Borges DMS

Self-Documentation

Edited by
Camille Bégnis

Joél Pomerleau

joel@mandrakesoft.com

Christian Roy

croy@mandrakesoft.com

Fabian Mandelbaum

fabman@mandrakesoft.com

Peter Pingus

pp@mandrakesoft.com

Jerry Huynh-Tot

jerry@mandrakesoft.com

Borges DMS: Self-Documentation

Published 2002-04-19

Copyright © 2002 MandrakeSoft SA

Edited by and Camille Bégnis,Joél Pomerleau, Christian Roy, Fabian Mandelbaum, Peter

Pingus, and Jerry Huynh-Tot

Table of Contents

Preface i
1. Legal INOLICE ... i

2. About Borges Documentationcccccueeieiviiiiiiiiiicc e i

1. A Revolutionary Concept 1
1.1. What is BOIGES?.....ouviieci s 1

111 FRALUTES .ot 1

1.2. ChoOSING BOTGES ...t 1

1.2.1. Do Ineed it? ... 1

1.2.2. I BOTGES fOI METY ...ooeieicicccte et 2

1.3. S0meE VOCADULATYcooviiiiiiiiiiiiir e 2

2. Quick Start Guide 5
2.1 INStAllAtioNciuiiiiiicicicectctctct s 5

2.1.1. Where to Get it? ..ccooviiuiiiiiiiiicicc s 5

2.1.2. HoW to Install it? ..o 5

2.1.3. DEPENAENCIESceeeeeiiiiiciccicteieie e 5

2.2, FIISt SEEPS.c.iuiiiicicictc s 6

2.3. Beginning Your OWn Project ..o 7
2.3.1. Configuring Borges to Start a New Project ..o 8

2.3.2. Step by Step Example........ccccccciiiiiiiiiiiiiniiiiiiis 8

2.3.3. FINAL NOTES ...t 14

3. User’s Reference manual 15
3.1. Documents WIItINGccoviuiiiiiiiiiiiiccc s 15
3.1.1. Configuration Filesccccoovviiiiiiiiiiiic 15

3.1.2. Document Creation Features............cccoooeveioieieiiiniiiccccccccceee 19

3.1.3. Document modification featurescococeciviriiiciinniccircccerece 22

3.1.4. Adding new languages to the system............cccoooiiiiiii 22

3.2. Generating Final DOCUMENLS ..o 23
3.2.1. Single Manual Generation............cccoouiiiiiiininiiiiiincenes 23

3.2.2. Generating Multiple Documents at Once ..o 24

3.2.3. Generating a Single Module...........ccccccoeuviiiiiiinininiiiiicceceeeeees 24

3.3. Output Style Customizationscocoeueieieiiiiiiiiiieece e 24
3.3.1. Customizing Existing Formats...........ccccocovvinnnnniiiccc 25

3.3.2. Creating a New Customization Layerccccocooevvvininiiinniiicciicnne 25

3.4. Revision Managementcccceeiiiiiiiiiiicccccie e 26
3.4.1. Modules Life CyCle.......oooviiiiiiiiiiiicses 27

3.4.2. Inter-Languages Modules Synchronization...........c..ccccoeevvivenninicnniinccnnnnn, 29

3.4.3. Generating RePOTtS.........ccouoviiiiiiiiiicicc 32

4. Features for the Project Manager 35
4.1. Sending Mails t0 AUROTScccocciiiiiiiiiiiiii s 35

4.2. Accounting RePoOrt ...t 35

5. Borges and XML Editors (Emacs Rules) 37
6. Borges and CVS Integration 39
7. Programer’s Reference manual 41
7.1 MaKESIlES ..o 41

7.1.1. Borges source Makefileccccooiiiiiiiiiiiiiiiiis 41

7.1.2. Documentatin Projects Makefilescccoeviiiiiiiiininns 41

7.1.3. Makefiles in ACHONccoorveiiiiiiiiiiiiccc s 42

7.2. The Way a Manual is Generatedcccccociininiiiiniiinncccenas 43

7.3. Adding/changing Manuals Rulescccccoceiiiiiiiiiiicis 44

7.4. Supporting Another DTD than DocBoOKcccccciuiiriiiiininnniiiiccicccciccennes 45

8. Getting Help 47
8.1. Bug Reports, Feature Requests, Patchesccccccoeiiiniiiinniiiicce, 47

8.2, COMEACE ..t 47

iii

9. Sample Module for Tests
A. Borges Commands Reminder

B. GNU Free Documentation License

B.1. GNU Free Documentation License
. PREAMBLE........cccovvriivnnnnnn.

. VERBATIM COPYING..............
. COPYING IN QUANTITY
. MODIFICATIONS.........cccccceeuue
. COMBINING DOCUMENTS ..

. TRANSLATIONcccccoevvernnancns
. TERMINATIONccccviinninns

OCONNNUIWN RO

. APPLICABILITY AND DEFINITIONSc.cccceitrriietrieireereeneeeneereneereesreeneenens

. COLLECTIONS OF DOCUMENTScccceoiniiiiiiiiiniiiniciciscieeienas
. AGGREGATION WITH INDEPENDENT WORKS.cccocccvevenminnrenirreenrenens

10. FUTURE REVISIONS OF THIS LICENSEccocecoviiiiiniiiiinciieenens
B.2. How to use this License for your documentsccccccceuvevivrirnniniiniinccciccnenes

v

Preface

1. Legal Notice
Copyright © 2002 by MandrakeSoft S.A.

This manual is protected under MandrakeSoft intellectual property rights. Permission is
granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software
Foundation; with no invariant sections, no front-cover texts, no back-cover Texts. A copy of
the license is included in the section Appendix B.

Linux is a registered trademark of Linus Torvalds. All other trademarks and copyrights are
the property of their respective owners.

2. About Borges Documentation

Borges is an XML based extensible document management system powered by open source
technologies. It is designed to facilitate the management of multiple languages, content
reusability and teamwork.

This manual is intended for Borges users. You will learn how to install Borges, create a new
project and use it. This manual also includes a User Reference Guide that further explains
the core functionalities such as conf/ files, etc. Finally, the Programmer’s reference manual
will look at the inner working of the application such as creating custom DTDs/stylesheets
and adding new modules.

Preface

ii

Chapter 1. A Revolutionary Concept

1.1. What is Borges?

Borges is an open source extensible documents management system aimed at XML aware
documentation projects. It's main purpose is to optimize internationalization (many lan-
guages, translations), reusable content and teamwork.

The main philosophy behind Borges is to provide a convenient tool:

» For beginners: by providing a very simple interface to compile XML DocBook documents
into various formats;

« For advanced users: by providing a whole set of customization features allowing to easily
twick every single aspect of the system: output formats and layout, custom rules, etc.

+ For project managers: by providing a powerful project tracking system to juggle with
authors and translators, deadlines, etc.

1.1.1. Features

The supported DTDs are DocBook and TDB (Training DocBook), a subset of the DocBook
DTD written for the training manuals of MandrakeSoft. Adding external DTDs is very easy,
even though the revision checking system might not work yet with DTDs other than Doc-
Book and TDB.

Currently, the system allows to:

« Compile the source files into PDF, PS and (X)HTML;

» Manage different versions of a single document by easily defining derived versions based
on conditional parts;

» Each module is assigned a set of authors: writer/ translators/ proofreaders, each one
responsible for one state of a module. Each contributor can easily review his attributions
through web pages, and can receive e-mails with his current todo list;

o Track the work in progress. From the whole project (made of various documents) to the
most basic components (paragraphs), and their translations;

o Track the state of each module according to six predefined states. (From "written" to "final
language proofreading"). Once a task is completed, the corresponding state is passed and
the module switches to the next state;

Quick facts about Borges :

 automatic management of images in EPS, PNG, JPEG, DIA, XFig formats;
+ automatic management of global and local (per document) external entities;

« automatic management of modules as external entities.

1.2. Choosing Borges

1.2.1. Do | need it?

This section, instead of presenting features, addresses the needs that Borges answers.

Chapter 1. A Revolutionary Concept

Constant revision, Multiple languages

If you manage or publish books that need frequent(constant) revision in multi-languages.
Borges is for you. It will enable you to track changes at the paragraph or block of text level,
maximizing translator’s and proof reader’s time.

Team Leaders

If you manage a team of authors, even scattered around the net, through it’s cvs integration,
task, revision and languages management, Borges will considerably simplify your life.

Reusable Content

If the content you are publishing is reusable, Borges is for you. For example, you write a
travel guidebook for the USA and would like, from that same content, to publish books on
each individual states without having to manipulate your document. You can also publish
one book out of many.

Multiple Format Publishing

In todays Internet world, the format you choose to publish your work is something very
likely to change. Furthermore, in a Customer Relationship Management perspective, it becomes
a great asset to deliver content in the format most suitable for your users. It may be a book, it
may be a web site, it may be a downloadable PDF... Borges , through it’s XML and DocBook
foundation is specifically tailored to address these needs... You can define layout for all of
those formats and really adopt a content provider approach.

1.2.2. Is Borges for me?

Do not think about using Borges if you:

+ seldom write documents more than 2 pages long;

« seldom have your documents translated;

+ don’t want to work under another operating system than Windows™;
« get scared when seeing a text mode console;

Do use Borges if you:

 happen to manage many big documents;

 have those documents translated in many languages;

¢ manage a team of many people involved in the production of these documents;
« regularly lose your hair because the documented items change everyday;

« can rely on someone at ease with GNU/Linux;

 wish to bring your documentation project and team into new generation of technical doc-
umentation with XML and DocBook.

In short, Borges will provide you a solution to efficiently manage big documentation projects,
bringing higher quality and reducing delays. The counterpart will be some time to spend
reading the documentation and getting used to the system. If necessary installing a GNU/Linux
system will also be needed. If you don’t know DocBook, you'll have to learn it as well.

Still interested in the beast? Congratulations! read on, and good luck. You won't regret it!

1.3. Some Vocabulary

We will explain all terms used in Borges * documentation: project, author, author initials,
document, sub-document, module, module status, atom, atom revision, etc.

Chapter 1. A Revolutionary Concept

Note: The terms are not presented in any particular order.

Author

An author can be the redactor, the translator or the reviewer of a module. Generally
speaking, the “author” concept is bound to the creator (in this case, writer) of some-
thing, but Borges treats translators and reviewers as authors.

See Also: Author Initials, Module.

Author Initials
Borges identifies the different authors that participate in a project by their initials. This
limits the initials used by different authors of the same project to be unigue.

If your project has a small group of authors, two-letter initials should be enough, but
more letters can be used as long as they are unique.

See Also: Author, Project.

Project
A project is a document or a set of documents you are managing with Borges . Usually,
a project contains lots of documents.

See Also: Document.

Super-document
Designates a set of modules, structured together to form a book, an article, a user man-
ual; any exhaustive information block about a particular subject.

The super-document is the “master” from which different documents can be generated.
The super-document structure is defined in the master.top.xml file.

A super-document can contain mutually exclusive informations that will be sorted out
by specializing the super-documents into various documents.

See Also: Document.

Document

A document is a compilation of a super-document resulting in a PDF file or (XYHTML
file(s). You may choose to compile all your super-document, or parts of it. Documents
can be whole books, articles, reference sheets, letters, manuals, etc.

See Also: Compilation, Super-document.
Compilation

Compilation is the process by which a set of source XML files is “transformed” into a
PDF or (XYHTML document.

Structuring element

In a super-document, a structuring element is a DocBook element that contains module
elements. Typical structuring element are part or chapter

See Also: Super-document, Module element.

Module element
In a super-document, a module element is a DocBook element that contains the special
<para role="module">

child element. A module element will be replaced in the final document by the module
content itself. Typical module element are chapter or sectl .

Chapter 1. A Revolutionary Concept

See Also: Super-document, Module element.

Module

Modules are the parts that compose documents. Usually, a super-document is divided
into small chunks called modules to simplify writing, translating, management and
content re-use. Chapters, sections, appendices and glossaries are good candidates to
become modules.

In fact, Borges requires that any structuring element be placed in a module to be able
to be translated and to take advantage of the revision management features.

Modules can have some parts flagged, by means of the condition= attribute, in order
to be excluded from certain compilations. This gives you the ability to create more than
one kind of document from a single set of modules, improving the content re-use features
of Borges .

See Also: Document, Super-document, Project.

Original Module
This is used to specify a module which has been written by the module redactor. Trans-
lators will use this original module as the base for all translations.
See Also: Module, Translated Module.

Translated Module
Designates a module which is not the original one, but a translation of the original

module.
See Also: Module, Original Module.

Module Status
Modules go through different states during their life cycle. Each “state” determines the
module’s status.

In order to go from one state to another, some operation needs to be performed on the
module, for example: writing, translating, spell checking, proofreading, etc.

See Also: Life Cycle.

Atom

Atoms are the XML elements used for checking modifications inside a module. They
are the most little possible elements that contain text. Typical DocBook atoms are <title>
and <para>.

See Also: Atom Revision.

Atom Revision
Atom’s have a revision number used by Borges revision management system in order
to track changes made into modules at an “atom scale”.
See Also: Atom.

Life Cycle

The life cycle of a module is composed by several stages (or states) that a module must
go through in order to be considered ready to be released. Currently, Borges only sup-
ports a fixed life cycle, which is detailed in Section 3.4.1.

See Also: Module, Module Status.

Chapter 2. Quick Start Guide

2.1. Installation

As of now, Borges has only been tested on Mandrake Linux. It should work on any Linux
system provided the necessary dependencies are installed. Please inform us of any success
or failure on any other system.

2.1.1. Where to get it?

Current versions are published on SourceForge'. There, you will find different packagings:

e If youare on an RPM based system, install Borges and Borges-DocBook noarch packages;

 You can also choose to get the tarball (Borges-*.tar.bz2);

The different Borges packages are also part of the Mandrake Linux distribution.

Finally, if you like living dangerously, you can get the current CVS version with following
parameters:CVS_RSH=sshand CVSROOT=:ext:anoncvs@cvs.mandrakesoft.com:/cooker
Then, you can get the module Borges with password cvs .

2.1.2. How to install it?

Just install the RPM packages, or read instructions in the tarball.

Note: Borges installs by default in /usr/share/Borges/

2.1.3. Dependencies

If you do not install Borges from RPM packages, you'll have to check that the following
softwares or libraries are available on your system:

* make

* libxslt-proc from libxslt Gnome project;

e perl ;

o perl-XML-Twig , perl-DateManip and perl-XML-LibXML libraries;

* ImageMagick images processor for images transformations;

e dia diagrams editor if you wish to work with dia diagrams;

 xfig diagrams editor if you wish to work with xfig diagrams;

» XFree86-Xvfb is needed for diagrams transformation;

e DocBook DTD XML version 4.1.2 into /usr/share/sgml/docbook/xml-dtd-4.1.2/ ;
» DocBook DSSSL stylesheets into /usr/share/sgml/dochook/dsssl-stylesheets/ ;
» DocBook XSL stylesheets into /usr/share/sgml/docbook/xsl-stylesheets/ ;

e openjade

* tetex-latex

e jadetex

1. http://sourceforge.net/projects/borges-dms/

Chapter 2. Quick Start Guide

Tip: If something goes wrong while trying to install Borges , make sure that those applications are
installed correctly.

2.2. First Steps

Borges needs a minimal configuration to work. We will detail the configuration steps nec-
essary to create a project template. Afterwards, the sample document provided with the
project template will be compiled into both PDF and HTML and the progress report will be
generated.

To configure Borges you need to perform the following steps:

1. Define a New Working Directory

A working directory should be created to hold all your project’s files. Let’s assume you
want to put your files under My_Project in your home directory, then you would issue:

mkdir ~/My_Project
to do so.

Note: The following steps assume you are under the working directory (~/My_Project/ in the
example).

2. Copy the Template System to The Working Directory

Now that the working directory has been created, you need to copy a “template system
tree” into it. A template directory tree is supplied under the /usr/share/Borges/template/
directory, so issue

cp -a /usr/share/Borges/template/* .

to copy the template into your working directory.
3. Create Your Personal Profile

Each “author” (writer, translator, proofreader, etc.) needs to define his personal profile.
Borges uses the information in the profile for version management and author credits
among other things. The profile is stored in conf/author.xml and a sample is provided
in the conf/author.xml.in file, so just issue

cp conf/author.xml.in conf/author.xml

and edit author.xml with your favorite text editor to suite your personal data. Below
you have a sample profile:

<?xml version="1.0' encoding="IS0O-8859-1'?>
<author>
<initials>pp</initials>
<firstname>Peter</firstname>
<lastname>Pingus</lastname>
<mail>peter.pingus@mandrakesoft.com</mail>
<lang>en</lang>

</author>

Tip: Take alook atthe comments in author.xml for hints about the meaning of the parameters
(In the above sample, the comments are excluded for simplicity reasons).

Chapter 2. Quick Start Guide

4. Initialize the System

Now, Borges has to be initialized. To do so, just issue

make

and directories will be populated with the minimum required files.
5. Generate the Modules Templates

Now you have the system configured, it is time to test if it works properly. A sample
document (called Sample) is provided, so we will use that one for testing purposes. Issue

make -C manuals/Sample templates LANG=en
to generate the modules templates for the sample document.

Tip: the -C argument of the make command simply means to make the templates target in
the manuals/Sample directory. You could have run

cd manuals/Sample; make templates LANG=en
also.

6. Compile Sample to PDF and Check the Result
Now you can compile the sample document to PDF to check how it looks. Issue
make -C manuals/Sample master.pdf LANG=en

to do so, and check the resulting PDF by issuing
xpdf manuals/Sample/master.pdf

if everything went well, you should see a nice PDF of the sample document. Of course,
you can use Acrobat Reader instead of Xpdf to open the PDF if you prefer to.

7. Compile Sample to HTML and Check the Result
You can also compile the sample document to HTML. Issue
make -C manuals/Sample master.flat.html LANG=en

to do so, and check the results by pointing your favorite browser to ~/My_Project/manuals/Sample/master.flat.html
8. Generate and View the Report

The report is a tool of Borges which informs you about the progress of the work being
done in your project for all supported languages. To generate the report for the sample
document, issue

make -C reports all LANG=en

and view the resulting report by pointing your favorite web browser to ~/My_Project/reports/index.html

Note: In all the above examples the LANG=enparameter is mandatory if your preferred language
is other than English (en). The preferred language was set in the author.xml file, remember?

It was not that hard wasn’t it? Now, you can setup Borges to work with your own projects.

Chapter 2. Quick Start Guide
2.3. Beginning Your Own Project

We will first outline the steps needed to configure Borges for a new project and then a step-
by-step example will be provided.

2.3.1. Configuring Borges to Start a New Project

Warning

In the following pages it is assumed that Borges is already configured properly as explained
in Section 2.2 at least up to the point of creating your personal profile.

First, you should clean the files and directories related to the sample document provided
with the project template. Issue the following

rm -rf manuals/Sample
rm -rf modules/en
rm -rf manuals/images
rm -rf images/en
rm -rf entities/en

to do so. You should also clean the main configuration file (see Section 2.3.2.1). You should
also define in this file the title for your whole project.

Next, you have to perform the following steps (see Section 2.3.2 below for details):

1. Prepare the master file. The master file outlining your project’s structure needs to be
created and edited.

Tip: You can think of the master file as the “skeleton” of your future document.

2. Initialize the repository. This is mandatory for the system to work properly.

3. Define entities. Entities for titles and names (for example, application names, company
names, etc.) need to be defined. The importance of entities is explained in Section 2.3.2.4
and in Section 3.1.2.1.

4. Generate the writers’ guidelines. The writers’ guidelines is a PDF or HTML file compiled
from the master file having your project’s structure as its content. Once generated the file
must be read with an appropriate tool (Xpdf or Acrobat Reader , for example) to check
its validity.

5. Assign tasks to every author. Ideally you should be able now to assign a reponsible for
every single task of the life cycle of every module.

6. Write the modules and create images. Now, authors can start writing the different mod-
ules that make up your project and creating the modules’ associated images (if needed).

7. Check the result. You can check the progress of the work being done on your project
(writing, translating, etc.) by compiling the project and reading the resulting PDF from
time to time.

In the following section a step by step example is provided to clarify the points detailed
above.

2.3.2. Step by Step Example

Let’s say you want to start a new book named “My_Book” consisting of a preface and two
chapters: the first with two sections and the last one with three sections. You also want to
include two appendices and want your book to be translated into French and Spanish.

So, here is what you have to do, step-by-step.
8

Chapter 2. Quick Start Guide

Note: In all the following examples comments in files are excluded for simplicity reasons. Luckily,
all configuration files are self-documented so you can always refer to them for an explanation of
a particular configuration option.

Note: All examples of command lines to issue assume that the current directory is ~/My_Project/
(you can use pwd to check that).

2.3.2.1. Edit the Main Configuration File

Borges is designed to handle multiple manuals and languages; to define your project details,

it uses a file named repository.xml stored under the conf/ directory.
The conf/repository.xml file for your starting project should look like this:
<?xml version="1.0’ encoding="iso-8859-1'?>
<configuration>
<repository>
<titte>My Book Project</title>
<paths>

<modules>modules</modules>
<manuals>manuals</manuals>
</paths>
<outputs>
<makefile>/usr/share/Borges/backend/Makefile.DB</makefile>
</outputs>
<manuals>
</manuals>
<languages>
<lang>en</lang>
</languages>
<revisions>
<type>
<name>|proof</name>
<author>tbn</author>
</type>
<type>
<name>ispell</name>
<author>tbn</author>
</type>
<type>
<name>pproof</name>
<author>tbn</author>
</type>
<type>
<name>tproof</name>
<author>tbn</author>
</type>
<type>
<name>translate</name>
<author>tbn</author>
</type>
<type>
<name>write</name>
<author>tbn</author>
</type>
</revisions>
</repository>
</configuration>

The file is pretty self-explanatory, however there are some things to note. The <manuals>
section contains all the documents (one <manual> entry per document) handled by Borges .
The <languages> section contains all supported languages for all projects (one <lang> entry
containing the two letter ISO code of the language per each language).

Chapter 2. Quick Start Guide

Note: There is no document defined yet, and no language but the default one you wish to use for
your project. Other documents and languages will be added later through the command line.

The <revisions> section defines the document’s workflow” which represents the “life cy-
cle” of the document or the “stages” through which a document must pass.

Tip: ton (To Be Named) must be used as the value for <author> to tell Borges that the person
responsible for that revision is not defined yet. You can put here the initials of the person that
will be responsible for a specific step by default. Then for all new modules in all languages, this
person will be marked as responsible for this specific step.

2.3.2.2. Define the Document Structure

We spoke about “document structure” a lot, right? Well, time has come to define it. We need
to create a file named master.top.xml . You can copy /usr/share/Borges/template/manuals/Sample/master.top.xml
to ~/My_Project/master.top.xml and edit it to fit your needs.

The master.top.xml file for your project should look like this:

<?xml version="1.0’ encoding="is0-8859-1'?>

<IDOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2/[EN"
"lusr/share/sgml/docbook/xml-dtd-4.1.2/docbookx.dtd"[

<IENTITY % entities SYSTEM "entities">

Y%entities;

1>

<book id="My_Book" lang="⟨">
<title>&book-title;</title>
<bookinfo>
<title>&book-title;</title>
<subtitle>&book-sub-title;</subtitle>
<revhistory>
<revision lang="en">
<revnumber>1</revhumber>
<date>2002-06-04</date>
<authorinitials>pp</authorinitials>
<revremark>First Draft</revremark>
<[revision>
<revision lang="fr">
<revnumber>1</revhumber>
<date>2002-06-14</date>
<authorinitials>pt</authorinitials>
<revremark>Begin French Translation</revremark>
</revision>
<revision lang="es">
<revnumber>1</revhumber>
<date>2002-06-10</date>
<authorinitials>rp</authorinitials>
<revremark>Begin Spanish Translation</revremark>
</revision>
</revhistory>
<abstract><para></para></abstract>
<authorgroup>
<editor id="pp">
<firstname>Peter</firstname>
<surname>Pingus</surname>
<affiliation>
<address><email>pp@co.net</email></address>
</affiliation>
</editor>
<author id="pt">
<firstname>Pierre</firsthame>
<surname>Tremblay</surname>

2. At the moment of this writing the workflow is fixed and cannot be changed.

10

Chapter 2. Quick Start Guide

<affiliation>
<address><email>pt@co.net</email></address>
</affiliation>
</author>
<author id="rp">
<firstname>Reina</firstname>
<surname>Pingulino</surname>
<affiliation>
<address><email>rp@co.net</email></address>
</affiliation>
</author>
</authorgroup>
<authorblurb>
<para>&e-mail; doc@co.net</para>
<para>&web; www.co.net</para>
</authorblurb>
<pubdate>2002-06-20</pubdate>
<copyright>
<year>2002</year> <holder>Your_Company</holder>
</copyright>
</bookinfo>
<preface id="legal-notice">
<para role="module">legal-notice-legalnotice </para> <para>Put
here the content of the former legal notice section. If not all
can fit here in the physical page, ask the team. </para>
</preface>
<chapter>
<title>&chapter-1-title;</title>
<sectl id="sect-1-1">
<title>First Section Title</title>
<para role="module">chapl-sectl-section</para>
<para>Write the chapter 1, section 1 contents</para>
</sectl>
<sectl id="sect-1-2">
<title>Second Section Title</title>
<para role="module">chapl-sect2-section</para>
</sectl>
</chapter>
<chapter>
<title>&chapter-2-title;</title>
<sectl id="sect-2-1">
<title>Second Chapter First Section Title</title>
<para role="module">chap2-sectl-section</para>
</sectl>
<sectl id="sect-2-2">
<title>Second Chapter Second Section Title</title>
<para role="module">chap2-sect2-section</para>
</sectl>
<sectl id="sect-2-3">
<titte>Second Chapter Third Section Title</title>
<para role="module">chap2-sect3-section</para>
</sectl>
</chapter>
<appendix id="appendix-1">
<title>First Appendix Title</title>
<para role="module">appl-appendix</para>
</appendix>
<appendix id="appendix-2">
<title>Second Appendix Title</title>
<para role="module">app2-appendix</para>
</appendix>
</book>

Thinking in a more or less “modular” way we can say that, generally speaking, a book has: a
title, some information about the book itself (sub-title, authors, editor, revisions, publication
date, etc.), a preface, chapters and appendices. So, that is exactly what is represented in the
sample master.top.xml above, no more, no less.

However, there are some “special” things you might have noticed:
11

Chapter 2. Quick Start Guide

1. The role="module" attribute. Whenever Borges finds a para element having this
attribute, it will go up to the element’s “father” (usually, a sectX , chapter , appendix
element), and will replace that whole “father” with the entity named after the content
of that para .

For example, the whole sectl element

<sectl>

<titte>Some Title</title>

<para role="module">some_sect-sectl</para>

<para>Introduce here the Tartempion application, tell why it rocks.</para>
</sectl>

will be replaced by the entity &some_sect-sectl; , which in turn refers to the module
some_sect-sectl.xml stored under the modules/ll/ directory, where Il is the ISO
two letter code for the language you want to compile the book in.

This way of deriving the resulting document directly from the specifications docu-
ment ensures that there is no discrepancy between specs and final result. Furthermore,
the system publishes those direction for writers in the the spec file and in the module
templates. They will have disappeared in the final document. Do not hesitate to make
those guidelines as lengthy as necessary.

2. There are many entities notably for titles. As this master file will serve as a skeleton
for our final document, all texts in it must be enclosed in entities so that the master
is language-independent. There is a notable exception however: you remember that
module elements will be entirely replaced by the modules themselves. So texts in
these elements can stay here in (here our sections titles for example).

Note: You might need to change the XML SYSTEMieclaration of the DocBook DTD ("/usr/share/sgml/docbook/xml-dtd-4.1.2/doc
to fit your system.

2.3.2.3. Insert the New Document

Now that the structure of the document is defined, the system can create the directories and
files to support this new document. This is all done in one single command:

make adddoc doc=My_Project master=master.top.xml

that will create the new My_Doc document based on the master file master.top.xml . It will
actually perform the following tasks:

 Update conf/repository.xml ;

« create manuals/My_Doc/ directory and populate it with all needed files and languages
directories;

» Make all module templates for this new documents in all defined languages;

+ Add all new files to the CVS repository, if available. Note that you'll still need to commit
those files by hand;

2.3.2.4. Define Entities

Project and documents entities need to be defined. Project entities are those entities common
to all documents, for example: computer program names. Documents entities are those en-
tities used only in a particular document. All entities files are XML files which file names
must end in .ent .

12

Chapter 2. Quick Start Guide

Project entities files go into the entities/ directory.

Master entities files go into the manuals/My_Book/Il/ directory where Il is the two letter
ISO code for the language. All entities defined in master.top.xml will have to be defined
here.

Note: Global entities are covered more thoroughly in Section 3.1.2.1.

There are two predefined documents entities files, and they are:

* titles.ent where entities for titles are defined. Below you have a sample titles.ent
file:

<?xml version="1.0’ encoding="ISO-8859-1"?>
<IENTITY book-tite "My First Book">

<IENTITY book-subtitle "First Book Using Borges">
<IENTITY chapterl-title "First Chapter">

<IENTITY chapter2-titte "Second Chapter">

« strings.ent where other entities used in master.top.xml are defined. Below you have
a sample strings.ent file:

<?xml version="1.0' encoding="ISO-8859-1"?>
<IENTITY e-mail "E-mail:">
<IENTITY web "Web:">

2.3.2.5. Generate the Writers’ Guidelines

Now that all entities are defined, you can generate the writers” guidelines. Issue

make -C manuals/My_Book master.top.pdf LANG=en

to do so, and check the resulting PDF with your favorite PDF viewer.

Tip: You can also issue
make -C manuals/My_Book master.top.flat.html LANG=en

to build the writers’ guidelines in HTML.

If all went fine, you should see the book with the table of contents, all chapters and sections
with the guidelines you wrote in it.

2.3.2.6. Assign Tasks to Contributors

By default tasks are assigned to the people declared in the main configuration file (Section
3.1.1.4). You may need to reassign tasks, notably those assigned to tbn . Consult Section
3.4.1.3 to learn how to do that. However this step is optional.

13

Chapter 2. Quick Start Guide

2.3.2.7. Write the Modules and Create Images

All that is left is to fill your book with content: write the modules and create the images
and/or drawings your book will have. If needed, also new entities file(s) have to be created
and filled properly.

So, open the modules’ XML files (modules/en/chap2-sectl-section.xml for the first sec-
tion of the second chapter of the English book, for example) with your favorite text editor
and start filling it with contents. We won't tell you how to use DocBook here, there is excel-
lent material about that all other the Internet. Start consulting The DocBook Wiki®.

If you use entities in your modules, make sure to create a new entities file to hold the
modules’ entities (manuals/My_Book/en/acronym-list.ent for a file having entities for
acronyms in English, for example). Consult Section 3.1.2.1 for more information about enti-
ties.

Borges also supports images and drawings. At the time of this writing, PNG and JPEG (for
raster images), EPS (for vector graphics), DIA drawings (.dia files) and XFig drawings were
supported. Consult Section 3.1.2.2 for more information about images.

Images and drawings common to all languages should be put in the images/ directory and
images and drawings particular to each language must be put in the images/ll/ directory,
where Il is the two letter ISO code for the language.

2.3.2.8. Check the Result

Finally, you have to check the results. Issue

make -C manuals/My_Book master.pdf LANG=en

to compile the document into PDF and open it with your favorite PDF reader.

You can also compile the document into HTML both as a single (flat) HTML file or as several
(chunked) HTML files. Issuing

make -C manuals/My_Book master.html LANG=en

will compile the document into chunked HTML files. Point your web browser to ~/My_Project/manuals/My_Book/html
to check the results. Issuing

make -C manuals/My_Book master.flat.html LANG=en

will compile into a single HTML file. Point your web browser to ~/My_Project/manuals/My_Book/master.flat.html|
to check the results.

2.3.3. Final Notes

A few things to note:

» Needless to say, the last two sections of Section 2.3.2 should be done “in a loop”. There is
no need to write all the modules for your book to check how it is looking so far.

e The LANG=en parameter passed to the make commands in the above sections is only
needed if your preferred language is other than English. This is also needed to compile
documents in another language than the one declared in your preferences conf file.

3. http://www.docbook.org/wiki/moin.cgi/
14

Chapter 3. User’s Reference manual

3.1. Documents Writing

Following is a review of the configuration files” format and the required elements on master.top.xml
for the revision system to work. All the necessary elements to create your documents for
your projects, from global entities to documents compilation, are detailed in this section
also.

3.1.1. Configuration Files

Following is an in-depth review of Borges ’ configuration files and their format.

3.1.1.1. conf/author.xml

This file holds information related to the author (writer, translator, etc.) who will use the
system. Each author must define it in order to use the revision system and to be able to
compile documents.

<?xml version="1.0' encoding="ISO-8859-1'?>
<author>
<initials>pp</initials>
<firstname>Peter</firstname>
<lastname>Pingus</lastname>
<mail>peter.pingus@mandrakesoft.com</mail>
<lang>en</lang>

</author>

e <initials> holds the author’s initials. Most likely two lowercase letters, the initials are
used as a unique identifier to distinguish among different authors. Mandatory.

« <firsthname> holds the author’s name and <lasthame> holds the author’s lastname. Op-
tional.

e <mail> holds the author’s e-mail address. Optional, but necessary for email alerts

e <lang> holds the author’s preferred language. Note that we use the word “preferred”
because the language can be overridden with the LANG=parameter when doing compila-
tions. However, for revision control the language cannot be forced with the LANG=param-
eter and the one defined in <lang> is used. Mandatory.

3.1.1.2. conf/manual-default.xml

This file holds the configuration parameters of the style-sheets to use by default when pro-
ducing PDF and HTML output.

<?xml version="1.0' encoding="1SO-8859-1'?>

<configuration>
<stylesheet>
<dssslprint>../drivers/docbook-jadetex.dsssl</dssslprint>
<xslIxhtmlchunk>../drivers/docbook-xhtml-chunk.xsl</xsIxhtmlchunk>
<xslxhtmlflat>../drivers/docbook-xhtml.xsl</xsIxhtmlflat>

</stylesheet>

</configuration>

e <dssslprint> holds the DSSSL style-sheet used for TeX transformation of the document
to prepare it for printing. Mandatory.

15

Chapter 3. User’s Reference manual

« <xslxhtmichunk> holds the XSL style-sheet used for (X)YHTML transformation of the doc-
ument into different (X)HTML files for online publication. Mandatory.

o <xslxhtmlflat> holds the XSL style-sheet used for (X)HTML transformation of the doc-
ument into a single (X)HTML file for online publication. Mandatory.

3.1.1.3. manuals/My_Book/conf.xml

This file holds the configuration parameters of the style-sheets to use when producing PDF
and HTML output, as well as “aliases” and exclusion information for deriving various docu-
ments from a single super-document. By default this file is the copy of the conf/manual-default.xm|
file above.

<?xml version="1.0' encoding="ISO-8859-1'?>
<configuration>
<stylesheet>
<dssslprint>../drivers/docbook-jadetex.dsssl</dssslprint>
<xslxhtmlchunk>../drivers/docbook-xhtml-chunk.xsl</xsIxhtmlchunk>
<xslxhtmlflat>../drivers/docbook-xhtml.xsl</xsIxhtmiflat>
</stylesheet>
<manuals>
<manual id="Some_Book">
<lang>en</lang>
<format>pdf</format>
<exclude>VPN</exclude>
</manual>
<manual id="Another_Book">
<lang>en</lang>
<format>pdf</format>
<exclude>VPN</exclude>
<exclude>booklet</exclude>
</manual>
</manuals>
</configuration>

Note: <stylesheet> contains the same parameters as before. Please, refer to Section 3.1.1.2
for more information on it.

» <manual> holds configuration information of exclusions for one document. The id at-
tribute must be unique among all projects. Optional.

 <exclude> holds the name of the “flags” to exclude in conditional-compilation of the
document. Mandatory.

With the sample manuals/My_Book/conf.xml above, issuing

make -C manuals/My_Book Some_Book.pdf

will compile a PDF file named manuals/My_Book/Some_Book.pdf excluding all elements
marked with condition="VPN" ;issuing

make -C manuals/My_Book Another_Book.pdf

will compile a PDF file named manuals/My_Book/Another_Book.pdf excluding all ele-
ments marked with condition="VPN" and also all elements marked with condition="booklet"

Please refer to Section 3.1.2.4 for more information on conditional-compilation.

16

Chapter 3. User’s Reference manual

3.1.1.4. conf/repository.xml

This file is the most important configuration files because it’s the top configuration file for
the whole Borges project.

<?xml version="1.0' encoding='is0-8859-1'?>
<configuration>
<repository>

<titte>My Book Project</title>

<paths>
<modules>modules</modules>
<manuals>manuals</manuals>

</paths>

<outputs>
<makefile>/usr/share/Borges/backend/Makefile.DB</makefile>

</outputs>

<manuals>
<manual>My_Book</manual>

</manuals>

<languages>

<lang>en</lang>
<lang>fr</lang>
<lang>es</lang>

</languages>

<revisions>

<type>
<name>|proof</name>
<author>tbn</author>
</type>

<type>
<name>ispell</name>
<author>tbn</author>
</type>

<type>
<name>pproof</name>
<author>tbn</author>
</type>

<type>
<name>tproof</name>
<author>tbn</author>
</type>

<type>
<name>translate</name>
<author>tbn</author>
</type>

<type>
<name>write</name>
<author>tbn</author>
</type>

</revisions>

</repository>
</configuration>

o <title>

holds the project’s name. This is used as the title in the reports generated by
Borges report facilities. Mandatory.

 <paths> holds the paths where the different documents and their modules are located.
The defaults are a safe bet, so it is recommended not to change them. Mandatory.

« <modules> holds the modules

« <manuals> holds the documents

7

top” directory. Mandatory.

G

top” directory. Mandatory.

 <outputs> holds the location of the template output Makefile
make files are used for the different DTDs Borges supports. At the moment of this writ-
ing, only the DocBook DTD was supported (hence, the .DB file name extension). You can
put as many <makefile> entries as you like. Mandatory.

files. Template output

17

Chapter 3. User’s Reference manual

e <manuals> holds the directory name of the different documents, with one <manual> entry
per document. There must be at least one entry. Mandatory.

Caution

Itis highly recommended not to add here any manual by hand. Use the make adddoc
command instead. See Section 2.3.2.3.

Tip: Even if GNU/Linux supports the space character in path names, it is recommended not to
use them here. You can use the hyphen (-) or the underscore (_) as word separators for path
names.

+ <languages> holds the languages supported by all documents, one <lang> entry per lan-
guage containing the two letter ISO code (in lowercase) for that language. At least one
language must be defined. Mandatory.

Caution

It is highly recommended not to add here any language by hand but the first one. Use
the make addlang command instead. See Section 3.1.4.

» <revisions> holds the revision types managed by the revision system. The order in
which they appear define the work-flow of the document’s modules. At the moment
of this writing, neither the names of the revision types nor their order can be changed,
however the initials of the “default” author responsible for a specific revision can be set.
Mandatory.

+ <name> holds the name of the revision: write , for module’s writing; translate for
module’s translation; tproof ~ for module’s technical proofreading; pproof for module’s
pedagogical proofreading, ispell ~ for module’s spell-checking and Iproof for mod-
ule’s idiomatic proofreading. Mandatory.

Note: Translations of the modules will only have translate ,ispell and Iproof revision types.

+ <author> holds the “default” author initials for a revision type. If no author is assigned
to a revision type yet, tbn (To Be Named) must be used. Mandatory.

o <server> holds the parameters related to remote compilation and/or validation of XML
files. This is not yet implemented in Borges .

3.1.1.5. master.top.xml and the Revision System

The <revhistory> part of the master.top.xml file plays an important role in the revision
system of Borges .

Below you have a sample <revhistory> part:

<revhistory>

<revision lang="en">
<revnumber>1</revnumber>
<date>2002-06-04</date>
<authorinitials>pp</authorinitials>
<revremark>First Draft</revremark>
</revision>

<revision lang="fr">
<revnumber>1</revnumber>
<date>2002-06-14</date>

18

Chapter 3. User’s Reference manual

<authorinitials>pt</authorinitials>
<revremark>Begin French Translation</revremark>
</revision>
<revision lang="es">
<revnumber>1</revhumber>
<date>2002-06-10</date>
<authorinitials>rp</authorinitials>
<revremark>Begin Spanish Translation</revremark>
</revision>
</revhistory>

Each <revision> entry contains data related to one of the translations of the document. It
has a lang attribute with the two letter ISO code (in lowercase) of the language. There must
be at least one such entry which also has the following:

e <revnumber> contains the revision number (or edition number) of the document. Gener-
ally, it is an integer value starting at 1 and incrementing for each major revision (or edition)
of the document. Optional".

 <date> contains the date at which work on the corresponding language started. This is
used by the report facility of Borges to estimate finishing dates for the revisions; in the
sample above, work has begun on the French revision on June, the 10", 2002. The format
is YYYY-MM-DDMandatory.

+ <authorinitials> contains the initials (unique identifier) of the author responsible for
that revision. Optional.

e <revremark> contains remarks on the revision itself. This remark is not rendered with the
default DSSSL style-sheet provided by Borges for printed documents, so you'll need to
customize the style-sheet if you want the remarks to be printed. Optional.

3.1.2. Document Creation Features

In the following sections the document creation features of Borges will be detailed. The
sections are not presented in any particular order.

3.1.2.1. Global Entities

Global entities are those entities that you intend to use without any change at all among all
versions of a project and/or among all your projects. They reside under the entities/ di-
rectory and are XML files with file names ending in .ent

Put all entities which neither change from one language to another nor from one document
to another under entities/

Put all entities which do change from one language to another, but do not change from one
document to another under entities/Il/ , where Il is the ISO two letter code (in lower-
case) for the language in question.

Good candidates for global entities are:

» Company names;
¢ Program (software) names;
« Operating Systems names.

+ Most acronyms”.

1. This will be used in future versions of Borges for major documents revisions.
2. Acronyms are used “almost” without change among all languages/projects. One that does change,
for example, is ISDN which is RDSI in Spanish.

19

Chapter 3. User’s Reference manual

3.1.2.2. Images

Including images in your work is as easy as inserting a <figure> element in your modules.
For example:

<figure>
<titte>An Amazing Figure</title>
<mediaobject>
<imageobject>
<imagedata align="center" fileref="images/image_file_name.png"
format="PNG"/>
</imageobject>
</mediaobject>
<[figure>

will insert a PNG image contained in the file named image_file_name.png , aligned in the
center of the page with “An Amazing Figure” (without the quotes) as its title.

Needless to say, Borges will take care of finding the image_file_name.png file for you in
the corresponding images/Il/ directory, where Il is the two letter ISO code (in lowercase)
of the language the module will be compiled into.

You can also put language-neutral images under the images/ directory and Borges will get
them from there.

Images formats available in your documents are PNG (format="PNG"), PDF (format="PDF")
and EPS (format="EPS"). Borges will automatically make them available at the right place
for you.

Missing Images

In case that you insert an image in a module and you forget to make the image itself, the
system will replace it by a default image, so that the compilation is not broken. The image
used by default is images/missing.jpg and you can replace it by whatever you want.

Additionally, whenever Borges finds a missing image, it will report it in the <manual>.missing.xx.img
text file. So if you just compiled a document (say UserGuide) in French and you note some
images are missing (showing the default missing image) you can get the list of missing im-

ages by printing manuals/UserGuide/UserGuide.missing.fr.img . You can also generate
directly that file to check no more images are missing by simply running make -C manu-
als/UserGuide/ UserGuide.missing.frimg

20

Chapter 3. User’s Reference manual

3.1.2.3. Index Support

DocBook is able to generate an automatic index by collecting all index terms found in the
source document. Borges will automatically generate such index provided you request it in
the master document. If you want an index to be added at the end of your book, simply end
your master.top.xml in:

<index id="index">
<title>Index </title>
<para>Automatic Index Here.</para>
</index>
</book>

3.1.2.4. Specialized Books for Different Needs

Often you need to make small variations on your book to fit different audiences, for example
a technical manual for a family of products with only small differences among each other.

So, instead of writing different books for the different audiences, it would be desirable to
have the possibility to write one set of modules for all audiences and have different parts
excluded from the different documentation for each audience.

Borges makes this possible thanks to “conditional compilation”. Conditional compilation
allows you to “mark” some parts of your modules or entire modules in order to exclude
them in certain compilations, but not in others.

Let’s take an example. You are writing a user manual for the Tortoise ~ operating system
running on both Intel and Sparc architectures. There are only minor differences between
both guides.

You just need to add the condition="i386" attribute to mark an element (section, para-
graph, phrase, note, warning, tip, etc.) as being only valid for the Intel version. Likewise
mark elements specific to the Sparc version with condition="sparc" . If the element ap-

pears to be an entire module, add the attribute in the master file:

<sectl condition="i386">

<titte>Some Title</title>

<para role="module">some_sect-sectl</para>

<para>Introduce here the Tortoise OS, highlighting Intel specifications.</para>
</sectl>

You then need to tell Borges how to derive both userguides from the Tortoise-UserGuide
super-document. This is done in the super document configuration file Section 3.1.1.3. For
our example, this file could be:

<?xml version="1.0' encoding="ISO-8859-1'?>
<configuration>
<stylesheet>
<dssslprint>../drivers/docbook-jadetex.dsssl</dssslprint>
<xslxhtmlchunk>../drivers/docbook-xhtml-chunk.xsl</xsIxhtmlchunk>
<xslxhtmlflat>../drivers/docbook-xhtml.xsl</xsIxhtmlflat>
</stylesheet>
<manuals>
<manual>
<exclude>sparc</exclude>
</manual>
<manual id="Tortoise-Sparc">
<exclude>i386</exclude>
</manual>
</manuals>
</configuration>

That done, issuing

make -C manuals/My_Book Tortoise-i386.pdf

21

Chapter 3. User’s Reference manual

will compile the whole book into PDF discarding the elements with condition="sparc"

3.1.2.5. Document Validation

From time to time, it is recommended to check your modules are valid XML. Issue

make -C manuals/My_Book master.validate

to validate your whole super-document for your preferred (working) language.

Tip: Use the LANG=Il parameter to validate in a language other than your preferred language. II
is the ISO two letter code (in lowercase) for the language you want to validate the document into.

At the moment of this writing the validation process is a parsing of the whole XML code of
the document, there are no other validation constraints checked yet.

3.1.2.6. Making Translated Paragraphs Transparent to the Revision System

When translating a module into a foreign language it often happens that the translator wants
to add a footnote with translator notes or a few clarification words in a separate paragraph.
Also, some licenses (for example the GPL and the GFDL) require that you include some
portion of it in the original language.

Borges " automated revisions management system will report differences among the trans-
lated module and the original module only because of those added footnotes/paragraphs,
even if they are correct or necessary in some cases; so, how can you make those paragraphs
“invisible” to the revision system?

Borges solves this “problem” in an elegant way which does not break DocBook compatibil-
ity by using the revision="-1" attribute. For example:

<para revision="-1">En otro idioma</para>

will exclude that paragraph (in Spanish, in the example) when comparing against the origi-
nal looking for differences in revisions.

This way, you can have those “extra” paragraphs in your translation without worrying about
the revisions report being wrong all the time just because of them.

3.1.3. Document modification features

Whenever you modify the structure of a super-document it is necessary to inform the sys-
tem of such modifications. That will particularly build the module templates for the added
modules.

Simply run the make alltemplates command.

When this is done, to not forget to add the generated templates to your CVS repository, if
any.

3.1.4. Adding new languages to the system

When one of your documents needs to be translated, or simply when you decide that one
of the documents will need to be translated, it is time to make the system aware of this new
language. This is done in one single command:

make addlang LANG=II

that will declare the new Il ° language document for the whole project. It will actually per-

3. Il being the two letters ISO code for that lanaguage. See ISO 639*.
22

Chapter 3. User’s Reference manual

form the following tasks:

« Update conf/repository.xml ;
« create all language specific directories for modules, images, entities, etc.;

« copy entities files from the default one (first in the list of languages in the main configura-
tion file) to the new language directories;

e Make all module templates for this new language for all defined documents;

« Add all new files to the CVS repository, if available. Note that you'll still need to commit
those files by hand;

Once this is done translators will have to

1. Translate entities in manuals/My_Doc/Il/*.ent ;
2. Translate entities in entities/*.ent ;
3. Translate modules in modules/Il/*.xml ;

4. Take snapshots and translate diagrams from images/xx/ to images/lll , xx being
another language for which images have already been created.i

3.2. Generating Final Documents

Beyond the simple document generation, many advanced features are available to allow the
user easily customizing the output formats or generate a set of manuals in a single com-
mand. We will detail all that here.

3.2.1. Single Manual Generation

A final manual (in a user readable format) is simply identified by its name followed by a
format extension. Four formats with four extensions are available for DocBook document sin
Borges :

Table 3-1. Borges Output Formats

Format Extension Description

PDF .pdf The famous Adobe PDF format for printable
documents with readers available for all platforms.

HTML Lhtml Standard HTML format for online publishing, with

chunked output: the document is chunked in many
different HTML files. In this case My_Book.html
designates a directory, not a file, holding all the
HTML files composing the document. The entry page
is My_Book.html/index.html

Flat HTML .flat.html One single HTML file for the whole document. Can
result very big.
PostScript .ps for printable documents.

Knowing that all you need to do is to make the desired output. For example if you want to
get the document Install-guide-RPM from the super-document Install-guide in English
in PDF format, just run:

make -C manuals/Install-guide/ Install-guide-RPM.pdf LANG=en
23

Chapter 3. User’s Reference manual

3.2.2. Generating Multiple Documents at Once

When one needs to publish all the manuals available in all language for his project, com-
piling them one after the other in all formats can result harassing. For this reason Borges
provides a target to automatically compile any combination of manual-language-format.

The synopsis of this command is:

make all SUBDOCS="<docs list>" LANGS=""<languages list>" FORMATS=""<formats list>"

where:

docs list

is the list of super-document/document pairs you wish to generate. If you wish to

get the manuals Install-guide-RPM and Install-guide-tar from super-document

Install-guide , you'll have to use SUBDOCS="Install-guide/Install-guide-RPM Install-guide/Install-guide-tar"
languages list

the list of languages to get the manuals in. use LANGS="en fr es" to get all manuals in

English, French and Spanish.
formats list

the list of extensions to compiles the manuals in. If you are interested in PDF and flat
HTML output, use FORMATS="pdf flat.html"

With this example we would end up with the following command line:

make all SUBDOCS="Install-guide/Install-guide-RPM Install-guide/Install-guide-tar" \
LANGS="en fr es" FORMATS="pdf flat.html"

Which will result in 2*3*2=12 manuals in Outputs/

3.2.3. Generating a Single Module

When you are working on writing and/or translating a module, you often want to have
a look at it in one of the supported output formats. Borges single module compilation
feature allows you to do so without the need to compile the whole document containing the
module in question, thus leaving you more time to do your work instead of waiting long
book compilation times.

The command synopsis for compiling a single module is:

make -C manuals/module <module_name>.<output_format> [LANG=II]

Note that the directory for single module compilation is always manuals/module regardless
of which document the module belongs to. This directory is automatically created when
Borges is initialized. All single module compilation output goes into it.

The LANG=Il parameter is optional and it is used to force compilation to occur in a language
other than the default one. Il is the two letter lowercase ISO code of the language.

For example, after issuing;:

make -C manuals/module borges-compile-features-sectl.pdf LANG=es

you will end up with the PDF file manuals/module/borges-compile-features-sectl.pdf
with the contents of the borges-compile-features-sectl module in Spanish.

24

Chapter 3. User’s Reference manual

3.3. Output Style Customizations

With Borges it is very easy to control the way final documents are formatted thanks to
DocBook customization features. Moreaver it is easy to create new ciustomization layers so
that each manual can have its own design.

3.3.1. Customizing Existing Formats

As we already seen in Section 3.1.1.2, te customization layers for all output formats are lo-
cated in drivers/ directory. You just need to open the stylesheet corresponding to the for-
mat you want to change with your text editor:

drivers/docbook-jadetex.dsssl

for PDF and PS formats outputs;

drivers/docbook-xhtml.xsl
for flat HTML output format;

drivers/docbook-xhtml-chunk.xsl
for chunked HTML output format.

Consult the documentation on how to customize XSL® and DSSSL? stylesheets if needed.

3.3.2. Creating a New Customization Layer

Having one customization layer per output format might not be enough for some special
needs. Let’s imagine that there is a manual you want to publish in Europe and in the United
States. Therefore you need it in two different paper formats: A4 and Letter . This is done in
two simple steps:

1. Create a new customization layer

This customization layer will be placed on top of Borges print customization layer, re-
sulting in the following layers:

ra !

"Letter” format Custornization Layer

Borges Custormization Layer

DocBook Stock StyleSheet

b, ~

Our new customization layer (drivers/docbook-jadetex-Letter.dssssl) would look
like:

<IDOCTYPE style-sheet PUBLIC "-//James Clark//DTD DSSSL Style Sheet//EN" [<IENTITY docbook-jadete

<style-sheet>
<style-specification id="print" use="docbook-jadetex">

5. http://www.docbook.org/wiki/moin.cgi/DocBookXslStylesheetDocs
6. http://www.docbook.org/wiki/moin.cgi/DocBookDssslStylesheetDocs

25

Chapter 3. User’s Reference manual

<style-specification-body>

\What size paper do you need? A4, A5, USletter or USlandscape?
(define Y%paper-type% "USletter")

</style-specification-body>

</style-specification>

<external-specification id="docbook-jadetex" document="docbook-jadetex.dsss|">
</style-sheet>

Now that the customization layer is ready we just need to direct the system to use it in
the second step.

2. The default Borges print stylesheet uses A4 paper format. We then need to create a new
manual that will use the “Letter” customization layer we just created. This is done in the
super document configuration file, for example manuals/Install-guide/conf.xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<configuration>
<stylesheet>
<dssslprint>../../drivers/docbook-jadetex.dsssl</dssslprint>
<xsixhtmiflat>../../drivers/docbook-xhtml.xsl</xsIxhtmiflat>
<xslxhtmichunk>../../drivers/docbook-xhtml-chunk.xsl</xslxhtmlchunk>
</stylesheet>

<manuals>
<manual id="Install-guide-A4">
<lang>en</lang>
<format>pdf</format>
</manual>
<manual id="Install-guide-Letter">
<lang>en</lang>
<format>pdf</format>
<stylesheet>
<dssslprint>../../drivers/docbook-jadetex-Letter.dsssl</dssslprint>
</stylesheet>
</manual>
</manuals>
</configuration>

In this file, the first stylesheet element informs the system that we want to use the

Borges stylesheets per default. Therefore, the Install-guide-A4 manual will use docbook-jadetex.dsssl
with A4 paper format. However for manual Install-guide-Letter we specify that we
want to use our customization layer docbook-jadetex-Letter.dsssl . The other for-

mats (HTML) will still use the default stylesheets as we did not redefine them.

Once this is done, you can use the Section 3.2.2 feature to generate at once the two differ-
ent books Install-guide-A4.pdf and Install-guide-Letter.pdf respectively in A4 and
Letter paper formats.

3.4. Revision Management

Revision management is the most interesting feature of Borges . It tracks documents on two
axes:

1.
Modules status (Section 3.4.1)

Each independant piece of document called a “module” has its own life cycle in
Borges . Granular module management ensures quality standards while allowing to
generate accurate project tracking information.

2.

26

Chapter 3. User’s Reference manual

Translations Freshness (Section 3.4.2)

Translating a document is something common. Updating translation from an ever-
changing original is often a nightmare. Thanks to the innovative system brought by
Borges , it is possible to know whenever a translation needs to be updated, and where
exactly the changes are located. This system also ensures that the structure of the
document is respected throughout its various translations, while allowing translators
to explicitly make additions with respect to the original structure.

Thanks to these tools, hierarchical reports can be generated giving relevant project tracking
information for everyone project managers as well as modules authors, translators, contrib-
utors.

3.4.1. Modules Life Cycle

3.4.1.1. The underlying philosophy

A module is born when it is referenced for the first time in a master super-document. It
reaches its maturity when it passes final language proofreading. Between those two steps it
is necessary to bring a module to each one of these steps:

1.
Written
When the redactor has finished writing an original module.
2.
Translated
When a translator has finished the translation of an original module in his language.
3.

Technical proofreading

When a technical expert has read a module, and his remarks have been incorporated.
4,

Pedagogical proofreading

When an education specialist has read a module, and his remarks have been incorpo-
rated.

5.
Spell checking

When the module has successfully passed a spell checker.
6.

Language proofreading

When a skilled native speaker has read a module, and his remarks have been incor-
porated.

After a module has reached this last step, he is regarded as mature and ready for publication.
Below is a diagram that better explains the process for an original module and one of its
translations.

27

Chapter 3. User’s Reference manual

The module is defined in Writing
the master super—document

Technical
Proofreading

Pedagogical
Proofreading

Spell checking Translation
4 N\
o Language Spell checking

Ready for publication Proofreading
o J
4 N\

Language

Ready for publication Proofreading

o J

Figure 3-1. Borges’ Modules Life Cycle

3.4.1.2. Modules status in practice

The module history is stored directly in the revision history of the module’s root element.
However it must not be edited by hand. For this purpose there are make targets that will
take care of all the tasks associated with a module’s status.

This is the synopsis of the command that will perform the work associated to a task:

make <module-name>.revision TYPE=<type>

where <type> is one of the following, corresponding to the steps we described just above:

1. write

2. translate
3. tproof

4. pproof
5. ispell

6. Iproof

Let’s imagine you just modified the module intro-section.xml according to the remarks
the pedagogical proofreader gave you. The command to issue in the directory owning the
file will be:

make intro-section.revision TYPE=pproof

28

Chapter 3. User’s Reference manual

3.4.1.3. Assigning tasks

In order to get full advantage of Borges features, it is recommended to assign all tasks in
all languages for all modules. That will ensure no task is left orphan, improving project
efficiency.

This operation is achieve with the following command:
make <module-name>.revision TYPE=<type>.todo AUTHOR=<ai>

where <ai> are the initials of the author responsible for that operation. For example if au-
thor pp is responsible for performing language proofreading on module intro-section in
spanish, you would issue:

make -C modules/es/ intro-section.revision TYPE=pproof.todo AUTHOR=pp

3.4.2. Inter-Languages Modules Synchronization

3.4.2.1. The Idea Behind Atom Revisions

To ensure a translation remains up to date with respect to its original, it is necessary to track
changes in the original. To track changes in a text, there is basically one and only method:
generate the differences between two versions. However this has a big drawback: when
the changes are not relevant for the translator (spell and syntactic changes by opposition to
semantic changes), one has to extract pertinent bits in a sea of irrelevant information.

To make sure relevant changes are explicitly marked as such, human action is needed. There-
fore the redactor changing the meaning of a paragraph will have to explicitly mark that
paragraph as modified by incrementing its associated revision attribute. Then the system
will be able to spot atoms through a translated module that are not up to date and warn the
translator.

3.4.2.2. Authors Duties

The whole system relies on authors good will. If they are contentious at adding revisions all
will be fine. Experience has proved that it’s easy to make authors aware of the problem, and
then all works perfectly.

When a module passes the pproof step, it gets ready for translation. The system then auto-
matically adds IDs to any possible atom” in that module. Let’s follow a specific paragraph
of the passwords module:

1. After the module has passed the pproof step, our paragraph got an automatic ID:

<para>

<screen> root# head -c 6 /dev/urandom | mimencode</screen>

This will print five random characters on the console, suitable for

password generation. You can find <command>mimencode</command> in the
<filename>metamailer</filename> package.</para>

2. Despite technical proofreading a reader has spotted an error: it should read six and
not five random characters. You then correct the error and add a revision ID:

<para revision="1">

<screen> root# head -c 6 /dev/urandom | mimencode</screen>

This will print six random characters on the console, suitable for

password generation. You can find <command>mimencode</command> in the
<filename>metamailer</flename> package.</para>

7. To get the list of elements that become an atom, consult
lusr/share/Borges/bin/scatter_ids.pl

29

Chapter 3. User’s Reference manual

3. Later on, you realize there is a mistake in the package name, it is not metamailer ~ but
metamail . Even though the filename element is not a default atom, you can assign it
an ID and a revision attribute:

<para revision="1">

<screen> root# head -c 6 /dev/urandom | mimencode</screen>

This will print six random characters on the console, suitable for

password generation. You can find <command>mimencode</command> in the
<filename id="metamail-pack" revision="1">metamail</filename> package.</para>

This is better than increasing the paragraph revision to 2, as the translator will directly
spot the change in the filename element without having to search through the whole
paragraph.

Tip: If you wish to help translators spot a little change in a big chunk of text, it is better to en-
close the modified sentence in the phrase element, adding the ID and revision to that reduced
element...

Warning

It often happens that an author is forced to modify the structure of a module, even after it
has gone to translation. In that case, it may become necessary to assign IDs to possible
new elements. The author can choose to assign them manually (ensuring there are no risk
of duplicate IDs) or to let the system reassign all IDs throughout the module if there has
been many changes. This is made thanks to the following command:

make <module-name>.id

Obviously, this command will also have to be run on translated modules...

3.4.2.3. How Translators Synchronize Modules

We won’t speak about reports generation here, but rather how to read reports and what to
do according to the information contained in the reports.

| Ilulscﬂ']lﬂlll'ul.ﬂplm I\J BLI_I.I.IS lJ.EA.I.P F'IIII.III.I.I H F'IIII.III.I.I H Il",lll.l.ll.l.ll. O
pas ds Passwords ispellt ispellt Ix
(Peter Pingus) |[To be named) [Clabensmed)) | To be named)
. T

[em 3= [[o [

Figure 3-2. An extract of a super-document report

Whenever a translated module becomes obsolete with respect to the original, the corre-
sponding cell in the super-document report table becomes red (Figure 3-2). If you click in
the cell, you then get to the module’s detailed report (Figure 3-3).

30

Chapter 3. User’s Reference manual

Stats for passwords in fr

| Task |Finished on| Author |
[Lfr.lproof |Pending |(To be named)|
(Lfrispell |Pending |(To be named)|
1.fr.translate| 2002-06-25 |(Peter Pingus) |

Changes in IDg/revisions
=ide by side not synched elements

Figure 3-3. A Sample Modules’ report

In that report, after the revision history table, two links appear:
« Figure 3-4: spots the atoms that differs between the translation and its original;

« Figure 3-5: presents the original and translated atoms that are out of synch side by side.

7| <element id="metamail-pack" revision="1"/>

Modified lines: 2,5 Generated by diff2html
Added line: MNone © Yves Bailly, MandrakeSoft 5.4, 2001
Removed line, 7 diff2hemi is licensed under the GNU GFL.
passwords.ids.xml passwords.src-ids.xml
§ lines 7 lines
229 bytes 294 bytes
Last modified : Tue Jun 25 12:21:54 2002 Last modified : Tue Jun 25 12:21:54 2002
2|<revisions file="/home/pp/doc/modulesfen/passwords. xml" > 2|<revisions file="/home/ppidoc/modules/fripasswords. xml" >
5| <element id="passwords-pa2” revision="1"/> 5| <element id="pasgwords-pa2" revision="0"/>

Generated by diff2htmlon Tue Jun 25 12.21:54 2002
Command-line: fopt/Borges//bin/diff2htnl --only-changes passwords. ids.»ml passwords. src-ids. zml

Figure 3-4. Changes in IDs/revisions

In this table, the atoms that have been modified in the original clearly appear. The author
knows that the element with ID passwords-pa2 has been modified, while a new element
metamail-pack has been added.

31

Chapter 3. User’s Reference manual

Modified lines: 4, 5. 6.7
Added line: MNone
Removed line: None

Generated by diff2html
© Yves Bailly, MandrakeSoft 5.4 2007
diff2htmi is ficensed under the GNU GPL,

passwords.changes.xml
9 lineg
A28 bytes
Last modified : Tue Jun 25 12:49:159 2002

<7xml version="1.0"7>

<elements>
(2222222222l yy

<para id="passwords-pa2” revision="1">5creen

id="passwords-scl "> root# head -c & fdeviurandom |

mimencode< Screens

This will print six random characters on the console, suitable for

password generation, You can find
ootnmand>mimencode</comimand > in the
<filename id="metamail-pack"

revision="1">metamailer</filename> package </para>
LRSS RS E RS E R S R R R ES]

<felements>

passwords.src-changes.anl
9 lines
517 ytes
Last modified : Tue Jun 25 12:49:19 2002

<7xml version="1.0"7>

<elements>
EEE SRSt RS

<para id="passwords-pal” >Cacreen id="passwords-scl " > root#
head -c & /dev/urandom | mimencode< fscreens

(Cela imprimeracing charactéres aléatoires sur laconsole, et est
utilisables

pour la génération automatique de mots de passe. Vous trouverez
command =mimencode</commands

dans le paquetage <filename>metamailer</filename>.</para>

Y]

<felements>

Generated by diff2hitmi on Tue Jun 25 124919 2002
Command-iine: fopt/Borges//bin/diffZhtnl passwords. changes.»ml passwords. sro-changes. sml

Figure 3-5. Side by side not synched elements

Through this page the translator can open the modules/fr/passwords.xml file, search the
element passwords-pa2 and synchronize its content according to the text in the HTML re-
port. Of course the new ID and revision attributes will have to be copied too, so that the
system can know the atom has been updated.

3.4.3. Generating Reports

Here is a diagram showing the different HTMLreports generated by Borges , and the navi-
gation through them.

©)

Module A @
ID changes

@

Super—document 1

Module B

Module C KT -

Global project
Module D

Super—document 2

Figure 3-6. The reports generated by Borges

32

Chapter 3. User’s Reference manual

We will now see how to generate each one of those reports and how to read them.

Warning

It is necessary that all the sources in all languages are valid so that the reports get gener-
ated correctly.

3.4.3.1. Global Project Report

Generating this report will in fact generate all other reports so that it is possible to consult
them starting from the global project report page. You simply need to issue the following
command (in the reports/ directory of your project):

make all
That will generate the index.html file and you will just have to point your browser to that

file. For an example of such a report, consult the Overall report for Borges Manuals®.

The resulting page is self-documented so we won’t detail it here. You will however note
that, during the compilation process, all rough super-documents have also been generated
(see the “Links to the compiled versions of the manuals”). If you wish to only generate the
reports without the documents, run

make index.html

Note: This feature is particularly useful for project managers willing to regularly (through cron
jobs) publish on a website the current project status. It is enough to upload the content of the
reports/ directory on a website and point people to it.

3.4.3.2. Super-Document Report
If you wish to generate only the report for a super document (and all dependent reports),
run:

make master-report.html

in the directory of the super-document (e.g. manuals/My_Doc/). You can then open master-report.html
with your favorite browser. For an example of such a report, consult the Detailed report sta-
tus for Borges-doc’.

The table in that report has one line per module of the corresponding super-document. There
are at least three columns:

1. The name of the module, followed by the name of the original author of that module;
2. The title of the module;
3. Three possibilities for the content of that cell:

o The task in progress for that module in the language corresponding to that column.
If known the person responsible for that task is shown in parenthesis.

+ If no task is available for now the text “Pending” is shown.
» “OK” means that all tasks required on that module have been passed.

If the cell appear on a red background, that means this translation is outdated with
respect to the original module. See Section 3.4.2.3.

8. http://www.linux-mandrake.com/en/doc/project/Borges/reports/
9. http://www.linux-mandrake.com/en/doc/project/Borges/reports/Borges-doc/master-
report.html

33

Chapter 3. User’s Reference manual

A click on the text of that cell will lead to the corresponding Section 3.4.3.3.

3.4.3.3. Module report

There is no need to generate one specific module report, all module reports related to a
specific super-document are generated while making the super-document report. This page
simply holds the revision history for the module, plus possible links to detailed diff reports
if that module happens to be out of synch (see Section 3.4.2.3).

3.4.3.4. ID Changes Report

When a translator is in the process of updating a module, it may be interesting to quickly
regenerate the IDs report to check everything is fine. The command to issue is:

make <module-name>.ids.html LANG=<xx> manual=<super-document>

for example to get the IDs report of the passwords module in French as part of the Borges-doc
super-document, you will need to go into modules/fr/ and run:

make passwords.ids.html LANG=fr manual=Borges-doc

You then just need to open passwords.ids.html with your browser.
3.4.3.5. Content Changes Report

Same as above, but then the command becomes:

make <module-name>.changes.html LANG=<xx> manual=<super-document>

34

Chapter 4. Features for the Project Manager

The previous chapter was dedicated to the working masses. We will now concentrate on a
few Borges features to assist the projet manager.

The project reports (Section 3.4.3.1) are of great help. But there are additional tools to remind
authors of their current tasks (Section 4.1), and to evaluate the work made by each author
(Section 4.2).

4.1. Sending Mails to Authors

This very useful feature allows to prepare mails for every authors implied in the project.
Those mails will list all tasks the author should be working on currently.

Note: This feature is particularly useful for project managers willing to regularly (through cron
jobs) send updated todo lists to their team..

To generate the mails, run:

make
mails

in the reports/ directory. That will generate files for each author whom has pending tasks.
The filename is the author’s email address, and the content is the body of the message. You
can then dispatch the mails with the command:

for f in $(find . -name *@* -exec basename {} \;);
do cat $f | mail $f -s "Your current tasks list for manuals";
done

Tip: You can put additionnal information at the end of the mail, simply by writing your footer in the
file confimailfooter.txt . You can put there information related to the place where to find the
modules by CVS, WebCVS, the URL for the compiled version of the documents, etc.

4.2. Accounting Report

This special report is made of tables for each manual and for the the whole project that
summarizes the authors contributions for each modules and for each manual.

To generate these reports, simply run make -C reports/ accounting.html. Then point your
browser to the resulting file reports/accounting.html . The table gives all the project’s
super-documents in column, with the respective contribution of each authors on each line.
There are totals on each line for each author, and totals for each manuals, plus a grand total
for the whole project on the bottom right corner.

Additionally, you will find under reports/<Manual-Name>/costs.html some more details
reports per manual which list authors contributions to each module. You can also generate
those manuals specific reports by running make -C manuals/<Manual-Name>/ costs.html

Now some details on the way those casts are calculated.

The script scans all modules and calculates each contribution with the following formula:

C=N*P*W/10

35

Chapter 4. Features for the Project Manager

C=task Cost

N=number of text characters in the module
P=price per translated character

W-=task weight

the P and Wparameters are defined in conf/repository.xml . You should adjust them to
your needs.

36

Chapter 5. Borges and XML Editors (Emacs Rules)

borges-editors-chapter

In introduction tell that any editor should be OK provided it does not interfere with Borges
requirements.

Then add a section for Emacs+PSGML which Borges fully supports..

37

Chapter 5. Borges and XML Editors (Emacs Rules)

38

Chapter 6. Borges and CVS Integration

borges-cvs-chapter

Tell that Borges is designed to work fine on a CVS. Tell what to put on CVS and what not.
Warn about the problems caused by module templates automatically generated that must
be added to the CVS at the same time the modified master.top.xml is updated. Same when

adding new languages/manuals.

39

Chapter 6. Borges and CV'S Integration

40

Chapter 7. Programer’s Reference manual

We will get here into Borges internals. This may be of interest for the developer as well as
for the user wishing to take advantage of the most advanced feaures of Borges .

If something is not clear enough below, or if you wish to know more, use the source luke. If
there’s something you definitely not understand, ask on Borges mailing list.

7.1. Makefiles

We will list here the different Makefiles available in Borges source repository and in the im-
plemented repositories'. We will detail the way those Makefiles are generated, distributed,
etc.

7.1.1. Borges source Makefile
There’s only one usable Makefile here. You'll find it at the root of the repository.
This Makefile has two main targets:

doc

compiles the Borges documentation and reports;

install

installs Borges on a system so that users of that system can start documentation projects
on it, using Borges . It installs all the scripts and Makefile’s and build a repository tem-
plate so that users can quickly start using Borges .

Tip: Borges gets instralled in/usr/share by default (/usr/share/Borges/). You can change
that by passing the TARGETparameter to make. For example if you wish to relocate Borges
to /homeljoeltest/Borges/ just run make install TARGET=/home/joe/test

you may have noticed that Borges does not need compilation. Indeed all scripts are in perl
or bash and do not need compilation.

7.1.2. Documentatin Projects Makefiles

7.1.2.1. What Goes Where

The diagram below shows how the different Makefiles provided by Borges are distributed
in the implementation repository.

7.1.2.2. Who Calls Who

The following diagram shows how the Makefiles found in the Borges source repository (on
the left) gets distributed into an imaginary project (on the right) with two books Bookl and
Book2 in two languages en and fr

1. Itis important to distinguish between the Borges source repository, which is the repository hold-
ing all the Borges code maintained by its developers; and a simple implementation of Borges , which
is a documentation project repository, holding the documentaion source files managed by Borges .

41

Chapter 7. Programer’s Reference manual

Figure 7-1. Distributing Makefiles

7.1.3. Makefiles in Action

conf/

/ reports/
conf/Makefile Makefile.include
reports/Makefile / entiti en/

Makefile.include.in /Lmeﬁ/; fr/
Makefile.entities | odufes—"] en/
backend/ Makefl.le.rnodule fr/
Makefile.images S— %/‘ en/
Makefile.local — 1 &S fr/
M akefile.manual = e
\ ™ fr/
ookt -2V
fr/

We will show here how Makefiles are linked together. Figure 7-2 shows how Makefiles in-
clude each others. An arrow in the diagram means “includes”.

manual ¥Book/M akefile

reports/Makefile

modul es/xx/M akefile

entities/xx/Makefile

Figure 7-2. Makefiles Relatiunships

manual s/Book/M akefile.include

/usr/share/Borges/backend/Makefile.DB

manual s/Book/xx/M akefiN.

\
/

manual s/images/xx/M akefil e/

-

Makefile.include

All paths are relative to the project root dir unless otherwise stated.

We can distinguish between four types:

42

Chapter 7. Programer’s Reference manual

Production
The Makefiles on the left are the ones actually used to perform tasks on manuals, mod-
ules, images, etc.

manuals/Book/Makefile.include
This Makefile is empty by default. It can be used by advanced users to redefine default
manual compilation rules. See Section 7.3 for more details.

Makefile.DB

This Makefile contains the rules to actually transform source XML DocBook files to any
desired output format (PDF, HTML, etc.). Advanced users may choose to develop their
own Makefile. XXX to support another DTD. See Section 7.4 for more details on how to
do that.

To determine which Makefile is used to generate output formats, the system looks for
the <makefile> element(s) in conf/repository.xml and sets the OUTPUT Srariable ac-
cordingly in the root Makefile.include described below.

Makefile.include

This Makefile is automatically generated by the root Makefile. It contains useful in-
formation for all other Makefiles, extracted from the environment and notably from the
naim configuration file conf/reposgitory.xml . It contains also some generic functions
and rules.

7.2. The Way a Manual is Generated

To understand the process leading to the generation of a final document, we’ll detail here
the steps taken to generate an HTML file.

In Figure 7-3 we represent the way from the master.top.xml skeleton guideleines to the
final HTML book.

43

Chapter 7. Programer’s Reference manual

)
get_DB_mod_deps.pl master2master.pl @

entities

) - - modul es/xx/modules.ent
<book>.index.dependencies <book>.mod.dependencies entities/xx/catalog

manual s/<book>/xx/local .ents

<book>.index.deps <book>.mod.deps
<book>.flat.xml]

scheme.dia
get_DB_img_deps.pl images/ ol screen.png conf/DocBook.xml
photo.jpg

XSL_XHTML_CHUNK

<book>.img.dependencies

Y
<book>.img.deps
scheme.eps
manual s/images/xx/ screen.png
photo.png

l

<book>.html |

Figure 7-3. Distributing Makefiles

We can distinguish two main steps:

1.

Generation of the <book>.flat.xml source file

This file contains all the XML source code necessary to compile the document. It is
“flat” because all modules and entities have been expanded into it. To do so it’s been
necessary to:

+ Compute a possible index,
¢ Check all needed modules are available.
« Catalog all entities.
2.
Actual HTML Compilation

This includes the generation of all necessary images which names are extracted from
<book>.flat.xml

7.3. Adding/changing Manuals Rules

It may happen that the rules provided to prepare the master.flat.xml are not suited for a
particular need. Or the user may want to override some rules for generating output formats.

44

Chapter 7. Programer’s Reference manual

Borges provides a mean to do that easily. One just need to write its custom or tweaked rule
in manuals/<Book>/Makefile.include . That will add extra functionnality for generating
output formats or overwrite default rules.

7.4. Supporting Another DTD than DocBook
To Be Written

45

Chapter 7. Programer’s Reference manual

46

Chapter 8. Getting Help

Do not forget to consult the Borges Web pages'.

8.1. Bug Reports, Feature Requests, Patches

Visit the Borges pages on SourceForge®. You will be able there to:

 Post bugreports: When ever you think you have discovered a bug in Borges , post a de-
tailed bug report here;

¢ Ask for support: If you are stuck with a problem you cannot find the answer in the docu-
mentation, post a support request there;

 Submit patches: You've come with modifications in the source code to fix bugs or ad fea-
tures to Borges ? You can submit the patches here.

 Ask for new features: If you wish to see more functionnalities added to Borges , propose
them here with detailed argumentation.

8.2. Contact

A mailing list is available, simply send a message to the list manager’ with the command
subscribe borges in the body. You can also contact Borges maintainer®.

You may also try to see if there are people on the #borges IRC channel at

irc.mandrakesoft.com

http:/ /www.linux-mandrake.com/en/doc/ project/Borges/
https:/ /sourceforge.net/projects /borges-dms/
sympa@moondrake.com
documentation@mandrakesoft.com

Ll

47

Chapter 8. Getting Help

48

Chapter 9. Sample Module for Tests
passwords introduction

root# head -c 6 /dev/urandom | mimencode

This will print six random characters on the console, suitable for password generation. You
can find mimencode in the metamailer package.

49

Chapter 9. Sample Module for Tests

50

Appendix A. Borges Commands Reminder

command-reminder-appendix

This appendix will list all available make commands under Borges, sorted by topic: compi-
lation, revision management, reports generation, etc.

51

Appendix A. Borges Commands Reminder

52

Appendix B. GNU Free Documentation License

B.1. GNU Free Documentation License
Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-
1307 USA Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document "free"
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or noncommercially. Secondarily, this
License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing
the same freedoms that the software does. But this License is not limited to software man-
uals; it can be used for any textual work, regardless of subject matter or whether it is pub-
lished as a printed book. We recommend this License principally for works whose purpose
is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copy-
right holder saying it can be distributed under the terms of this License. The "Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you'.

A "Modified Version" of the Document means any work containing the Document or a por-
tion of it, either copied verbatim, or with modifications and/or translated into another lan-
guage.

A "Secondary Section" is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall di-
rectly within that overall subject. (For example, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could
be a matter of historical connection with the subject or with related matters, or of legal, com-
mercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, whose contents can be viewed
and edited directly and straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an otherwise Transparent file
format whose markup has been designed to thwart or discourage subsequent modification
by readers is not Transparent. A copy that is not "Transparent" is called "Opaque".

53

Appendix B. GNU Free Documentation License

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML designed for human modification. Opaque formats
include PostScript, PDF, proprietary formats that can be read and edited only by proprietary
word processors, SGML or XML for which the DTD and/or processing tools are not gener-
ally available, and the machine-generated HTML produced by some word processors for
output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, "Title Page" means the text near
the most prominent appearance of the work’s title, preceding the beginning of the body of
the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make or distribute. However, you
may accept compensation in exchange for copies. If you distribute a large enough number
of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Docu-
ment’s license notice requires Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-
Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition. Copy-
ing with changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a publicly-accessible computer-network location contain-
ing a complete Transparent copy of the Document, free of added material, which the gen-
eral network-using public has access to download anonymously at no charge using public-
standard network protocols. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that this Trans-
parent copy will remain thus accessible at the stated location until at least one year after the
last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribu-
tion and modification of the Modified Version to whoever possesses a copy of it. In addition,
you must do these things in the Modified Version:

54

Appendix B. GNU Free Documentation License

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Docu-
ment, and from those of previous versions (which should, if there were any, be listed
in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for au-
thorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version, as the pub-
lisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled "History", and its title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section entitled "History" in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. In any section entitled "Acknowledgements" or "Dedications”, preserve the section’s
title, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled "Endorsements". Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section as "Endorsements" or to conflict in title with any
Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct
from any other section titles.

You may add a section entitled "Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties--for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to
25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version.
Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already includes a cover
text for the same cover, previously added by you or by arrangement made by the same entity
you are acting on behalf of, you may not add another; but you may replace the old one, on
explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

55

Appendix B. GNU Free Documentation License

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical In-
variant Sections may be replaced with a single copy. If there are multiple Invariant Sections
with the same name but different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment to the section titles in
the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various original
documents, forming one section entitled "History"; likewise combine any sections entitled
"Acknowledgements", and any sections entitled "Dedications". You must delete all sections
entitled "Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent doc-
uments or works, in or on a volume of a storage or distribution medium, does not as a whole
count as a Modified Version of the Document, provided no compilation copyright is claimed
for the compilation. Such a compilation is called an "aggregate", and this License does not
apply to the other self-contained works thus compiled with the Document, on account of
their being thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one quarter of the entire aggregate, the Document’s Cover Texts
may be placed on covers that surround only the Document within the aggregate. Otherwise
they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations re-
quires special permission from their copyright holders, but you may include translations of
some or all Invariant Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License provided that you also include the original
English version of this License. In case of a disagreement between the translation and the
original English version of this License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided for under this License. Any other attempt to copy, modify, sublicense or distribute the
Document is void, and will automatically terminate your rights under this License. How-
ever, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

56

Appendix B. GNU Free Documentation License

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See Copyleft!

Each version of the License is given a distinguishing version number. If the Document spec-
ifies that a particular numbered version of this License "or any later version" applies to it,
you have the option of following the terms and conditions either of that specified version
or of any later version that has been published (not as a draft) by the Free Software Foun-
dation. If the Document does not specify a version number of this License, you may choose
any version ever published (not as a draft) by the Free Software Foundation.

B.2. How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (c¢) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License, Version 1.1 or any later ver-
sion published by the Free Software Foundation; with the Invariant Sections being LIST THEIR
TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. A copy
of the license is included in the section entitled "GNU Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which
ones are invariant. If you have no Front-Cover Texts, write "no Front-Cover Texts" instead
of "Front-Cover Texts being LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU Gen-
eral Public License, to permit their use in free software.

1. http://www.gnu.org/copyleft/
57

Appendix B. GNU Free Documentation License

58

	Borges DMS
	Table of Contents
	Preface
	1. Legal Notice
	2. About Borges Documentation

	Chapter 1. A Revolutionary Concept
	1.1. What is Borges?
	1.1.1. Features

	1.2. Choosing Borges
	1.2.1. Do I need it?
	1.2.2. Is Borges for me?

	1.3. Some Vocabulary
	Author
	Author Initials
	Project
	Superdocument
	Document
	Compilation
	Structuring element
	Module element
	Module
	Original Module
	Translated Module
	Module Status
	Atom
	Atom Revision
	Life Cycle

	Chapter 2. Quick Start Guide
	2.1. Installation
	2.1.1. Where to get it?
	2.1.2. How to install it?
	2.1.3. Dependencies

	2.2. First Steps
	2.3. Beginning Your Own Project
	2.3.1. Configuring Borges to Start a New Project
	2.3.2. Step by Step Example
	2.3.2.1. Edit the Main Configuration File
	2.3.2.2. Define the Document Structure
	2.3.2.3. Insert the New Document
	2.3.2.4. Define Entities
	2.3.2.5. Generate the Writers' Guidelines
	2.3.2.6. Assign Tasks to Contributors
	2.3.2.7. Write the Modules and Create Images
	2.3.2.8. Check the Result

	2.3.3. Final Notes

	Chapter 3. User's Reference manual
	3.1. Documents Writing
	3.1.1. Configuration Files
	3.1.1.1. conf/author.xml
	3.1.1.2. conf/manualdefault.xml
	3.1.1.3. manuals/MyBook/conf.xml
	3.1.1.4. conf/repository.xml
	3.1.1.5. master.top.xml and the Revision System

	3.1.2. Document Creation Features
	3.1.2.1. Global Entities
	3.1.2.2. Images
	3.1.2.3. Index Support
	3.1.2.4. Specialized Books for Different Needs
	3.1.2.5. Document Validation
	3.1.2.6. Making Translated Paragraphs Transparent to the Revision System

	3.1.3. Document modification features
	3.1.4. Adding new languages to the system

	3.2. Generating Final Documents
	3.2.1. Single Manual Generation
	3.2.2. Generating Multiple Documents at Once
	3.2.3. Generating a Single Module

	3.3. Output Style Customizations
	3.3.1. Customizing Existing Formats
	3.3.2. Creating a New Customization Layer

	3.4. Revision Management
	3.4.1. Modules Life Cycle
	3.4.1.1. The underlying philosophy
	3.4.1.2. Modules status in practice
	3.4.1.3. Assigning tasks

	3.4.2. InterLanguages Modules Synchronization
	3.4.2.1. The Idea Behind Atom Revisions
	3.4.2.2. Authors Duties
	3.4.2.3. How Translators Synchronize Modules

	3.4.3. Generating Reports
	3.4.3.1. Global Project Report
	3.4.3.2. SuperDocument Report
	3.4.3.3. Module report
	3.4.3.4. ID Changes Report
	3.4.3.5. Content Changes Report

	Chapter 4. Features for the Project Manager
	4.1. Sending Mails to Authors
	4.2. Accounting Report

	Chapter 5. Borges and XML Editors (Emacs Rules)
	Chapter 6. Borges and CVS Integration
	Chapter 7. Programer's Reference manual
	7.1. Makefiles
	7.1.1. Borges source Makefile
	7.1.2. Documentatin Projects Makefiles
	7.1.2.1. What Goes Where
	7.1.2.2. Who Calls Who

	7.1.3. Makefiles in Action

	7.2. The Way a Manual is Generated
	7.3. Adding/changing Manuals Rules
	7.4. Supporting Another DTD than DocBook

	Chapter 8. Getting Help
	8.1. Bug Reports, Feature Requests, Patches
	8.2. Contact

	Chapter 9. Sample Module for Tests
	Appendix A. Borges Commands Reminder
	Appendix B. GNU Free Documentation License
	B.1. GNU Free Documentation License
	0. PREAMBLE
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE

	B.2. How to use this License for your documents

