integer
\shownodedetails
[=] integer
: Integer
\singlelinepenalty
[=] integer
: Integer
\spacefactormode
[=] integer
: Integer

\spacefactorshrinklimit

[=] integer
: Integer

\spacefactorstretchlimit

[=] integer
: Integer
\supmarkmode
[=] integer
: iInteger
\textdirection
[=] integer
: Integer
\time
[=] integer
: Integer
\tolerance
[=] integer
: Integer
\tracingadjusts
[=] integer
: Integer
\tracingalignments
[=] integer
: Integer
\tracingassigns
[=] integer
: Integer
\tracingcommands
[=] integer
: Integer
\tracingexpressions
[=] integer
: Integer
\tracingfullboxes
[=] integer
: Integer

190

\tracinggroups
[=] integer
: integer
\tracinghyphenation
[=] integer
: Integer
\tracingifs
[=] integer
: Integer
\tracinginserts
[=] integer
: Integer
\tracinglevels
[=] integer
: Integer
\tracinglists
[=] integer
: Integer
\tracinglostchars
[=] integer
: Integer
\tracingmacros
[=] integer
: Integer
\tracingmarks
[=] integer
: Integer
\tracingmath
[=] integer
: Integer
\tracingnesting
[=] integer
: Integer
\tracingnodes
[=] integer
: Integer
\tracingonline
[=] integer
: Integer
\tracingoutput
[=] integer
: Integer
\tracingpages
[=] integer
: Integer
\tracingparagraphs
[=] integer
: iInteger

1 \tracingpasses
[=] integer
: Integer
1 \tracingpenalties
[=] integer
: Integer
t \tracingrestores
[=] integer
: Integer
t \tracingstats
[=] integer
: Integer
t \uchyph
[=] integer
: Integer
1 \variablefam
[=] integer
: Integer
t \vbadness
[=] integer
: iInteger
t \widowpenalty
[=] integer
: Integer
t \year
[=] integer
: Integer

48 internalmuglue

t \medmuskip
[=] muglue
: muglue
1 \pettymuskip
[=] muglue
: muglue
t \thickmuskip
[=] muglue
: muglue
t \thinmuskip
[=] muglue
: muglue
1 \tinymuskip
[=] muglue
: muglue

191

49 internaltoks

t \errhelp

50 italiccorrection

[=] toks
: toks
\everybeforepar
[=] toks
: toks
\everycr
[=] toks
: toks
\everydisplay
[=] toks
: toks
\everyeof
[=] toks
: toks
\everyhbox
[=] toks
: toks
\everyjob
[=] toks
: toks
\everymath
[=] toks
: toks
\everymathatom
[=] toks
: toks
\everypar
[=] toks
: toks
\everytab
[=] toks
: toks
\everyvbox
[=] toks
: toks
\output
[=] toks
: toks

t\/

1 \explicititaliccorrection

1 \forcedleftcorrection

TODO

TODO

1 \forcedrightcorrection
TODO

51 kern

t \hkern
dimension

t \kern
dimension

t \vkern
dimension

52 leader

t \cleaders
(box | rule| glyph) glue
1 \gleaders
see \cleaders
t \leaders
see \cleaders
1 \uleaders
[callback integer] (box | rule | glyph)
glue
t \xleaders
see \cleaders

53 legacy

t \shipout
{ tokens}

54 let

1 \futuredef
\cs \cs
t \futurelet
\cs [=] \cs
1 \glet
\cs
1 \gletcsname
tokens\endcsname
1 \glettonothing
\cs
t \let
\cs
1 \letcharcode
\cs

192

1 \letcsname
tokens\endcsname
1 \letfrozen
\cs
1 \letprotected
\cCs
1 \lettolastnamedcs
\cs
1 \lettonothing
\cs
1 \swapcsvalues
\cs \cs
1 \unletfrozen
\cs
1 \unletprotected
\cs

55 localbox

1 \localleftbox
box

1 \localmiddlebox
box

1 \localrightbox
box

56 luafunctioncall

1 \luabytecodecall
integer

1 \luafunctioncall
integer

57 makebox

t \box
(index | box)

t \copy
see \box

1 \dbox
[target integer] [to dimension]
[adapt] [attr integer integer]
[anchor integer] [axis integer]
[shift dimension] [spread dimension]
[source integer] [direction integer]
[delay] [orientation integer]
[xoffset dimension] [xmove
dimension] [yoffset dimension]

[ymove dimension] [reverse] [retain]
[container] [mathtext] [class
integer] { tokens}
1 \dpack
see \dbox
1 \dsplit
[attr] [to] [upto] {tokens}
t \hbox
see \dbox
1 \hpack
see \dbox
1 \insertbox
integer
\insertcopy
integer
\lastbox
\localleftboxbox
\localmiddleboxbox
\localrightboxbox
\tpack
see \dbox
1 \tsplit
see \dsplit
t \vbox
see \dbox
1 \vpack
see \dbox
t \vsplit
see \dsplit
t \vtop
see \dbox

—~

~

58 mark

1 \clearmarks
integer

1 \flushmarks

t \mark
{tokens}

e \marks
integer { tokens }

59 mathaccent

1 \Umathaccent
[attr integer integer] [center]
[class integer] [exact] [source
integer] [stretch] [shrink]
[fraction integer] [fixed]

193

[keepbase] [nooverflow] [base]
(both [fixed] character [fixed]
character | bottom [fixed]
character | top [fixed]
character | overlay
character | character)

t \mathaccent
{ tokens}

60 mathcharnumber

1 \Umathchar
integer
t \mathchar
integer
1 \mathclass
integer
1 \mathdictionary
integer mathchar
1 \nomathchar
TODO

61 mathchoice

t \mathchoice

{ tokens} { tokens} { tokens} { tokens}
1 \mathdiscretionary

[class integer] {tokens} { tokens}

{ tokens}
1 \mathstack

{ tokens}

62 mathcomponent

1 \mathatom
[attr integer integer] [all integer]
[leftclass integer] [limits]
[rightclass integer] [class integer]
[unpack] [unroll] [single] [source
integer] [textfont] [mathfont]
[options integer] [nolimits]
[nooverflow] [void] [phantom]
[continuation] [integer]

t \mathbin
{ tokens}

t \mathclose
{ tokens}

\mathinner

{ tokens}
\mathop

{ tokens}
\mathopen

{tokens}
\mathord

{ tokens}
\mathpunct

{ tokens}
\mathrel

{ tokens}
\overline

{tokens}
\underline

{ tokens}

63 mathfence

1 \Uleft
[auto] [attr integer integer] [axis]
[bottom dimension] [depth dimension]
[factor integer] [height dimension]

[noaxis] [nocheck] [nolimits]
[nooverflow] [leftclass integer]
[limits] [exact] [void] [phantom]

[class integer] [rightclass integer]

[scale] [source integer] [top]

delimiter
\Umiddle

see \Uleft
\Uoperator

see \Uleft
\Uright

see \Uleft
\Uvextensible

see \Uleft
\left

see \Uleft
\middle

see \Uleft
\right

see \Uleft

64 mathfraction

1 \Uabove

dimension [attr integer integer]
[class integer] [center] [exact]

194

[proportional] [noaxis]
[nooverflow] [style mathstyle]
[source integer] [hfactor integer]
[vfactor integer] [font] [thickness
dimension]

1 \Uabovewithdelims
delimiter delimiter dimension [attr
integer integer] [class integer]
[center] [exact] [proportional]
[noaxis] [nooverflow] [style
mathstyle] [source integer] [hfactor
integer] [vfactor integer] [font]
[thickness dimension]

1 \Uatop
see \Uabove

1 \Uatopwithdelims
see \Uabovewithdelims

1 \Uover
[attr integer integer] [class
integer] [center] [exact]
[proportional] [noaxis]
[nooverflow] [style mathstyle]
[source integer] [hfactor integer]
[vfactor integer] [font] [thickness
dimension]

1 \Uoverwithdelims
delimiter delimiter [attr integer
integer] [class integer] [center]
[exact] [proportional] [noaxis]
[nooverflow] [style mathstyle]
[source integer] [hfactor integer]
[vfactor integer] [font] [thickness
dimension]

1 \Uskewed
delimiter [attr integer integer]
[class integer] [center] [exact]
[proportional] [noaxis]
[nooverflow] [style mathstyle]
[source integer] [hfactor integer]
[vfactor integer] [font] [thickness
dimension]

1 \Uskewedwithdelims
delimiter delimiter delimiter [attr
integer integer] [class integer]
[center] [exact] [proportional]
[noaxis] [nooverflow] [style
mathstyle] [source integer] [hfactor
integer] [vfactor integer] [font]
[thickness dimension]

1 \Ustretched
see \Uskewed
1 \Ustretchedwithdelims
see \Uskewedwithdelims
t \above
dimension
t \abovewithdelims
delimiter delimiter dimension
t \atop
dimension
t \atopwithdelims
delimiter delimiter dimension
t \over
t \overwithdelims
delimiter delimiter

65 mathmodifier

\Umathadapttoleft
\Umathadapttoright
\Umathlimits
\Umathnoaxis
\Umathnolimits
\Umathopenupdepth
dimension
1 \Umathopenupheight
dimension
\Umathphantom
\Umathsource
[nucleus] integer
\Umathuseaxis
\Umathvoid
\displaylimits
\limits
\nolimits

e i e i

~

~+ + + ~ ~

66 mathparameter

1 \Umathaccentbhasedepth
mathstyle [=] dimension
> mathstyle : dimension
1 \Umathaccentbaseheight
mathstyle [=] dimension
> mathstyle : dimension
1 \Umathaccentbottomovershoot
mathstyle [=] dimension
> mathstyle : dimension
1 \Umathaccentbottomshiftdown
mathstyle [=] dimension

195

> mathstyle : dimension
\Umathaccentextendmargin
mathstyle [=] dimension
> mathstyle : dimension
\Umathaccentsuperscriptdrop
mathstyle [=] dimension
> mathstyle : dimension
\Umathaccentsuperscriptpercent
mathstyle [=] integer
> mathstyle : integer
\Umathaccenttopovershoot
mathstyle [=] dimension
> mathstyle : dimension
\Umathaccenttopshiftup
mathstyle [=] dimension
> mathstyle : dimension
\Umathaccentvariant
[=] mathstyle
: mathstyle
\Umathaxis
mathstyle [=] dimension
> mathstyle : dimension
\Umathbottomaccentvariant
[=] mathstyle
: mathstyle
\Umathconnectoroverlapmin
mathstyle [=] dimension
> mathstyle : dimension
\Umathdegreevariant
[=] mathstyle
: mathstyle
\Umathdelimiterextendmargin
mathstyle [=] dimension
> mathstyle : dimension
\Umathdelimiterovervariant
[=] mathstyle
: mathstyle
\Umathdelimiterpercent
mathstyle [=] integer
> mathstyle: integer
\Umathdelimitershortfall
mathstyle [=] dimension
> mathstyle : dimension
\Umathdelimiterundervariant
[=] mathstyle
: mathstyle
\Umathdenominatorvariant
[=] mathstyle
: mathstyle

\Umathexheight
mathstyle [=] dimension
> mathstyle : dimension
\Umathextrasubpreshift
mathstyle [=] dimension
> mathstyle : dimension
\Umathextrasubprespace
mathstyle [=] dimension
> mathstyle : dimension
\Umathextrasubshift
mathstyle [=] dimension
> mathstyle : dimension
\Umathextrasubspace
mathstyle [=] dimension
> mathstyle : dimension
\Umathextrasuppreshift
mathstyle [=] dimension
> mathstyle : dimension
\Umathextrasupprespace
mathstyle [=] dimension
> mathstyle : dimension
\Umathextrasupshift
mathstyle [=] dimension
> mathstyle : dimension
\Umathextrasupspace
mathstyle [=] dimension
> mathstyle : dimension

\Umathflattenedaccentbasedepth

mathstyle [=] dimension
> mathstyle : dimension

\Umathflattenedaccentbaseheight

mathstyle [=] dimension
> mathstyle : dimension

\Umathflattenedaccentbottomshiftdown

mathstyle [=] dimension
> mathstyle : dimension

\Umathflattenedaccenttopshiftup

mathstyle [=] dimension
> mathstyle : dimension
\Umathfractiondelsize
mathstyle [=] dimension
> mathstyle : dimension
\Umathfractiondenomdown
mathstyle [=] dimension
> mathstyle : dimension
\Umathfractiondenomvgap
mathstyle [=] dimension
> mathstyle : dimension

196

\Umathfractionnumup
mathstyle [=] dimension
> mathstyle : dimension
\Umathfractionnumvgap
mathstyle [=] dimension
> mathstyle : dimension
\Umathfractionrule
mathstyle [=] dimension
> mathstyle : dimension
\Umathfractionvariant
[=] mathstyle
: mathstyle
\Umathhextensiblevariant
[=] mathstyle
: mathstyle
\Umathlimitabovebgap
mathstyle [=] dimension
> mathstyle : dimension
\Umathlimitabovekern
mathstyle [=] dimension
> mathstyle : dimension
\Umathlimitabovevgap
mathstyle [=] dimension
> mathstyle : dimension
\Umathlimitbelowbgap
mathstyle [=] dimension
> mathstyle : dimension
\Umathlimitbelowkern
mathstyle [=] dimension
> mathstyle : dimension
\Umathlimitbelowvgap
mathstyle [=] dimension
> mathstyle : dimension
\Umathnolimitsubfactor
mathstyle [=] integer
> mathstyle : integer
\Umathnolimitsupfactor
mathstyle [=] integer
> mathstyle : integer
\Umathnumeratorvariant
[=] mathstyle
: mathstyle
\Umathoperatorsize
mathstyle [=] dimension
> mathstyle : dimension
\Umathoverbarkern
mathstyle [=] dimension
> mathstyle : dimension

\Umathoverbarrule
mathstyle [=] dimension
> mathstyle : dimension
\Umathoverbarvgap
mathstyle [=] dimension
> mathstyle : dimension
\Umathoverdelimiterbgap
mathstyle [=] dimension
> mathstyle : dimension
\Umathoverdelimitervariant
[=] mathstyle
: mathstyle
\Umathoverdelimitervgap
mathstyle [=] dimension
> mathstyle : dimension
\Umathoverlayaccentvariant
[=] mathstyle
: mathstyle
\Umathoverlinevariant
[=] mathstyle
: mathstyle
\Umathpresubshiftdistance
mathstyle [=] dimension
> mathstyle : dimension
\Umathpresupshiftdistance
mathstyle [=] dimension
> mathstyle : dimension
\Umathprimeraise
mathstyle [=] dimension
> mathstyle : dimension
\Umathprimeraisecomposed
mathstyle [=] dimension
> mathstyle : dimension
\Umathprimeshiftdrop
mathstyle [=] dimension
> mathstyle : dimension
\Umathprimeshiftup
mathstyle [=] dimension
> mathstyle : dimension
\Umathprimespaceafter
mathstyle [=] dimension
> mathstyle : dimension
\Umathprimevariant
[=] mathstyle
: mathstyle
\Umathprimewidth
mathstyle [=] dimension
> mathstyle : dimension

197

\Umathquad
mathstyle [=] dimension
> mathstyle : dimension
\Umathradicaldegreeafter
mathstyle [=] dimension
> mathstyle : dimension
\Umathradicaldegreebefore
mathstyle [=] dimension
> mathstyle : dimension
\Umathradicaldegreeraise
mathstyle [=] dimension
> mathstyle : dimension
\Umathradicalextensibleafter
mathstyle [=] dimension
> mathstyle : dimension
\Umathradicalextensiblebefore
mathstyle [=] dimension
> mathstyle : dimension
\Umathradicalkern
mathstyle [=] dimension
> mathstyle : dimension
\Umathradicalrule
mathstyle [=] dimension
> mathstyle : dimension
\Umathradicalvariant
[=] mathstyle
: mathstyle
\Umathradicalvgap
mathstyle [=] dimension
> mathstyle : dimension
\Umathruledepth
mathstyle [=] dimension
> mathstyle : dimension
\Umathruleheight
mathstyle [=] dimension
> mathstyle : dimension
\Umathskeweddelimitertolerance
mathstyle [=] dimension
> mathstyle : dimension
\Umathskewedfractionhgap
mathstyle [=] dimension
> mathstyle : dimension
\Umathskewedfractionvgap
mathstyle [=] dimension
> mathstyle : dimension
\Umathspaceafterscript
mathstyle [=] dimension
> mathstyle : dimension

\Umathspacebeforescript
mathstyle [=] dimension
> mathstyle : dimension
\Umathspacebetweenscript
TODO
\Umathstackdenomdown
mathstyle [=] dimension
> mathstyle : dimension
\Umathstacknumup
mathstyle [=] dimension
> mathstyle : dimension
\Umathstackvariant
[=] mathstyle
: mathstyle
\Umathstackvgap
mathstyle [=] dimension
> mathstyle : dimension
\Umathsubscriptsnap
TODO
\Umathsubscriptvariant
[=] mathstyle
: mathstyle
\Umathsubshiftdistance
mathstyle [=] dimension
> mathstyle : dimension
\Umathsubshiftdown
mathstyle [=] dimension
> mathstyle : dimension
\Umathsubshiftdrop
mathstyle [=] dimension
> mathstyle : dimension
\Umathsubsupshiftdown
mathstyle [=] dimension
> mathstyle : dimension
\Umathsubsupvgap
mathstyle [=] dimension
> mathstyle : dimension
\Umathsubtopmax
mathstyle [=] dimension
> mathstyle : dimension
\Umathsupbottommin
mathstyle [=] dimension
> mathstyle : dimension
\Umathsuperscriptsnap
TODO
\Umathsuperscriptvariant
mathstyle [=] dimension
> mathstyle : dimension

198

\Umathsupshiftdistance
mathstyle [=] dimension
> mathstyle : dimension
\Umathsupshiftdrop
mathstyle [=] dimension
> mathstyle : dimension
\Umathsupshiftup
mathstyle [=] dimension
> mathstyle : dimension
\Umathsupsubbottommax
mathstyle [=] dimension
> mathstyle : dimension
\Umathtopaccentvariant
[=] mathstyle
: mathstyle
\Umathunderbarkern
mathstyle [=] dimension
> mathstyle : dimension
\Umathunderbarrule
mathstyle [=] dimension
> mathstyle : dimension
\Umathunderbarvgap
mathstyle [=] dimension
> mathstyle : dimension
\Umathunderdelimiterbgap
mathstyle [=] dimension
> mathstyle : dimension
\Umathunderdelimitervariant
[=] mathstyle
: mathstyle
\Umathunderdelimitervgap
mathstyle [=] dimension
> mathstyle : dimension
\Umathunderlinevariant
[=] mathstyle
: mathstyle
\Umathvextensiblevariant
[=] mathstyle
: mathstyle
\Umathxscale
mathstyle [=] integer
> mathstyle : integer
\Umathyscale
mathstyle [=] integer
> mathstyle : integer
\copymathatomrule
integer integer
\copymathparent
integer integer

1 \copymathspacing
integer integer
1 \letmathatomrule
integer integer integer integer
integer
1 \letmathparent
integer integer
1 \letmathspacing
see \letmathatomrule
1 \resetmathspacing
1 \setdefaultmathcodes
1 \setmathatomrule
integer integer mathstyle integer
integer
1 \setmathdisplaypostpenalty
integer [=] integer
1 \setmathdisplayprepenalty
integer [=] integer
1 \setmathignore
mathparameter integer
1 \setmathoptions
integer [=] integer
1 \setmathpostpenalty
integer [=] integer
1 \setmathprepenalty
integer [=] integer
1 \setmathspacing
integer integer mathstyle glue

67 mathradical

1 \Udelimited
[attr integer integer] [bottom]
[exact] [top] [style mathstyle]
[source integer] [stretch] [shrink]
[width dimension] [height dimension]
[depth dimension] [left] [middle]
[right] [nooverflow] delimiter
delimiter [delimiter] [delimiter]
(mathatom | { tokens})

1 \Udelimiterover
[attr integer integer] [bottom]
[exact] [top] [style mathstyle]
[source integer] [stretch] [shrink]
[width dimension] [height dimension]
[depth dimension] [left] [middle]
[right] [nooverflow] delimiter
[delimiter] [delimiter]
(mathatom | { tokens})

199

1 \Udelimiterunder
see \Udelimiterover

1 \Uhextensible
see \Udelimiterover

1 \Uoverdelimiter
see \Udelimiterover

1 \Uradical
see \Udelimiterover

1 \Uroot
[attr integer integer] [bottom]
[exact] [top] [style mathstyle]
[source integer] [stretch] [shrink]
[width dimension] [height dimension]
[depth dimension] [left] [middle]
[right] [nooverflow] delimiter
[delimiter] [delimiter]
(mathatom | { tokens })
(mathatom | { tokens })

1 \Urooted
[attr integer integer] [bottom]
[exact] [top] [style mathstyle]
[source integer] [stretch] [shrink]
[width dimension] [height dimension]
[depth dimension] [left] [middle]
[right] [nooverflow] delimiter
delimiter [delimiter] [delimiter]
(mathatom | { tokens })
(mathatom | { tokens })

1 \Uunderdelimiter
see \Udelimiterover

t \radical
see \Uroot

68 mathscript

P

\noatomruling
\nonscript
\noscript

TODO
\nosubprescript
\nosubscript
\nosuperprescript
\nosuperscript
\primescript

(mathatom | { tokens })
1 \shiftedsubprescript

see \primescript

1 \shiftedsubscript
see \primescript

~ r+

-

-

—~

~

~

\shiftedsuperprescript

see \primescript
\shiftedsuperscript

see \primescript
\subprescript

see \primescript
\subscript

see \primescript
\superprescript

see \primescript
\superscript

see \primescript

69 mathshiftcs

e e i

\Ustartdisplaymath
\Ustartmath
\Ustartmathmode
\Ustopdisplaymath
\Ustopmath
\Ustopmathmode

70 mathstyle

AF R R A AR ARAAAAAAASAA

~ +

\allcrampedstyles
\alldisplaystyles
\allmainstyles
\allmathstyles
\allscriptscriptstyles
\allscriptstyles
\allsplitstyles
\alltextstyles
\alluncrampedstyles
\allunsplitstyles
\crampeddisplaystyle
\crampedscriptscriptstyle
\crampedscriptstyle
\crampedtextstyle
\currentlysetmathstyle
TODO
\displaystyle
\givenmathstyle
mathstyle
\scaledmathstyle
integer
> mathstyle: integer
\scriptscriptstyle
\scriptstyle
\textstyle

200

71 message

t \errmessage
{ tokens}
t \message
{ tokens}

72 mkern

t \mkern
dimension

73 mskip

1 \mathatomskip
muglue

t \mskip
muglue

74 noexpand

t \noexpand
token

75 pageproperty

t \deadcycles
[=] integer
: integer
1 \insertdepth
integer [=] dimension
> integer : dimension
1 \insertdistance
integer [=] dimension
> integer : dimension
\insertheight
integer [=] dimension
> integer : dimension
1 \insertheights
[=] dimension
: dimension
1 \insertlimit
integer [=] dimension
> integer : dimension
\insertmaxdepth
integer [=] dimension
> integer : dimension

~

~

\insertmultiplier
integer [=] integer
> integer : integer
\insertpenalties
[=] integer
: Integer
\insertpenalty
integer [=] integer
> integer : integer
\insertstorage
integer [=] integer
> integer : integer
\insertstoring
[=] integer
: Integer
\insertwidth
integer [=] dimension
> integer : dimension
\pagedepth
[=] dimension
: dimension
\pageexcess
[=] dimension
: dimension
\pagefilllstretch
[=] dimension
: dimension
\pagefillstretch
[=] dimension
: dimension
\pagefilstretch
[=] dimension
: dimension
\pagefistretch
[=] dimension
: dimension
\pagegoal
[=] dimension
: dimension
\pagelastdepth
[=] dimension
: dimension
\pagelastfilllstretch
[=] dimension
: dimension
\pagelastfillstretch
[=] dimension
: dimension

201

1 \pagelastfilstretch
[=] dimension
: dimension
1 \pagelastfistretch
TODO
1 \pagelastheight
[=] dimension
: dimension
1 \pagelastshrink
[=] dimension
: dimension
1 \pagelaststretch
[=] dimension
: dimension
t \pageshrink
[=] dimension
: dimension
t \pagestretch
[=] dimension
: dimension
t \pagetotal
[=] dimension
: dimension
1 \pagevsize
[=] dimension
: dimension

76 parameter

1 \alignmark
1 \parametermark

77 penalty

1 \hpenalty
integer

t \penalty
integer

1 \vpenalty
integer

78 prefix

1 \aliased

1 \constant

1 \constrained
1 \deferred

1 \enforced

~FF AR RFRFA AR+ RAESAA+ A

\frozen
\global
\immediate
\immutable
\inherited
\instance
\long
\mutable
\noaligned
\outer
\overloaded
\permanent
\protected
\retained
\semiprotected
\tolerant
\untraced

79 register

1

1

r+

\attribute
(index | box) [=] integer
> (index | box) : integer
\count
see \attribute
\dimen
(index | box) [=] dimension
> (index | box) : dimension
\float
(index | box) [=] float
> (index | box) : float
\muskip
(index | box) [=] muglue
> (index | box) : muglue
\skip
(index | box) [=] glue
> (index | box) : glue
\toks
(index | box) [=] {tokens}
> (index | box) : {tokens}

80 relax

1
t

\norelax
\relax

202

81 removeitem

t \unboundary
t \unkern

t \unpenalty
t \unskip

82 setbox

t \setbox
(index | box) [=]

83 setfont

t \nullfont

84 shorthanddef

1 \Umathchardef

\cs integer
1 \Umathdictdef

\cs integer integer
1 \attributedef

\cs integer
t \chardef

\cs integer
t \countdef

\cs integer
t \dimendef

\cs integer
1 \dimensiondef

\cs integer
1 \floatdef

\cs integer
1 \fontspecdef

\cs (font | integer)
1 \gluespecdef

\cs integer
1 \integerdef

\cs integer
1 \luadef

\cs integer
t \mathchardef

\cs integer
1 \mugluespecdef

\cs integer
t \muskipdef

\cs integer

1 \parameterdef

\cs integer
1 \positdef

\cs integer
t \skipdef

\cs integer
t \toksdef

\cs integer

85 someitem

t \badness
[=] integer
: integer
e \currentgrouplevel
[=] integer
: Integer
e \currentgrouptype
[=] integer
: Integer
e \currentifbranch
[=] integer
: Integer
e \currentiflevel
[=] integer
: Integer
e \currentiftype
[=] integer
: Integer
1 \currentloopiterator
[=] integer
: Integer
1 \currentloopnesting
[=] integer
: Integer
e \currentstacksize
[=] integer
: Integer
e \dimexpr

tokens\relax [=] dimension
> tokens\relax : dimension

1 \dimexpression

tokens\relax [=] dimension
> tokens\relax : dimension

1 \floatexpr

tokens\relax [=] float

> tokens\relax : float
1 \fontcharba

integer [=] dimension

203

> integer : dimension
\fontchardp
integer [=] dimension
> integer : dimension
\fontcharht
integer [=] dimension
> integer : dimension
\fontcharic
integer [=] dimension
> integer : dimension
\fontcharta
integer [=] dimension
> integer : dimension
\fontcharwd
integer [=] dimension
> integer : dimension
\fontid

(font|integer) [=] integer
> (font | integer) : integer

\fontmathcontrol
see \fontid
\fontspecid
see \fontid
\fontspecifiedsize
see \fontid
\fontspecscale
see \fontid
\fontspecslant
see \fontid
\fontspecweight
see \fontid
\fontspecxscale
see \fontid
\fontspecyscale
see \fontid
\fonttextcontrol
see \fontid
\glueexpr
tokens\relax [=] glue
> tokens\relax : glue
\glueshrink
glue [=] dimension
> glue : dimension
\glueshrinkorder
glue [=] dimension
> glue : dimension
\gluestretch
glue [=] integer
> glue: integer

\gluestretchorder
glue [=] integer
> glue: integer
\gluetomu
glue [=] glue
> glue : glue
\glyphxscaled
[=] integer
: Integer
\glyphyscaled
[=] integer
: Integer
\indexofcharacter
integer [=] integer
> integer : integer
\indexofregister
integer [=] integer
> integer : integer
\inputlineno
[=] integer
: iInteger
\insertprogress
integer [=] dimension
> integer : dimension
\lastarguments
[=] integer
: Integer
\lastatomclass
[=] integer
: Integer
\lastboundary
[=] integer
: Integer
\lastchkdimension
[=] dimension
: dimension
\lastchknumber
[=] integer
: Integer
\lastkern
[=] dimension
: dimension
\lastleftclass
[=] integer
: Integer
\lastloopiterator
[=] integer
: Integer

204

\lastnodesubtype
[=] integer
: integer
\lastnodetype
[=] integer
: Integer
\lastpageextra
[=] dimension
: dimension
\lastparcontext
[=] integer
: Integer
\lastpartrigger
TODO
\lastpenalty
[=] integer
: Integer
\lastrightclass
[=] integer
: Integer
\lastskip
[=] gtlue
: glue
\leftmarginkern
[=] dimension
: dimension
\luatexrevision
[=]{tokens}
: { tokens}
\luatexversion
[=]{tokens}
: { tokens}
\mathatomglue
[=] gtue
: glue
\mathcharclass
integer [=] integer
> integer : integer
\mathcharfam
integer [=] integer
> integer : integer
\mathcharslot
integer [=] integer
> integer : integer
\mathmainstyle
[=] integer
: Integer
\mathparentstyle
TODO

\mathscale
[=] integer
: Integer
\mathstackstyle
[=] integer
: Integer
\mathstyle
[=] integer
: Integer
\mathstylefontid
[=] integer
: Integer
\muexpr
tokens\relax [=] muglue
> tokens\relax : muglue
\mutoglue
muglue [=] glue
> muglue : glue
\nestedloopiterator
[=] integer
: iInteger
\numericscale
(integer | float) [=] integer
> (integer | float) : integer
\numericscaled
see \numericscale
\numexpr
tokens\relax [=] integer
> tokens\relax : integer
\numexpression
tokens\relax [=] integer
> tokens\relax : integer
\overshoot
[=] dimension
: dimension
\parametercount
[=] integer
: integer
\parameterindex
[=] integer
: integer
\parshapedimen
integer [=] dimension
> integer : dimension
\parshapeindent
integer [=] dimension
> integer : dimension
\parshapelength
[=] dimension

205

: dimension
\parshapewidth
TODO
\previousloopiterator
[=] integer
: Integer
\rightmarginkern
[=] dimension
: dimension
\scaledemwidth
(font | integer) [=] dimension
> (font | integer) : dimension
\scaledexheight
see \scaledemwidth
\scaledextraspace
see \scaledemwidth
\scaledfontcharba
integer [=] dimension
> integer : dimension
\scaledfontchardp
integer [=] dimension
> integer : dimension
\scaledfontcharht
integer [=] dimension
> integer : dimension
\scaledfontcharic
integer [=] dimension
> integer : dimension
\scaledfontcharta
integer [=] dimension
> integer : dimension
\scaledfontcharwd
integer [=] dimension
> integer : dimension
\scaledinterwordshrink
see \scaledemwidth
\scaledinterwordspace
see \scaledemwidth
\scaledinterwordstretch
see \scaledemwidth
\scaledmathaxis
mathstyle [=] dimension
> mathstyle : dimension
\scaledmathemwidth
mathstyle [=] dimension
> mathstyle : dimension
\scaledmathexheight
mathstyle [=] dimension
> mathstyle : dimension

206

1 \scaledslantperpoint
see \scaledemwidth

87 the

e \detokenize

86 specification {tokens}
1 \expandeddetokenize
e \clubpenalties { tokens } .
[options] integer n * (integer) 1 \protecteddetokenize
: Integer {tokens} .
e \displaywidowpenalties 1 \protectedexpandeddetokenize
see \clubpenalties { tokens}
e \interlinepenalties t \the' _
see \clubpenalties dlmen51on .
1 \mathbackwardpenalties l \thew1th9utun1t
see \clubpenalties quantity
1 \mathforwardpenalties e \unexpanded
see \clubpenalties {tokens}
1 \orphanpenalties
see \clubpenalties 88 unhbox
1 \parpasses
[options] n* ([adjdemerits integer] t \unhbox
[adjustspacing integer] integer
[adjustspacingstep integer] t \unhcopy
[adjustspacingshrink integer] integer
[adjustspacingstretch integer] 1 \unhpack
[badness integer] [classes integer] integer
[callback integer]
[doubleadjdemerits integer]
[doublehyphendemerits integer] 89 unvbox
[emergencystretch dimension]]
; 1 \insertunbox
[extrahyphenpenalty integer] -
[finalhyphendemerits integer] L\ 1n iger
[identifier integer] \1n§er uncopy
o o integer
[ifadjustspacing integer] [looseness -
: . . , e \pagediscards
integer] [linebreakcriterium Litdi g
integer] [linebreakoptional integer] e \splitdiscards
. ; t \unvbox
[linepenalty integer] [next] _
; ; integer
[orphanpenalty integer] [quit] .
[skip] [threshold dimension] \unycopy
. integer
[tolerance integer])
: 1 \unvpack
: integer e
t \parshape 1nteger
[options] integer n * (dimension
dimension) 90 vadjust
: Integer
e \widowpenalties t \vadjust

see \clubpenalties

[pre] [post] [baseline] [before]
[index integer]

[after] [attr

integer integer] [depth
(after | before | check | last)]

207

{ tokens} dimension] [left dimension] [right
dimension] [top dimension] [bottom

91 valign

t \valign
[attr integer integer] [callback
integer] [discard] [noskips]
[reverse] [to dimension] [spread
dimension] { tokens}

92 vcenter

t \vcenter
[target integer] [to dimension]
[adapt] [attr integer integer]
[anchor integer] [axis integer]
[shift dimension] [spread dimension]
[source integer] [direction integer]
[delay] [orientation integer]
[xoffset dimension] [xmove
dimension] [yoffset dimension]
[ymove dimension] [reverse] [retain]
[container] [mathtext] [class
integer] {tokens}

93 vmove

t \lower
dimension box

t \raise
dimension box

94 vrule

1 \novrule
[attr integer [=] integer] [width
dimension] [height dimension] [depth
dimension] [left dimension] [right
dimension] [top dimension] [bottom
dimension] [xoffset dimension]
[yoffset dimension] [font integer]
[fam integer] [char integer]

1 \srule
see \novrule

1 \virtualvrule
[attr integer [=] integer] [width
dimension] [height dimension] [depth

dimension] [xoffset dimension]
[yoffset dimension]

t \vrule
see \novrule

95 vskip

t \vfil

t \vfill

t \vfilneg

t \vskip
dimension [plus
(dimension | fi[n*1])] [minus
(dimension | fi[n*1])]

t \vss

96 xray

t \show
token
t \showbox
(index | box)
1 \showcodestack
TODO
\showgroups
\showifs
\showlists
\showstack
\showthe
quantity
e \showtokens
{ tokens}

+ ~ + ® O®

208

Rationale

Some words about the why and how it came. One of the early adopters of ConTEXt was Taco Hoekwater
and we spent numerous trips to TgX meetings all over the globe. He was also the only one I knew
who had read the TgX sources. Because ConTgXt has always been on the edge of what is possible
and at that time we both used it for rather advanced rendering, we also ran into the limitations.
I'm not talking of TgX features here. Naturally old school TgX is not really geared for dealing with
images of all kind, colors in all kind of color spaces, highly interactive documents, input methods like
xml, etc. The nice thing is that it offers some escapes, like specials and writes and later execution
of programs that opened up lots of possibilities, so in practice there were no real limitations to what
one could do. But coming up with a consistent and extensible (multi lingual) user interface was non
trivial, because it had an impact in memory usage and performance. A lot could be done given some
programming, as ConTgXt MKII proves, but it was not always pretty under the hood. The move to Lua-
TEX and MKIV transferred some action to Lua, and because LuaTgX effectively was a ConTgXt related
project, we could easily keep them in sync.

Our traveling together, meeting several times per year, and eventually email and intense LuaTgX de-
velopments (lots of Skype sessions) for a couple of years, gave us enough opportunity to discuss all
kind of nice features not present in the engine. The previous century we discussed lots of them, re-
jected some, stayed with others, and I admit that forgot about most of the arguments already. Some
that we did was already explored in eetex, some of those ended up in LuaTgX, and eventually what we
have in LuaMetaTgX can been seen as the result of years of programming in TgX, improving macros,
getting more performance and efficiency out of existing ConTgXt code and inspiration that we got out
of the ConTEXt community, a demanding lot, always willing to experiment with us.

Once I decided to work on LuaMetaTgX and bind its source to the ConTgXt distribution so that we can
be sure that it won't get messed up and might interfere with the ConTgXt expectations, some more
primitives saw their way into it. It is very easy to come up with all kind of bells and whistles but it is
equally easy to hurt performance of an engine and what might go unnoticed in simple tests can really
affect a macro package that depends on stability. So, what I did was mostly looking at the ConTgXt
code and wondering how to make some of the low level macros look more natural, also because I
know that there are users who look into these sources. We spend a lot of time making them look
consistent and nice and the nicer the better. Getting a better performance was seldom an argument
because much is already as fast as can be so there is not that much to gain, but less clutter in tracing
was an argument for some new primitives. Also, the fact that we soon might need to fall back on our
phones to use TgX a smaller memory footprint and less byte shuffling also was a consideration. The
LuaMetaTgX memory footprint is somewhat smaller than the LuaTgX footprint. By binding LuaMeta-
TeX to ConTEXt we can also guarantee that the combinations works as expected.

I'm aware of the fact that ConTgXt is in a somewhat unique position. First of all it has always been
kind of cutting edge so its users are willing to experiment. There are users who immediately update
and run tests, so bugs can and will be fixed fast. Already for a long time the community has an conve-
nient infrastructure for updating and the build farm for generating binaries (also for other engines)
is running smoothly.

Then there is the ConTEXt user interface that is quite consistent and permits extensions with staying
backward compatible. Sometimes users run into old manuals or examples and then complain that
ConTgXt is not compatible but that then involves obsolete technology: we no longer need font and
input encodings and font definitions are different for OpenType fonts. We always had an abstract
backend model, but nowadays pdf is kind of dominant and drives a lot of expectations. So, some of
the MKII commands are gone and MKIV has some more. Also, as MetaPost evolved that department

209

in ConTgXt also evolved. Think of it like cars: soon all are electric so one cannot expect a hole to poor
in some fluid but gets a (often incompatible) plug instead. And buttons became touch panels. There
is no need to use much force to steer or brake. Navigation is different, as are many controls. And do
we need to steer ourselves a decade from now?

So, just look at TgX and ConTgXt in the same way. A system from the nineties in the previous century
differs from one three decades later. Demands differ, input differs, resources change, editing and
processing moves on, and so on. Manuals, although still being written are seldom read from cover
to cover because online searching replaced them. And who buys books about programming? So Lua-
MetaTgX, while still being TgX also moves on, as do the way we do our low level coding. This makes
sense because the original TEX ecosystem was not made with a huge and complex macro package
in mind, that just happened. An author was supposed to make a style for each document. An often
used argument for using another macro package over ConTgXt was that the later evolved and other
macro packages would work the same forever and not change from the perspective of the user. In
retrospect those arguments were somewhat strange because the world, computers, users etc. do
change. Standards come and go, as do software politics and preferences. In many aspects the TgX
community is not different from other large software projects, operating system wars, library devotees,
programming language addicts, paradigm shifts. But, don't worry, if you don't like LuaMetaTgX and
its new primitives, just forget about them. The other engines will be there forever and are a safe bet,
although LuaTgX already stirred up the pot I guess. But keep in mind that new features in the latest
greatest ConTEXt version will more and more rely on LuaMetaTgX being used; after all that is where
it's made for. And this manual might help understand its users why, where and how the low level code
differs between MKII, MKIV and LMTX.

Can we expect more new primitives than the ones introduced here? Given the amount of time I spent
on experimenting and considering what made sense and what not, the answer probably is “no”, or at
least “not that much”. As in the past no user ever requested the kind of primitives that were added, I
don't expect users to come up with requests in the future either. Of course, those more closely related
to ConTgXt development look at it from the other end. Because it's there where the low level action
really is, demands might still evolve.

Basically there are wo areas where the engine can evolve: the programming part and the rendering.
In this manual we focus on the programming and writing the manual sort of influences how details
get filled in. Rendering in more complex because there heuristics and usage plays a more dominant
role. Good examples are the math, par and page builder. They were extended and features were
added over time but improved rendering came later. Not all extensions are critical, some are there
(and got added) in order to write more readable code but there is only so much one can do in that
area. Occasionally a feature pops up that is a side effect of a challenge. No matter what gets added
it might not affect complexity too much and definitely not impact performance significantly!

Hans Hagen
Hasselt NL

210

To be checked primitives (new)

noscript

To be checked primitives (math)

Uabove

Udelcode

Udelimited

Udelimiter

Udelimiterover
Udelimiterunder

Uhextensible

Uleft

Umathaccentbasedepth
Umathaccentbaseheight
Umathaccentbottomovershoot
Umathaccentbottomshiftdown
Umathaccentextendmargin
Umathaccentsuperscriptdrop
Umathaccentsuperscriptpercent
Umathaccenttopovershoot
Umathaccenttopshiftup
Umathaccentvariant
Umathadapttoleft
Umathadapttoright

Umathaxis
Umathbottomaccentvariant
Umathcode
Umathconnectoroverlapmin
Umathdegreevariant
Umathdelimiterextendmargin
Umathdelimiterovervariant
Umathdelimiterpercent
Umathdelimitershortfall
Umathdelimiterundervariant
Umathdenominatorvariant
Umathdictdef

Umathexheight
Umathextrasubpreshift
Umathextrasubprespace
Umathextrasubshift
Umathextrasubspace
Umathextrasuppreshift
Umathextrasupprespace
Umathextrasupshift
Umathextrasupspace
Umathflattenedaccentbasedepth
Umathflattenedaccentbaseheight
Umathflattenedaccentbottomshiftdown
Umathflattenedaccenttopshiftup
Umathfractiondelsize
Umathfractiondenomdown

211

Umathfractiondenomvgap
Umathfractionnumup
Umathfractionnumvgap
Umathfractionrule
Umathfractionvariant
Umathhextensiblevariant
Umathlimitabovebgap
Umathlimitabovekern
Umathlimitabovevgap
Umathlimitbelowbgap
Umathlimitbelowkern
Umathlimitbelowvgap
Umathlimits

Umathnoaxis

Umathnolimits
Umathnumeratorvariant
Umathopenupdepth
Umathopenupheight
Umathoperatorsize
Umathoverdelimiterbgap
Umathoverdelimitervariant
Umathoverdelimitervgap
Umathoverlayaccentvariant
Umathphantom
Umathpresubshiftdistance
Umathpresupshiftdistance
Umathprimeraise
Umathprimeraisecomposed
Umathprimeshiftdrop
Umathprimeshiftup
Umathprimespaceafter
Umathprimevariant
Umathprimewidth

Umathquad
Umathradicaldegreeafter
Umathradicaldegreebefore
Umathradicaldegreeraise
Umathradicalextensibleafter
Umathradicalextensiblebefore
Umathradicalkern
Umathradicalrule
Umathradicalvariant
Umathradicalvgap
Umathruledepth
Umathruleheight
Umathskeweddelimitertolerance
Umathskewedfractionhgap

Umathskewedfractionvgap
Umathsource
Umathstackdenomdown
Umathstacknumup
Umathstackvariant
Umathstackvgap
Umathsubscriptsnap
Umathsubscriptvariant
Umathsubshiftdistance
Umathsubshiftdown
Umathsubshiftdrop
Umathsubsupshiftdown
Umathsubsupvgap
Umathsubtopmax
Umathsupbottommin
Umathsuperscriptsnap
Umathsuperscriptvariant
Umathsupshiftdistance
Umathsupshiftdrop
Umathsupshiftup
Umathsupsubbottommax
Umathtopaccentvariant
Umathunderdelimiterbgap

Umathunderdelimitervariant

Umathunderdelimitervgap

Many primitives starting with Umath are math parameters that are discussed elsewhere, if at all.

212

Umathuseaxis
Umathvextensiblevariant
Umathvoid
Umathxscale
Umathyscale

Umiddle

Uoperator
Uoverdelimiter

Uroot

Urooted

Uskewed
Uskewedwithdelims
Ustartdisplaymath
Ustartmath
Ustartmathmode
Ustopdisplaymath
Ustopmath
Ustopmathmode
Ustretched
Ustretchedwithdelims
Uunderdelimiter
Uvextensible
currentlysetmathstyle
nomathchar

213

To be checked primitives (old)

Indexed primitives

/

<space>
Uabovewithdelims
Uatop

Uatopwithdelims
Umathaccent

Umathchar
Umathchardef
Umathnolimitsubfactor
Umathnolimitsupfactor
Umathoverbarkern
Umathoverbarrule
Umathoverbarvgap
Umathoverlinevariant
Umathspaceafterscript
Umathspacebeforescript
Umathspacebetweenscript
Umathunderbarkern
Umathunderbarrule
Umathunderbarvgap
Umathunderlinevariant
Uover

Uoverwithdelims
Uradical

Uright

above
abovedisplayshortskip
abovedisplayskip
abovewithdelims
accent
additionalpageskip
adjdemerits
adjustspacing
adjustspacingshrink
adjustspacingstep
adjustspacingstretch
advance

advanceby
afterassigned
afterassignment
aftergroup
aftergrouped

aliased

aligncontent

214

alignmark
alignmentcellsource
alignmentwrapsource
aligntab
allcrampedstyles
alldisplaystyles
allmainstyles
allmathstyles
allscriptscriptstyles
allscriptstyles
allsplitstyles
alltextstyles
alluncrampedstyles
allunsplitstyles
amcode
associateunit
atendoffile
atendoffiled
atendofgroup
atendofgrouped

atop

atopwithdelims
attribute
attributedef
automaticdiscretionary
automatichyphenpenalty
automigrationmode
autoparagraphmode
badness
baselineskip
batchmode
begincsname
begingroup
beginlocalcontrol
beginmathgroup
beginsimplegroup
belowdisplayshortskip
belowdisplayskip
binoppenalty
botmark

botmarks

boundary

box

boxadapt

boxanchor
boxanchors
boxattribute

boxdirection
boxfinalize
boxfreeze
boxgeometry
boxlimit
boxlimitate
boxlimitmode
boxmaxdepth
boxorientation
boxrepack
boxshift
boxshrink
boxsource
boxstretch
boxtarget
boxtotal
boxvadjust
boxxmove
boxxoffset
boxymove
boxyoffset
brokenpenalty
catcode
catcodetable
cdef
cdefcsname

cf

cfcode

char

chardef
cleaders
clearmarks
clubpenalties
clubpenalty
constant
constrained
copy
copymathatomrule
copymathparent
copymathspacing
correctionskip
count

countdef

cr
crampeddisplaystyle

crampedscriptscriptstyle

crampedscriptstyle
crampedtextstyle
crcr

215

csactive

csname

csstring
currentgrouplevel
currentgrouptype
currentifbranch
currentiflevel
currentiftype
currentloopiterator
currentloopnesting
currentmarks
currentstacksize
day

dbox

deadcycles

def
defaulthyphenchar
defaultskewchar
defcsname

deferred

delcode

delimiter
delimiterfactor
delimitershortfall
detokened
detokenize
detokenized

dimen

dimendef
dimensiondef
dimexpr
dimexpression
directlua
discretionary
discretionaryoptions
displayindent
displaylimits
displayskipmode
displaystyle
displaywidowpenalties
displaywidowpenalty
displaywidth

divide

divideby
doubleadjdemerits
doublehyphendemerits
dp

dpack

dsplit

dump

edef

edefcsame
edefcsname
edivide
edivideby

efcode

else
emergencyextrastretch
emergencyleftskip
emergencyrightskip
emergencystretch
end

endcsname
endgroup
endinput
endlinechar
endlocalcontrol
endmathgroup
endsimplegroup
enforced
eofinput

eqgno

errhelp
errmessage
errorcontextlines
errorstopmode
escapechar

etoks

etoksapp
etokspre
eufactor
everybeforepar
everycr
everydisplay
everyeof
everyhbox
everyjob
everymath
everymathatom
everypar
everytab
everyvbox
exceptionpenalty
exhyphenchar
exhyphenpenalty
expand
expandactive
expandafter

216

expandafterpars
expandafterspaces
expandcstoken
expanded
expandedafter
expandeddetokenize
expandedendless
expandedloop
expandedrepeat
expandparameter
expandtoken
expandtoks
explicitdiscretionary
explicithyphenpenalty
explicititaliccorrection
explicitspace

fam

fi
finalhyphendemerits
firstmark
firstmarks
firstvalidlanguage
float

floatdef

floatexpr
floatingpenalty
flushmarks

font

fontcharba
fontchardp
fontcharht
fontcharic
fontcharta
fontcharwd
fontdimen

fontid
fontmathcontrol
fontname
fontspecdef
fontspecid
fontspecifiedname
fontspecifiedsize
fontspecscale
fontspecslant
fontspecweight
fontspecxscale
fontspecyscale
fonttextcontrol
forcedleftcorrection

forcedrightcorrection
formatname
frozen
futurecsname
futuredef
futureexpand
futureexpandis
futureexpandisap
futurelet

gdef

gdefcsname
givenmathstyle
gleaders

glet

gletcsname
glettonothing
global
globaldefs

glue

glueexpr
glueshrink
glueshrinkorder
gluespecdef
gluestretch
gluestretchorder
gluetomu

glyph
glyphdatafield
glyphoptions
glyphscale
glyphscriptfield
glyphscriptscale
glyphscriptscriptscale
glyphslant
glyphstatefield
glyphtextscale
glyphweight
glyphxoffset
glyphxscale
glyphxscaled
glyphyoffset
glyphyscale
glyphyscaled
gtoksapp
gtokspre

halign

hangafter
hangindent
hbadness

217

hbox
hccode
hfil
hfill
hfilneg
hfuzz
hj
hjcode
hkern
hmcode
holdinginserts

holdingmigrations

hpack

hpenalty

hrule

hsize

hskip

hss

ht

hyphenation
hyphenationmin
hyphenationmode
hyphenchar
hyphenpenalty
if

ifabsdim
ifabsfloat
ifabsnum
ifarguments
ifboolean
ifcase

ifcat

ifchkdim
ifchkdimension
ifchknum
ifchknumber
ifcmpdim
ifcmpnum
ifcondition
ifcramped
ifcsname
ifcstok
ifdefined
ifdim
ifdimexpression
ifdimval
ifempty
iffalse
ifflags

iffloat
iffontchar
ifhaschar
ifhastok
ifhastoks
ifhasxtoks
ifhbox

ifhmode
ifinalignment
ifincsname
ifinner
ifinsert
ifintervaldim
ifintervalfloat
ifintervalnum
iflastnamedcs
ifmathparameter
ifmathstyle
ifmmode

ifnum
ifnumexpression
ifnumval

ifodd
ifparameter
ifparameters
ifrelax

iftok

iftrue

ifvbox

ifvmode

ifvoid

ifx

ifzerodim
ifzerofloat
ifzeronum
ignorearguments

ignoredepthcriterion

ignorenestedupto
ignorepars
ignorerest
ignorespaces
ignoreupto
immediate
immediateassigned

immediateassignment

immutable

indent
indentskip
indexofcharacter

218

indexofregister
inherited
initcatcodetable
initialpageskip
initialtopskip
input
inputlineno
insert
insertbox
insertcopy
insertdepth
insertdistance
insertheight
insertheights
insertlimit
insertmaxdepth
insertmode
insertmultiplier
insertpenalties
insertpenalty
insertprogress
insertstorage
insertstoring
insertunbox
insertuncopy
insertwidth
instance
integerdef
interactionmode

interlinepenalties

interlinepenalty
jobname

kern

language
lastarguments
lastatomclass
lastboundary
lastbox
lastchkdimension
lastchknumber
lastkern
lastleftclass
lastlinefit
lastloopiterator
lastnamedcs
lastnodesubtype
lastnodetype
lastpageextra
lastparcontext

lastpartrigger
lastpenalty
lastrightclass
lastskip

lccode

leaders

left

lefthangskip
lefthyphenmin
leftmarginkern
leftskip

legno

let

letcharcode
letcsname
letfrozen
letmathatomrule
letmathparent
letmathspacing
letprotected
lettolastnamedcs
lettonothing
limits
linebreakcriterion
linebreakoptional
linebreakpasses
linedirection
linepenalty
lineskip
lineskiplimit
localbrokenpenalty
localcontrol
localcontrolled
localcontrolledendless
localcontrolledloop
localcontrolledrepeat
localinterlinepenalty
localleftbox
localleftboxbox
localmiddlebox
localmiddleboxbox
localpretolerance
localrightbox
localrightboxbox
localtolerance
long

looseness

lower

lowercase

219

lpcode

luabytecode
luabytecodecall
luacopyinputnodes
luadef
luaescapestring
luafunction
luafunctioncall
luatexbanner
luatexrevision
luatexversion

mark

marks

mathaccent
mathatom
mathatomglue
mathatomskip
mathbackwardpenalties
mathbeginclass
mathbin
mathboundary
mathchar
mathcharclass
mathchardef
mathcharfam
mathcharslot
mathcheckfencesmode
mathchoice
mathclass
mathclose

mathcode
mathdictgroup
mathdictionary
mathdictproperties
mathdirection
mathdiscretionary
mathdisplaymode
mathdisplaypenaltyfactor
mathdisplayskipmode
mathdoublescriptmode
mathendclass
mathegnogapstep
mathfontcontrol
mathforwardpenalties
mathgluemode
mathgroupingmode
mathinlinepenaltyfactor
mathinner
mathleftclass

mathlimitsmode
mathmainstyle
mathnolimitsmode
mathop

mathopen

mathord
mathparentstyle
mathpenaltiesmode
mathpretolerance
mathpunct
mathrel
mathrightclass
mathrulesfam
mathrulesmode
mathscale
mathscriptsmode
mathslackmode
mathspacingmode
mathstack
mathstackstyle
mathstyle
mathstylefontid
mathsurround
mathsurroundmode
mathsurroundskip
maththreshold
mathtolerance
maxdeadcycles
maxdepth

meaning
meaningasis
meaningful
meaningfull
meaningles
meaningless
medmuskip
message

middle

mkern

month

moveleft
moveright

mskip

muexpr
mugluespecdef
multiply
multiplyby
muskip

muskipdef

220

mutable

mutoglue
nestedloopiterator
newlinechar
noalign
noaligned
noatomruling
noboundary
noexpand

nohrule

noindent
nolimits
nonscript
nonstopmode
norelax
normalizelinemode
normalizeparmode
normalunexpanded
nospaces
nosubprescript
nosubscript
nosuperprescript
nosuperscript
novrule
nulldelimiterspace
nullfont

number
numericscale
numericscaled
numexpr
numexpression
omit

open
optionalboundary
or

orelse
orphanpenalties
orphanpenalty
orunless

outer

output

outputbox
outputpenalty
over
overfullrule
overline
overloaded
overloadmode
overshoot

overwithdelims
pageboundary
pagedepth
pagediscards
pageexcess
pageextragoal
pagefilllstretch
pagefillstretch
pagefilstretch
pagefistretch
pagegoal
pagelastdepth
pagelastfilllstretch
pagelastfillstretch
pagelastfilstretch
pagelastfistretch
pagelastheight
pagelastshrink
pagelaststretch
pageshrink
pagestretch
pagetotal
pagevsize

par
parametercount
parameterdef
parameterindex
parametermark
parametermode
parattribute
pardirection
parfillleftskip
parfillrightskip
parfillskip
parindent
parinitleftskip
parinitrightskip
parpasses
parshape
parshapedimen
parshapeindent
parshapelength
parshapewidth
parskip

patterns

pausing

penalty
permanent
pettymuskip

221

positdef
postdisplaypenalty
postexhyphenchar
posthyphenchar
postinlinepenalty
postshortinlinepenalty
prebinoppenalty
predisplaydirection
predisplaygapfactor
predisplaypenalty
predisplaysize
preexhyphenchar
prehyphenchar
preinlinepenalty
prerelpenalty
preshortinlinepenalty
presuperscript
pretolerance
prevdepth

prevgraf
previousloopiterator
primescript
protected
protecteddetokenize

protectedexpandeddetokenize

protrudechars
protrusionboundary
pxdimen

quitloop
quitloopnow
quitvmode
radical

raise

rdivide
rdivideby
realign

relax

relpenalty
resetmathspacing
restorecatcodes
restorecatcodetable
retained
retokenized
right
righthangskip
righthyphenmin
rightmarginkern
rightskip
romannumeral

rpcode
savecatcodetable
savinghyphcodes
savingvdiscards
scaledemwidth
scaledexheight
scaledextraspace
scaledfontcharba
scaledfontchardp
scaledfontcharht
scaledfontcharic
scaledfontcharta
scaledfontcharwd
scaledfontdimen
scaledinterwordshrink
scaledinterwordspace
scaledinterwordstretch
scaledmathaxis
scaledmathemwidth
scaledmathexheight
scaledmathstyle
scaledslantperpoint
scantextokens
scantokens

scriptfont
scriptscriptfont
scriptscriptstyle
scriptspace
scriptspaceafterfactor
scriptspacebeforefactor
scriptspacebetweenfactor
scriptstyle

scrollmode

semiexpand
semiexpanded
semiprotected
semprotected

setbox
setdefaultmathcodes
setfontid

setlanguage
setmathatomrule
setmathdisplaypostpenalty
setmathdisplayprepenalty
setmathignore
setmathoptions
setmathpostpenalty
setmathprepenalty
setmathspacing

222

sfcode
shapingpenaltiesmode
shapingpenalty
shiftedsubprescript
shiftedsubscript
shiftedsuperprescript
shiftedsuperscript
shipout
shortinlinemaththreshold
shortinlineorphanpenalty
show

showbox
showboxbreadth
showboxdepth
showcodestack
showgroups

showifs

showlists
shownodedetails
showstack

showthe

showtokens
singlelinepenalty
skewchar

skip

skipdef

snapshotpar
spacefactor
spacefactormode
spacefactorshrinklimit
spacefactorstretchlimit
spaceskip

span

special

splitbotmark
splitbotmarks
splitdiscards
splitfirstmark
splitfirstmarks
splitmaxdepth
splittopskip

srule

string

subprescript
subscript
superprescript
superscript
supmarkmode
swapcsvalues

tabsize
tabskip
tabskips
textdirection
textfont
textstyle

the
thewithoutunit
thickmuskip
thinmuskip
time
tinymuskip
tocharacter
todimension
tohexadecimal
tointeger
tokenized

toks

toksapp
toksdef
tokspre
tolerance
tolerant
tomathstyle
topmark
topmarks
topskip
toscaled
tosparsedimension
tosparsescaled
tpack
tracingadjusts
tracingalignments
tracingassigns
tracingcommands

tracingexpressions

tracingfullboxes
tracinggroups

tracinghyphenation

tracingifs
tracinginserts
tracinglevels
tracinglists
tracinglostchars
tracingmacros
tracingmarks
tracingmath
tracingnesting
tracingnodes

223

tracingonline
tracingoutput
tracingpages
tracingparagraphs
tracingpasses
tracingpenalties
tracingrestores
tracingstats
tsplit

uccode

uchyph

uleaders
unboundary
undent
underline
unexpanded
unexpandedendless
unexpandedloop
unexpandedrepeat
unhbox

unhcopy

unhpack

unkern

unless
unletfrozen
unletprotected
unpenalty
unskip

untraced

unvbox

unvcopy

unvpack
uppercase
vadjust

valign
variablefam
vbadness

vbox

vcenter

vfil

vfill

vfilneg

vfuzz
virtualhrule
virtualvrule
vkern

vpack

vpenalty

vrule

224

vsize write
vskip xdef
vsplit xdefcsname
VSS xleaders
vtop xspaceskip
wd xtoks
widowpenalties xtoksapp
widowpenalty xtokspre
wordboundary year

wrapuppar

