
Debugging over Ethernet Using
ARM** SDT
Application Note

October 1998

Order Number: 278176-001

Application Note

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The StrongARM may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product o rder.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel’s website at http://www.intel.com.

Copyright © Intel Corporation, 1998

*Third-party brands and names are the property of their respective owners.

**ARM and StrongARM are trademarks of Advanced RISC Machines, Ltd.

Debugging over Ethernet Using ARM** SDT
Contents
1.0 Introduction..1

2.0 Getting Started ...1

2.1 Target ..2
2.2 BOOTP..2
2.3 Host Side...2
2.4 Troubleshooting...5

3.0 Description ...5

3.1 BOOTP Sequence...5
3.2 Host to Target Connection ..5

4.0 Limitations and Known Problems...6

4.1 General..6
4.2 EBSA-110..6
4.3 EBSA-285..6

5.0 Software Description ..7

5.1 How the IP Stack Fits with Angel* - Overview...7
5.2 Relationship Between the Source Files...8
5.3 Angel* Device Driver ...9
5.4 The Socket Style Interface ..9
5.5 The UDP Layer..10
5.6 The IP Layer..10
5.7 The Ethernet Layer..10
5.8 Device Driver...11

6.0 Additional Information...11

Figures

1 Debug System Block Diagram ..1
2 ARM** Debugger Options Menu ...2
3 Debugger Configuration ..3
4 Angel* Remote Configuration..4
5 IP Stack Layout ...7
6 Source Calling Structure ...8

Tables

None
Application Note iii

Debugging over Ethernet Using ARM SDT
1.0 Introduction

All of the Intel StrongARM** evaluation boards support the Angel* remote debugger. This allows
a host-based debugger to load and debug software in the remote target via the Angel Debug
Protocol (ADP). ADP is supported in both serial and Ethernet-based connections. The ADW is the
ARM** Debugger for Windows, currently Version 2.11.

To facilitate faster downloads and faster debugging of application software, an internet protocol
(IP) stack has been added to the Angel debugger target for some StrongARM evaluation boards; for
example, EBSA-285 and EBSA-110. See Figure 1.

For it to resolve its own IP address, the system requires a BOOTP server to be running on the
network to which the target is connected. The user may require assistance from a system
administrator to do this. Beyond this, the differences between using the ARM debugger over serial
and Ethernet should be largely transparent, other than the faster download speed.

2.0 Getting Started

To set up the target system for remote debugging via IP will require the following information:

• The BOOTP server needs to be set up to respond to the MAC address of the target in order to
use the Ethernet connection. The MAC address of an Ethernet card should be provided on a
label on the card itself. In the case of the EBSA-110, it is on the Angel* banner, if the version
of Angel installed is Ethernet aware. The banner may be read by connecting a terminal to
COM1 of the EBSA-110 at 9600 baud, no parity, 8 data bits, 1 stop bit.

• To configure the host debugger, the user will need to know the IP address that will be assigned
to the target system by the BOOTP server. This will be set up within the BOOTP server.

Figure 1. Debug System Block Diagram

Host/Target Communications

Host

ADP

Target

ADW Angel
Application Note 1

Debugging over Ethernet Using ARM SDT
2.1 Target

Set up the target hardware (for example, in the case of an EBSA-285, insert the EBSA-285 into the
system slot of a PCI backplane) and the Ethernet card into one of the remaining slots. Connect the
network cable and power up. The target will now attempt to execute BOOTP, then wait for a
connect request from a host (on all supported communications media).

2.2 BOOTP

The BOOTP server will need to be set up on the same subnet as the target to be debugged. The user
will need to add an entry in the BOOTP table that maps the IP address to be assigned to the target
to the MAC address of the Ethernet device associated with the target.

It may be useful to attach the target system and power it on, then verify that BOOTP is functioning
correctly. This may be done by checking the details of BOOTP transactions in the log on the
BOOTP server. There should be a record of the target system in use successfully executing
BOOTP.

2.3 Host Side

Some options need to be changed to configure the host side debugger; namely, set the IP address
and select Ethernet as a connection medium.

To do this, select Options | Configure Debugger from the menu bar (see Figure 2).

Figure 2. ARM** Debugger Options Menu
2 Application Note

Debugging over Ethernet Using ARM SDT
Next, select Remote_A, which is the remote Angel* debugger plug-in, then press the Configure
button (see Figure 3).

Figure 3. Debugger Configuration
Application Note 3

Debugging over Ethernet Using ARM SDT
The details of IP address and Ethernet may be entered in the window after pressing Configure (see
Figure 4).

Note: Heartbeat is switched on. Heartbeats are a part of the ADP and are used to detect lost packets.

Press OK on all of the dialog boxes.

Pressing OK on the Debugger Configuration dialog () will cause the debugger to attempt a
connection over IP. If the target has had time to complete its BOOTP (about 10-20 seconds), then
the debugger should connect. If not, the user may need to retry.

Using the debugger from this point is the same as using over serial. (See Section 4.0, “Limitations
and Known Problems” on page 6.)

Figure 4. Angel* Remote Configuration
4 Application Note

Debugging over Ethernet Using ARM SDT

040
2.4 Troubleshooting

If the remote debugger cannot establish a connection, try the following:

• Check that the EBSA is powered on and configured.

• Check that there is an Ethernet cable connected to both the host and target system and the
BOOTP server.

• Is there a BOOTP server set up on the network that will respond to the Ethernet card in your
system (that is, is it set up to respond to the MAC address of the target Ethernet card in use)?
Ask the system administrator for help, if necessary.

• Ensure that the host and target are on the same subnet of the network.

— The target must support the Ethernet card. Currently, the EBSA-285 supports the 21
and 21140 based Ethernet cards operating over 10BASE-T.

• Check that the EBSA-285 is in the system slot of the EBSA-BPL. For a description of the
EBSA-BPL, see the PCI Development Backplane User’s Guide, 278149-001.

• Ensure the link light is active on the Ethernet card. If it is not, the card is not being initialized.
This may be because of jumper settings on the EBSA, a defective lead, or an inactive hub.

3.0 Description

3.1 BOOTP Sequence

BOOTP is a protocol that was designed to download programs to diskless network machines but
may also be used to determine the IP address of a system. The target transmits broadcast BOOTP
request packets and then listens for replies from a BOOTP server or times out in the attempt. (It
will transmit 4 requests, approximately 2 seconds apart.) When a valid BOOTP packet is received
and intended for the target, the IP address is copied from it and then is stored in the target system to
use as its own address.

If a valid address is assigned, a connection may be made from the ADW using this target IP
address; otherwise, the IP connection to Angel* will not be usable.

During the BOOTP period, approximately 10-20 seconds, it will not be possible to connect to
Angel by any medium.

3.2 Host to Target Connection

To initiate a connection, the host sends a UDP packet containing a ’magic’ word to the target IP
address. This is sent over a known port number, the control port, to the target from the host.

The target replies with a UDP packet containing the other application port and debug port numbers
to the host. The channel is now considered to be open and is used like any other medium from the
viewpoint of Angel* and the user.
Application Note 5

Debugging over Ethernet Using ARM SDT
4.0 Limitations and Known Problems

4.1 General

The Ethernet stack will be disabled once a connection has been established using a medium other
than Ethernet.
Solution: The target will require a reset to re-enable Ethernet.

If there is a large load on the host system, such as ’Microsoft findfast’ running while using the
debugger over Ethernet, then a packet may be missed by the host and cause the debugger to hang.
Solution: Try to use the debugger on its own if possible.

Stepping too rapidly may cause the debugger to hang. The host end of the link appears to miss a
packet being sent from the target.
Solution: Wait for the debugger screen to update after each step.

Beware when debugging programs with large amounts of text output. On some machines,
Windows* may struggle to update the windows quickly, and may lose mouse clicks and key
presses.

4.2 EBSA-110

Supports the onboard AM79C961 Ethernet controller only.

4.3 EBSA-285

The EBSA-285 supports only one Ethernet card per backplane. It will use the first Ethernet card it
finds whether or not it is in use by another device. Each slot is checked for a particular device type,
in descending slot number order, before checking for the next device type in each slot. The process
will stop when a card is found or there are no more known device types.

The device search order is: 21040(]), 21041, 21140(]), 21142, and 21143.

Note: Only (]) device types are currently supported, although Angel* will attempt to set up every device
type in this list.

The EBSA-285 supports 21040 and 21140 based devices only.
6 Application Note

Debugging over Ethernet Using ARM SDT

h
 open
tion.

passed

nd sent

ges in
5.0 Software Description

The following is a description of how the various source modules interact and their primary functions.

The software was built using the ARM** SDT Version 2.11 and software supplied with the EBSA
board.

For toolkit information, refer to: http://www.arm.com/

For EBSA software, refer to Intel’s website for developer’s at: http://developer.intel.com

5.1 How the IP Stack Fits with Angel* - Overview

Access to the top of the Ethernet stack is via a socket style interface (see Section 5.4). At startup,
Angel will call the netboot module. It is within this code that the initialization functions for eac
module are called along with the BOOTP sequence. If successful, Angel will then attempt to
three sockets: one for control, one for application communication, and one for debug informa
However, if netboot fails, then Angel is informed that no device is present.

The sockets may then be polled via recv/recvfrom functions. The data from these packets is
up into Angel.

When a write is requested by Angel, the data is passed into the sendto function, packaged, a
down the IP stack layers to the destination host.

The IP stack is not interrupt driven; it is polled. It was determined that there were no advanta
driving the IP stack by interrupts rather than polling.

Figure 5. IP Stack Layout

Angel

Angel Device Driver

Socket Interface

UDP Layer

BOOTP

IP Layer

Ethernet Layer

ARP

Hardware Device Driver

Ethernet Hardware

Port (PCI or
ISA)

Network

Shared
Memory
Application Note 7

Debugging over Ethernet Using ARM SDT
The Angel device driver layer contains all the functions Angel knows about concerning the IP stack.

5.2 Relationship Between the Source Files

The file interaction is shown in Figure 6.

The frame buffers circulate through the stack from top to bottom for writes, and bottom to top on
reads. They are ’borrowed’ from a central pool in the shared memory area (see Figure 5) but do not
leave the realms of the IP stack. Instead, their contents are copied to/from buffers passed into the
socket layer. The frame buffers are allocated in an area of memory that is accessible by both the
StrongARM** and the Ethernet devices.

Figure 6. Source Calling Structure

ARM_ETHER.C

SOCKET.C

NETBOOT.C

UDP.C

IP.C

ETHERNET.C

EDEVICE.C

DRIVER.C

BOOTP.C

ARP.C

netboot calls all
other modules

Fr
am

e
B

uf
fe

rs

Fram
e B

uffers
NET_BUFF.C
8 Application Note

Debugging over Ethernet Using ARM SDT
5.3 Angel* Device Driver

File: arm_ether.c

Usage: Interacts with socket layer, calls initialization routines for the IP stack,
opens sockets, polls stack for data, and handles copying read/write buff-
ers between Angel and the stack.

This contains the standard Angel device driver functions. Angel calls Ethernet_Control with a
value of DC_INIT during its initialization phase. It is at this point that the IP stack is initialized, in
file netboot.c, followed by an attempt to open and bind the three required sockets in Ethernet_init.
The three sockets are called ’control’, ’application’, and ’debug’.

Note: All IP stack operations occur in supervisor mode.

Polling the three sockets occurs in the Angel_EthernetPoll routine, but only if the stack is correctly
initialized and Ethernet is the active medium. When a packet is found to be waiting and is destined
for one of the open sockets, the buffer is copied from stack buffer to Angel buffer and an Angel
callback is queued to handle the data.

5.4 The Socket Style Interface

File: socket.c

Usage: Partial socket layer implementation.

This is a fraction of the implementation of a full socket layer, implementing only the functions
necessary for the Angel application. These functions and their limitations include:

• SOCKET - Socket ignores the protocol it is asked to use, assuming UDP only.

• BIND - Bind will attach only a socket to a UDP port. It does a check to see if the protocol/
connection type combination exists. They must be SOCK_DGRAM/AF_INET for this to
function correctly.

• RECVFROM - The stack is polled. Hence, when recvfrom is called, the lower layers are
interrogated for packets before checking the outstanding packet queue in the socket layer. Any
packets claimed are removed from the queue.

• RECV - This calls recvfrom but ignores the extra data in the address structure.

• SENDTO - The socket number is checked, then the packet is immediately dispatched down the
stack to the UDP layer, making the assumption that this is the intended transmission protocol.

The socket layer maintains a list of open sockets, and the ports they are bound to, allowing it to
direct packets to the correct destination ports and sockets. Packets coming in from the Ethernet are
passed into the input function from the layer below (presently only UDP) and are queued to be read
later by recv/recvfrom.

Note: The data packets do not move around, only the pointers to them.

Packets destined for the Ethernet are passed from the layer above into the sendto function.
Application Note 9

Debugging over Ethernet Using ARM SDT
5.5 The UDP Layer

File: udp.c

Usage: Provides unreliable datagram delivery layer. Directs upstream packets to
the layer attached to a bound port number that is indicated within the
packet. In the Angel case, the three ports that are open will correspond
to the three opened sockets.

The UDP layer maintains a table of open port numbers and the input function associated with each
port number. When a packet is passed into the UDP input function, it is checked for validity before
being sent to the function associated with the port number in the packet, or discarded if the port is
not open.

Before using the UDP layer, a port needs to be opened. There are two methods to acquire a port
number. The first step is to open a ’well known’ port - in this case, the layer above provides the port
number to the register_known_port function. The second is to let the UDP layer assign a port
number with the create_port function. This port number is used in the udp_register_port function
and is bound to the function pointer specified in the call.

5.6 The IP Layer

File: ip.c

Usage: Handles IP traffic, sending packets from the network to a function bound
with a registered protocol number (for example, UDP) contained within
the packets. Outgoing packets have IP style addresses resolved to MAC
type addresses in the ARP layer before being sent out.

Protocols are registered using the ip_register_protocol function, using the protocol number and the
function associated with that protocol. Incoming packets are sent to this bound function.

5.7 The Ethernet Layer

File: ethernet.c

Usage: Passes incoming Ethernet packets to a function bound to the protocol
type contained within the packet. Builds Ethernet type packets for trans-
mission and then passes them to the device driver.

Packets need to be explicitly read using the ethernet_process_one_packet function, which checks
the device driver for outstanding data frames, via an abstraction layer, passing any valid incoming
data up to the function bound to the packet’s protocol type. Protocols are registered via the
ethernet_register_protocol function. Writes to the wire require a MAC style address and destination
protocol number.
10 Application Note

Debugging over Ethernet Using ARM SDT
5.8 Device Driver

Files: <driver>.c (for example: 21040.c , edevice.c)

Usage: Handles initialization, reading and writing with the physical hardware.
The edevice.c contains an abstraction layer to handle multiple devices
and sits above the device drivers.

An Ethernet device is hunted during module initialization. The first recognized device found is set
up during the device initialization call. Its MAC address is retrieved before setting its CSRs to a
condition where it filters MAC addresses as required and listens to the wire. This involves waking
the device, acquiring shared memory areas for descriptors and frames to reside, setting medium
selection registers, and then handing a setup frame containing the MAC address filter information.

Interrupts are not enabled so the device needs to be polled regularly to check for incoming frames.

6.0 Additional Information

The source files referred to within this document, along with prebuilt images, will have been
included with the EBSA board package supplied by Intel. Information about building Angel* is
also contained in the package. This can be used to migrate the port to a derivative design.

Work is ongoing in this area. Revised versions of source and Angel related files will be provided to
the sales channels and posted on the WWW when available. Please check the release notes for any
new features and supported devices.
Application Note 11

stomer
Support, Products, and Documentation
If you need technical support, a Product Catalog, or help deciding which documentation best meets
your needs, visit the Intel World Wide Web Internet site:

http://www.intel.com

Copies of documents that have an ordering number and are referenced in this document, or other
Intel literature may be obtained by calling 1-800-332-2717 or by visiting Intel’s website for
developers at:

http://developer.intel.com

You can also contact the Intel Massachusetts Information Line or the Intel Massachusetts Cu
Technology Center. Please use the following information lines for support:

For documentation and general information:

Intel Massachusetts Information Line

United States: 1–800–332–2717

Outside United States: 1–303-675-2148

Electronic mail address: techdoc@intel.com

For technical support:

Intel Massachusetts Customer Technology Center

Phone (U.S. and international): 1–978–568–7474

Fax: 1–978–568–6698

Electronic mail address: techsup@intel.com

	Debugging over Ethernet Using ARM** SDT
	Copyright Page
	Contents
	Figures
	Tables
	1.0 Introduction
	2.0 Getting Started
	2.1 Target
	2.2 BOOTP
	2.3 Host Side
	2.4 Troubleshooting

	3.0 Description
	3.1 BOOTP Sequence
	3.2 Host to Target Connection

	4.0 Limitations and Known Problems
	4.1 General
	4.2 EBSA-110
	4.3 EBSA-285

	5.0 Software Description
	5.1 How the IP Stack Fits with Angel* - Overview
	5.2 Relationship Between the Source Files
	5.3 Angel* Device Driver
	5.4 The Socket Style Interface
	5.5 The UDP Layer
	5.6 The IP Layer
	5.7 The Ethernet Layer
	5.8 Device Driver

	6.0 Additional Information
	Support, Products, and Documentation

