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1 Introduction

qr mumps is a software package for the solution of sparse, linear systems on multicore computers. It
implements a direct solution method based on the QR of Cholesky factorization of the input matrix.
It is suited to solving sparse least-squares problems minx ‖Ax− b‖2, to computing the minimum-
norm solution of sparse, underdetermined problems and to the solution of sparse symmetric positive
definite linear systems. It can obviously be used for solving unsymmetric square problems in which
case the stability provided by the use of orthogonal transformations comes at the cost of a higher
operation count with respect to solvers based on, e.g., the LU factorization such as MUMPS. qr mumps

supports real and complex, single or double precision arithmetic.
As in all the sparse, direct solvers, the solution is achieved in three distinct phases:

Analysis in this phase an analysis of the structural properties of the input matrix is performed in
preparation for the numerical factorization phase. This includes computing a column permu-
tation which reduces the amount of fill-in coefficients (i.e., nonzeroes introduced by the factor-
ization). This step does not perform any floating-point operation and is, thus, commonly much
faster than the factorization and solve (depending on the number of right-hand sides) phases.

Factorization at this step, the actual QR or Cholesky factorization is computed. This step is the
most computationally intense and, therefore, the most time consuming.

Solution once the factorization is done, the factors can be used to compute the solution of the
problem through two operations:

Solve this operation computes the solution of the triangular system Rx = b or RTx = b;

Apply this operation applies the Q orthogonal matrix to a vector, i.e., y = Qx or y = QTx.

These three steps have to be done in order but each of them can be performed multiple times. If,
for example, the problem has to be solved against multiple right-hand sides (not all available at once),
the analysis and factorization can be done only once while the solution is repeated for each right-hand
side. By the same token, if the coefficients of a matrix are updated but not its structure, the analysis
can be performed only once for multiple factorization and solution steps.

qr mumps is based on the multifrontal factorization method. This method was first introduced by
Duff and Reid [10] as a method for the factorization of sparse, symmetric linear systems and, since
then, has been the object of numerous studies and the method of choice for several, high-performance,
software packages such as MUMPS [4] and UMFPACK [8]. The method used in qr mumps is described
in full details in [7, 2].

qr mumps is built upon the large knowledge base and know-how developed by the members of the
MUMPS project. However, qr mumps does not share any code with the MUMPS package and it is a
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completely independent software. qr mumps is developed and maintained in a collaborative effort by
the APO team at the IRIT laboratory in Toulouse and the LaBRI laboratory in Bordeaux, France.

2 Features

2.1 Types of problems

qr mumps can handle unsymmetric and symmetric, positive definite problems. In the first case it will
use a QR factorization whereas, in the second, it will use a Cholesky factorization. In order to choose
one or the other method, qr mumps must be informed about the type of the problem through the sym

field of the zqrm spmat type data structure: 0 means that the problem is unsymmetric and ¿0 means
symmetric, positive definite. Note that in the second case, only half of the matrix must be provided,
i.e., if the coefficient (i, j) is provided (j, i) must not be given.

2.2 Multithreading

qr mumps is a parallel, multithreaded software based on the StarPU runtime system [5] and it currently
supports multicore or, more generally, shared memory multiprocessor computers. qr mumps does not
run on distributed memory (e.g. clusters) parallel computers. Parallelism is achieved through a
decomposition of the workload into fine-grained computational tasks which basically correspond to
the execution of a BLAS or LAPACK operation on a blocks. It is strongly recommended to use
sequential BLAS and LAPACK libraries and let qr mumps have full control of the parallelism.

The number of threads/cores used by qr mumps can be controlled in two different ways:

� by setting QRM NCPU environment variable to the desired number of threads. In this case the
number of threads will be the same throughout the execution of your program/application;

� through the qrm init. This method has higher priority than the QRM NCPU environment variable.

The granularity of the tasks is controlled by the qrm mb and qrm nb parameters (see Sec-
tion qrm set) which set the block size for partitioning internal data. Smaller values mean more
parallelism; however, because this blocking factor is an upper-bound for the granularity of operations
(or, more precisely for the granularity of calls to BLAS and LAPACK routines), it is recommended to
choose reasonably large values in order to achieve high efficiency.

2.3 GPU acceleration

qr mumps can leverage the computing power of Nvidia GPU, commonly available on modern super-
computing systems, to accelerate the solution of linear systems, especially large size ones. The use of
GPUs is achieved through the StarPU runtime [1].

The number of GPUs used by qr mumps can be controlled in two different ways:

� by setting QRM NGPU environment variable to the desired number of GPUs. In this case the
number of GPUs will be the same throughout the execution of your program/application;

� through the qrm init. This method has higher priority than the QRM NGPU environment variable.

Note that it is possible to use multiple streams per GPU; this can be controlled through the
StarPU STARPU NWORKER PER CUDA environment variable.

2.4 Fill-reducing permutations

qr mumps supports multiple methods for reducing the factorization fill-in through matrix column per-
mutations. The choice is controlled through the qrm ordering control parameter. Nested-dissection
based methods are available through the packages Metis [13] and SCOTCH [14] packages as well as
average minimum degree through the COLAMD [9] one. Nested-dissection based methods usually lead
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to lower fill-in which ultimately results in faster and less memory consuming factorization. COLAMD,
instead, typically leads to a faster execution of the analysis phase although is not as effective in re-
ducing the fill-in which may result in a slower and more memory consuming factorization. Because
the overall execution time is commonly dominated by the factorization, nested-dissection methods are
usually more effective especially for large size problems. qr mumps also allows the user to provide their
own permutation, as explained in Secion [[*Control parameters.

2.5 Memory consumption control

qr mumps allows for controlling the amount of memory used in the parallel factorization stage. In the
multifrontal method, the memory consumption varies greatly throughout the sequential factorization
reaching a maximum value which is referred to as the sequential peak (sp). Parallelism can considerably
increase this peak because, in order to feed the working threads, more data is allocated at the same
time which results in higher concurrency. In qr mumps it is possible to bound the memory consumption
of the factorization phase through the qrm mem relax parameter. If this parameter is set to a real
value x ≥ 1, the memory consumption will be bounded by x × sp. Clearly, the tighter is this upper
bound, the slower the factorization will proceed. Note that sp only includes the memory consumed by
the factorization operation; moreover, although in practice it is possible to precisely pre-compute this
value in the analysis phase, this may be expensive and thus qrm analyse only computes a (hopefully)
slight overestimation. The value of sp is available upon completion of the analysis phase through the
qrm e facto mempeak information parameter (see Section 5).

2.6 Asynchronous interface

An asynchronous interface is provided for the analysis, factorization apply and solve operations, respec-
tively qrm analyse async, qrm factorize async, qrm apply async and qrm solve async. These
routines are non-blocking variants of the zqrm analyse, zqrm factorize, zqrm apply and zqrm solve;
this means that they will submit to the StarPU runtime system all the tasks the corresponding operat-
ing is composed of and will return control to the calling program as soon as possible. The completion of
the tasks will be achieved asynchronously and can only be ensured through a call to the qrm barrier

routine. This has a number of advantages; for example it allows for executing concurrently operations
that work on different data (e.g. the factorization of different matrices) or to pipeline the execution
of operations which work on the same data (for example factorization and solve with the same ma-
trix), in which case StarPU will take care of ensuring that the precedence constraints between tasks
are respected. The asynchronous routine take an additional argument qrm dscr which is a commu-
nication descriptor, i.e. a container for the submitted tasks; this has to be initialized through the
qrm dscr init routine and destroyed using the qrm dscr destroy one.

Two main differences exist with respect to the synchronous interface:

� Right-hand sides must be registered to qr mumps by means of the zqrm rhs init routine which
associates a rank-1 or rank-2 Fortran array to a zqrm rhs type data structure.

� a communication descriptor must be initialized and passed to the operation routines: all the
associated tasks will be submitted to this descriptor.

The completion of the operation can be guaranteed by calling a qrm barrier routine either with the
(optional) descriptor argument, in which case the routine will wait for all the tasks in that descriptor,
or without, in which case the routine will wait for all the previously submitted tasks in all descriptors.

There is currently no support for asynchronous execution in the qr mumps C interface.
See Section 2.6 for an example.
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3 API

qr mumps is developed in the Fortran 2008 language but includes a portable C interface developed
through the Fortran iso c binding feature. Most of the qr mumps features are available from both
interfaces although the Fortran one takes full advantage of the language features, such as the interface
overloading, that are not available in C. The naming convention used in qr mumps groups all the
routine or data type names into two families depending on whether they depend on the arithmetic or
not. Typed names always begin by qrm where the first underscore becomes d, s, z, c for real double,
real single, complex double or complex single arithmetic, respectively. Untyped names, instead, simply
begin by qrm . Note that thanks to interface overloading in Fortran all the typed interfaces of a routine
can be conveniently grouped into a single untyped one; this is described in details in Section 3.4. All
the interfaces described in the remainder of this section are for the complex, double precision case.
The interfaces for complex single, real double and real single can be obtained by replacing zqrm with
cqrm, dqrm and sqrm, respectively and complex(real64) with complex(real32), real(real64),
real(real32), respectively. Note that real64 and real32 are defined in the iso fortran env Fortran
2008 module and correspond to kind(1.d0) and kind(1.e0) or 8 and 4, respectively on basically all
common compilers/architectures. All the routines that take vectors as input (e.g., zqrm apply) can be
called with either one vector (i.e. a rank-1 Fortran array x(:)) or multiple ones (i.e., a rank-2 Fortran
array x(:,:)) through the same interface thanks to interface overloading. This is not possible for
the C interface, in which case an extra argument is present in order to specify the number of vectors
which are expected to be stored in column-major (i.e., Fortran style) format.

In this section only the Fortran API is presented. For each Fortran name (either of a routine or
of a data type) the corresponding C name is obtained by adding the c suffix. The number, type and
order of arguments in the C routines is the same except for those routines that take dense vectors in
which case, the C interface needs an extra argument specifying the number of vectors passed trough
the same pointer. The user can refer to the code examples and to the zqrm mumps.h file for the full
details of the C interface.

3.1 Data types

3.1.1 zqrm spmat type

This data type is used to store a sparse matrix in the COO (or coordinate) format through the irn, jcn
and val fields containing the row indices, column indices and values, respectively and the m, n and nz

containing the number of rows, columns and nonzeroes, respectively. qr mumps uses a Fortran-style
1-based numbering and thus all row indices are expected to be between 1 and m and all the column
indices between 1 and n. Duplicate entries are summed during the factorization, out-of-bound entries
are ignored. The sym field is used to specify if the matrix is symmetric (> 0) or unsymmetric (= 0).

type zqrm_spmat_type

integer :: m

integer :: n

integer :: nz

integer :: sym

integer , pointer :: irn(:)

integer , pointer :: jcn(:)

complex(real64), pointer :: val (:)

end type zqrm_spmat_type

3.1.2 zqrm spfct type

This type is used to set the parameters that control the behavior of a sparse factorization, to collect
information about its execution (number of flops, memory consumpnion etc) and store the result of
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the factorization, namely, the factors with all the symbolic information needed to use them in the
solve phase.

type zqrm_spfct_type

integer :: icntl (:)

real(real32) :: rcntl (:)

integer(int64) :: gstats (:)

integer , pointer :: cperm_in (:)

end type zqrm_spfct_type

� cperm in: this array can be used to provide a matrix column permutation and is only accessed
by qr mumps in this case.

� icntl: this array contains all the integer control parameters. Its content can be modified either
directly or indirectly through the qrm set routine (see Section 3.3.3).

� gstats: this array contains all the statistics collected by qr mumps. Its content can be accessed
either directly or indirectly through the qrm get routine (see Section 3.3.4).

3.2 Computational routines

3.2.1 zqrm analyse

This routine performs the analysis phase (see Section 1) on A or AT .

interface qrm_analyse

subroutine zqrm_analyse(qrm_spmat , qrm_spfct , transp , info)

type(zqrm_spmat_type) :: qrm_spmat

type(zqrm_spfct_type) :: qrm_spfct

character , optional :: transp

integer , optional :: info

end subroutine zqrm_analyse

end interface qrm_analyse

Arguments:

� qrm spmat: the input matrix of zqrm spmat type.

� qrm spfct: the sparse factorization object of zqrm spfct type.

� transp: whether the input matrix should be transposed or not. Can be either ’t’ (’c’ in
in complex arithmetic) or ’n’. In the Fortran interface this parameter is optional and set by
default to ’n’ if not passed.

� info: an optional output parameter that returns the exit status of the routine.

3.2.2 zqrm factorize

This routine performs the factorization phase (see Section 1 ) on A or AT . It can only be executed if
the analysis is already done.

interface qrm_factorize

subroutine zqrm_factorize(qrm_spmat , qrm_spfct , transp , info)

type(zqrm_spmat_type) :: qrm_spmat

type(zqrm_spfct_type) :: qrm_spfct

character , optional :: transp

integer , optional :: info

end subroutine zqrm_factorize

end interface qrm_factorize
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Arguments:

� qrm spmat: the input matrix of zqrm spmat type.

� qrm spfct: the sparse factorization object of zqrm spfct type.

� transp: whether the input matrix should be transposed or not. Can be either ’t’ (’c’ in
in complex arithmetic) or ’n’. In the Fortran interface this parameter is optional and set by
default to ’n’ if not passed.

� info: an optional output parameter that returns the exit status of the routine.

3.2.3 zqrm apply

This routine computes b = Q · b or b = QT · b. It can only be executed once the factorization is done.

interface zqrm_apply

subroutine zqrm_apply2d(qrm_spfct , transp , b, info)

type(zqrm_spfct_type) :: qrm_spfct

complex(real64) :: b(:,:)

character(len=*) :: transp

integer , optional :: info

end subroutine zqrm_apply2d

subroutine zqrm_apply1d(qrm_spfct , transp , b, info)

type(zqrm_spfct_type) :: qrm_spfct

complex(real64) :: b(:)

character(len=*) :: transp

integer , optional :: info

end subroutine zqrm_apply1d

end interface zqrm_apply

Arguments:

� qrm spfct: the sparse factorization object resulting from zqrm factorize

� transp: whether to apply Q or QT . Can be either ’t’ (’c’ in complex arithmetic) or ’n’.

� b: the b vector(s) to which Q or QT is applied.

� info: an optional output parameter that returns the exit status of the routine.

3.2.4 zqrm solve

This routine solves the triangular system R · x = b or RT · x = b. It can only be executed once the
factorization is done.

interface zqrm_solve

subroutine zqrm_solve2d(qrm_spfct , transp , b, x, info)

type(zqrm_spfct_type) :: qrm_spfct

complex(real64) :: b(:,:)

complex(real64) :: x(:,:)

character(len=*) :: transp

integer , optional :: info

end subroutine zqrm_solve2d

subroutine zqrm_solve1d(qrm_spfct , transp , b, x, info)

type(zqrm_spfct_type) :: qrm_spfct

complex(real64) :: b(:)

complex(real64) :: x(:)

character(len=*) :: transp

integer , optional :: info

end subroutine zqrm_solve1d

end interface zqrm_solve
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Arguments:

� qrm spfct: the sparse factorization object resulting from zqrm factorize

� transp: whether to solve for R or RT . Can be either ’t’ (’c’ in complex arithmetic) or ’n’.

� b: the b right-hand side(s).

� x: the x solution vector(s).

� info: an optional output parameter that returns the exit status of the routine.

3.2.5 zqrm least squares

This subroutine can be used to solve a linear least squares problem minx ‖Ax− b‖2 in the case where
the input matrix is square or overdetermined. It is a shortcut for the sequence

call zqrm_analyse(qrm_spmat , qrm_spfct , ’n’, info)

call zqrm_factorize(qrm_spmat , qrm_spfct , ’n’, info)

call zqrm_apply(qrm_spfct , ’c’, b, info)

call zqrm_solve(qrm_spfct , ’n’, b, x, info)

Note that AT can be used instead of A, in which case AT must be overdetermined.

interface qrm_least_squares

subroutine zqrm_least_squares2d(qrm_spmat , b, x, transp , cperm , info)

type(zqrm_spmat_type) :: qrm_spmat

complex(real64) :: b(:,:), x(:,:)

character , optional :: transp

integer , optional :: cperm (:)

integer , optional :: info

end subroutine zqrm_least_squares2d

subroutine zqrm_least_squares1d(qrm_spmat , b, x, transp , cperm , info)

type(zqrm_spmat_type) :: qrm_spmat

complex(real64) :: b(:), x(:)

character , optional :: transp

integer , optional :: cperm (:)

integer , optional :: info

end subroutine zqrm_least_squares1d

end interface qrm_least_squares

Arguments:

� qrm spmat: the input matrix.

� b: the b right-hand side(s). Will be modified.

� x: the x solution vector(s).

� transp: whether to use A or AT .

� cperm: an optional integer array to pass a fill-reducing matrix column permutation.

� info: an optional output parameter that returns the exit status of the routine.

3.2.6 zqrm min norm

This subroutine can be used to solve a linear minimum norm problem in the case where the input
matrix is square or underdetermined. It is a shortcut for the sequence

call qrm_analyse(qrm_spmat , ’c’, info)

call qrm_factorize(qrm_spmat , ’c’, info)

call qrm_solve(qrm_spmat , ’c’, b, x, info)

call qrm_apply(qrm_spmat , ’n’, x, info)
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Note that AT can be used instead of A, in which case AT must be underdetermined.

interface qrm_min_norm

subroutine zqrm_min_norm2d(qrm_spmat , b, x, transp , cperm , info)

type(zqrm_spmat_type) :: qrm_spmat

complex(real64) :: b(:,:), x(:,:)

character , optional :: transp

integer , optional :: cperm (:)

integer , optional :: info

end subroutine zqrm_min_norm2d

subroutine zqrm_min_norm1d(qrm_spmat , b, x, transp , cperm , info)

type(zqrm_spmat_type) :: qrm_spmat

complex(real64) :: b(:), x(:)

character , optional :: transp

integer , optional :: cperm (:)

integer , optional :: info

end subroutine zqrm_min_norm1d

end interface qrm_min_norm

Arguments:

� qrm spmat: the input matrix.

� b: the b right-hand side(s).

� x: the x solution vector(s).

� transp: whether to use A or AT

� cperm: an optional integer array to pass a fill-reducing matrix row permutation (i.e., a column
permutation for AT ).

� info: an optional output parameter that returns the exit status of the routine.

3.2.7 zqrm spposv

This subroutine can be used to solve a linear symmetric, positive definite problem. It is a shortcut for
the sequence

x = b

call qrm_analyse(qrm_spmat , ’n’, info)

call qrm_factorize(qrm_spmat , ’n’, info)

call qrm_solve(qrm_spmat , ’c’, x, b, info)

call qrm_solve(qrm_spmat , ’n’, b, x, info)

interface qrm_min_norm

subroutine zqrm_min_norm2d(qrm_spmat , b, x, cperm , info)

type(zqrm_spmat_type) :: qrm_spmat

complex(real64) :: b(:,:), x(:,:)

integer , optional :: cperm (:)

integer , optional :: info

end subroutine zqrm_min_norm2d

subroutine zqrm_min_norm1d(qrm_spmat , b, x, cperm , info)

type(zqrm_spmat_type) :: qrm_spmat

complex(real64) :: b(:), x(:)

integer , optional :: cperm (:)

integer , optional :: info

end subroutine zqrm_min_norm1d

end interface qrm_min_norm

Arguments:
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� qrm spmat: the input matrix.

� b: the b right-hand side(s). Will be modified.

� x: the x solution vector(s).

� cperm: an optional integer array to pass a fill-reducing matrix row permutation (i.e., a column
permutation for AT ).

� info: an optional output parameter that returns the exit status of the routine.

3.2.8 zqrm spmat mv

This subroutine performs a matrix-vector product of the type y = αAx+ βy or y = αATx+ βy.

interface zqrm_spmat_mv

subroutine zqrm_spmat_mv_2d(qrm_spmat , transp , alpha , x, beta , y)

type(zqrm_spmat_type) :: qrm_spmat

complex(real64), :: y(:,:)

complex(real64), :: x(:,:)

complex(real64), :: alpha , beta

character(len=*) :: transp

end subroutine zqrm_spmat_mv_2d

subroutine zqrm_spmat_mv_1d(qrm_spmat , transp , alpha , x, beta , y)

type(zqrm_spmat_type) :: qrm_spmat

complex(real64), :: y(:)

complex(real64), :: x(:)

complex(real64), :: alpha , beta

character(len=*) :: transp

end subroutine zqrm_spmat_mv_1d

end interface zqrm_spmat_mv

Arguments:

� qrm spmat: the input matrix.

� transp: whether to multiply by A or AT . Can be either ’t’ (’c’ if in complex arithmetic) or
’n’.

� alpha, beta the α and β scalars

� y: the y vector(s).

� x: the x vector(s).

3.2.9 qrm spmat nrm

This routine computes the one ‖A‖1 or the infinity ‖A‖∞ or the Frobenius ‖A‖F norm of a matrix.

interface qrm_spmat_nrm

subroutine zqrm_spmat_nrm(qrm_spmat , ntype , nrm , info)

type(zqrm_spmat_type) :: qrm_spmat

real(real64) :: nrm

character :: ntype

integer , optional :: info

end subroutine zqrm_spmat_nrm

end interface qrm_spmat_nrm

Arguments:

� qrm spmat: the input matrix.
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� ntype: the type of norm to be computed. It can be either ’i’, ’1’ or ’f’ for the infinity, one
and Frobenius norms, respectively.

� nrm: the computed norm.

� info: an optional output parameter that returns the exit status of the routine.

3.2.10 zqrm vecnrm

This routine computes the one-norm ‖x‖1, the infinity-norm ‖x‖∞ or the two-norm ‖x‖2 of a vector.

interface qrm_vecnrm

subroutine zqrm_vecnrm2d(vec , n, ntype , nrm , info)

complex(real64) :: vec(:,:)

real(real64) :: nrm (:)

integer :: n

character :: ntype

integer , optional :: info

end subroutine zqrm_vecnrm2d

subroutine zqrm_vecnrm1d(vec , n, ntype , nrm , info)

complex(real64) :: vec (:)

real(real64) :: nrm

integer :: n

character :: ntype

integer , optional :: info

end subroutine zqrm_vecnrm1d

end interface qrm_vecnrm

Arguments:

� x: the x vector(s).

� n: the size of the vector.

� ntype: the type of norm to be computed. It can be either ’i’, ’1’ or ’2’ for the infinity, one
and two norms, respectively.

� nrm the computed norm(s). If x is a rank-2 array (i.e., a multivector) this argument has to be a
rank-1 array nrm(:) and each of its elements will contain the norm of the corresponding column
of x.

� info: an optional output parameter that returns the exit status of the routine.

3.2.11 qrm residual norm

This routine computes the scaled norm of the residual ‖b−Ax‖∞
‖b‖∞+‖x‖∞‖A‖∞ , i.e., the normwise backward

error. It is a shortcut for the sequence

call qrm_vecnrm(b, qrm_spmat%m, ’i’, nrmb)

call qrm_vecnrm(x, qrm_spmat%n, ’i’, nrmx)

call qrm_spmat_mv(qrm_spmat , ’n’, -1, x, 1, b)

call qrm_spmat_nrm(qrm_spmat , ’i’, nrma)

call qrm_vecnrm(b, qrm_spmat%m, ’i’, nrmr)

nrm = nrmr/(nrmb+nrma*nrmx)

Note that AT can be used instead of A.

interface qrm_residual_norm

subroutine zqrm_residual_norm2d(qrm_spmat , b, x, nrm , transp , info)

real(real64) :: nrm (:)

type(zqrm_spmat_type) :: qrm_spmat
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complex(real64) :: b(:,:), x(:,:)

character , optional :: transp

integer , optional :: info

end subroutine zqrm_residual_norm2d

subroutine zqrm_residual_norm1d(qrm_spmat , b, x, nrm , transp , info)

real(real64) :: nrm

type(zqrm_spmat_type) :: qrm_spmat

complex(real64) :: b(:), x(:)

character , optional :: transp

integer , optional :: info

end subroutine zqrm_residual_norm1d

end interface qrm_residual_norm

Arguments:

� qrm spmat: the input matrix.

� b: the b right-hand side(s). On output this argument contains the residual.

� x: the x solution vector(s).

� nrm the scaled residual norm. This argument is of type real for single precision arithmetic (both
real and complex) and real(kind(1.d0)) for double precision ones (both real and complex).
If x and b are rank-2 arrays (i.e., multivectors) this argument has to be a rank-1 array nrm(:)

and each coefficient will contain the scaled norm of the residual for the corresponding column of
x and b.

� transp: whether to use A or AT

� info: an optional output parameter that returns the exit status of the routine.

3.2.12 qrm residual orth

Computes the quantity ‖AT r‖2
‖r‖2 which can be used to evaluate the quality of the solution of a least

squares problem (see [6], page 34). It is a shortcut for the sequence

call qrm_spmat_mv(qrm_spmat , ’c’, 1, r, 0, atr)

call qrm_vecnrm(r, qrm_spmat%m, ’2’, nrmr)

call qrm_vecnrm(atr , qrm_spmat%n, ’2’, nrm)

nrm = nrm/nrmr

Note that AT can be used instead of A.

interface qrm_residual_orth

subroutine zqrm_residual_orth2d(qrm_spmat , r, nrm , transp , info)

real(real64) :: nrm (:)

type(zqrm_spmat_type) :: qrm_spmat

complex(real64) :: r(:,:)

character , optional :: transp

integer , optional :: info

end subroutine zqrm_residual_orth2d

subroutine zqrm_residual_orth1d(qrm_spmat , r, nrm , transp , info)

real(real64) :: nrm

type(zqrm_spmat_type) :: qrm_spmat

complex(real64) :: r(:)

character , optional :: transp

integer , optional :: info

end subroutine zqrm_residual_orth1d

end interface qrm_residual_orth

Arguments:
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� qrm spmat: the input problem.

� r: the r residual(s).

� nrm the scaled AT r norm. This argument is of type real(real64) for double precision arithmetic
(both real and complex) and real(real32) for single precision ones (both real and complex).
If r is a rank-2 array (i.e., a multivector) this argument has to be a rank-1 array nrm(:) and
each coefficient will contain the scaled norm of AT r for the corresponding column of r.

� transp: whether to use A or AT

� info: an optional output parameter that returns the exit status of the routine.

3.3 Management routines

3.3.1 qrm init

This routine initializes qr mumps and should be called prior to any other qr mumps routine.

subroutine qrm_init(ncpu , ngpu , info)

integer , optional :: ncpu , ngpu , info

end subroutine qrm_init

Arguments:

� ncpu: an optional input parameter that sets the number of working threads. If not specified,
the QRM NCPU is used.

� ngpu: an optional input parameter that sets the number of working threads. If not specified,
the QRM NGPU is used.

� info: an optional output parameter that returns the exit status of the routine.

3.3.2 qrm finalize

This routine finalizes qr mumps and no other qr mumps routine should be called afterwards.

subroutine qrm_finalize ()

end subroutine qrm_finalize

3.3.3 qrm set

This family of routines is used to set control parameters that define the behavior of qr mumps; it is
possible to set default parameters which are applied to all the following factorizations or the parameters
of a specific sparse factorization object of type zqrm spfct type. In the Fortran API the qrm set

interfaces overloads all of them. These control parameters are explained in full details in Section 4.

interface qrm_set

subroutine qrm_glob_set_i4(string , ival , info)

character(len=*) :: string

integer :: ival

integer , optional :: info

end subroutine qrm_glob_set_i4

subroutine qrm_glob_set_r4(string , rval , info)

character(len=*) :: string

real(real32) :: rval

integer , optional :: info

end subroutine qrm_glob_set_r4

subroutine zqrm_spfct_set_i4(qrm_spfct , string , ival , info)

type(zqrm_spfct_type) :: qrm_spfct
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character(len=*) :: string

integer :: ival

integer , optional :: info

end subroutine zqrm_spfct_set_i4

subroutine zqrm_spfct_set_r4(qrm_spfct , string , rval , info)

type(zqrm_spfct_type) :: qrm_spfct

character(len=*) :: string

real(real32) :: rval

integer , optional :: info

subroutine zqrm_spfct_set_r4

end interface qrm_set

Arguments:

� qrm fct: the sparse factorization object.

� string: a string describing the parameter to be set (see Section 4 for a full list).

� val: the parameter value.

� info: an optional output parameter that returns the exit status of the routine.

3.3.4 qrm get

This family of routines can be used to get the value of a control parameter or the get the value of
information collected by qr mumps during the execution (see Section 4 for a full list).

interface qrm_get

subroutine qrm_glob_get_i4(string , ival , info)

character(len=*) :: string

integer :: ival

integer , optional :: info

end subroutine qrm_glob_get_i4

subroutine qrm_glob_get_i8(string , iival , info)

character(len=*) :: string

integer(int64) :: iival

integer , optional :: info

end subroutine qrm_glob_get_i8

subroutine qrm_glob_get_r4(string , rval , info)

character(len=*) :: string

real(real32) :: rval

integer , optional :: info

end subroutine qrm_glob_get_r4

subroutine zqrm_spfct_get_i4(qrm_spfct , string , ival , info)

type(zqrm_spfct_type) :: qrm_spfct

character(len=*) :: string

integer :: ival

integer , optional :: info

end subroutine zqrm_spfct_get_i4

subroutine zqrm_spfct_get_i8(qrm_spfct , string , ival , info)

type(zqrm_spfct_type) :: qrm_spfct

character(len=* ) :: string

integer(int64) :: ival

integer , optional :: info

end subroutine zqrm_spfct_get_i8

end interface qrm_get

Arguments:

� qrm spfct: the sparse factorization object.
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� string: a string describing the parameter to be set (see Sections 4 and 5 for a full list).

� val: the returned parameter value.

� info: an optional output parameter that returns the exit status of the routine.

3.3.5 zqrm spmat init

This routine initializes a zqrm spmat type data structure. This amounts to nullifying all the pointers
and setting the rest of the data fileds to 0.

interface qrm_spmat_init

subroutine zqrm_spmat_init(qrm_spmat , info)

type(zqrm_spmat_type) :: qrm_spmat

integer , optional :: info

end subroutine zqrm_spmat_init

end interface qrm_spmat_init

Arguments:

� qrm spmat: the matrix to be initialized.

� info: an optional output parameter that returns the exit status of the routine.

3.3.6 zqrm spfct init

This routine initializes a zqrm spfct type data structure. This amounts to setting all the control
parameters to the default values.

interface qrm_spfct_init

subroutine zqrm_spfct_init(qrm_spfct , qrm_spmat , info)

type(zqrm_spfct_type) :: qrm_spfct

type(zqrm_spmat_type) :: qrm_spmat

integer , optional :: info

end subroutine zqrm_spfct_init

end interface qrm_spfct_init

Arguments:

� qrm spfct: the sparse factorization object to be initialized.

� info: an optional output parameter that returns the exit status of the routine.

3.3.7 zqrm spfct destroy

This routine cleans up a zqrm spfct type data structure by deleting the result of a sparse factoriza-
tion.

interface qrm_spfct_destroy

subroutine zqrm_spfct_destroy(qrm_spfct , info)

type(zqrm_spfct_type) :: qrm_spfct

integer , optional :: info

end subroutine zqrm_spfct_destroy

end interface qrm_spfct_destroy

Arguments:

� qrm spfct: the sparse factorization object to be destroyed.

� info: an optional output parameter that returns the exit status of the routine.
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3.3.8 qrm alloc and qrm dealloc

These routines are used to allocate and deallocate Fortran pointers or allocatables. They’re
essentially wrappers around the Fortran allocate function and they’re mostly used internally by
qr mumps too keep track of the amount of memory allocated. Input pointers and allocatables can be
either 1D or 2D, integer, real or complex, single precision or double precision (all of these are available
regardless of the arithmetic with which qr mumps has been compiled). For the sake of brevity, only
the interface of the 1D and 2D, double precision, complex versions is given below.

interface qrm_alloc

subroutine qrm_aalloc_z(a, m, info)

complex(real64), allocatable :: a(:)

integer :: m

integer , optional :: info

end subroutine qrm_aalloc_z

subroutine qrm_aalloc_2z(a, m, n, info)

complex(real64), allocatable :: a(:,:)

integer :: m, n

integer , optional :: info

end subroutine qrm_aalloc_2z

subroutine qrm_palloc_z(a, m, info)

complex(real64), pointer :: a(:)

integer :: m

integer , optional :: info

end subroutine qrm_palloc_z

subroutine qrm_palloc_2z(a, m, n, info)

complex(real64), pointer :: a(:,:)

integer :: m, n

integer , optional :: info

end subroutine qrm_palloc_2z

end interface qrm_alloc

interface qrm_dealloc

subroutine qrm_adealloc_z(a, info)

complex(real64), allocatable :: a(:)

integer , optional :: info

end subroutine qrm_adealloc_z

subroutine qrm_adealloc_2z(a, info)

complex(real64), allocatable :: a(:,:)

integer , optional :: info

end subroutine qrm_adealloc_2z

subroutine qrm_pdealloc_z(a, info)

complex(real64), pointer :: a(:)

integer , optional :: info

end subroutine qrm_pdealloc_z

subroutine qrm_pdealloc_2z(a, info)

complex(real64), pointer :: a(:,:)

integer , optional :: info

end subroutine qrm_pdealloc_2z

end interface qrm_dealloc

Arguments:

� a: the input 1D or 2D pointer or allocatable array.

� m: the row size.

� n: the column size.

� info: an optional output parameter that returns the exit status of the routine.
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3.4 Interface overloading

The interface overloading feature of the Fortran language is heavily used inside qr mumps. First of
all, all the typed routines of the type qrm xyz are overloaded with a generic qrm xyz interface. This
means that, for example, a call to the qrm factorize routine will result in a call to sqrm factorize

or as a call to dqrm factorize depending on whether the input matrix is of type sqrm spmat type

or dqrm spmat type, respectively (i.e., single or double precision real, respectively). As said in Sec-
tions 3.3.3 and 3.3.4, the qrm set and qrm get interfaces overload the routines in the corresponding
families and the same holds for the allocation/deallocation routines (see Section 3.3.8). The advantages
of the overloading are obvious. Take the following example:

type(sqrm_spmat_type) :: qrm_spmat

real(real32), allocatable :: b(:), x(:)

! initialize the control data structure.

call qrm_spmat_init(qrm_spmat)

...

! allocate arrays for the input matrix

call qrm_alloc(qrm_spmat%irn , nz)

call qrm_alloc(qrm_spmat%jcn , nz)

call qrm_alloc(qrm_spmat%val , nz)

call qrm_alloc(b, m)

call qrm_alloc(x, n)

! initialize the data

...

! solve the problem

call qrm_least_squares(qrm_spmat , b, x)

...

In case the user wants to switch to double precision, only the declarations on the first two lines
have to be modified and the rest of the code stays unchanged.

4 Control parameters

Control parameters define the behavior of qr mumps and can be set in two modes:

� global mode: in this mode it possible to either set generic parameters (e.g., the unit for output
or error messages) or default parameter values (e.g., the ordering method to be used on the
problem) that apply to all zqrm spfct type objects that are successively initialized through the
zqrm spfct init routine.

� problem mode: these parameters control the behavior of qr mumps on a specific sparse factoriza-
tion problem. Because the zqrm spfct init routine sets the control parameters to their default
values, these have to be modified after the sparse factorization object initialization.

All the control parameters can be set through the qrm set routine (see the interface in Section 3.3);
problem specific control parameters can also be set by manually changing the coefficients of the
qrm spfct type%icntl array (note the underscore in this case); alternatively, the default values of all
parameters can be set through the corresponding environment variables:

type(zqrm_spmat_type) :: qrm_spmat

type(zqrm_spfct_type) :: qrm_spfct1 , qrm_spfct2
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! set default ordering method to scotch

call qrm_set(’qrm_ordering ’, qrm_scotch_)

call qrm_spfct_init(qrm_spfct1 , qrm_spmat)

call qrm_spfct_init(qrm_spfct2 , qrm_spmat)

! set the block size to 256 only for qrm_spfct2

call qrm_set(qrm_spfct2 , ’qrm_mb ’, 256)

! set the block size to 128 only for qrm_spfct1

qrm_spfct1%icntl(qrm_mb_) = 128

...

Here is a list of the parameters, their meaning and the accepted values; for each parameter
omp param a corresponding OMP PARAM environment variable exists which can be used to set its default
value.

� qrm ncpu (global, int32): val is an integer specifying the number of CPU cores to use for the
subsequent qr mumps calls. This has to be set prior to the call to qrm init. This value can also
be set either through the QRM NCPU environment variable (lowest priority) or passed directly as
an argument to the qrm init routine (highest priority). Default is 1. This is a global parameter
and cannot be set for a specific problem only.

� qrm ngpu (global, int32): val is an integer specifying the number of GPUs to use for the sub-
sequent qr mumps calls. This has to be set prior to the call to qrm init. This value can also
be set either through the QRM NGPU environment variable (lowest priority) or passed directly as
an argument to the qrm init routine (highest priority. Default is 0. This is a global parameter
and cannot be set for a specific problem only.

� qrm ounit (global, int32): val is an integer specifying the unit for output messages; if negative,
output messages are suppressed. Default is 6. This is a global parameter and cannot be set for
a specific problem only.

� qrm eunit (global, int32): val is an integer specifying the unit for error messages; if negative,
error messages are suppressed. Default is 0. This is a global parameter and cannot be set for a
specific problem only.

� qrm ordering (both, int32): this parameter specifies what permutation to apply to the columns
of the input matrix in order to reduce the fill-in and, consequently, the operation count of the
factorization and solve phases. This parameter is used by qr mumps during the analysis phase
and, therefore, has to be set before it starts. The following pre-defined values are accepted:

– qrm auto : the choice is automatically made by qr mumps. This is the default.

– qrm natural : no permutation is applied.

– qrm given : a column permutation is provided by the user through the qrm spmat type%cperm in.

– qrm colamd : the COLAMD software package (if installed) is used for computing the col-
umn permutation.

– qrm scotch : the SCOTCH software package (if installed) is used for computing the column
permutation.

– qrm metis : the Metis software package (if installed) is used for computing the column
permutation.

� qrm keeph (both, int32): this parameter says whether the H matrix should be kept for later use
or discarded. This parameter is used by qr mumps during the factorization phase and, therefore,
has to be set before it starts. Accepted value are:
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– qrm yes : the H matrix is kept. This is the default.

– qrm no : the H matrix is discarded.

� qrm mb and qrm nb (both, int32): These parameters define the block-size (rows and columns,
respectively) for data partitioning and, thus, granularity of parallel tasks. Smaller values mean
higher concurrence. This parameter, however, implicitly defines an upper bound for the granu-
larity of call to BLAS and LAPACK routines (defined by the qrm ib parameter described below);
therefore, excessively small values may result in poor performance. This parameter is used by
qr mumps during the analysis and factorization phases and, therefore, has to be set before these
start. The default value is 256 for both. Note that qrm mb has to be a multiple of qrm nb.

� qrm ib (both, int32): this parameter defines the granularity of BLAS/LAPACK operations.
Larger values mean better efficiency but imply more fill-in and thus more flops and memory
consumption (please refer to [2] for more details). The value of this parameter is upper-bounded
by the qrm nb parameter described above. This parameter is used by qr mumps during the
factorization phase and, therefore, has to be set before it starts. The default value is 32. It is
strongly advised to choose, for this parameter, a submultiple of qrm nb.

� qrm bh (both, int32): this parameter defines the type of algorithm for the communication-
avoiding QR factorization of frontal matrices (see the details in [2]. Smaller values mean more
concurrency but worse tasks efficiency; if lower or equal to zero the largest possible value is
chosen for each front. Default value is -1.

� qrm rhsnb (both, int32): in the case where multiple right-hand sides are passed to the qrm apply

or the qrm solve routines, this parameter can be used to define a blocking of the right-hand
sides. This parameter is used by qr mumps during the solve phase and, therefore, has to be set
before it starts. By default, all the right-hand sides are treated in a single block.

� qrm pinth (both, int32): an integer value to control memory pinning when GPUs are used: all
frontal matrices whose size (min(rows,cols)) is bigger than this value will be pinned.

� qrm mem relax (both, real32): a real(real32) value (>= 1) that sets a relaxation parameter,
with respect to the sequential peak, for the memory consumption in the factorization phase. If
negative, the memory consumption is not bounded. Default value is −1.0. See Section 2.5 for
the details of this feature.

� qrm rd eps (both, int32): a real(real32) value setting a threshold to estimate the rank of
the problem. If > 0 the zqrm factorize routine will count the number of diagonal coefficients
of the R factor whose absolute value is smaller than the provided value. This number can be
retrieved through the qrm rd num information parameter described in the next section.

5 Information parameters

Information parameters return information about the behavior of qr mumps and can be either global
or problem specific.

All the information parameters can be gotten through the qrm get routine (see the interface in
Section 3.3.4); problem specific control parameters can also be retrieved by manually reading the
coefficients of the qrm spfct type%gstats array.

The qrm get routine can also be used to retrieve the values of all the control parameters described
in the previous section with the obvious usage.

� qrm max mem (global, int64): this parameter, of type integer(int64) returns the maximum
amount of memory allocated by qr mumps during its execution.

� qrm tot mem (global, int64): this parameter, of type integer(int64) returns the total amount
of memory allocated by qr mumps at the moment when the qrm get routine is called.
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� qrm e nnz r (local, int64): this parameter, of type integer(int64) returns an estimate, com-
puted during the analysis phase, of the number of nonzero coefficients in the R factor. This
value is only available after the qrm analyse routine is executed.

� qrm e nnz h (local, int64): this parameter, of type integer(int64) returns an estimate, com-
puted during the analysis phase, of the number of nonzero coefficients in the H matrix. This
value is only available after the qrm analyse routine is executed.

� qrm e facto flops (local, int64): this parameter, of type integer(int64) returns an estimate,
computed during the analysis phase, of the number of floating point operations performed during
the factorization phase. This value is only available after the qrm analyse routine is executed.

� qrm nnz r (local, int64): this parameter, of type integer(int64) returns the actual number
of the nonzero coefficients in the R factor after the factorization is done. This value is only
available after the qrm factorize routine is executed.

� qrm nnz h (local, int64): this parameter, of type integer(int64) returns the actual number
of the nonzero coefficients in the H matrix after the factorization is done. This value is only
available after the qrm factorize routine is executed.

� qrm e facto mempeak (local, int64): this parameter, of type integer(int64) returns an esti-
mate of the peak memory consumption of the factorization operation.

� qrm rd num (local, int32): this information parameter returns the number of diagonal coefficients
of the R factor whose absolute value is lower than qrm rd eps if this control parameter was set
to a value greater than 0.

6 Error handling

Most qr mumps routines have an optional argument info (which is always last) that returns the exit
status. If the routine succeeded info will be equal to 0 otherwise it will have a positive value. A
message will be printed on the qrm eunit unit (see Section 4 upon occurrence of an error. A list of
error codes:

� 1: The provided sparse matrix format is not supported.

� 3: qrm spfct%cntl is invalid.

� 4: Trying to allocate an already allocated allocatable or pointer.

� 5-6: Memory allocation problem.

� 8: Input column permutation not provided or invalid.

� 9: The requested ordering method is unknown.

� 10: Internal error: insufficient size for array .

� 11: Internal error: Error in lapack routine.

� 12: Internal error: out of memory.

� 13: The analysis must be done before the factorization.

� 14: The factorization must be done before the solve.

� 15: This type of norm is not implemented.

� 16: Requested ordering method not available (i.e., has not been installed).

� 17: Internal error: error from call to subroutine. . .
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� 18: An error has occured in a call to COLAMD.

� 19: An error has occured in a call to SCOTCH.

� 20: An error has occured in a call to Metis.

� 23: Incorrect argument to qrm set=/=qrm get.

� 25: Internal error: problem opening file.

� 27: Incompatible values in qrm spfct%icntl.

� 28: Incorrect value for qrm mb =/=qrm nb =/=qrm ib .

� 29: Incorrect value for qrm spmat%m=/=n=/=nz.

� 30: qrm apply cannot be called if the H matrix is discarded.

� 31: StarPU initialization error.

� 32: Matrix is rank deficient.

21



7 Examples

7.1 Standard interface

The code below shows a basic example program that allocates and fills up a sparse matrix, runs the
analysis, factorization and solve on it, computes the solution backward error and finally prints some
information collected during the process.

program zqrm_example

use zqrm_mod

implicit none

type(zqrm_spmat_type) :: qrm_spmat

complex(r64), allocatable :: b(:), x(:), r(:), xe(:)

integer :: info

real(r64) :: anrm , bnrm , xnrm , rnrm , onrm , fnrm

call qrm_init ()

! initialize the matrix data structure.

call qrm_spmat_init(qrm_spmat)

call qrm_spmat_alloc(qrm_spmat , 13, 7, 5, ’coo’)

qrm_spmat%irn = (/1, 1, 1, 2, 3, 3, 4, 4, 5, 5, 6, 7, 7/)

qrm_spmat%jcn = (/1, 3, 5, 2, 3, 5, 1, 4, 4, 5, 2, 1, 3/)

qrm_spmat%val = (/1.d0, 2.d0, 3.d0, 1.d0, 1.d0, 2.d0, 4.d0,

& 1.d0, 5.d0, 1.d0, 3.d0, 6.d0, 1.d0/)

call qrm_alloc(b, qrm_spmat%m, info)

call qrm_alloc(r, qrm_spmat%m, info)

call qrm_alloc(x, qrm_spmat%n, info)

call qrm_alloc(xe , qrm_spmat%n, info)

b = (/22.d0, 5.d0, 13.d0, 8.d0, 25.d0, 5.d0, 9.d0/)

xe = (/1.d0 , 2.d0 , 3.d0 , 4.d0 , 5.d0/)

r = b

call qrm_vecnrm(b, size(b,1), ’2’, bnrm)

call qrm_least_squares(qrm_spmat , b, x)

call qrm_residual_norm(qrm_spmat , r, x, rnrm)

call qrm_vecnrm(x, qrm_spmat%n, ’2’, xnrm)

call qrm_spmat_nrm(qrm_spmat , ’f’, anrm)

call qrm_residual_orth(qrm_spmat , r, onrm)

write(*,’(" Expected result is x= 1.00000 2.00000 3.00000 4.00000 5.00000")

’)

write(*,’(" Computed result is x=",5(x,f7.5))’)x

xe = xe -x;

call qrm_vecnrm(xe , qrm_spmat%n, ’2’, fnrm)

write(*,’(" ")’)

write(*,’(" Forward error norm ||xe-x|| = ",e7.2)’)fnrm

write(*,’(" Optimality residual norm ||A^T*r|| = ",e7.2)’)onrm

call qrm_spmat_destroy(qrm_spmat)

call qrm_dealloc(b)

call qrm_dealloc(r)
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call qrm_dealloc(x)

stop

end program zqrm_example

7.2 Asynchronous interface

program zqrm_example

use zqrm_mod

implicit none

type(zqrm_spmat_type) :: qrm_spmat

type(zqrm_spfct) :: qrm_spfct

type(qrm_dscr) :: qrm_dscr

type(zqrm_sdata_type) :: x_rhs , b_rhs

complex(r64), allocatable :: b(:), x(:), r(:), xe(:)

integer :: info

real(r64) :: anrm , bnrm , xnrm , rnrm , onrm , fnrm

call qrm_init ()

! initialize the matrix data structure.

call qrm_spmat_init(qrm_spmat)

call qrm_spmat_alloc(qrm_spmat , 13, 7, 5, ’coo’)

qrm_spmat%irn = (/1, 1, 1, 2, 3, 3, 4, 4, 5, 5, 6, 7, 7/)

qrm_spmat%jcn = (/1, 3, 5, 2, 3, 5, 1, 4, 4, 5, 2, 1, 3/)

qrm_spmat%val = (/1.d0, 2.d0, 3.d0, 1.d0, 1.d0, 2.d0, 4.d0,

& 1.d0, 5.d0, 1.d0, 3.d0, 6.d0, 1.d0/)

call qrm_alloc(b, qrm_spmat%m, info)

call qrm_alloc(r, qrm_spmat%m, info)

call qrm_alloc(x, qrm_spmat%n, info)

call qrm_alloc(xe , qrm_spmat%n, info)

b = (/22.d0, 5.d0, 13.d0, 8.d0, 25.d0, 5.d0, 9.d0/)

xe = (/1.d0 , 2.d0 , 3.d0 , 4.d0 , 5.d0/)

r = b

call qrm_vecnrm(b, size(b,1), ’2’, bnrm)

! init the sparse fato object

call zqrm_spfct_init(qrm_spfct , qrm_spmat , err)

! init the descriptor

call qrm_dscr_init(qrm_dscr)

! init the rhs and solution data

call zqrm_sdata_init(b_rhs , b)

call zqrm_sdata_init(x_rhs , x)

call zqrm_analyse_async(qrm_dscr , qrm_mat , qrm_spfct)

call zqrm_factorize_async(qrm_dscr , qrm_mat , qrm_spfct)

call qrm_apply_async(qrm_dscr , qrm_spfct , qrm_conj_transp , b_rhs)

call qrm_solve_async(qrm_dscr , qrm_spfct , qrm_no_transp , b_rhs , x_rhs)
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call qrm_barrier ()

call qrm_residual_norm(qrm_spmat , r, x, rnrm)

call qrm_vecnrm(x, qrm_spmat%n, ’2’, xnrm)

call qrm_spmat_nrm(qrm_spmat , ’f’, anrm)

call qrm_residual_orth(qrm_spmat , r, onrm)

write(*,’(" Expected result is x= 1.00000 2.00000 3.00000 4.00000 5.00000")

’)

write(*,’(" Computed result is x=",5(x,f7.5))’)x

xe = xe -x;

call qrm_vecnrm(xe , qrm_spmat%n, ’2’, fnrm)

write(*,’(" ")’)

write(*,’(" Forward error norm ||xe-x|| = ",e7.2)’)fnrm

write(*,’(" Optimality residual norm ||A^T*r|| = ",e7.2)’)onrm

call qrm_spmat_destroy(qrm_spmat)

call qrm_spfct_destroy(qrm_spfct)

call qrm_dscr_destroy(qrm_dscr)

call qrm_sdata_destroy(b_rhs)

call qrm_sdata_destroy(x_rhs)

call qrm_dealloc(b)

call qrm_dealloc(r)

call qrm_dealloc(x)

stop

end program zqrm_example

7.3 C interface

int main(){

struct zqrm_spmat_type_c qrm_spmat;

int i;

double rnrm , onrm , anrm , bnrm , xnrm;

int irn [13] = {1, 1, 1, 2, 3, 3, 4, 4, 5, 5, 6, 7, 7};

int jcn [13] = {1, 3, 5, 2, 3, 5, 1, 4, 4, 5, 2, 1, 3};

double _Complex val [13] = {1.0, 2.0, 3.0, 1.0, 1.0,

2.0, 4.0, 1.0, 5.0, 1.0,

3.0, 6.0, 1.0};

double _Complex b[7] = {22.0, 5.0, 13.0, 8.0, 25.0, 5.0, 9.0};

double _Complex r[7] = {22.0, 5.0, 13.0, 8.0, 25.0, 5.0, 9.0};

double _Complex xe[5] = {1.0, 2.0, 3.0, 4.0, 5.0};

double _Complex x[5];

qrm_init_c(-1, -1);

/* initialize the matrix data structure */

zqrm_spmat_init_c (& qrm_spmat);

qrm_spmat.m = 7;

qrm_spmat.n = 5;

qrm_spmat.nz = 13;

qrm_spmat.irn = irn;

qrm_spmat.jcn = jcn;

qrm_spmat.val = val;
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zqrm_least_squares_c (&qrm_spmat , b, x, 1);

zqrm_residual_norm_c (&qrm_spmat , r, x, 1, &rnrm);

zqrm_residual_orth_c (&qrm_spmat , r, 1, &onrm);

zqrm_vecnrm_c(x, qrm_spmat.n, 1, ’2’, &xnrm);

zqrm_vecnrm_c(b, qrm_spmat.m, 1, ’2’, &bnrm);

zqrm_spmat_nrm_c (&qrm_spmat , ’f’, &anrm);

printf("Expected result is x= 1.00000 2.00000 3.00000 4.00000 5.00000\n");

printf("Computed result is x= ");

for(i=0; i<5; i++){

printf("%7.5f ",creal(x[i]));

x[i] -= xe[i];

}

printf("\n");

zqrm_vecnrm_c(x, qrm_spmat.n, 1, ’2’, &xnrm);

printf("Forward error ||xe -x|| = %10.5e\n",xnrm);

printf("Optimality residual norm ||A^T*r|| = %10.5e\n",onrm);

zqrm_spmat_destroy_c (& qrm_spmat);

qrm_finalize_c ();

return 0;

}

8 Performance tuning

The performance of qr mumps depends on a number of parameters. Default values are provided
for these parameters that are expected to achieve reasonably good performance on a wide range of
problems and architectures but for optimal performance these should be tuned. In this section we
provide a list of these parameters and explain how do they have an effect on performance.

Block size qr mumps decomposes frontal matrices into blocks of size mb×mb (set through the qrm mb

control parameter described in section 4); this decomposition provides an additional level of
parallelism (other than that already expressed by the elimination tree) because it is possible to
execute concurrently tasks that operate on different blocks. On the one hand, small values of mb
provide high parallelism; on the other hand, high values of mb provide high efficiency for each
task and make the tasks scheduling overhead negligible. This parameter should be, therefore,
chosen as to provide the best compromise between parallelism and tasks efficiency. The optimal
value depends on the size and structure of the problem, the number and features of processing
units, the efficiency and scalability of BLAS operations etc. On current CPUs block sizes of
128 or 256 achieve close to optimal task performance and good parallelism on moderately sized
problems; is GPUs are used, higher block sizes (1024) provide better performance. Choosing
a large mb value to achieve high performance on GPU devices can severely reduce parallelism
and lead to CPU starvation. In this case the nb parameter (qrm nb) can be used to generate
additional parallelism; if this parameter is set to a submultiple of mb, the dynamic, hierarchical
partitioning technique described in [1] is used which can lead to better performance. Finally,
some tasks use an internal block size; this is set by the ib parameter (qrm ib which has to be
a submultiple of mb and nb) and defines a compromise between efficiency of tasks and overall
amount of floating point operations. Again, when GPUs are used, larger values of ib lead to
better speed whereas on CPUs values of 32/64 provide satisfactory speed.
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Reduction tree shape the bh parameter (qrm bh) defines the shape of the reduction tree in the
QR panel reduction as explained in [12] or [2] . A value of k means that a panel is divided
in groups of size k, intra-group reduction is done with a flat tree, inter-group reduction with a
binary tree. Therefore, a value of one achieves the highest parallelism because the whole panel
is reduced through a binary tree. Conversely a value which is equal or higher than the number
of blocks in a panel leads to lower parallelism because all the blocks in the panels are reduced
one after the other; a zero or negative value sets a flat tree on all panels in all fronts of the
multifrontal factorization. Nevertheless it must be noted that excessively small values of bh may
lead to inefficient computations because of the nature of the involved tasks. A flat tree typically
achieves high performance on a wide range of problems but for very overdetermined problems it
may be beneficial to use hybrid trees.

Ordering fill-reducing ordering is essential to limit the fill-in produced by the factorization. This
ordering (set through the qrm ordering control parameter) is computed during the analysis
phase and corresponds to a matrix permutation that defines the order in which unknowns are
eliminated. The ordering will also affect the shape of the elimination tree which can be more
or less balanced or deep with obvious consequences on parallelism, efficiency and, ultimately,
execution time. Nested Dissection [11] methods, such as those implemented in the Metis and
SCOTCH packages, usually provide the best results and their running time may be high; local
orderings such as AMD/COLAMD [3] typically have a lower running time, which results in
a faster analysis step, but lead to higher fill-in and thus higher running time and memory
consumption for the factorization and the solve.

GPU streams when GPUs are used, it can be helpful (and it usually is) to use multiple streams per
GPU to allow a single GPU to execute multiple tasks concurrently. Using multiple GPU streams
is especially beneficial to achieve high GPU occupancy when a relatively small block size mb is
chosen to prevent CPU starvation. This can be controlled through the STARPU NWORKER PER CUDA

StarPU environment variable. By default one stream is active per GPU device and higher per-
formance can be commonly achieved with values of 2 up to 20.
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