next | previous | forward | backward | up | top | index | toc | packages | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.000115761 seconds elapsed
 -- 0.000745886 seconds elapsed
 -- 0.000281882 seconds elapsed
 -- 0.000107841 seconds elapsed
 -- 0.000659486 seconds elapsed
 -- 0.000222881 seconds elapsed
 -- 0.00004716 seconds elapsed
 -- 0.000049401 seconds elapsed
 -- 0.000172121 seconds elapsed
 -- 0.000122361 seconds elapsed
 -- 0.000621205 seconds elapsed
 -- 0.000225482 seconds elapsed
 -- 0.000113801 seconds elapsed
 -- 0.000629246 seconds elapsed
 -- 0.000219442 seconds elapsed
 -- 0.000114001 seconds elapsed
 -- 0.000605445 seconds elapsed
 -- 0.000212442 seconds elapsed
 -- 0.000113361 seconds elapsed
 -- 0.000737567 seconds elapsed
 -- 0.000274843 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.000107081 seconds elapsed
 -- 0.000659365 seconds elapsed
 -- 0.000207002 seconds elapsed
 -- 0.000110361 seconds elapsed
 -- 0.000604366 seconds elapsed
 -- 0.000227402 seconds elapsed
 -- 0.000118841 seconds elapsed
 -- 0.000650645 seconds elapsed
 -- 0.000238442 seconds elapsed
 -- 0.000110241 seconds elapsed
 -- 0.000607525 seconds elapsed
 -- 0.000203721 seconds elapsed
 -- 0.000110481 seconds elapsed
 -- 0.000580765 seconds elapsed
 -- 0.000199042 seconds elapsed
 -- 0.000112161 seconds elapsed
 -- 0.000640725 seconds elapsed
 -- 0.000210322 seconds elapsed
 -- 0.00011176 seconds elapsed
 -- 0.000716246 seconds elapsed
 -- 0.000220962 seconds elapsed
 -- 0.000106641 seconds elapsed
 -- 0.000651725 seconds elapsed
 -- 0.000217322 seconds elapsed
 -- 0.000110521 seconds elapsed
 -- 0.000621165 seconds elapsed
 -- 0.000215921 seconds elapsed
 -- 0.00010904 seconds elapsed
 -- 0.000650525 seconds elapsed
 -- 0.000223402 seconds elapsed
 -- 0.000110081 seconds elapsed
 -- 0.000601205 seconds elapsed
 -- 0.000216681 seconds elapsed
 -- 0.00011064 seconds elapsed
 -- 0.000643365 seconds elapsed
 -- 0.000220682 seconds elapsed
 -- 0.000112201 seconds elapsed
 -- 0.000867127 seconds elapsed
 -- 0.000319963 seconds elapsed
 -- 0.000110081 seconds elapsed
 -- 0.000890648 seconds elapsed
 -- 0.000313963 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.