
The EPL5700L printer driver code

Hin-Tak Leung

1st February,2003

Contents

1 Introduction 1
1.1 How can one tell if one’s printer may be compatible?. 1
1.2 How did I get these details?. 2

2 The structure of a EPL-5700L print job 2
2.1 Job Header . 2
2.2 Page Header. 4

2.2.1 Custom Paper Size. 4
2.3 Page Footer. 4
2.4 Job Footer. 5
2.5 Stripe Header. 5

3 The Stripe compression algorithm 6
3.1 An example. 6
3.2 Other snipplets of information. 7
3.3 The Run Length Encoding. 8

4 Patents and Intellectual Property Right Issues 8
4.1 The MS Windows driver . 10

5 Misc 10
5.1 On-line Resources. 10
5.2 The USB interface . 11

1 Introduction

This document details everything I learn of how to drive the Epson printer EPL 5700L in the last two years
since I bought one. The information may apply to some of the lower-end Epson laser printers; in particular,
the EPL 5800L, 5900L sold in Europe, There is also a new model 6100L sold in Europe.

It has been confirmed that the 5700L 5800L, and 5900L shares the same core band/stripe compression
algorithm, but have rather different job header, page header stripe header and page footers.

There is a lot of hex codes and a lot of maths in this document. If you don’t like it, turn away now. . .
This document was last updated on February 1, 2003.
No guarantee to the correctness to any part of this document. Use at your own risk.
TODO: Many parts are getting terribly out-dated, wrong, etc. Re-write needed.

1.1 How can one tell if one’s printer may be compatible?

I have a EPL-5700L from UK, It has been confirmed that the 5800L and 5900L are similar enough. Some
newer models, such as 6100L, might be in this case, or some other Epson printers.

TODO: details of difference between 5800L, 5900L

1

Note that some “EPL-5x00”, “EPL-5x00N”, “EPL-5x00-PS” understands ESC/P (Epson’s printer lan-
guage), PCL (HP’s printer language), or Postscript (Adobe’s printer language), and you are better off using
ECS/P, PCL, or Postscript to drive these printers.

The compression algorithm shared by the 5700L, 5800L, 5900L generates these 26 bytes for an entirely
white area (e.g. top of a blank page), which can be regarded as a signature for which this driver applies:

a0 1d 74 03 0e 80 01 d0
40 3a e8 07 1d 00 03 a0
80 74 d0 0e 3a 01 07 40
00 e8

It is almost a hundred byte into the spool file, for the 5900L (which has the longest header).
Note that if you have Win2k instead of Win98se, you need to disable “enhanced printer support” or

something like that in the printer driver control panel to see the actual spool file. Otherwise, Win2k seems
to keep the pages as WMF (windows metafiles) until the last minute before conversion to something that
the printer understands. (“Enhanced - my ass”). Oh, if one pause printing, the spool files are kept as
“sp00001.spl”, etc (the number is reset to 1 every time a windows box reboots) in the system spool directory
under win98 or win2k. Just pause the printer (or disconnect the parallel cable), print and search for “*.spl”.

1.2 How did I get these details?

Ghostsript on MS Windows can use the GDI sub system of the host and print to any printer that the OS
itself knows about.

Win32 Ghostscript also has a print script which is drivable through batch scripts to print-spool thousands
of postscript files.

So what I can do, is to draw some simple lines and shapes withxfig , export as postscript, and print
and collect the spool files and examine them. For example, I have a little perl program which generates
postscript files with one single horizontal line of increasing length at steps of 600th of an inch. So I have a
few thousands of spool files to analyse.

It is a lot of guess work. The major vector-based driving languages are Postscript (Adobe), PCL (HP),
ESC/Page (Epson), LIPS (Canon). Tried all of them and none of them works. The specification for
Postcript, PCL and ESC/Page are very well-documented and publicly available - and I have them some-
where.

I don’t think Epson would choose to invent one more vector language (instead of re-using their own
ESC/Page, or just use postscript or PCL), so the EPL-5700L has to take some sort of compressed bitmap, if
it isn’t fitted with much intelligence. Apparently it can be fitted with a PCL chip and/or a postscript chip to
make it understand PCL and/or postscript, and the EPL-5700 (without L) does understand PCL according
to the spec, I think. So I tried printing simple pages, like a blank page with only a page number at the
bottom, with one single horizontal line, etc and start from there. Over time, by looking at a lot of spool files
of simple documents that I come up with, I gained a certain understanding of how it works.

2 The structure of a EPL-5700L print job

The structure of a typical print job is as shown in Figure1. Please have a look at the figure quickly to get a
mental picture.

The details of individual parts are described below.

2.1 Job Header

A total of 8 bytes (I include the off-set because I get confused sometimes myself as my tests are all written
in C/Perl for which the first byte is byte 0). See table2 for details.

There is no header field corresponding to “skip blank pages”, as expected.
The resolution-related byte 3 and 4 are used as in table3 (oh yes, the maximum resolution of the printer

is 1200dpi x 600dpi, which is called “1200dpi Class” in the printer control panel under MS Windows):

2

Page n

Page 1

Job Header

Page Header

Page Footer

Strip Body
Strip 1

Strip n

Page Body

Stripe Header

Figure 1: The structure of a typical print job

3

Part size (Byte)
Job Header 8
Page Header 25
Stripe Header 7
Page Footer 2
Job Footer 2

Table 1: Sizes of the components of a print job

Byte off set description values
1 0x00 unknown 0x00
2 0x01 unknown 0x00
3 0x02 resolution related
4 0x03 resolution related
5 0x04 RITech status: off = 0, on = 1 (default) 0,1
6 0x05 Toner save: off = 0 (default), on = 1 0,1
7 0x06 Paper type: Normal = 0 (default) Thick (N) = 2, Thick (W) = 1, transparency = 3 0,1,2,3
8 0x07 Density: density 1 = 1, density 3 = 3 (default), density 5 = 5, 1,2,3,4,5

Table 2: Job Header

2.2 Page Header

The Page Header is 23 bytes, and the Page Footer is 4 bytes.
A page is divided into horizontal stripes of width 64 pixels each. So for example, an A4 portrait page at

600dpi horizontal and 300dpi vertical contains 54 stripes.
The math is like this: 300x 11.7inches = 3508, and 3508 /64 = 54.8 stripes, and remember an area of

about 0.5cm at the top and the bottom is not printable.
Similar consideration applies for the horizontal and vertical pixel counts. They seems to be just the

measurement of the paper size concerned minus the unprintable side margin.
The page header details is in table4.
Byte 1 indicates the paper type and seems to be resolution independent (i.e. the code for A4 paper is

fixed, regardless of printing at 600x300 or 1200x600). It seems to follow some kind of convention, so it
might have been taken from an ISO specification table for paper sizes or something.

The others are all resolution dependent. See table5 for how the paper size and pixel count bytes are
used.

The horizontal pixel code at 0x0c, 0x0d is pixel count divided by 8 and then rounded up to multiple of
4 of 0x14, 0x15 ; They seems to be simple pixel counts, most significant byte first.

2.2.1 Custom Paper Size

Here is Custom Paper size (4.32 inch x 6.78 inch) compared with A4 (8.26 inch x 11.69 inch):

0e 40 02 54 00 00 00 00 0d 50 12 98 00 36 ff 00 01 ff fe 00 00 00 00
ff 40 01 2c 00 00 00 00 07 8d 09 56 00 1f ff 00 01 ff fe 00 6d 00 ac

That seems to be the custom paper size in mm (4.32 inch = 109mm, 6.78 inch = 172mm).
According to the windows GUI interface, custom paper size can only be within the parameters shown

in Table6. The minima are probably governed by physical distance between rollers, etc with the printer,
while the max are by physical contraints of the paper tray and paper path.

2.3 Page Footer

See table7.

4

Byte 3 Byte 4 Description
0x00 0x00 300 x 300 (300dpi)
0x00 0x01 600 x 300 (600dpi Class)
0x01 0x00 600 x 600 (600dpi)
0x01 0x01 1200 x 600 (1200dpi Class)

Table 3: Job Header resolution usage

Byte Off set Off-set from job beginning Description value
1 0x00 0x0a 0x02
2 0x01 0x0b 0x00
3 0x02 0x0a paper size code
4 0x03 0x0b unknown 0x40
5,6 0x04, 0x05 0x0c, 0x0d, horizontal pixel count (/8, rounded up *4)
7,8,9,10 0x0e,0f, 10, 11 unknown 0x00
11,12 0x12, 13 vertical pixel count
13,14 0x14,15 horizontal pixel count
15 0x16 unknown 0x00
16 0x17 Stripe count per page
17 0x18 Tray selection: MP = 0, auto = 0xff (default) 0x00, 0xff
18 0x19 unknown 0x00
19 0x1a Number of copies: 1 (default) 0x01, etc
20 0x1b unknown ff
21 0x1c Avoid Page Error: 0xfe = off (default), 0xff = on 0xfe,0xff
22-25 0x1d to 0x20 Only used for Custom paper size 00 00 00 00

Table 4: Page header details

TODO: I believe the printer only needs the paper size selection (byte 1), horizontal pixel count /8 *4,
and the stripe count. I wonder what happens if the printer encounter inconsistent parameters. (i.e. when
byte 3,4 don’t agree with byte 11,12, or byte 9,10 don’t agree with byte 14.

2.4 Job Footer

See table7.
TODO: I believe the printer only needs the paper size selection (byte 1), horizontal pixel count /8 *4,

and the stripe count. I wonder what happens if the printer encounter inconsistent parameters. (i.e. when
byte 3,4 don’t agree with byte 11,12, or byte 9,10 don’t agree with byte 14.

2.5 Stripe Header

Note - I always write my 1’s and 0’s in decoding order i.e. LSB first - this is unusual.
The 7-byte Stripe Header is simply04 00 01 00 followed by the stripe byte count, most singnificant

byte first.
An empty stripe is 64 groups of101110 0000000 1, which is 104 bytes long; so a blank A4 page

(the smallest A4 print job) at 600dpi x 300 dpi is 10 (job header) + 23 (page header) + 54 x (7 + 104) +4 =
6031 byte long. The stripe header for a blank stripe is04 00 01 00 00 00 68 (0x68 = 104).

The worst case scenario, 1200dpi horizontal with random noises, contains 1200 x 9 inches x 64 pixels
≈ 700,000 per stripe, or would take about 90,000 bytes to encode literally; so 3 bytes for byte count should
be enough.

1The line termination code - more about this in the compression algorithm section.

5

0a 0c 0d 12 13 14 15 17 Paper selection, off-set from job beginning
0e 01 2c 0d 50 09 4c 36 A4
0f 00 d0 09 4c 06 70 26 A5
19 01 04 0b 78 08 02 2e B5
1e 01 34 0c 80 09 92 32 LT
1f 00 c4 09 92 06 0e 27 HLT
20 01 34 10 04 09 92 41 LGL
21 01 04 0b ea 08 1b 30 EXE
22 01 34 0e d8 09 92 3c GLG
23 01 20 0b ea 08 fc 30 GLT
25 01 2c 0e d6 09 4c 3c F4
50 00 88 08 66 04 26 22 MON
51 00 90 0a be 04 71 2b C10
5a 00 98 09 c2 04 af 28 DL
5b 00 e4 0a 2c 07 15 29 C5
5c 00 9c 07 15 04 de 1d C6
63 01 f0 0b 24 0f 74 2d IB5

01 2c 0d 50 09 4c 36 A4 300
02 54 0d 50 12 98 36 A4 600c
02 54 1a a0 12 98 6b A4 600
04 a8 1a a0 25 30 6b A4 1200c
01 34 0c 80 09 92 32 LT 300
02 68 0c 80 13 24 32 LT 600c
02 68 19 00 13 24 64 LT 600
04 cc 19 00 26 48 64 LT 1200c

Table 5: Paper size and resolution (300x300 unless otherwise stated)

Dimension min (cm) max (cm) min (inch) max (inch)
Width 9.01 21.59 3.55 8.50
Height 14.80 35.56 5.83 13.99

Table 6: Custom paper size limits

3 The Stripe compression algorithm

The Stripe Compression Algorithm has now been more clearly understood - this section is being
rewritten - for the time being I’ll just remove wrong details...

The strip content is a 16-bit bit-stream with the most significant byte first, so to understand it properly,
one has to read the stream like this:{byte 2 bit 1, bit 2 ,. . . , bit 8}, {byte 1 bit 1, bit 2 ,. . . , bit 8}, {byte 4
bit 1, bit 2 ,. . . , bit 8}, {byte 3 bit 1, bit 2 ,. . . , bit 8}, etc. It is padded at the end to 16-bit boundary so the
stripe byte count is always even.

For sparse stripes (i.e. strips that don’t have a lot of inks), it starts with10 , then a run-length code
(described in the next section) for how many byte to copy from the previous row, then01 followed 8-bit
literal, or00 followed by a 4-bit code of unknown usage2.

Need to add the copy-last, copy-last-2, copy-last-3 description here

3.1 An example

An example of a shape I drew withxfig and printed out is shown in figure2. The corresponding bit code
for the first non-trivial strip (3rd strip) is shown in table9, for A4 at 300 x 300 dpi. When xfig exports to

2The 4 bit code still seems to perform the function of one 8-bit literal - see example.

6

value Description
03 00 Page ends

Table 7: The Structure of the Page Footer

value Description
01 00 Job ends

Table 8: The Structure of the Job Footer

pdf it centres the shape so it has moved somewhat sideways towards the centre of the paper.
It is the 3rd stripe, 2x 64 + 48 = 176 pixels, or just over half an inch from the top of the printable area

of a page. The first non-trivial line is Copy 108 x 8 pixels (about 3 inches), 1 literal black byte, copy that
black byte 55 times, ie. 59x8 pixels (an inch and half), and half a literal black byte after. Thereafter, it is
just copying 165/164/163 bytes and literal 1 byte.

What I don’t understand is how theunknown 1 byteworks. One would expect literal 1 byte (01
00000001) instead of the unknwn (00 1000), for example, in the middle of table9, for the first change
from literal to unknown. This example switches from literal to unknown after 8 lines, but I have seen at
least a few cases of switching after 5 lines; and it doesn’t seems to be triggered by line positioning (i.e.
switch only at multiple of 8 lines) either.

Corner of paper

Figure 2: An example of a test figure

Needs to talk about the copy-left code ...

3.2 Other snipplets of information

I have a couple of small programs for bit-disassembling strips and strip-assembling from bits with the
double-byte swapping and padding to 16-bit boundary included. So I can disassemble, modify, assemble,
cat ¿ /dev/lp0 to see what it looks like.

7

bit code Description
10 1110 0000000 x 48 line end x 48
10 1110 0011011 00 1110 01 11111111 copy 108, unknown 1, literal 1
110 1110 1110110 01 00000001 10 1110 0000000 copy-left 55, literal 1, line end
10 1110 1111111 0110010 01 00000000 10 1110 0000000 copy 165, literal 1, line end
10 1110 1111111 1010010 01 01111111 10 1110 0000000 copy 164, literal 1, line end
10 1110 1111111 1010010 01 00111111 10 1110 0000000 copy 164, literal 1, line end
10 1110 1111111 1010010 01 00011111 10 1110 0000000 copy 164, literal 1, line end
10 1110 1111111 1010010 01 00001111 10 1110 0000000 copy 164, literal 1, line end
10 1110 1111111 1010010 01 00000111 10 1110 0000000 copy 164, literal 1, line end
10 1110 1111111 1010010 01 00000011 10 1110 0000000 copy 164, literal 1, line end
10 1110 1111111 1010010 00 1000 10 1110 0000000 copy 164, unknown 1, line end
10 1110 1111111 1010010 00 0100 10 1110 0000000 copy 164, unknown 1, line end
10 1110 1111111 0010010 00 1100 10 1110 0000000 copy 163, unknown 1, line end
10 1110 1111111 0010010 00 0010 10 1110 0000000 copy 163, unknown 1, line end
10 1110 1111111 0010010 00 1010 10 1110 0000000 copy 163, unknown 1, line end
10 1110 1111111 0010010 00 0110 10 1110 0000000 copy 163, unknown 1, line end
10 1110 1111111 0010010 00 1110 10 1110 0000000 copy 163, unknown 1, line end
10 1110 1111111 0010010 00 0001 10 1110 0000000 copy 163, unknown 1, line end
000000000 padding

Table 9: Bit code for the top part of the triangular shape

3.3 The Run Length Encoding

Each of the strip content is some kind of run-length encoding of the difference to the previous row, for all
64 rows it contains. The run-length count (for how many byte to copy from the previous row, or how many
black/inverted byte to follow) is encoded as follows:

count bit pattern
1 0
2 10
3 1100
4 1101
5 11110
6 111110
7 111111
8≤ x< 128 1110〈7-bit〉
128≤ x< 256 1110〈7-bit〉 〈7-bit〉
256≤ x< 384 1110〈7-bit〉 〈7-bit〉 〈7-bit〉
384≤ x< 512 1110〈7-bit〉 〈7-bit〉 〈7-bit〉 〈7-bit〉
512≤ x< 640 1110〈7-bit〉 〈7-bit〉 〈7-bit〉 〈7-bit〉 〈7-bit〉

Table 10: The Run-Length Code

Since the first 7-bit code can never be below 7, a 7-bit code of zero is used for line termination. i.e. the
bit code10 1110 0000000 seems to be a line termination code.

4 Patents and Intellectual Property Right Issues

I have to say in advance that, I have every intention of honouring the IPR of Epson; I know it takes years of
work of many talented individuals to do the work they do. I would be happy if they provide a close-source

8

root

(111)

5 (11110)

(11)2 (10)

(1)

7 (111111)

E (1110) (1111)4 (1101)3 (1100)

(110)

1(0)

6 (111110)

(11111)

7 < Count < 127

(i.e. if we get 7 zero, it is termination)

Figure 3: The decision tree for the Run Length Code

9

driver, but I am stuck with a printer that I bought which I can’t use under linux. I want to have my consumer
rights of being able to use it to print documents from the OS of my choice. I was trained as a theorectical
research physicist and my primary document preparation system is LATEX based under linux/unix, and I
don’t touch MS Office if I can avoid it. In fact I have noteverused Word 7 and Word 8 for any document
for which I am the starting author! Although to use the printer, I can generate a postscript file, reboot
my dual-boot box to windows and print it via win32 ghostscript’s GDI driver, it is too painful for every
document I want to print. Hence this effort.

Epson Seiko has a patent application family which applies to the US, Europe and most of the civilized
world which details a more primitive version of the compression algorithm. Therefore, the compression
algorithm should not be used for any other purpose than for interacting with the Epson EPL printers.

4.1 The MS Windows driver

Under win98, there is a dlleptcmpa0.dll which has the following symbols (and corresponding clearly
identifiable routine sections):

EPCompressBitsImage
EPCompressGlyph
EPCompressImage
EPExpandBitsRLE
EPExpandRLE
EPGetCompressBitsBufferSize
EPGetCompressBufferSize

Under Win2k, theeptminb7.dll contains these strings (but no identifiable starts and ends of rou-
tines):

EPCompressImage
EPGetCompressBufferSize

I had a quick look at the assembler dump of these (there is a few Win32 PE disasemblers which run under
linux); they seem to have what I want, but bit-suffling in assembler is quite complicated and essentially pure
bit-manipulation maths and one needs a lot of patience to read them. . .

I don’t have any deep knowledge about MS windows programming (I am all unix based, almost exclu-
sively). But maybe this information is useful for somebody who understands windows dll’s know about
calling conventions and the win32 printing sub system, etc (e.g. the wine people. . .). Both of the windows
drivers come with about 30 dll’s, so at least this narrows it down to one to save some investigative work.

5 Misc

5.1 On-line Resources

Most of these pages are in Japanese (I am Chinese, so I can read a good deal of written Japanese...), and
they may be out-dated. I thought it would be useful to patch ghostscript with some extra drivers specific to
the Japan locale (Epson being Japanese and what not), but none of it worked (in mid-2000, after I got the
printer and before I took a job where MS windows is used mostly).

The first one is in English, and the official Epson printer support for linux and is probably most useful,
and some Epson employees see to have hanging around the forum, so posting to the forum there might get
some attention. . . although they have explicitly say that the 5700L, 5800L, 5900L is windows and Mac only,
I suppose if I provide this much detail here, it might pressure them into giving me some actual help.

• EPSON KOWA CORPORATION - linux driver forumhttp://www.epkowa.co.jp/english/
linux_e/linux.html

10

http://www.epkowa.co.jp/english/linux_e/linux.html
http://www.epkowa.co.jp/english/linux_e/linux.html

• How to add printer device to gshttp://www.ee.t.u-tokyo.ac.jp/˜mita/FreeBSD/
gsprinter.html

• Ghostscript 6.01 and GSview 2.9 Jhttp://auemath.aichi-edu.ac.jp/˜khotta/ghost/
index.html

• gdevepag ver.3http://www.humblesoft.com/gdevepag.html

• Software Archivehttp://www.tcp-ip.or.jp/˜tagawa/archive/index.html

• Norihito Ohmori’s WWW pagehttp://www.bukka.p.chiba-u.ac.jp/˜ohmori/

• gdevmd2khttp://plaza26.mbn.or.jp/˜higamasa/gdevmd2k/

• Ghostscript drivershttp://unicorn.p.chiba-u.ac.jp/˜ohmori/gs/

• Ghostscript drivershttp://www.bukka.p.chiba-u.ac.jp/˜ohmori/gs/

• Ghostscript driver for LIPS & ESC/Page & NPDLhttp://www.bukka.p.chiba-u.ac.jp/
˜ohmori/gs/Gdevlips.htm

• Fujitsu FMLBP 2xx driver for Ghostscripthttp://www1.freeweb.ne.jp/˜nakayama/gdevfmlbp-120.
html

• gswin5.50j informationhttp://itohws03.ee.noda.sut.ac.jp/˜matsuda/gswinj/gswin5j.
html

• FORMPRINT for Linux(ESC/Page)http://www.vector.co.jp/soft/unix/hardware/
se116245.html

5.2 The USB interface

There is work to be done in this area (need volunteers).
This document details what is going through the parallel port. In fact, a spool file generated by the

windows driver can be send by linux and print successfully like this (by the root user):

cat sp00001.prn > /dev/lp0

However, sending the code through/dev/usblp0 doesn’t work. There are various documentation on
the net (just search for “Epson printer” and “USB” and “linux”) which says that for Epson printers which
has a USB interface, one has to put an ESP/Page Job Language header before the job like this (in hex) to
enable the USB interface: Tried it already, and it won’t work.

00 00 00
1b 01 40 45 4a 4c 20 31 32 38 34 2e 34 0a
40 45 4a 4c 20 20 20 20 20 0a

(This is actually the hex code for “EJL 1284.4 @EJL” with some extra null bytes, line feeds, carriage
returns, spaces, etc).

It should be quite simple to find out how the USB interface of the EPL5700L works - just use a USB
snoop utility (c.f. the linux usb support page) to have a look at what goes through while a print job is going
through a win32 host to the printer connected via USB.

EPL5900L known to work uni-directionally via the /dev/usb/lp0 device. No change needed for EPL5900L.
TODO: USB work is under way and this section is getting very out-dated.

11

http://www.ee.t.u-tokyo.ac.jp/~mita/FreeBSD/gsprinter.html
http://www.ee.t.u-tokyo.ac.jp/~mita/FreeBSD/gsprinter.html
http://auemath.aichi-edu.ac.jp/~khotta/ghost/index.html
http://auemath.aichi-edu.ac.jp/~khotta/ghost/index.html
http://www.humblesoft.com/gdevepag.html
http://www.tcp-ip.or.jp/~tagawa/archive/index.html
http://www.bukka.p.chiba-u.ac.jp/~ohmori/
http://plaza26.mbn.or.jp/~higamasa/gdevmd2k/
http://unicorn.p.chiba-u.ac.jp/~ohmori/gs/
http://www.bukka.p.chiba-u.ac.jp/~ohmori/gs/
http://www.bukka.p.chiba-u.ac.jp/~ohmori/gs/Gdevlips.htm
http://www.bukka.p.chiba-u.ac.jp/~ohmori/gs/Gdevlips.htm
http://www1.freeweb.ne.jp/~nakayama/gdevfmlbp-120.html
http://www1.freeweb.ne.jp/~nakayama/gdevfmlbp-120.html
http://itohws03.ee.noda.sut.ac.jp/~matsuda/gswinj/gswin5j.html
http://itohws03.ee.noda.sut.ac.jp/~matsuda/gswinj/gswin5j.html
http://www.vector.co.jp/soft/unix/hardware/se116245.html
http://www.vector.co.jp/soft/unix/hardware/se116245.html

	Introduction
	How can one tell if one's printer may be compatible?
	How did I get these details?

	The structure of a EPL-5700L print job
	Job Header
	Page Header
	Custom Paper Size

	Page Footer
	Job Footer
	Stripe Header

	The Stripe compression algorithm
	An example
	Other snipplets of information
	The Run Length Encoding

	Patents and Intellectual Property Right Issues
	The MS Windows driver

	Misc
	On-line Resources
	The USB interface

