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New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as
a commercial product. On September 3, 2002 Axiom was released under the
Modified BSD license, including this document. On August 27, 2003 Axiom was
released as free and open source software available for download from the Free
Software Foundation’s website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms
and Interactive Scientific Computation (CAISS) at City College of New York.
Special thanks go to Dr. Gilbert Baumslag for his support of the long term
goal.

The online version of this documentation is roughly 1000 pages. In order to
make printed versions we’ve broken it up into three volumes. The first volume
is tutorial in nature. The second volume is for programmers. The third volume is
reference material. We’ve also added a fourth volume for developers. All of these
changes represent an experiment in print-on-demand delivery of documentation.
Time will tell whether the experiment succeeded.

Axiom has been in existence for over thirty years. It is estimated to contain
about three hundred man-years of research and has, as of September 3, 2003,
143 people listed in the credits. All of these people have contributed directly
or indirectly to making Axiom available. Axiom is being passed to the next
generation. I’m looking forward to future milestones.

With that in mind I’ve introduced the theme of the “30 year horizon”. We
must invent the tools that support the Computational Mathematician working
30 years from now. How will research be done when every bit of mathematical
knowledge is online and instantly available? What happens when we scale Ax-
iom by a factor of 100, giving us 1.1 million domains? How can we integrate
theory with code? How will we integrate theorems and proofs of the mathemat-
ics with space-time complexity proofs and running code? What visualization
tools are needed? How do we support the conceptual structures and seman-
tics of mathematics in effective ways? How do we support results from the
sciences? How do we teach the next generation to be effective Computational
Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))



Chapter 1

Axiom Features

1.1 Introduction to Axiom

Welcome to the world of Axiom. We call Axiom a scientific computation system:
a self-contained toolbox designed to meet your scientific programming needs,
from symbolics, to numerics, to graphics.

This introduction is a quick overview of some of the features Axiom offers.

1.1.1 Symbolic Computation

Axiom provides a wide range of simple commands for symbolic mathematical
problem solving. Do you need to solve an equation, to expand a series, or to
obtain an integral? If so, just ask Axiom to do it.

Given ∫ (
1

(x3 (a+ bx)
1/3

)

)
dx

we would enter this into Axiom as:

integrate(1/(x**3 * (a+b*x)**(1/3)),x)

1
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which would give the result:

−2 b2 x2
√
3 log

(
3
√
a

3
√
b x+ a

2
+ 3
√
a
2 3
√
b x+ a+ a

)
+

4 b2 x2
√
3 log

(
3
√
a
2 3
√
b x+ a− a

)
+

12 b2 x2 arctan

(
2
√
3 3
√
a
2 3
√
b x+ a+ a

√
3

3 a

)
+

(12 b x− 9 a)
√
3 3
√
a

3
√
b x+ a

2


18 a2 x2

√
3 3
√
a

Type: Union(Expression Integer,...)

Axiom provides state-of-the-art algebraic machinery to handle your most ad-
vanced symbolic problems.

1.1.2 Numeric Computation

Axiom has a numerical library that includes operations for linear algebra, solu-
tion of equations, and special functions. For many of these operations, you can
select any number of floating point digits to be carried out in the computation.

Solve x49−49x4+9 to 49 digits of accuracy. First we need to change the default
output length of numbers:

digits(49)

and then we execute the command:

solve(x**49-49*x**4+9 = 0,1.e-49)

[x = −0.6546536706904271136718122105095984761851224331556,

x = 1.086921395653859508493939035954893289009213388763,

x = 0.6546536707255271739694686066136764835361487607661]

Type: List Equation Polynomial Float

The output of a computation can be converted to FORTRAN to be used in a
later numerical computation. Besides floating point numbers, Axiom provides



1.1. INTRODUCTION TO AXIOM 3

literally dozens of kinds of numbers to compute with. These range from var-
ious kinds of integers, to fractions, complex numbers, quaternions, continued
fractions, and to numbers represented with an arbitrary base.

What is 10 to the 90-th power in base 32?

radix(10**90,32)

returns:

FMM3O955CSEIV0ILKH820CN3I7PICQU0OQMDOFV6TP000000000000000000

Type: RadixExpansion 32

The Axiom numerical library can be enhanced with a substantial number of
functions from the NAG library of numerical and statistical algorithms. These
functions will provide coverage of a wide range of areas including roots of func-
tions, Fourier transforms, quadrature, differential equations, data approxima-
tion, non-linear optimization, linear algebra, basic statistics, step-wise regres-
sion, analysis of variance, time series analysis, mathematical programming, and
special functions. Contact the Numerical Algorithms Group Limited, Oxford,
England.

1.1.3 Mathematical Structures

Axiom also has many kinds of mathematical structures. These range from
simple ones (like polynomials and matrices) to more esoteric ones (like ideals
and Clifford algebras). Most structures allow the construction of arbitrarily
complicated “types.”

Even a simple input expression can result in a type with several levels.

matrix [ [x + %i,0], [1,-2] ][
x+ i 0
1 −2

]
Type: Matrix Polynomial Complex Integer

The “%i” is Axiom’s notation for
√
−1.

The Axiom interpreter builds types in response to user input. Often, the type
of the result is changed in order to be applicable to an operation.

The inverse operation requires that elements of the above matrices are fractions.
However the original elements are polynomials with coefficients which are com-
plex numbers (Complex(Integer)) in Axiom terms. Inverse will coerce these
to fractions whose numerator and denominator are polynomials with coefficients
which are complex numbers.
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inverse(%) [ 1
x+i 0
1

2 x+2 i − 1
2

]
Type: Union(Matrix Fraction Polynomial Complex Integer,...)

1.1.4 HyperDoc

Figure 1.1: Hyperdoc opening menu

HyperDoc presents you windows on the world of Axiom, offering on-line help,
examples, tutorials, a browser, and reference material. HyperDoc gives you on-
line access to this document in a “hypertext” format. Words that appear in a
different font (for example, Matrix, factor, and category) are generally mouse-
active; if you click on one with your mouse, HyperDoc shows you a new window
for that word.

As another example of a HyperDoc facility, suppose that you want to compute
the roots of x49−49x4+9 to 49 digits (as in our previous example) and you don’t
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know how to tell Axiom to do this. The “basic command” facility of HyperDoc
leads the way. Through the series of HyperDoc windows and mouse clicks, you
and HyperDoc generate the correct command to issue to compute the answer.

1.1.5 Interactive Programming

Axiom’s interactive programming language lets you define your own functions.
A simple example of a user-defined function is one that computes the successive
Legendre polynomials. Axiom lets you define these polynomials in a piece-wise
way. The first Legendre polynomial.

p(0) == 1

Type: Void

The second Legendre polynomial.

p(1) == x

Type: Void

The n-th Legendre polynomial for (n > 1).

p(n) == ((2*n-1)*x*p(n-1) - (n-1) * p(n-2))/n

Type: Void

In addition to letting you define simple functions like this, the interactive lan-
guage can be used to create entire application packages.

The above definitions for p do no computation—they simply tell Axiom how to
compute p(k) for some positive integer k.

To actually get a value of a Legendre polynomial, you ask for it.

What is the tenth Legendre polynomial?

p(10)

Compiling function p with type Integer -> Polynomial Fraction

Integer

Compiling function p as a recurrence relation.
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46189

256
x10 − 109395

256
x8 +

45045

128
x6 − 15015

128
x4 +

3465

256
x2 − 63

256

Type: Polynomial Fraction Integer

Axiom applies the above pieces for p to obtain the value of p(10). But it does
more: it creates an optimized, compiled function for p. The function is formed
by putting the pieces together into a single piece of code. By compiled, we mean
that the function is translated into basic machine-code. By optimized, we mean
that certain transformations are performed on that code to make it run faster.
For p, Axiom actually translates the original definition that is recursive (one
that calls itself) to one that is iterative (one that consists of a simple loop).

What is the coefficient of x90 in p(90)?

coefficient(p(90),x,90)

5688265542052017822223458237426581853561497449095175

77371252455336267181195264

Type: Polynomial Fraction Integer

In general, a user function is type-analyzed and compiled on first use. Later, if
you use it with a different kind of object, the function is recompiled if necessary.

1.1.6 Graphics

You may often want to visualize a symbolic formula or draw a graph from a set
of numerical values. To do this, you can call upon the Axiom graphics capability.

Axiom is capable of displaying graphs in two or three dimensions and multiple
curves can be drawn on the same graph. The whole graphics package can be
driven from interactive commands.

Graphs in Axiom are interactive objects you can manipulate with your mouse.
Just click on the graph, and a control panel pops up. Using this mouse and
the control panel, you can translate, rotate, zoom, change the coloring, lighting,
shading, and perspective on the picture. You can also generate a PostScript
copy of your graph to produce hard-copy output.

The graphics package runs as a separate process. It interacts with both the
Axiom interpreter and the Hyperdoc facility. In Hyperdoc you can click on an
embedded graph and it will become “live” so you can rotate and translate it.

For example, there is a differential equation known as Bessel’s equation which
is

z2
d2y

dz2
+ z

dy

dz
+ (z2 − v2)y = 0

We can plot a solution to this equation in Axiom with the command:
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draw(5*besselJ(0,sqrt(x**2+y**2)), x=-20..20, y=-20..20)

Figure 1.2: J0(
√
x2 + y2) for −20 ≤ x, y ≤ 20

Draw J0(
√
x2 + y2) for −20 ≤ x, y ≤ 20.

1.1.7 Data Structures

A variety of data structures are available for interactive use. These include
strings, lists, vectors, sets, multisets, and hash tables. A particularly useful
structure for interactive use is the infinite stream:

Create the infinite stream of derivatives of Legendre polynomials.

[D(p(i),x) for i in 1..]
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1, 3 x,

15

2
x2 − 3

2
,
35

2
x3 − 15

2
x,

315

8
x4 − 105

4
x2 +

15

8
,

693

8
x5 − 315

4
x3 +

105

8
x,

3003

16
x6 − 3465

16
x4 +

945

16
x2 − 35

16
,

6435

16
x7 − 9009

16
x5 +

3465

16
x3 − 315

16
x,

109395

128
x8 − 45045

32
x6 +

45045

64
x4 − 3465

32
x2 +

315

128
,

230945

128
x9 − 109395

32
x7 +

135135

64
x5 − 15015

32
x3 +

3465

128
x, . . .

]
Type: Stream Polynomial Fraction Integer

Streams display only a few of their initial elements. Otherwise, they are “lazy”:
they only compute elements when you ask for them.

Data structures are an important component for building application software.
Advanced users can represent data for applications in an optimal fashion. In
all, Axiom offers over forty kinds of aggregate data structures, ranging from
mutable structures (such as cyclic lists and flexible arrays) to storage efficient
structures (such as bit vectors). As an example, streams are used as the internal
data structure for power series.

What is the series expansion of log(cot(x)) about x = π/2?

series(log(cot(x)),x = %pi/2)

log

(
−2 x+ π

2

)
+

1

3

(
x− π

2

)2
+

7

90

(
x− π

2

)4
+

62

2835

(
x− π

2

)6
+

127

18900

(
x− π

2

)8
+

146

66825

(
x− π

2

)10
+O

((
x− π

2

)11)
Type: GeneralUnivariatePowerSeries(Expression Integer,x,pi/2)

Series and streams make no attempt to compute all their elements! Rather,
they stand ready to deliver elements on demand.

What is the coefficient of the 50-th term of this series?

coefficient(%,50)

44590788901016030052447242300856550965644

7131469286438669111584090881309360354581359130859375



1.1. INTRODUCTION TO AXIOM 9

Type: Expression Integer

Note the use of “%” here. This means the value of the last expression we
computed. In this case it is the long expression above.

1.1.8 Pattern Matching

A convenient facility for symbolic computation is “pattern matching.” Suppose
you have a trigonometric expression and you want to transform it to some
equivalent form. Use a rule command to describe the transformation rules you
need. Then give the rules a name and apply that name as a function to your
trigonometric expression.

Here we introduce two rewrite rules. These are given in a “pile” syntax using
indentation. We store them in a file in the following form:

sinCosExpandRules := rule

sin(x+y) == sin(x)*cos(y) + sin(y)*cos(x)

cos(x+y) == cos(x)*cos(y) - sin(x)*sin(y)

sin(2*x) == 2*sin(x)*cos(x)

cos(2*x) == cos(x)**2 - sin(x)**2

Then we use the )read command to read the input file. The )read command
yields:

{sin(y + x) == cos(x)sin(y) + cos(y)sin(x),

cos(y + x) == - sin(x)sin(y) + cos(x)cos(y),

sin(2x) == 2cos(x)sin(x),

2 2

cos(2x) == - sin(x) + cos(x) }

Type: Ruleset(Integer,Integer,Expression Integer)

Now we can apply the rules to a simple trigonometric expression.

sinCosExpandRules(sin(a+2*b+c))

(
−cos (a) sin (b)2 − 2 cos (b) sin (a) sin (b) + cos (a) cos (b)

2
)
sin (c)−

cos (c) sin (a) sin (b)
2
+ 2 cos (a) cos (b) cos (c) sin (b)+

cos (b)
2
cos (c) sin (a)

Type: Expression Integer
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Using input files and the )read command, you can create your own library
of transformation rules relevant to your applications, then selectively apply the
rules you need.

1.1.9 Polymorphic Algorithms

All components of the Axiom algebra library are written in the Axiom library
language called Spad.1 This language is similar to the interactive language
except for protocols that authors are obliged to follow. The library language
permits you to write “polymorphic algorithms,” algorithms defined to work in
their most natural settings and over a variety of types.

Here we define a system of polynomial equations S.

S := [3*x**3 + y + 1 = 0,y**2 = 4]

[
y + 3 x3 + 1 = 0, y2 = 4

]
Type: List Equation Polynomial Integer

And then we solve the system S using rational number arithmetic and 30 digits
of accuracy.

solve(S,1/10**30)

[[
y = −2, x =

1757879671211184245283070414507

2535301200456458802993406410752

]
, [y = 2, x = −1]

]
Type: List List Equation Polynomial Fraction Integer

Or we can solve S with the solutions expressed in radicals.

radicalSolve(S)

[
[y = 2, x = −1],

[
y = 2, x =

−
√
−3 + 1

2

]
,

[
y = 2, x =

√
−3 + 1

2

]
,

[
y = −2, x =

1
3
√
3

]
,

[
y = −2, x =

√
−1
√
3− 1

2 3
√
3

]
,

[
y = −2, x =

−
√
−1
√
3− 1

2 3
√
3

]]
1Spad is short for Scratchpad which was the original name of the Axiom system
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Type: List List Equation Expression Integer

While these solutions look very different, the results were produced by the same
internal algorithm! The internal algorithm actually works with equations over
any “field.” Examples of fields are the rational numbers, floating point numbers,
rational functions, power series, and general expressions involving radicals.

1.1.10 Extensibility

Users and system developers alike can augment the Axiom library, all using one
common language. Library code, like interpreter code, is compiled into machine
binary code for run-time efficiency.

Using this language, you can create new computational types and new algorith-
mic packages. All library code is polymorphic, described in terms of a database
of algebraic properties. By following the language protocols, there is an au-
tomatic, guaranteed interaction between your code and that of colleagues and
system implementers.

1.1.11 Open Source

Axiom is completely open source. All of the algebra and all of the source code
for the interpreter, compiler, graphics, browser, and numerics is shipped with
the system. There are several websites that host Axiom source code.

Axiom is written using Literate Programming[2] so each file is actually a doc-
ument rather than just machine source code. The goal is to make the whole
system completely literate so people can actually read the system and under-
stand it. This is the first volume in a series of books that will attempt to reach
that goal.

The primary site is the Axiom wiki (http://wiki.axiom-developer.org). The wiki
is the general support site for Axiom. Wikis allow users to interactively modify
web pages. On the Axiom site it is possible to type Axiom code directly into
the browser to create modified pages which are recomputed on the fly.

The wiki also contains links to the Axiom documentation, the Axiom mailing
list (axiom-developer@nongnu.org), and many other facilities.

Axiom is hosted at the Free Software Foundation site which is
(http://savannah.nongnu.org/projects/axiom).

Axiom is hosted at the Sourceforge site which is
(http://sourceforge.net/projects/axiom).
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Chapter 2

Ten Fundamental Ideas

Axiom has both an interactive language for user interactions and a programming
language for building library modules. Like Modula 2, PASCAL, FORTRAN,
and Ada, the programming language emphasizes strict type-checking. Unlike
these languages, types in Axiom are dynamic objects: they are created at run-
time in response to user commands.

Here is the idea of the Axiom programming language in a nutshell. Axiom
types range from algebraic ones (like polynomials, matrices, and power series)
to data structures (like lists, dictionaries, and input files). Types combine in any
meaningful way. You can build polynomials of matrices, matrices of polynomials
of power series, hash tables with symbolic keys and rational function entries,
and so on.

Categories define algebraic properties to ensure mathematical correctness. They
ensure, for example, that matrices of polynomials are OK, but matrices of input
files are not. Through categories, programs can discover that polynomials of
continued fractions have a commutative multiplication whereas polynomials of
matrices do not.

Categories allow algorithms to be defined in their most natural setting. For
example, an algorithm can be defined to solve polynomial equations over any
field. Likewise a greatest common divisor can compute the “gcd” of two elements
from any Euclidean domain. Categories foil attempts to compute meaningless
“gcds”, for example, of two hashtables. Categories also enable algorithms to be
compiled into machine code that can be run with arbitrary types.

The Axiom interactive language is oriented towards ease-of-use. The Axiom
interpreter uses type-inferencing to deduce the type of an object from user
input. Type declarations can generally be omitted for common types in the
interactive language.

So much for the nutshell. Here are these basic ideas described by ten design
principles:

13
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2.0.12 Types are Defined by Abstract Datatype Programs

Basic types are called domains of computation, or, simply, domains. Domains
are defined by Axiom programs of the form:

Name(...): Exports == Implementation

Each domain has a capitalized Name that is used to refer to the class of its
members. For example, Integer denotes “the class of integers,” Float, “the
class of floating point numbers,” and String, “the class of strings.”

The “...” part following Name lists zero or more parameters to the con-
structor. Some basic ones like Integer take no parameters. Others, like
Matrix, Polynomial and List, take a single parameter that again must be a
domain. For example, Matrix(Integer) denotes “matrices over the integers,”
Polynomial (Float) denotes “polynomial with floating point coefficients,” and
List (Matrix (Polynomial (Integer))) denotes “lists of matrices of poly-
nomials over the integers.” There is no restriction on the number or type of
parameters of a domain constructor.

SquareMatrix(2,Integer) is an example of a domain constructor that accepts
both a particular data value as well as an integer. In this case the number
2 specifies the number of rows and columns the square matrix will contain.
Elements of the matricies are integers.

The Exports part specifies operations for creating and manipulating objects of
the domain. For example, type Integer exports constants 0 and 1, and op-
erations “+”, “-”, and “*”. While these operations are common, others such
as odd? and bit? are not. In addition the Exports section can contain sym-
bols that represent properties that can be tested. For example, the Category
EntireRing has the symbol noZeroDivisors which asserts that if a product is
zero then one of the factors must be zero.

The Implementation part defines functions that implement the exported op-
erations of the domain. These functions are frequently described in terms of
another lower-level domain used to represent the objects of the domain. Thus
the operation of adding two vectors of real numbers can be described and im-
plemented using the addition operation from Float.

2.0.13 The Type of Basic Objects is a Domain or Subdo-
main

Every Axiom object belongs to a unique domain. The domain of an object is also
called its type. Thus the integer 7 has type Integer and the string "daniel"

has type String.

The type of an object, however, is not unique. The type of integer 7 is not only
Integer but NonNegativeInteger, PositiveInteger, and possibly, in general,
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any other “subdomain” of the domain Integer. A subdomain is a domain with
a “membership predicate”. PositiveInteger is a subdomain of Integer with
the predicate “is the integer > 0?”.

Subdomains with names are defined by abstract datatype programs similar to
those for domains. The Export part of a subdomain, however, must list a subset
of the exports of the domain. The Implementation part optionally gives special
definitions for subdomain objects.

2.0.14 Domains Have Types Called Categories

Domain and subdomains in Axiom are themselves objects that have types. The
type of a domain or subdomain is called a category. Categories are described
by programs of the form:

Name(...): Category == Exports

The type of every category is the distinguished symbol Category. The category
Name is used to designate the class of domains of that type. For example,
category Ring designates the class of all rings. Like domains, categories can
take zero or more parameters as indicated by the “...” part following Name.

Two examples are Module(R) and MatrixCategory(R,Row,Col).

The Exports part defines a set of operations. For example, Ring exports the op-
erations “0”, “1”, “+”, “-”, and “*”. Many algebraic domains such as Integer
and Polynomial (Float) are rings. String and List (R) (for any domain R)
are not.

Categories serve to ensure the type-correctness. The definition of matrices states
Matrix(R: Ring) requiring its single parameter R to be a ring. Thus a “matrix
of polynomials” is allowed, but “matrix of lists” is not.

Categories say nothing about representation. Domains, which are instances of
category types, specify representations.

2.0.15 Operations Can Refer To Abstract Types

All operations have prescribed source and target types. Types can be denoted
by symbols that stand for domains, called “symbolic domains.” The following
lines of Axiom code use a symbolic domain R:

R: Ring

power: (R, NonNegativeInteger): R -> R

power(x, n) == x ** n

Line 1 declares the symbol R to be a ring. Line 2 declares the type of power
in terms of R. From the definition on line 3, power(3, 2) produces 9 for x = 3
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and R = Integer. Also, power(3.0, 2) produces 9.0 for x = 3.0 and R = Float.
power(”oxford”, 2) however fails since ”oxford” has type String which is not
a ring.

Using symbolic domains, algorithms can be defined in their most natural or
general setting.

2.0.16 Categories Form Hierarchies

Categories form hierarchies (technically, directed-acyclic graphs). A simplified
hierarchical world of algebraic categories is shown below. At the top of this world
is SetCategory, the class of algebraic sets. The notions of parents, ancestors,
and descendants is clear. Thus ordered sets (domains of category OrderedSet)
and rings are also algebraic sets. Likewise, fields and integral domains are rings
and algebraic sets. However fields and integral domains are not ordered sets.

SetCategory +---- Ring ---- IntegralDomain ---- Field

|

+---- Finite ---+

| \

+---- OrderedSet -----+ OrderedFinite

Figure 1. A simplified category hierarchy.

2.0.17 Domains Belong to Categories by Assertion

A category designates a class of domains. Which domains? You might think
that Ring designates the class of all domains that export 0, 1, “+”, “-”, and
“*”. But this is not so. Each domain must assert which categories it belongs
to.

The Export part of the definition for Integer reads, for example:

Join(OrderedSet, IntegralDomain, ...) with ...

This definition asserts that Integer is both an ordered set and an integral
domain. In fact, Integer does not explicitly export constants 0 and 1 and
operations “+”, “-” and “*” at all: it inherits them all from Ring! Since
IntegralDomain is a descendant of Ring, Integer is therefore also a ring.

Assertions can be conditional. For example, Complex(R) defines its exports by:

Ring with ... if R has Field then Field ...

Thus Complex(Float) is a field but Complex(Integer) is not since Integer is
not a field.
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You may wonder: “Why not simply let the set of operations determine whether
a domain belongs to a given category?”. Axiom allows operation names (for
example, norm) to have very different meanings in different contexts. The
meaning of an operation in Axiom is determined by context. By associating
operations with categories, operation names can be reused whenever appropriate
or convenient to do so. As a simple example, the operation < might be used to
denote lexicographic-comparison in an algorithm. However, it is wrong to use
the same < with this definition of absolute-value:

abs(x) == if x < 0 then− x else x

Such a definition for abs in Axiom is protected by context: argument x is
required to be a member of a domain of category OrderedSet.

2.0.18 Packages Are Clusters of Polymorphic Operations

In Axiom, facilities for symbolic integration, solution of equations, and the like
are placed in “packages”. A package is a special kind of domain: one whose
exported operations depend solely on the parameters of the constructor and/or
explicit domains. Packages, unlike Domains, do not specify the representation.

If you want to use Axiom, for example, to define some algorithms for solving
equations of polynomials over an arbitrary field F , you can do so with a package
of the form:

MySolve(F: Field): Exports == Implementation

where Exports specifies the solve operations you wish to export from the do-
main and the Implementation defines functions for implementing your algo-
rithms. Once Axiom has compiled your package, your algorithms can then
be used for any F: floating-point numbers, rational numbers, complex rational
functions, and power series, to name a few.

2.0.19 The Interpreter Builds Domains Dynamically

The Axiom interpreter reads user input then builds whatever types it needs to
perform the indicated computations. For example, to create the matrix

M =

(
x2 + 1 0

0 x/2

)
using the command:

M = [ [x**2+1,0],[0,x / 2] ]::Matrix(POLY(FRAC(INT)))

M =

[
x2 + 1 0

0 x/2

]
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Type: Matrix Polynomial Fraction Integer

the interpreter first loads the modules Matrix, Polynomial, Fraction, and
Integer from the library, then builds the domain tower “matrices of polynomials
of rational numbers (i.e. fractions of integers)”.

You can watch the loading process by first typing

)set message autoload on

In addition to the named domains above many additional domains and cate-
gories are loaded. Most systems are preloaded with such common types. For
efficiency reasons the most common domains are preloaded but most (there are
more than 1100 domains, categories, and packages) are not. Once these domains
are loaded they are immediately available to the interpreter.

Once a domain tower is built, it contains all the operations specific to the
type. Computation proceeds by calling operations that exist in the tower. For
example, suppose that the user asks to square the above matrix. To do this,
the function “*” from Matrix is passed the matrix M to compute M ∗ M .
The function is also passed an environment containing R that, in this case, is
Polynomial (Fraction (Integer)). This results in the successive calling of
the “*” operations from Polynomial, then from Fraction, and then finally from
Integer.

Categories play a policing role in the building of domains. Because the argument
of Matrix is required to be a Ring, Axiom will not build nonsensical types such
as “matrices of input files”.

2.0.20 Axiom Code is Compiled

Axiom programs are statically compiled to machine code, then placed into li-
brary modules. Categories provide an important role in obtaining efficient object
code by enabling:

• static type-checking at compile time;

• fast linkage to operations in domain-valued parameters;

• optimization techniques to be used for partially specified types (opera-
tions for “vectors of R”, for instance, can be open-coded even though R is
unknown).

2.0.21 Axiom is Extensible

Users and system implementers alike use the Axiom language to add facilities
to the Axiom library. The entire Axiom library is in fact written in the Axiom
source code and available for user modification and/or extension.
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Axiom’s use of abstract datatypes clearly separates the exports of a domain
(what operations are defined) from its implementation (how the objects are
represented and operations are defined). Users of a domain can thus only create
and manipulate objects through these exported operations. This allows imple-
menters to “remove and replace” parts of the library safely by newly upgraded
(and, we hope, correct) implementations without consequence to its users.

Categories protect names by context, making the same names available for use
in other contexts. Categories also provide for code-economy. Algorithms can be
parameterized categorically to characterize their correct and most general con-
text. Once compiled, the same machine code is applicable in all such contexts.

Finally, Axiom provides an automatic, guaranteed interaction between new and
old code. For example:

• if you write a new algorithm that requires a parameter to be a field, then
your algorithm will work automatically with every field defined in the
system; past, present, or future.

• if you introduce a new domain constructor that produces a field, then the
objects of that domain can be used as parameters to any algorithm using
field objects defined in the system; past, present, or future.

Before embarking on the tour, we need to brief those readers working interac-
tively with Axiom on some details.
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Chapter 3

Starting Axiom

Welcome to the Axiom environment for interactive computation and problem
solving. Consider this chapter a brief, whirlwind tour of the Axiom world. We
introduce you to Axiom’s graphics and the Axiom language. Then we give a
sampling of the large variety of facilities in the Axiom system, ranging from
the various kinds of numbers, to data types (like lists, arrays, and sets) and
mathematical objects (like matrices, integrals, and differential equations). We
include a discussion of system commands and an interactive “undo.”

3.1 Starting Up and Winding Down

You need to know how to start the Axiom system and how to stop it. We
assume that Axiom has been correctly installed on your machine. Information
on how to install Axiom is available on the wiki website[3].

To begin using Axiom, issue the command axiom to the operating system shell.
There is a brief pause, some start-up messages, and then one or more windows
appear.

If you are not running Axiom under the X Window System, there is only one
window (the console). At the lower left of the screen there is a prompt that
looks like

(1) ->

When you want to enter input to Axiom, you do so on the same line after
the prompt. The “1” in “(1)”, also called the equation number, is the com-
putation step number and is incremented after you enter Axiom statements.
Note, however, that a system command such as )clear all may change the
step number in other ways. We talk about step numbers more when we discuss
system commands and the workspace history facility.

21
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If you are running Axiom under the X Window System, there may be two
windows: the console window (as just described) and the HyperDoc main menu.
HyperDoc is a multiple-window hypertext system that lets you view Axiom
documentation and examples on-line, execute Axiom expressions, and generate
graphics. If you are in a graphical windowing environment, it is usually started
automatically when Axiom begins. If it is not running, issue )hd to start it.

To interrupt an Axiom computation, hold down theCtrl (control) key and press
c. This brings you back to the Axiom prompt.

To exit from Axiom, move to the console window, type )quit at the input
prompt and press the Enter key. You will probably be prompted with the
following message:

Please enter y or yes if you really want to leave the
interactive environment and return to the operating system

You should respond yes, for example, to exit Axiom.

We are purposely vague in describing exactly what your screen looks like or
what messages Axiom displays. Axiom runs on a number of different machines,
operating systems and window environments, and these differences all affect the
physical look of the system. You can also change the way that Axiom behaves
via system commands described later in this chapter and in the Axiom System
Commands. (Chapter 8 on page 231) System commands are special commands,
like )set, that begin with a closing parenthesis and are used to change your
environment. For example, you can set a system variable so that you are not
prompted for confirmation when you want to leave Axiom.

3.1.1 Clef

If you are using Axiom under the X Window System, the Clef command line
editor is probably available and installed. With this editor you can recall pre-
vious lines with the up and down arrow keys. To move forward and backward
on a line, use the right and left arrows. You can use the Insert key to toggle
insert mode on or off. When you are in insert mode, the cursor appears as a
large block and if you type anything, the characters are inserted into the line
without deleting the previous ones.

If you press the Home key, the cursor moves to the beginning of the line and
if you press the End key, the cursor moves to the end of the line. Pressing
Ctrl-End deletes all the text from the cursor to the end of the line.

Clef also provides Axiom operation name completion for a limited set of oper-
ations. If you enter a few letters and then press the Tab key, Clef tries to use
those letters as the prefix of an Axiom operation name. If a name appears and
it is not what you want, press Tab again to see another name.
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3.1.2 Typographic Conventions

In this document we have followed these typographical conventions:

• Categories, domains and packages are displayed in this font: Ring, Integer,
DiophantineSolutionPackage.

• Prefix operators, infix operators, and punctuation symbols in the Axiom
language are displayed in the text like this: +, $, +->.

• Axiom expressions or expression fragments are displayed in this font:
inc(x) == x + 1.

• For clarity of presentation, TEX is often used to format expressions
g(x) = x2 + 1.

• Function names and HyperDoc button names are displayed in the text in
this font: factor, integrate, Lighting.

• Italics are used for emphasis and for words defined in the glossary:
category.

This document contains over many examples of Axiom input and output. All
examples were run though Axiom and their output was created in TEX form.
We have deleted system messages from the example output if those messages
are not important for the discussions in which the examples appear.

3.2 The Axiom Language

The Axiom language is a rich language for performing interactive computations
and for building components of the Axiom library. Here we present only some
basic aspects of the language that you need to know for the rest of this chapter.
Our discussion here is intentionally informal, with details unveiled on an “as
needed” basis. For more information on a particular construct, we suggest you
consult the index.

3.2.1 Arithmetic Expressions

For arithmetic expressions, use the “+” and “-” operator as in mathematics. Use
“*” for multiplication, and “**” for exponentiation. To create a fraction, use
“/”. When an expression contains several operators, those of highest precedence
are evaluated first. For arithmetic operators, “**” has highest precedence, “*”
and “/” have the next highest precedence, and “+” and “-” have the lowest
precedence.

Axiom puts implicit parentheses around operations of higher precedence, and
groups those of equal precedence from left to right.
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1 + 2 - 3 / 4 * 3 ** 2 - 1

−19

4

Type: Fraction Integer

The above expression is equivalent to this.

((1 + 2) - ((3 / 4) * (3 ** 2))) - 1

−19

4

Type: Fraction Integer

If an expression contains subexpressions enclosed in parentheses, the parenthe-
sized subexpressions are evaluated first (from left to right, from inside out).

1 + 2 - 3/ (4 * 3 ** (2 - 1))

11

4

Type: Fraction Integer

3.2.2 Previous Results

Use the percent sign “%” to refer to the last result. Also, use “%%’ to refer
to previous results. “%%(-1)” is equivalent to “%”, “%%(-2)” returns the next
to the last result, and so on. “%%(1)” returns the result from step number
1, “%%(2)” returns the result from step number 2, and so on. “%%(0)” is not
defined.

This is ten to the tenth power.

10 ** 10

10000000000

Type: PositiveInteger

This is the last result minus one.

% - 1
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9999999999

Type: PositiveInteger

This is the last result.

%%(-1)

9999999999

Type: PositiveInteger

This is the result from step number 1.

%%(1)

10000000000

Type: PositiveInteger

3.2.3 Some Types

Everything in Axiom has a type. The type determines what operations you can
perform on an object and how the object can be used.

Positive integers are given type PositiveInteger.

8

8

Type: PositiveInteger

Negative ones are given type Integer. This fine distinction is helpful to the
Axiom interpreter.

-8

−8

Type: Integer

Here a positive integer exponent gives a polynomial result.
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x**8

x8

Type: Polynomial Integer

Here a negative integer exponent produces a fraction.

x**(-8)

1

x8

Type: Fraction Polynomial Integer

3.2.4 Symbols, Variables, Assignments, and Declarations

A symbol is a literal used for the input of things like the “variables” in polyno-
mials and power series.

We use the three symbols x, y, and z in entering this polynomial.

(x - y*z)**2

y2 z2 − 2 x y z + x2

Type: Polynomial Integer

A symbol has a name beginning with an uppercase or lowercase alphabetic
character, “%”, or “!”. Successive characters (if any) can be any of the above,
digits, or “?”. Case is distinguished: the symbol points is different from the
symbol Points.

A symbol can also be used in Axiom as a variable. A variable refers to a value.
To assign a value to a variable, the operator “:=” is used. Axiom actually has
two forms of assignment: immediate assignment, as discussed here, and delayed
assignment. A variable initially has no restrictions on the kinds of values to
which it can refer.

This assignment gives the value 4 (an integer) to a variable named x.

x := 4

4

Type: PositiveInteger
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This gives the value z + 3/5 (a polynomial) to x.

x := z + 3/5

z +
3

5

Type: Polynomial Fraction Integer

To restrict the types of objects that can be assigned to a variable, use a decla-
ration

y : Integer

Type: Void

After a variable is declared to be of some type, only values of that type can be
assigned to that variable.

y := 89

89

Type: Integer

The declaration for y forces values assigned to y to be converted to integer
values.

y := sin %pi

0

Type: Integer

If no such conversion is possible, Axiom refuses to assign a value to y.

y := 2/3

Cannot convert right-hand side of assignment

2

-

3

to an object of the type Integer of the left-hand side.
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A type declaration can also be given together with an assignment. The decla-
ration can assist Axiom in choosing the correct operations to apply.

f : Float := 2/3

0.6666666666 6666666667

Type: Float

Any number of expressions can be given on input line. Just separate them by
semicolons. Only the result of evaluating the last expression is displayed.

These two expressions have the same effect as the previous single expression.

f : Float; f := 2/3

0.6666666666 6666666667

Type: Float

The type of a symbol is either Symbol or Variable(name) where name is the
name of the symbol.

By default, the interpreter gives this symbol the type Variable(q).

q

q

Type: Variable q

When multiple symbols are involved, Symbol is used.

[q, r]

[q, r]

Type: List OrderedVariableList [q,r]

What happens when you try to use a symbol that is the name of a variable?

f

0.6666666666 6666666667
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Type: Float

Use a single quote “’” before the name to get the symbol.

’f

f

Type: Variable f

Quoting a name creates a symbol by preventing evaluation of the name as a
variable. Experience will teach you when you are most likely going to need to
use a quote. We try to point out the location of such trouble spots.

3.2.5 Conversion

Objects of one type can usually be “converted” to objects of several other types.
To convert an object to a new type, use the “::” infix operator. For example,
to display an object, it is necessary to convert the object to type OutputForm.

This produces a polynomial with rational number coefficients.

p := r**2 + 2/3

r2 +
2

3

Type: Polynomial Fraction Integer

Create a quotient of polynomials with integer coefficients by using “::”.

p :: Fraction Polynomial Integer

3 r2 + 2

3

Type: Fraction Polynomial Integer

Some conversions can be performed automatically when Axiom tries to evaluate
your input. Others conversions must be explicitly requested.
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3.2.6 Calling Functions

As we saw earlier, when you want to add or subtract two values, you place
the arithmetic operator “+” or “-” between the two arguments denoting the
values. To use most other Axiom operations, however, you use another syntax:
write the name of the operation first, then an open parenthesis, then each of
the arguments separated by commas, and, finally, a closing parenthesis. If the
operation takes only one argument and the argument is a number or a symbol,
you can omit the parentheses.

This calls the operation factor with the single integer argument 120.

factor(120)

23 3 5

Type: Factored Integer

This is a call to divide with the two integer arguments 125 and 7.

divide(125,7)

[quotient = 17, remainder = 6]

Type: Record(quotient: Integer, remainder: Integer)

This calls quatern with four floating-point arguments.

quatern(3.4,5.6,2.9,0.1)

3.4 + 5.6 i+ 2.9 j + 0.1 k

Type: Quaternion Float

This is the same as factorial(10).

factorial 10

3628800

Type: PositiveInteger
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An operations that returns a Boolean value (that is, true or false) frequently
has a name suffixed with a question mark (“?”). For example, the even? oper-
ation returns true if its integer argument is an even number, false otherwise.

An operation that can be destructive on one or more arguments usually has
a name ending in a exclamation point (“!”). This actually means that it is
allowed to update its arguments but it is not required to do so. For example,
the underlying representation of a collection type may not allow the very last
element to removed and so an empty object may be returned instead. Therefore,
it is important that you use the object returned by the operation and not rely
on a physical change having occurred within the object. Usually, destructive
operations are provided for efficiency reasons.

3.2.7 Some Predefined Macros

Axiom provides several macros for your convenience. Macros are names (or
forms) that expand to larger expressions for commonly used values.

%i The square root of -1.
%e The base of the natural logarithm.
%pi π.
%infinity ∞.
%plusInfinity +∞.
%minusInfinity −∞.

To display all the macros (along with anything you have defined in the workspace),
issue the system command )display all.

3.2.8 Long Lines

When you enter Axiom expressions from your keyboard, there will be times
when they are too long to fit on one line. Axiom does not care how long your
lines are, so you can let them continue from the right margin to the left side of
the next line.

Alternatively, you may want to enter several shorter lines and have Axiom glue
them together. To get this glue, put an underscore ( ) at the end of each line
you wish to continue.

2_

+_

3

is the same as if you had entered

2+3
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Axiom statements in an input file can use indentation to indicate the program
structure.

3.2.9 Comments

Comment statements begin with two consecutive hyphens or two consecutive
plus signs and continue until the end of the line.

The comment beginning with “--” is ignored by Axiom.

2 + 3 -- this is rather simple, no?

5

Type: PositiveInteger

There is no way to write long multi-line comments other than starting each line
with “--” or “++”.

3.3 Using Axiom as a Pocket Calculator

At the simplest level Axiom can be used as a pocket calculator where expressions
involving numbers and operators are entered directly in infix notation. In this
sense the more advanced features of the calculator can be regarded as operators
(e.g sin, cos, etc).

3.3.1 Basic Arithmetic

An example of this might be to calculate the cosine of 2.45 (in radians). To do
this one would type:

(1)-> cos 2.45

−0.7702312540473073417

Type: Float

Before proceeding any further it would be best to explain the previous three
lines. Axiom presents a “(1) -> ” prompt (shown here but omitted elsewhere)
when interacting with the user. The full prompt has other text preceding this
but it is not relevant here. The number in parenthesis is the step number of the
input which may be used to refer to the results of previous calculations. The
step number appears at the start of the second line to tell you which step the
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result belongs to. Since the interpreter probably loaded numerous libraries to
calculate the result given above and listed each one in the prcess, there could
easily be several pages of text between your input and the answer.

The last line contains the type of the result. The type Float is used to represent
real numbers of arbitrary size and precision (where the user is able to define how
big arbitrary is – the default is 20 digits but can be as large as your computer
system can handle). The type of the result can help track down mistakes in
your input if you don’t get the answer you expected.

Other arithmetic operations such as addition, subtraction, and multiplication
behave as expected:

6.93 * 4.1328

28.640304

Type: Float

6.93 / 4.1328

1.6768292682926829268

Type: Float

but integer division isn’t quite so obvious. For example, if one types:

4/6

2

3

Type: Fraction Integer

a fractional result is obtained. The function used to display fractions attempts
to produce the most readable answer. In the example:

4/2

2

Type: Fraction Integer

the result is stored as the fraction 2/1 but is displayed as the integer 2. This
fraction could be converted to type Integer with no loss of information but
Axiom will not do so automatically.
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3.3.2 Type Conversion

To obtain the floating point value of a fraction one must convert ( conver-
sions are applied by the user and coercions are applied automatically by the
interpreter) the result to type Float using the “::” operator as follows:

(4.6)::Float

4.6

Type: Float

Although Axiom can convert this back to a fraction it might not be the same
fraction you started with due to rounding errors. For example, the following
conversion appears to be without error but others might not:

%::Fraction Integer

23

5

Type: Fraction Integer

where “%” represents the previous result (not the calculation).

Although Axiom has the ability to work with floating-point numbers to a very
high precision it must be remembered that calculations with these numbers are
not exact. Since Axiom is a computer algebra package and not a numerical
solutions package this should not create too many problems. The idea is that
the user should use Axiom to do all the necessary symbolic manipulation and
only at the end should actual numerical results be extracted.

If you bear in mind that Axiom appears to store expressions just as you have
typed them and does not perform any evalutation of them unless forced to then
programming in the system will be much easier. It means that anything you
ask Axiom to do (within reason) will be carried out with complete accuracy.

In the previous examples the “::” operator was used to convert values from one
type to another. This type conversion is not possible for all values. For instance,
it is not possible to convert the number 3.4 to an integer type since it can’t be
represented as an integer. The number 4.0 can be converted to an integer type
since it has no fractional part.

Conversion from floating point values to integers is performed using the func-
tions round and truncate. The first of these rounds a floating point number to
the nearest integer while the other truncates (i.e. removes the fractional part).
Both functions return the result as a floating point number. To extract the
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fractional part of a floating point number use the function fractionPart but
note that the sign of the result depends on the sign of the argument. Axiom
obtains the fractional part of x using x− truncate(x):

round(3.77623)

4.0

Type: Float

round(-3.77623)

−4.0

Type: Float

truncate(9.235)

9.0

Type: Float

truncate(-9.654)

−9.0

Type: Float

fractionPart(-3.77623)

−0.77623

Type: Float
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3.3.3 Useful Functions

To obtain the absolute value of a number the abs function can be used. This
takes a single argument which is usually an integer or a floating point value but
doesn’t necessarily have to be. The sign of a value can be obtained via the sign
function which returns −1, 0, or 1 depending on the sign of the argument.

abs(4)

4

Type: PositiveInteger

abs(-3)

3

Type: PositiveInteger

abs(-34254.12314)

34254.12314

Type: Float

sign(-49543.2345346)

−1

Type: Integer

sign(0)

0

Type: NonNegativeInteger

sign(234235.42354)

1
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Type: PositiveInteger

Tests on values can be done using various functions which are generally more
efficient than using relational operators such as = particularly if the value is a
matrix. Examples of some of these functions are:

positive?(-234)

false

Type: Boolean

negative?(-234)

true

Type: Boolean

zero?(42)

false

Type: Boolean

one?(1)

true

Type: Boolean

odd?(23)

true

Type: Boolean

odd?(9.435)

false
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Type: Boolean

even?(-42)

true

Type: Boolean

prime?(37)

true

Type: Boolean

prime?(-37)

false

Type: Boolean

Some other functions that are quite useful for manipulating numerical values
are:

sin(x) Sine of x

cos(x) Cosine of x

tan(x) Tangent of x

asin(x) Arcsin of x

acos(x) Arccos of x

atan(x) Arctangent of x

gcd(x,y) Greatest common divisor of x and y

lcm(x,y) Lowest common multiple of x and y

max(x,y) Maximum of x and y

min(x,y) Minimum of x and y

factorial(x) Factorial of x

factor(x) Prime factors of x

divide(x,y) Quotient and remainder of x/y

Some simple infix and prefix operators:

+ Addition - Subtraction

- Numerical Negation ~ Logical Negation

/\ Conjunction (AND) \/ Disjunction (OR)

and Logical AND (/\) or Logical OR (\/)
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not Logical Negation ** Exponentiation

* Multiplication / Division

quo Quotient rem Remainder

< less than > greater than

<= less than or equal >= greater than or equal

Some useful Axiom macros:

%i The square root of -1

%e The base of the natural logarithm

%pi Pi

%infinity Infinity

%plusInfinity Positive Infinity

%minusInfinity Negative Infinity

3.4 Using Axiom as a Symbolic Calculator

In the previous section all the examples involved numbers and simple functions.
Also none of the expressions entered were assigned to anything. In this section
we will move on to simple algebra (i.e. expressions involving symbols and other
features available on more sophisticated calculators).

3.4.1 Expressions Involving Symbols

Expressions involving symbols are entered just as they are written down, for
example:

xSquared := x**2

x2

Type: Polynomial Integer

where the assignment operator “:=” represents immediate assignment. Later
it will be seen that this form of assignment is not always desirable and the
use of the delayed assignment operator “==” will be introduced. The type of
the result is Polynomial Integer which is used to represent polynomials with
integer coefficients. Some other examples along similar lines are:

xDummy := 3.21*x**2

3.21 x2

Type: Polynomial Float
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xDummy := x**2.5

x2
√
x

Type: Expression Float

xDummy := x**3.3

x3 10
√
x
3

Type: Expression Float

xyDummy := x**2 - y**2

−y2 + x2

Type: Polynomial Integer

Given that we can define expressions involving symbols, how do we actually
compute the result when the symbols are assigned values? The answer is to use
the eval function which takes an expression as its first argument followed by
a list of assignments. For example, to evaluate the expressions xDummy and
xyDummy resulting from their respective assignments above we type:

eval(xDummy,x=3)

37.540507598529552193

Type: Expression Float

eval(xyDummy, [x=3, y=2.1])

4.59

Type: Polynomial Float
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3.4.2 Complex Numbers

For many scientific calculations real numbers aren’t sufficient and support for
complex numbers is also required. Complex numbers are handled in an intuitive
manner. Axiom uses the %i macro to represent the square root of −1. Thus
expressions involving complex numbers are entered just like other expressions.

(2/3 + %i)**3

−46

27
+

1

3
i

Type: Complex Fraction Integer

The real and imaginary parts of a complex number can be extracted using
the real and imag functions and the complex conjugate of a number can be
obtained using conjugate:

real(3 + 2*%i)

3

Type: PositiveInteger

imag(3+ 2*%i)

2

Type: PositiveInteger

conjugate(3 + 2*%i)

3− 2 i

Type: Complex Integer

The function factor can also be applied to complex numbers but the results
aren’t quite so obvious as for factoring integer:

144 + 24*%i

144 + 24 i



42 CHAPTER 3. STARTING AXIOM

Type: Complex Integer

factor(%)

i (1 + i)
6
3 (6 + i)

Type: Factored Complex Integer

3.4.3 Number Representations

By default all numerical results are displayed in decimal with real numbers
shown to 20 significant figures. If the integer part of a number is longer than 20
digits then nothing after the decimal point is shown and the integer part is given
in full. To alter the number of digits shown the function digits can be called.
The result returned by this function is the previous setting. For example, to
find the value of π to 40 digits we type:

digits(40)

20

Type: PositiveInteger

%pi::Float

3.1415926535 8979323846 2643383279 502884197

Type: Float

As can be seen in the example above, there is a gap after every ten digits. This
can be changed using the outputSpacing function where the argument is the
number of digits to be displayed before a space is inserted. If no spaces are
desired then use the value 0. Two other functions controlling the appearance
of real numbers are outputFloating and outputFixed. The former causes
Axiom to display floating-point values in exponent notation and the latter causes
it to use fixed-point notation. For example:

outputFloating(); %

0.3141592653589793238462643383279502884197E1
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Type: Float

outputFloating(3); 0.00345

0.345E − 2

Type: Float

outputFixed(); %

0.00345

Type: Float

outputFixed(3); %

0.003

Type: Float

outputGeneral(); %

0.00345

Type: Float

Note that the semicolon “;” in the examples above allows several expressions to
be entered on one line. The result of the last expression is displayed. Remember
also that the percent symbol “%” is used to represent the result of a previous
calculation.

To display rational numbers in a base other than 10 the function radix is used.
The first argument of this function is the expression to be displayed and the
second is the base to be used.

radix(10**10,32)

9A0NP00

Type: RadixExpansion 32
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radix(3/21,5)

0.032412

Type: RadixExpansion 5

Rational numbers can be represented as a repeated decimal expansion using the
decimal function or as a continued fraction using continuedFraction. Any
attempt to call these functions with irrational values will fail.

decimal(22/7)

3.142857

Type: DecimalExpansion

continuedFraction(6543/210)

31 +
1|
|6

+
1|
|2

+
1|
|1

+
1|
|3

Type: ContinuedFraction Integer

Finally, partial fractions in compact and expanded form are available via the
functions partialFraction and padicFraction respectively. The former takes
two arguments, the first being the numerator of the fraction and the second
being the denominator. The latter function takes a fraction and expands it
further while the function compactFraction does the reverse:

partialFraction(234,40)

6− 3

22
+

3

5

Type: PartialFraction Integer

padicFraction(%)

6− 1

2
− 1

22
+

3

5

Type: PartialFraction Integer
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compactFraction(%)

6− 3

22
+

3

5

Type: PartialFraction Integer

padicFraction(234/40)

117

20

Type: PartialFraction Fraction Integer

To extract parts of a partial fraction the function nthFractionalTerm is avail-
able and returns a partial fraction of one term. To decompose this further the
numerator can be obtained using firstNumer and the denominator with first-
Denom. The whole part of a partial fraction can be retrieved using wholePart
and the number of fractional parts can be found using the function numberOf-
FractionalTerms:

t := partialFraction(234,40)

6− 3

22
+

3

5

Type: PartialFraction Integer

wholePart(t)

6

Type: PositiveInteger

numberOfFractionalTerms(t)

2

Type: PositiveInteger

p := nthFractionalTerm(t,1)
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− 3

22

Type: PartialFraction Integer

firstNumer(p)

−3

Type: Integer

firstDenom(p)

22

Type: Factored Integer

3.4.4 Modular Arithmetic

By using the type constructor PrimeField it is possible to do arithmetic modulo
some prime number. For example, arithmetic module 7 can be performed as
follows:

x : PrimeField 7 := 5

5

Type: PrimeField 7

x**5 + 6

2

Type: PrimeField 7

1/x

3

Type: PrimeField 7
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The first example should be read as:

Let x be of type PrimeField(7) and assign to it the value 5

Note that it is only possible to invert non-zero values if the arithmetic is per-
formed modulo a prime number. Thus arithmetic modulo a non-prime integer
is possible but the reciprocal operation is undefined and will generate an error.
Attempting to use the PrimeField type constructor with a non-prime argument
will generate an error. An example of non-prime modulo arithmetic is:

y : IntegerMod 8 := 11

3

Type: IntegerMod 8

y*4 + 27

7

Type: IntegerMod 8

Note that polynomials can be constructed in a similar way:

(3*a**4 + 27*a - 36)::Polynomial PrimeField 7

3 a4 + 6 a+ 6

Type: Polynomial PrimeField 7

3.5 General Points about Axiom

3.5.1 Computation Without Output

It is sometimes desirable to enter an expression and prevent Axiom from display-
ing the result. To do this the expression should be terminated with a semicolon
“;”. In a previous section it was mentioned that a set of expressions separated
by semicolons would be evaluated and the result of the last one displayed. Thus
if a single expression is followed by a semicolon no output will be produced
(except for its type):

2 + 4*5;

Type: PositiveInteger
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3.5.2 Accessing Earlier Results

The “%” macro represents the result of the previous computation. The “%%”
macro is available which takes a single integer argument. If the argument is
positive then it refers to the step number of the calculation where the numbering
begins from one and can be seen at the end of each prompt (the number in
parentheses). If the argument is negative then it refers to previous results
counting backwards from the last result. That is, “%%(-1)” is the same as “%”.
The value of “%%(0)” is not defined and will generate an error if requested.

3.5.3 Splitting Expressions Over Several Lines

Although Axiom will quite happily accept expressions that are longer than the
width of the screen (just keep typing without pressing the Return key) it
is often preferable to split the expression being entered at a point where it
would result in more readable input. To do this the underscore “ ” symbol is
placed before the break point and then the Return key is pressed. The rest
of the expression is typed on the next line, can be preceeded by any number of
whitespace chars, for example:

2_

+_

3

5

Type: PositiveInteger

The underscore symbol is an escape character and its presence alters the mean-
ing of the characters that follow it. As mentions above whitespace following an
underscore is ignored (the Return key generates a whitespace character). Any
other character following an underscore loses whatever special meaning it may
have had. Thus one can create the identifier “a+b” by typing “a +b” although
this might lead to confusions. Also note the result of the following example:

ThisIsAVeryLong

VariableName

ThisIsAV eryLongV ariableName

Type: Variable ThisIsAVeryLongVariableName
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3.5.4 Comments and Descriptions

Comments and descriptions are really only of use in files of Axiom code but
can be used when the output of an interactive session is being spooled to a file
(via the system command )spool). A comment begins with two dashes “- -”
and continues until the end of the line. Multi-line comments are only possible
if each individual line begins with two dashes.

Descriptions are the same as comments except that the Axiom compiler will
include them in the object files produced and make them available to the end
user for documentation purposes.

A description is placed before a calculation begins with three “+” signs (i.e.
“+++”) and a description placed after a calculation begins with two plus sym-
bols (i.e.“++”). The so-called “plus plus” comments are used within the algebra
files and are processed by the compiler to add to the documentation. The so-
called “minus minus” comments are ignored everywhere.

3.5.5 Control of Result Types

In earlier sections the type of an expression was converted to another via the
“::” operator. However, this is not the only method for converting between
types and two other operators need to be introduced and explained.

The first operator is “$” and is used to specify the package to be used to calculate
the result. Thus:

(2/3)$Float

0.6666666666 6666666667

Type: Float

tells Axiom to use the “/” operator from the Float package to evaluate the
expression 2/3. This does not necessarily mean that the result will be of the
same type as the domain from which the operator was taken. In the following
example the sign operator is taken from the Float package but the result is of
type Integer.

sign(2.3)$Float

1

Type: Integer
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The other operator is “@” which is used to tell Axiom what the desired type of
the result of the calculation is. In most situations all three operators yield the
same results but the example below should help distinguish them.

(2 + 3)::String

"5"

Type: String

(2 + 3)@String

An expression involving @ String actually evaluated to one of

type PositiveInteger . Perhaps you should use :: String .

(2 + 3)$String

The function + is not implemented in String .

If an expression X is converted using one of the three operators to type T the
interpretations are:

:: means explicitly convert X to type T if possible.

$ means use the available operators for type T to compute X.

@ means choose operators to compute X so that the result is of type T.

3.5.6 Using system commands

We conclude our tour of Axiom with a brief discussion of system commands.
System commands are special statements that start with a closing parenthesis
()). They are used to control or display your Axiom environment, start the
HyperDoc system, issue operating system commands and leave Axiom. For
example, )system is used to issue commands to the operating system from
Axiom. Here is a brief description of some of these commands.

Perhaps the most important user command is the )clear all command that
initializes your environment. Every section and subsection in this document has
an invisible )clear all that is read prior to the examples given in the section.
)clear all gives you a fresh, empty environment with no user variables defined
and the step number reset to 1. The )clear command can also be used to
selectively clear values and properties of system variables.

Another useful system command is )read. A preferred way to develop an appli-
cation in Axiom is to put your interactive commands into a file, say my.input
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file. To get Axiom to read this file, you use the system command )read

my.input. If you need to make changes to your approach or definitions, go
into your favorite editor, change my.input, then )read my.input again.

Other system commands include: )history, to display previous input and/or
output lines; )display, to display properties and values of workspace variables;
and )what.

Issue )what to get a list of Axiom objects that contain a given substring in their
name.

)what operations integrate

Operations whose names satisfy the above pattern(s):

HermiteIntegrate algintegrate complexIntegrate

expintegrate extendedIntegrate fintegrate

infieldIntegrate integrate internalIntegrate

internalIntegrate0 lazyGintegrate lazyIntegrate

lfintegrate limitedIntegrate monomialIntegrate

nagPolygonIntegrate palgintegrate pmComplexintegrate

pmintegrate primintegrate tanintegrate

To get more information about an operation such as

limitedIntegrate , issue the command )display op limitedIntegrate

3.5.7 Using undo

A useful system command is )undo. Sometimes while computing interactively
with Axiom, you make a mistake and enter an incorrect definition or assignment.
Or perhaps you need to try one of several alternative approaches, one after
another, to find the best way to approach an application. For this, you will find
the undo facility of Axiom helpful.

System command )undo n means “undo back to step n”; it restores the values
of user variables to those that existed immediately after input expression n
was evaluated. Similarly, )undo -n undoes changes caused by the last n input
expressions. Once you have done an )undo, you can continue on from there, or
make a change and redo all your input expressions from the point of the )undo
forward. The )undo is completely general: it changes the environment like any
user expression. Thus you can )undo any previous undo.

Here is a sample dialogue between user and Axiom.

“Let me define two mutually dependent functions f and g piece-wise.”

f(0) == 1; g(0) == 1
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Type: Void

“Here is the general term for f .”

f(n) == e/2*f(n-1) - x*g(n-1)

Type: Void

“And here is the general term for g.”

g(n) == -x*f(n-1) + d/3*g(n-1)

Type: Void

“What is value of f(3)?”

f(3)

−x3 +

(
e+

1

3
d

)
x2 +

(
−1

4
e2 − 1

6
d e− 1

9
d2
)

x+
1

8
e3

Type: Polynomial Fraction Integer

“Hmm, I think I want to define f differently. Undo to the environment right
after I defined f .”

)undo 2

“Here is how I think I want f to be defined instead.”

f(n) == d/3*f(n-1) - x*g(n-1)

1 old definition(s) deleted for function or rule f

Type: Void

Redo the computation from expression 3 forward.

)undo )redo
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g(n) == -x*f(n-1) + d/3*g(n-1)

Type: Void

f(3)

Compiling function g with type Integer -> Polynomial Fraction

Integer

Compiling function g as a recurrence relation.

+++ |*1;g;1;G82322;AUX| redefined

+++ |*1;g;1;G82322| redefined

Compiling function g with type Integer -> Polynomial Fraction

Integer

Compiling function g as a recurrence relation.

+++ |*1;g;1;G82322;AUX| redefined

+++ |*1;g;1;G82322| redefined

Compiling function f with type Integer -> Polynomial Fraction

Integer

Compiling function f as a recurrence relation.

+++ |*1;f;1;G82322;AUX| redefined

+++ |*1;f;1;G82322| redefined

−x3 + d x2 − 1

3
d2 x+

1

27
d3

Type: Polynomial Fraction Integer

“I want my old definition of f after all. Undo the undo and restore the envi-
ronment to that immediately after (4).”

)undo 4

“Check that the value of f(3) is restored.”

f(3)

Compiling function g with type Integer -> Polynomial Fraction

Integer

Compiling function g as a recurrence relation.

+++ |*1;g;1;G82322;AUX| redefined

+++ |*1;g;1;G82322| redefined
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Compiling function g with type Integer -> Polynomial Fraction

Integer

Compiling function g as a recurrence relation.

+++ |*1;g;1;G82322;AUX| redefined

+++ |*1;g;1;G82322| redefined

Compiling function f with type Integer -> Polynomial Fraction

Integer

Compiling function f as a recurrence relation.

+++ |*1;f;1;G82322;AUX| redefined

+++ |*1;f;1;G82322| redefined

−x3 +

(
e+

1

3
d

)
x2 +

(
−1

4
e2 − 1

6
d e− 1

9
d2
)

x+
1

8
e3

Type: Polynomial Fraction Integer

After you have gone off on several tangents, then backtracked to previous points
in your conversation using )undo, you might want to save all the “correct”
input commands you issued, disregarding those undone. The system command
)history )write mynew.input writes a clean straight-line program onto the
file mynew.input on your disk.

3.6 Data Structures in Axiom

This chapter is an overview of some of the data structures provided by Axiom.

3.6.1 Lists

The Axiom List type constructor is used to create homogenous lists of finite
size. The notation for lists and the names of the functions that operate over
them are similar to those found in functional languages such as ML.

Lists can be created by placing a comma separated list of values inside square
brackets or if a list with just one element is desired then the function list is
available:

[4]

[4]

Type: List PositiveInteger
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list(4)

[4]

Type: List PositiveInteger

[1,2,3,5,7,11]

[1, 2, 3, 5, 7, 11]

Type: List PositiveInteger

The function append takes two lists as arguments and returns the list consisting
of the second argument appended to the first. A single element can be added
to the front of a list using cons:

append([1,2,3,5],[7,11])

[1, 2, 3, 5, 7, 11]

Type: List PositiveInteger

cons(23,[65,42,19])

[23, 65, 42, 19]

Type: List PositiveInteger

Lists are accessed sequentially so if Axiom is asked for the value of the twentieth
element in the list it will move from the start of the list over nineteen elements
before it reaches the desired element. Each element of a list is stored as a node
consisting of the value of the element and a pointer to the rest of the list. As a
result the two main operations on a list are called first and rest. Both of these
functions take a second optional argument which specifies the length of the first
part of the list:

first([1,5,6,2,3])

1

Type: PositiveInteger
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first([1,5,6,2,3],2)

[1, 5]

Type: List PositiveInteger

rest([1,5,6,2,3])

[5, 6, 2, 3]

Type: List PositiveInteger

rest([1,5,6,2,3],2)

[6, 2, 3]

Type: List PositiveInteger

Other functions are empty? which tests to see if a list contains no elements,
member? which tests to see if the first argument is a member of the second,
reverse which reverses the order of the list, sort which sorts a list, and re-
moveDuplicates which removes any duplicates. The length of a list can be
obtained using the “#” operator.

empty?([7,2,-1,2])

false

Type: Boolean

member?(-1,[7,2,-1,2])

true

Type: Boolean

reverse([7,2,-1,2])

[2,−1, 2, 7]



3.6. DATA STRUCTURES IN AXIOM 57

Type: List Integer

sort([7,2,-1,2])

[−1, 2, 2, 7]

Type: List Integer

removeDuplicates([1,5,3,5,1,1,2])

[1, 5, 3, 2]

Type: List PositiveInteger

#[7,2,-1,2]

4

Type: PositiveInteger

Lists in Axiom are mutable and so their contents (the elements and the links)
can be modified in place. Functions that operate over lists in this way have
names ending in the symbol “!”. For example, concat! takes two lists as
arguments and appends the second argument to the first (except when the first
argument is an empty list) and setrest! changes the link emanating from the
first argument to point to the second argument:

u := [9,2,4,7]

[9, 2, 4, 7]

Type: List PositiveInteger

concat!(u,[1,5,42]); u

[9, 2, 4, 7, 1, 5, 42]

Type: List PositiveInteger
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endOfu := rest(u,4)

[1, 5, 42]

Type: List PositiveInteger

partOfu := rest(u,2)

[4, 7, 1, 5, 42]

Type: List PositiveInteger

setrest!(endOfu,partOfu); u

[
9, 2, 4, 7, 1

]
Type: List PositiveInteger

From this it can be seen that the lists returned by first and rest are pointers
to the original list and not a copy. Thus great care must be taken when dealing
with lists in Axiom.

Although the nth element of the list l can be obtained by applying the first
function to n− 1 applications of rest to l, Axiom provides a more useful access
method in the form of the “.” operator:

u.3

4

Type: PositiveInteger

u.5

1

Type: PositiveInteger

u.6

4
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Type: PositiveInteger

first rest rest u -- Same as u.3

4

Type: PositiveInteger

u.first

9

Type: PositiveInteger

u(3)

4

Type: PositiveInteger

The operation u.i is referred to as indexing into u or elting into u. The latter
term comes from the elt function which is used to extract elements (the first
element of the list is at index 1).

elt(u,4)

7

Type: PositiveInteger

If a list has no cycles then any attempt to access an element beyond the end
of the list will generate an error. However, in the example above there was a
cycle starting at the third element so the access to the sixth element wrapped
around to give the third element. Since lists are mutable it is possible to modify
elements directly:

u.3 := 42; u

[
9, 2, 42, 7, 1

]
Type: List PositiveInteger
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Other list operations are:

L := [9,3,4,7]; #L

4

Type: PositiveInteger

last(L)

7

Type: PositiveInteger

L.last

7

Type: PositiveInteger

L.(#L - 1)

4

Type: PositiveInteger

Note that using the “#” operator on a list with cycles causes Axiom to enter
an infinite loop.

Note that any operation on a list L that returns a list LL
′
will, in general, be

such that any changes to LL
′
will have the side-effect of altering L. For example:

m := rest(L,2)

[4, 7]

Type: List PositiveInteger

m.1 := 20; L

[9, 3, 20, 7]
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Type: List PositiveInteger

n := L

[9, 3, 20, 7]

Type: List PositiveInteger

n.2 := 99; L

[9, 99, 20, 7]

Type: List PositiveInteger

n

[9, 99, 20, 7]

Type: List PositiveInteger

Thus the only safe way of copying lists is to copy each element from one to
another and not use the assignment operator:

p := [i for i in n] -- Same as ‘p := copy(n)’

[9, 99, 20, 7]

Type: List PositiveInteger

p.2 := 5; p

[9, 5, 20, 7]

Type: List PositiveInteger

n

[9, 99, 20, 7]

Type: List PositiveInteger
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In the previous example a new way of constructing lists was given. This is a
powerful method which gives the reader more information about the contents
of the list than before and which is extremely flexible. The example

[i for i in 1..10]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Type: List PositiveInteger

should be read as

“Using the expression i, generate each element of the list by iterating the
symbol i over the range of integers [1,10]”

To generate the list of the squares of the first ten elements we just use:

[i**2 for i in 1..10]

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Type: List PositiveInteger

For more complex lists we can apply a condition to the elements that are to be
placed into the list to obtain a list of even numbers between 0 and 11:

[i for i in 1..10 | even?(i)]

[2, 4, 6, 8, 10]

Type: List PositiveInteger

This example should be read as:

“Using the expression i, generate each element of the list by iterating the
symbol i over the range of integers [1,10] such that i is even”

The following achieves the same result:

[i for i in 2..10 by 2]

[2, 4, 6, 8, 10]

Type: List PositiveInteger
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3.6.2 Segmented Lists

A segmented list is one in which some of the elements are ranges of values. The
expand function converts lists of this type into ordinary lists:

[1..10]

[1..10]

Type: List Segment PositiveInteger

[1..3,5,6,8..10]

[1..3, 5..5, 6..6, 8..10]

Type: List Segment PositiveInteger

expand(%)

[1, 2, 3, 5, 6, 8, 9, 10]

Type: List Integer

If the upper bound of a segment is omitted then a different type of segmented
list is obtained and expanding it will produce a stream (which will be considered
in the next section):

[1..]

[1..]

Type: List UniversalSegment PositiveInteger

expand(%)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .]

Type: Stream Integer
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3.6.3 Streams

Streams are infinite lists which have the ability to calculate the next element
should it be required. For example, a stream of positive integers and a list of
prime numbers can be generated by:

[i for i in 1..]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .]

Type: Stream PositiveInteger

[i for i in 1.. | prime?(i)]

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . .]

Type: Stream PositiveInteger

In each case the first few elements of the stream are calculated for display
purposes but the rest of the stream remains unevaluated. The value of items
in a stream are only calculated when they are needed which gives rise to their
alternative name of “lazy lists”.

Another method of creating streams is to use the generate(f,a) function. This
applies its first argument repeatedly onto its second to produce the stream
[a, f(a), f(f(a)), f(f(f(a))) . . .]. Given that the function nextPrime returns
the lowest prime number greater than its argument we can generate a stream
of primes as follows:

generate(nextPrime,2)$Stream Integer

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . .]

Type: Stream Integer

As a longer example a stream of Fibonacci numbers will be computed. The
Fibonacci numbers start at 1 and each following number is the addition of the
two numbers that precede it so the Fibonacci sequence is:

1, 1, 2, 3, 5, 8, . . .

.

Since the generation of any Fibonacci number only relies on knowing the previ-
ous two numbers we can look at the series through a window of two elements.
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To create the series the window is placed at the start over the values [1, 1] and
their sum obtained. The window is now shifted to the right by one position and
the sum placed into the empty slot of the window; the process is then repeated.
To implement this we require a function that takes a list of two elements (the
current view of the window), adds them, and outputs the new window. The
result is the function [a, b] -> [b, a+ b]:

win : List Integer -> List Integer

Type: Void

win(x) == [x.2, x.1 + x.2]

Type: Void

win([1,1])

[1, 2]

Type: List Integer

win(%)

[2, 3]

Type: List Integer

Thus it can be seen that by repeatedly applying win to the results of the
previous invocation each element of the series is obtained. Clearly win is an
ideal function to construct streams using the generate function:

fibs := [generate(win,[1,1])]

[[1, 1], [1, 2], [2, 3], [3, 5], [5, 8], [8, 13], [13, 21], [21, 34], [34, 55], [55, 89], . . .]

Type: Stream List Integer

This isn’t quite what is wanted – we need to extract the first element of each
list and place that in our series:
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fibs := [i.1 for i in [generate(win,[1,1])] ]

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .]

Type: Stream Integer

Obtaining the 200th Fibonacci number is trivial:

fibs.200

280571172992510140037611932413038677189525

Type: PositiveInteger

One other function of interest is complete which expands a finite stream derived
from an infinite one (and thus was still stored as an infinite stream) to form a
finite stream.

3.6.4 Arrays, Vectors, Strings, and Bits

The simplest array data structure is the one-dimensional array which can be
obtained by applying the oneDimensionalArray function to a list:

oneDimensionalArray([7,2,5,4,1,9])

[7, 2, 5, 4, 1, 9]

Type: OneDimensionalArray PositiveInteger

One-dimensional array are homogenous (all elements must have the same type)
and mutable (elements can be changed) like lists but unlike lists they are con-
stant in size and have uniform access times (it is just as quick to read the last
element of a one-dimensional array as it is to read the first; this is not true for
lists).

Since these arrays are mutable all the warnings that apply to lists apply to
arrays. That is, it is possible to modify an element in a copy of an array and
change the original:

x := oneDimensionalArray([7,2,5,4,1,9])

[7, 2, 5, 4, 1, 9]

Type: OneDimensionalArray PositiveInteger
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y := x

[7, 2, 5, 4, 1, 9]

Type: OneDimensionalArray PositiveInteger

y.3 := 20 ; x

[7, 2, 20, 4, 1, 9]

Type: OneDimensionalArray PositiveInteger

Note that because these arrays are of fixed size the concat! function cannot be
applied to them without generating an error. If arrays of this type are required
use the FlexibleArray constructor.

One-dimensional arrays can be created using new which specifies the size of the
array and the initial value for each of the elements. Other operations that can
be applied to one-dimensional arrays are map! which applies a mapping onto
each element, swap! which swaps two elements and copyInto!(a,b,c) which
copies the array b onto a starting at position c.

a : ARRAY1 PositiveInteger := new(10,3)

[3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

Type: OneDimensionalArray PositiveInteger

(note that ARRAY1 is an abbreviation for the type OneDimensionalArray.)
Other types based on one-dimensional arrays are Vector, String, and Bits.

map!(i +-> i+1,a); a

[4, 4, 4, 4, 4, 4, 4, 4, 4, 4]

Type: OneDimensionalArray PositiveInteger

b := oneDimensionalArray([2,3,4,5,6])

[2, 3, 4, 5, 6]

Type: OneDimensionalArray PositiveInteger
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swap!(b,2,3); b

[2, 4, 3, 5, 6]

Type: OneDimensionalArray PositiveInteger

copyInto!(a,b,3)

[4, 4, 2, 4, 3, 5, 6, 4, 4, 4]

Type: OneDimensionalArray PositiveInteger

a

[4, 4, 2, 4, 3, 5, 6, 4, 4, 4]

Type: OneDimensionalArray PositiveInteger

vector([1/2,1/3,1/14])

[
1

2
,
1

3
,
1

14

]
Type: Vector Fraction Integer

"Hello, World"

"Hello, World"

Type: String

bits(8,true)

"11111111"

Type: Bits

A vector is similar to a one-dimensional array except that if its components
belong to a ring then arithmetic operations are provided.
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3.6.5 Flexible Arrays

Flexible arrays are designed to provide the efficiency of one-dimensional arrays
while retaining the flexibility of lists. They are implemented by allocating a
fixed block of storage for the array. If the array needs to be expanded then a
larger block of storage is allocated and the contents of the old block are copied
into the new one.

There are several operations that can be applied to this type, most of which
modify the array in place. As a result these functions all have names ending
in “!”. The physicalLength returns the actual length of the array as stored
in memory while the physicalLength! allows this value to be changed by the
user.

f : FARRAY INT := new(6,1)

[1, 1, 1, 1, 1, 1]

Type: FlexibleArray Integer

f.1:=4; f.2:=3 ; f.3:=8 ; f.5:=2 ; f

[4, 3, 8, 1, 2, 1]

Type: FlexibleArray Integer

insert!(42,f,3); f

[4, 3, 42, 8, 1, 2, 1]

Type: FlexibleArray Integer

insert!(28,f,8); f

[4, 3, 42, 8, 1, 2, 1, 28]

Type: FlexibleArray Integer

removeDuplicates!(f)

[4, 3, 42, 8, 1, 2, 28]
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Type: FlexibleArray Integer

delete!(f,5)

[4, 3, 42, 8, 2, 28]

Type: FlexibleArray Integer

g:=f(3..5)

[42, 8, 2]

Type: FlexibleArray Integer

g.2:=7; f

[4, 3, 42, 8, 2, 28]

Type: FlexibleArray Integer

insert!(g,f,1)

[42, 7, 2, 4, 3, 42, 8, 2, 28]

Type: FlexibleArray Integer

physicalLength(f)

10

Type: PositiveInteger

physicalLength!(f,20)

[42, 7, 2, 4, 3, 42, 8, 2, 28]

Type: FlexibleArray Integer
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merge!(sort!(f),sort!(g))

[2, 2, 2, 3, 4, 7, 7, 8, 28, 42, 42, 42]

Type: FlexibleArray Integer

shrinkable(false)$FlexibleArray(Integer)

true

Type: Boolean

There are several things to point out concerning these examples. First, although
flexible arrays are mutable, making copies of these arrays creates separate en-
tities. This can be seen by the fact that the modification of element g.2 above
did not alter f. Second, the merge! function can take an extra argument be-
fore the two arrays are merged. The argument is a comparison function and
defaults to “<=” if omitted. Lastly, shrinkable tells the system whether or not
to let flexible arrays contract when elements are deleted from them. An explicit
package reference must be given as in the example above.

3.7 Functions, Choices, and Loops

By now the reader should be able to construct simple one-line expressions involv-
ing variables and different data structures. This section builds on this knowledge
and shows how to use iteration, make choices, and build functions in Axiom.
At the moment it is assumed that the reader has a rough idea of how types are
specified and constructed so that they can follow the examples given.

From this point on most examples will be taken from input files.

3.7.1 Reading Code from a File

Input files contain code that will be fed to the command prompt. The primary
different between the command line and an input file is that indentation matters.
In an input file you can specify “piles” of code by using indentation.

The names of all input files in Axiom should end in “.input” otherwise Axiom
will refuse to read them.

If an input file is named foo.input you can feed the contents of the file to the
command prompt (as though you typed them) by writing: )read foo.input.

It is good practice to start each input file with the )clear all command so that
all functions and variables in the current environment are erased.
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3.7.2 Blocks

The Axiom constructs that provide looping, choices, and user-defined functions
all rely on the notion of blocks. A block is a sequence of expressions which are
evaluated in the order that they appear except when it is modified by control
expressions such as loops. To leave a block prematurely use an expression of the
form: BoolExpr => Expr where BoolExpr is any Axiom expression that has type
Boolean. The value and type of Expr determines the value and type returned
by the block.

If blocks are entered at the keyboard (as opposed to reading them from a text
file) then there is only one way of creating them. The syntax is:

(expression1; expression2; . . . ; expressionN)

In an input file a block can be constructed as above or by placing all the state-
ments at the same indentation level. When indentation is used to indicate
program structure the block is called a pile. As an example of a simple block a
list of three integers can be constructed using parentheses:

( a:=4; b:=1; c:=9; L:=[a,b,c])

[4, 1, 9]

Type: List PositiveInteger

Doing the same thing using piles in an input file you could type:

L :=

a:=4

b:=1

c:=9

[a,b,c]

[4, 1, 9]

Type: List PositiveInteger

Since blocks have a type and a value they can be used as arguments to functions
or as part of other expressions. It should be pointed out that the following
example is not recommended practice but helps to illustrate the idea of blocks
and their ability to return values:

sqrt(4.0 +

a:=3.0

b:=1.0

c:=a + b

c

)
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2.8284271247 461900976

Type: Float

Note that indentation is extremely important. If the example above had the
pile starting at “a:=” moved left by two spaces so that the “a” was under the
“(” of the first line then the interpreter would signal an error. Furthermore if
the closing parenthesis “)” is moved up to give

sqrt(4.0 +

a:=3.0

b:=1.0

c:=a + b

c)

Line 1: sqrt(4.0 +

....A

Error A: Missing mate.

Line 2: a:=3.0

Line 3: b:=1.0

Line 4: c:=a + b

Line 5: c)

.........AB

Error A: (from A up to B) Ignored.

Error B: Improper syntax.

Error B: syntax error at top level

Error B: Possibly missing a )

5 error(s) parsing

then the parser will generate errors. If the parenthesis is shifted right by several
spaces so that it is in line with the “c” thus:

sqrt(4.0 +

a:=3.0

b:=1.0

c:=a + b

c

)

Line 1: sqrt(4.0 +

....A

Error A: Missing mate.

Line 2: a:=3.0

Line 3: b:=1.0

Line 4: c:=a + b

Line 5: c

Line 6: )

.........A
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Error A: (from A up to A) Ignored.

Error A: Improper syntax.

Error A: syntax error at top level

Error A: Possibly missing a )

5 error(s) parsing

a similar error will be raised. Finally, the “)” must be indented by at least one
space relative to the sqrt thus:

sqrt(4.0 +

a:=3.0

b:=1.0

c:=a + b

c

)

2.8284271247 461900976

Type: Float

or an error will be generated.

It can be seen that great care needs to be taken when constructing input files
consisting of piles of expressions. It would seem prudent to add one pile at
a time and check if it is acceptable before adding more, particularly if piles
are nested. However, it should be pointed out that the use of piles as values
for functions is not very readable and so perhaps the delicate nature of their
interpretation should deter programmers from using them in these situations.
Using piles should really be restricted to constructing functions, etc. and a
small amount of rewriting can remove the need to use them as arguments. For
example, the previous block could easily be implemented as:

a:=3.0

b:=1.0

c:=a + b

sqrt(4.0 + c)

the )read yields:

a:=3.0

3.0

Type: Float

b:=1.0
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1.0

Type: Float

c:=a + b

4.0

Type: Float

sqrt(4.0 + c)

2.8284271247 461900976

Type: Float

which achieves the same result and is easier to understand. Note that this is
still a pile but it is not as fragile as the previous version.

3.7.3 Functions

Definitions of functions in Axiom are quite simple providing two things are
observed. First, the type of the function must either be completely specified
or completely unspecified. Second, the body of the function is assigned to the
function identifier using the delayed assignment operator “==”.

To specify the type of something the “:” operator is used. Thus to define a
variable x to be of type Fraction Integer we enter:

x : Fraction Integer

Type: Void

For functions the method is the same except that the arguments are placed in
parentheses and the return type is placed after the symbol “->”. Some examples
of function definitions taking zero, one, two, or three arguments and returning
a list of integers are:

f : () -> List Integer

Type: Void
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g : (Integer) -> List Integer

Type: Void

h : (Integer, Integer) -> List Integer

Type: Void

k : (Integer, Integer, Integer) -> List Integer

Type: Void

Now the actual function definitions might be:

f() == [ ]

Type: Void

g(a) == [a]

Type: Void

h(a,b) == [a,b]

Type: Void

k(a,b,c) == [a,b,c]

Type: Void

with some invocations of these functions:

f()
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Compiling function f with type () -> List Integer

[ ]

Type: List Integer

g(4)

Compiling function g with type Integer -> List Integer

[4]

Type: List Integer

h(2,9)

Compiling function h with type (Integer,Integer) -> List Integer

[2, 9]

Type: List Integer

k(-3,42,100)

Compiling function k with type (Integer,Integer,Integer) -> List

Integer

[−3, 42, 100]

Type: List Integer

The value returned by a function is either the value of the last expression eval-
uated or the result of a return statement. For example, the following are
effectively the same:

p : Integer -> Integer

Type: Void
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p x == (a:=1; b:=2; a+b+x)

Type: Void

p x == (a:=1; b:=2; return(a+b+x))

Type: Void

Note that a block (pile) is assigned to the function identifier p and thus all
the rules about blocks apply to function definitions. Also there was only one
argument so the parenthese are not needed.

This is basically all that one needs to know about defining functions in Axiom
– first specify the complete type and then assign a block to the function name.
The rest of this section is concerned with defining more complex blocks than
those in this section and as a result function definitions will crop up continually
particularly since they are a good way of testing examples. Since the block
structure is more complex we will use the pile notation and thus have to use
input files to read the piles.

3.7.4 Choices

Apart from the “=>” operator that allows a block to exit before the end Axiom
provides the standard if-then-else construct. The general syntax is:

if BooleanExpr then Expr1 else Expr2

where “else Expr2” can be omitted. If the expression BooleanExpr evaluates to
true then Expr1 is executed otherwise Expr2 (if present) will be executed. An
example of piles and if-then-else is: (read from an input file)

h := 2.0

if h > 3.1 then

1.0

else

z:= cos(h)

max(x,0.5)

the )read yields:

h := 2.0

2.0
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Type: Float

if h > 3.1 then

1.0

else

z:= cos(h)

max(x,0.5)

x

Type: Polynomial Float

Note the indentation – the “else” must be indented relative to the “if” otherwise
it will generate an error (Axiom will think there are two piles, the second one
beginning with “else”).

Any expression that has type Boolean can be used as BooleanExpr and the
most common will be those involving the relational operators “>”, “<”, and
“=”. Usually the type of an expression involving the equality operator “=” will
be Boolean but in those situations when it isn’t you may need to use the “@”
operator to ensure that it is.

3.7.5 Loops

Loops in Axiom are regarded as expressions containing another expression called
the loop body. The loop body is executed zero or more times depending on the
kind of loop. Loops can be nested to any depth.

The repeat loop

The simplest kind of loop provided by Axiom is the repeat loop. The general
syntax of this is:

repeat loopBody

This will cause Axiom to execute loopBody repeatedly until either a break
or return statement is encountered. If loopBody contains neither of these
statements then it will loop forever. The following piece of code will display the
numbers from 1 to 4:

i:=1

repeat

if i > 4 then break

output(i)

i:=i+1
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the )read yields:

i:=1

1

Type: PositiveInteger

repeat

if i > 4 then break

output(i)

i:=i+1

1

2

3

4

Type: Void

It was mentioned that loops will only be left when either a break or return
statement is encountered so why can’t one use the “=>” operator? The reason
is that the “=>” operator tells Axiom to leave the current block whereas break
leaves the current loop. The return statement leaves the current function.

To skip the rest of a loop body and continue the next iteration of the loop use
the iterate statement (the -- starts a comment in Axiom)

i := 0

repeat

i := i + 1

if i > 6 then break

-- Return to start if i is odd

if odd?(i) then iterate

output(i)

the )read yields:

i := 0

0

Type: NonNegativeInteger

repeat

i := i + 1
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if i > 6 then break

-- Return to start if i is odd

if odd?(i) then iterate

output(i)

2

4

6

Type: Void

The while loop

The while statement extends the basic repeat loop to place the control of
leaving the loop at the start rather than have it buried in the middle. Since
the body of the loop is still part of a repeat loop, break and “=>” work in the
same way as in the previous section. The general syntax of a while loop is:

while BoolExpr repeat loopBody

As before, BoolExpr must be an expression of type Boolean. Before the body
of the loop is executed BoolExpr is tested. If it evaluates to true then the
loop body is entered otherwise the loop is terminated. Multiple conditions can
be applied using the logical operators such as and or by using several while
statements before the repeat.

By using and in the test we get

x:=1

y:=1

while x < 4 and y < 10 repeat

output [x,y]

x := x + 1

y := y + 2

the )read yields:

x:=1

1

Type: PositiveInteger

y:=1

1
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Type: PositiveInteger

while x < 4 and y < 10 repeat

output [x,y]

x := x + 1

y := y + 2

[1,1]

[2,3]

[3,5]

Type: Void

We could use two parallel whiles

x:=1

y:=1

while x < 4 while y < 10 repeat

output [x,y]

x := x + 1

y := y + 2

the )read yields:

x:=1

1

Type: PositiveInteger

y:=1

1

Type: PositiveInteger

while x < 4 while y < 10 repeat

output [x,y]

x := x + 1

y := y + 2

[1,1]

[2,3]

[3,5]
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Type: Void

Note that the last example using two while statements is not a nested loop but
the following one is:

x:=1

y:=1

while x < 4 repeat

while y < 10 repeat

output [x,y]

x := x + 1

y := y + 2

the )read yields:
1

Type: PositiveInteger

y:=1

1

Type: PositiveInteger

while x < 4 repeat

while y < 10 repeat

output [x,y]

x := x + 1

y := y + 2

[1,1]

[2,3]

[3,5]

[4,7]

[5,9]

Type: Void

Suppose that, given a matrix of arbitrary size, we find the position and value of
the first negative element by examining the matrix in row-major order:

m := matrix [ [ 21, 37, 53, 14 ],_

[ 8, 22,-24, 16 ],_

[ 2, 10, 15, 14 ],_

[ 26, 33, 55,-13 ] ]
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lastrow := nrows(m)

lastcol := ncols(m)

r := 1

while r <= lastrow repeat

c := 1 -- Index of first column

while c <= lastcol repeat

if elt(m,r,c) < 0 then

output [r,c,elt(m,r,c)]

r := lastrow

break -- Don’t look any further

c := c + 1

r := r + 1

the )read yields:

m := matrix [ [ 21, 37, 53, 14 ],_

[ 8, 22,-24, 16 ],_

[ 2, 10, 15, 14 ],_

[ 26, 33, 55,-13 ] ]
21 37 53 14
8 22 −24 16
2 10 15 14
26 33 55 −13


Type: Matrix Integer

lastrow := nrows(m)

4

Type: PositiveInteger

lastcol := ncols(m)

4

Type: PositiveInteger

r := 1

1

Type: PositiveInteger
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while r <= lastrow repeat

c := 1 -- Index of first column

while c <= lastcol repeat

if elt(m,r,c) < 0 then

output [r,c,elt(m,r,c)]

r := lastrow

break -- Don’t look any further

c := c + 1

r := r + 1

[2,3,- 24]

Type: Void

The for loop

The last loop statement of interest is the for loop. There are two ways of
creating a for loop. The first way uses either a list or a segment:

for var in seg repeat loopBody
for var in list repeat loopBody

where var is an index variable which is iterated over the values in seg or list.
The value seg is a segment such as 1 . . . 10 or 1 . . . and list is a list of some type.
For example:

We can iterate the block thus:

for i in 1..10 repeat

~prime?(i) => iterate

output(i)

the )read yields:

for i in 1..10 repeat

~prime?(i) => iterate

output(i)

2

3

5

7

Type: Void

We can iterate over a list
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for w in ["This", "is", "your", "life!"] repeat

output(w)

the )read yields:

for w in ["This", "is", "your", "life!"] repeat

output(w)

This

is

your

life!

Type: Void

The second form of the for loop syntax includes a “such that” clause which
must be of type Boolean:

for var in seg | BoolExpr repeat loopBody
for var in list | BoolExpr repeat loopBody

We can iterate over a segment

for i in 1..10 | prime?(i) repeat

output(i)

the )read yields:

for i in 1..10 | prime?(i) repeat

output(i)

2

3

5

7

Type: Void

or over a list

for i in [1,2,3,4,5,6,7,8,9,10] | prime?(i) repeat

output(i)

the )read yields:

for i in [1,2,3,4,5,6,7,8,9,10] | prime?(i) repeat

output(i)
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2

3

5

7

Type: Void

You can also use a while clause:

for i in 1.. while i < 7 repeat

if even?(i) then output(i)

the )read yields:

for i in 1.. while i < 7 repeat

if even?(i) then output(i)

2

4

6

Type: Void

Using the “such that” clause makes this appear simpler:

for i in 1.. | even?(i) while i < 7 repeat

output(i)

the )read yields:

for i in 1.. | even?(i) while i < 7 repeat

output(i)

2

4

6

Type: Void

You can use multiple for clauses to iterate over several sequences in parallel:

for a in 1..4 for b in 5..8 repeat

output [a,b]

the )read yields:
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for a in 1..4 for b in 5..8 repeat

output [a,b]

[1,5]

[2,6]

[3,7]

[4,8]

Type: Void

As a general point it should be noted that any symbols referred to in the “such
that” and while clauses must be pre-defined. This either means that the sym-
bols must have been defined in an outer level (e.g. in an enclosing loop) or in a
for clause appearing before the “such that” or while. For example:

for a in 1..4 repeat

for b in 7..9 | prime?(a+b) repeat

output [a,b,a+b]

the )read yields:

for a in 1..4 repeat

for b in 7..9 | prime?(a+b) repeat

output [a,b,a+b]

[2,9,11]

[3,8,11]

[4,7,11]

[4,9,13]

Type: Void

Finally, the for statement has a by clause to specify the step size. This makes
it possible to iterate over the segment in reverse order:

for a in 1..4 for b in 8..5 by -1 repeat

output [a,b]

the )read yields:

for a in 1..4 for b in 8..5 by -1 repeat

output [a,b]

[1,8]

[2,7]

[3,6]

[4,5]
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Type: Void

Note that without the “by -1” the segment 8..5 is empty so there is nothing to
iterate over and the loop exits immediately.

3.8 Numbers

Axiom distinguishes very carefully between different kinds of numbers, how they
are represented and what their properties are. Here are a sampling of some of
these kinds of numbers and some things you can do with them.

Integer arithmetic is always exact.

11**13 * 13**11 * 17**7 - 19**5 * 23**3

25387751112538918594666224484237298

Type: PositiveInteger

Integers can be represented in factored form.

factor 643238070748569023720594412551704344145570763243

1113 1311 177 195 233 292

Type: Factored Integer

Results stay factored when you do arithmetic. Note that the 12 is automatically
factored for you.

% * 12

22 3 1113 1311 177 195 233 292

Type: Factored Integer

Integers can also be displayed to bases other than 10. This is an integer in base
11.

radix(25937424601,11)

10000000000
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Type: RadixExpansion 11

Roman numerals are also available for those special occasions.

roman(1992)

MCMXCII

Type: RomanNumeral

Rational number arithmetic is also exact.

r := 10 + 9/2 + 8/3 + 7/4 + 6/5 + 5/6 + 4/7 + 3/8 + 2/9

55739

2520

Type: Fraction Integer

To factor fractions, you have to map factor onto the numerator and denomi-
nator.

map(factor,r)

139 401

23 32 5 7

Type: Fraction Factored Integer

SingleInteger refers to machine word-length integers. In English, this expres-
sion means “11 as a small integer”.

11@SingleInteger

11

Type: SingleInteger

Machine double-precision floating-point numbers are also available for numeric
and graphical applications.

123.21@DoubleFloat

123.21000000000001
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Type: DoubleFloat

The normal floating-point type in Axiom, Float, is a software implementation
of floating-point numbers in which the exponent and the mantissa may have any
number of digits. The types Complex(Float) and Complex(DoubleFloat) are
the corresponding software implementations of complex floating-point numbers.

This is a floating-point approximation to about twenty digits. The “::” is used
here to change from one kind of object (here, a rational number) to another (a
floating-point number).

r :: Float

22.118650793650793651

Type: Float

Use digits to change the number of digits in the representation. This operation
returns the previous value so you can reset it later.

digits(22)

20

Type: PositiveInteger

To 22 digits of precision, the number eπ
√
163.0 appears to be an integer.

exp(%pi * sqrt 163.0)

262537412640768744.0

Type: Float

Increase the precision to forty digits and try again.

digits(40); exp(%pi * sqrt 163.0)

26253741 2640768743.9999999999 9925007259 76

Type: Float

Here are complex numbers with rational numbers as real and imaginary parts.
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(2/3 + %i)**3

−46

27
+

1

3
i

Type: Complex Fraction Integer

The standard operations on complex numbers are available.

conjugate %

−46

27
− 1

3
i

Type: Complex Fraction Integer

You can factor complex integers.

factor(89 - 23 * %i)

−(1 + i) (2 + i)
2
(3 + 2 i)

2

Type: Factored Complex Integer

Complex numbers with floating point parts are also available.

exp(%pi/4.0 * %i)

0.7071067811 8654752440 0844362104 8490392849+

0.7071067811 8654752440 0844362104 8490392848 i

Type: Complex Float

The real and imaginary parts can be symbolic.

complex(u,v)

u+ v i

Type: Complex Polynomial Integer

Of course, you can do complex arithmetic with these also.

% ** 2
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−v2 + u2 + 2 u v i

Type: Complex Polynomial Integer

Every rational number has an exact representation as a repeating decimal ex-
pansion

decimal(1/352)

0.0028409

Type: DecimalExpansion

A rational number can also be expressed as a continued fraction.

continuedFraction(6543/210)

31 +
1|
|6

+
1|
|2

+
1|
|1

+
1|
|3

Type: ContinuedFraction Integer

Also, partial fractions can be used and can be displayed in a compact format

partialFraction(1,factorial(10))

159

28
− 23

34
− 12

52
+

1

7

Type: PartialFraction Integer

or expanded format.

padicFraction(%)

1

2
+

1

24
+

1

25
+

1

26
+

1

27
+

1

28
− 2

32
− 1

33
− 2

34
− 2

5
− 2

52
+

1

7

Type: PartialFraction Integer

Like integers, bases (radices) other than ten can be used for rational numbers.
Here we use base eight.

radix(4/7, 8)
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0.4

Type: RadixExpansion 8

Of course, there are complex versions of these as well. Axiom decides to make
the result a complex rational number.

% + 2/3*%i

4

7
+

2

3
i

Type: Complex Fraction Integer

You can also use Axiom to manipulate fractional powers.

(5 + sqrt 63 + sqrt 847)**(1/3)

3

√
14
√
7 + 5

Type: AlgebraicNumber

You can also compute with integers modulo a prime.

x : PrimeField 7 := 5

5

Type: PrimeField 7

Arithmetic is then done modulo 7.

x**3

6

Type: PrimeField 7

Since 7 is prime, you can invert nonzero values.

1/x

3
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Type: PrimeField 7

You can also compute modulo an integer that is not a prime.

y : IntegerMod 6 := 5

5

Type: IntegerMod 6

All of the usual arithmetic operations are available.

y**3

5

Type: IntegerMod 6

Inversion is not available if the modulus is not a prime number.

1/y

There are 12 exposed and 13 unexposed library operations named /

having 2 argument(s) but none was determined to be applicable.

Use HyperDoc Browse, or issue

)display op /

to learn more about the available operations. Perhaps

package-calling the operation or using coercions on the arguments

will allow you to apply the operation.

Cannot find a definition or applicable library operation named /

with argument type(s)

PositiveInteger

IntegerMod 6

Perhaps you should use "@" to indicate the required return type,

or "$" to specify which version of the function you need.

This defines a to be an algebraic number, that is, a root of a polynomial equa-
tion.

a := rootOf(a**5 + a**3 + a**2 + 3,a)

a



96 CHAPTER 3. STARTING AXIOM

Type: Expression Integer

Computations with a are reduced according to the polynomial equation.

(a + 1)**10

−85 a4 − 264 a3 − 378 a2 − 458 a− 287

Type: Expression Integer

Define b to be an algebraic number involving a.

b := rootOf(b**4 + a,b)

b

Type: Expression Integer

Do some arithmetic.

2/(b - 1)

2

b− 1

Type: Expression Integer

To expand and simplify this, call ratDenom to rationalize the denominator.

ratDenom(%)(
a4 − a3 + 2 a2 − a+ 1

)
b3 +

(
a4 − a3 + 2 a2 − a+ 1

)
b2+(

a4 − a3 + 2 a2 − a+ 1
)
b+ a4 − a3 + 2 a2 − a+ 1

Type: Expression Integer

If we do this, we should get b.

2/%+1 (a4 − a3 + 2 a2 − a+ 1
)
b3 +

(
a4 − a3 + 2 a2 − a+ 1

)
b2+(

a4 − a3 + 2 a2 − a+ 1
)
b+ a4 − a3 + 2 a2 − a+ 3


(a4 − a3 + 2 a2 − a+ 1

)
b3 +

(
a4 − a3 + 2 a2 − a+ 1

)
b2+(

a4 − a3 + 2 a2 − a+ 1
)
b+ a4 − a3 + 2 a2 − a+ 1


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Type: Expression Integer

But we need to rationalize the denominator again.

ratDenom(%)

b

Type: Expression Integer

Types Quaternion and Octonion are also available. Multiplication of quater-
nions is non-commutative, as expected.

q:=quatern(1,2,3,4)*quatern(5,6,7,8) -

quatern(5,6,7,8)*quatern(1,2,3,4)

−8 i+ 16 j − 8 k

Type: Quaternion Integer

3.9 Data Structures

Axiom has a large variety of data structures available. Many data structures
are particularly useful for interactive computation and others are useful for
building applications. The data structures of Axiom are organized into category
hierarchies.

A list is the most commonly used data structure in Axiom for holding objects
all of the same type. The name list is short for “linked-list of nodes.” Each
node consists of a value (first) and a link (rest) that points to the next node,
or to a distinguished value denoting the empty list. To get to, say, the third
element, Axiom starts at the front of the list, then traverses across two links to
the third node.

Write a list of elements using square brackets with commas separating the ele-
ments.

u := [1,-7,11]

[1,−7, 11]

Type: List Integer

This is the value at the third node. Alternatively, you can say u.3.
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first rest rest u

11

Type: PositiveInteger

Many operations are defined on lists, such as: empty?, to test that a list has
no elements; cons(x, l), to create a new list with first element x and rest l;
reverse, to create a new list with elements in reverse order; and sort, to arrange
elements in order.

An important point about lists is that they are “mutable”: their constituent
elements and links can be changed “in place.” To do this, use any of the
operations whose names end with the character “!”.

The operation concat!(u, v) replaces the last link of the list u to point to some
other list v. Since u refers to the original list, this change is seen by u.

concat!(u,[9,1,3,-4]); u

[1,−7, 11, 9, 1, 3,−4]

Type: List Integer

A cyclic list is a list with a “cycle”: a link pointing back to an earlier node of
the list. To create a cycle, first get a node somewhere down the list.

lastnode := rest(u,3)

[9, 1, 3,−4]

Type: List Integer

Use setrest! to change the link emanating from that node to point back to an
earlier part of the list.

setrest!(lastnode,rest(u,2)); u[
1,−7, 11, 9

]
Type: List Integer

A stream is a structure that (potentially) has an infinite number of distinct
elements. Think of a stream as an “infinite list” where elements are computed
successively.

Create an infinite stream of factored integers. Only a certain number of initial
elements are computed and displayed.
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[factor(i) for i in 2.. by 2]

[
2, 22, 2 3, 23, 2 5, 22 3, 2 7, 24, 2 32, 22 5, . . .

]
Type: Stream Factored Integer

Axiom represents streams by a collection of already-computed elements together
with a function to compute the next element “on demand.” Asking for the n-th
element causes elements 1 through n to be evaluated.

%.36

23 32

Type: Factored Integer

Streams can also be finite or cyclic. They are implemented by a linked list
structure similar to lists and have many of the same operations. For example,
first and rest are used to access elements and successive nodes of a stream.

A one-dimensional array is another data structure used to hold objects of the
same type. Unlike lists, one-dimensional arrays are inflexible—they are imple-
mented using a fixed block of storage. Their advantage is that they give quick
and equal access time to any element.

A simple way to create a one-dimensional array is to apply the operation oneD-
imensionalArray to a list of elements.

a := oneDimensionalArray [1, -7, 3, 3/2][
1,−7, 3, 3

2

]
Type: OneDimensionalArray Fraction Integer

One-dimensional arrays are also mutable: you can change their constituent
elements “in place.”

a.3 := 11; a [
1,−7, 11, 3

2

]
Type: OneDimensionalArray Fraction Integer

However, one-dimensional arrays are not flexible structures. You cannot de-
structively concat! them together.
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concat!(a,oneDimensionalArray [1,-2])

There are 5 exposed and 0 unexposed library operations named concat!

having 2 argument(s) but none was determined to be applicable.

Use HyperDoc Browse, or issue

)display op concat!

to learn more about the available operations. Perhaps

package-calling the operation or using coercions on the arguments

will allow you to apply the operation.

Cannot find a definition or applicable library operation named

concat! with argument type(s)

OneDimensionalArray Fraction Integer

OneDimensionalArray Integer

Perhaps you should use "@" to indicate the required return type,

or "$" to specify which version of the function you need.

Examples of datatypes similar to OneDimensionalArray are: Vector (vectors
are mathematical structures implemented by one-dimensional arrays), String
(arrays of “characters,” represented by byte vectors), and Bits (represented by
“bit vectors”).

A vector of 32 bits, each representing the Boolean value true.

bits(32,true)

"11111111111111111111111111111111"

Type: Bits

A flexible array is a cross between a list and a one-dimensional array. Like a one-
dimensional array, a flexible array occupies a fixed block of storage. Its block
of storage, however, has room to expand. When it gets full, it grows (a new,
larger block of storage is allocated); when it has too much room, it contracts.

Create a flexible array of three elements.

f := flexibleArray [2, 7, -5]

[2, 7,−5]

Type: FlexibleArray Integer

Insert some elements between the second and third elements.

insert!(flexibleArray [11, -3],f,2)
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[2, 11,−3, 7,−5]

Type: FlexibleArray Integer

Flexible arrays are used to implement “heaps.” A heap is an example of a data
structure called a priority queue, where elements are ordered with respect to
one another. A heap is organized so as to optimize insertion and extraction of
maximum elements. The extract! operation returns the maximum element of
the heap, after destructively removing that element and reorganizing the heap
so that the next maximum element is ready to be delivered.

An easy way to create a heap is to apply the operation heap to a list of values.

h := heap [-4,7,11,3,4,-7]

[11, 4, 7,−4, 3,−7]

Type: Heap Integer

This loop extracts elements one-at-a-time from h until the heap is exhausted,
returning the elements as a list in the order they were extracted.

[extract!(h) while not empty?(h)]

[11, 7, 4, 3,−4,−7]

Type: List Integer

A binary tree is a “tree” with at most two branches per node: it is either empty,
or else is a node consisting of a value, and a left and right subtree (again, binary
trees). Examples of binary tree types are BinarySearchTree, PendantTree,
TournamentTree, and BalancedBinaryTree.

A binary search tree is a binary tree such that, for each node, the value of the
node is greater than all values (if any) in the left subtree, and less than or equal
all values (if any) in the right subtree.

binarySearchTree [5,3,2,9,4,7,11]

[[2, 3, 4], 5, [7, 9, 11]]

Type: BinarySearchTree PositiveInteger

A balanced binary tree is useful for doing modular computations. Given a list
lm of moduli, modTree(a, lm) produces a balanced binary tree with the values
a mod m at its leaves.
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modTree(8,[2,3,5,7])

[0, 2, 3, 1]

Type: List Integer

A set is a collection of elements where duplication and order is irrelevant. Sets
are always finite and have no corresponding structure like streams for infinite
collections.

Create sets using braces “{“ and “}” rather than brackets.

fs := set [1/3,4/5,-1/3,4/5]

{
−1

3
,
1

3
,
4

5

}
Type: Set Fraction Integer

A multiset is a set that keeps track of the number of duplicate values.

For all the primes p between 2 and 1000, find the distribution of p mod 5.

multiset [x rem 5 for x in primes(2,1000)]

{0, 42: 3, 40: 1, 38: 4, 47: 2}

Type: Multiset Integer

A table is conceptually a set of “key–value” pairs and is a generalization of a
multiset. For examples of tables, see AssociationList, HashTable, KeyedAccessFile,
Library, SparseTable, StringTable, and Table. The domain Table(Key,

Entry) provides a general-purpose type for tables with values of type Entry
indexed by keys of type Key.

Compute the above distribution of primes using tables. First, let t denote an
empty table of keys and values, each of type Integer.

t : Table(Integer,Integer) := empty()

table()

Type: Table(Integer,Integer)
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We define a function howMany to return the number of values of a given
modulus k seen so far. It calls search(k, t) which returns the number of values
stored under the key k in table t, or ‘‘failed’’ if no such value is yet stored
in t under k.

In English, this says “Define howMany(k) as follows. First, let n be the value
of search(k, t). Then, if n has the value ”failed”, return the value 1; otherwise
return n+ 1.”

howMany(k) == (n:=search(k,t); n case "failed" => 1; n+1)

Type: Void

Run through the primes to create the table, then print the table. The expression
t.m := howMany(m) updates the value in table t stored under key m.

for p in primes(2,1000) repeat (m:= p rem 5; t.m:= howMany(m)); t

Compiling function howMany with type Integer -> Integer

table (2 = 47, 4 = 38, 1 = 40, 3 = 42, 0 = 1)

Type: Table(Integer,Integer)

A record is an example of an inhomogeneous collection of objects.A record con-
sists of a set of named selectors that can be used to access its components.

Declare that daniel can only be assigned a record with two prescribed fields.

daniel : Record(age : Integer, salary : Float)

Type: Void

Give daniel a value, using square brackets to enclose the values of the fields.

daniel := [28, 32005.12]

[age = 28, salary = 32005.12]

Type: Record(age: Integer,salary: Float)

Give daniel a raise.
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daniel.salary := 35000; daniel

[age = 28, salary = 35000.0]

Type: Record(age: Integer,salary: Float)

A union is a data structure used when objects have multiple types.

Let dog be either an integer or a string value.

dog: Union(licenseNumber: Integer, name: String)

Type: Void

Give dog a name.

dog := "Whisper"

"Whisper"

Type: Union(name: String,...)

All told, there are over forty different data structures in Axiom. Using the
domain constructors you can add your own data structure or extend an existing
one. Choosing the right data structure for your application may be the key to
obtaining good performance.

3.10 Expanding to Higher Dimensions

To get higher dimensional aggregates, you can create one-dimensional aggregates
with elements that are themselves aggregates, for example, lists of lists, one-
dimensional arrays of lists of multisets, and so on. For applications requiring
two-dimensional homogeneous aggregates, you will likely find two-dimensional
arrays and matrices most useful.

The entries in TwoDimensionalArray and Matrix objects are all the same type,
except that those for Matrix must belong to a Ring. You create and access
elements in roughly the same way. Since matrices have an understood alge-
braic structure, certain algebraic operations are available for matrices but not
for arrays. Because of this, we limit our discussion here to Matrix, that can be
regarded as an extension of TwoDimensionalArray. See TwoDimensionalArray
for more information about arrays. There are also Axiom’s linear algebra facil-
ities like, see Matrix, Permanent, SquareMatrix, Vector,

You can create a matrix from a list of lists, where each of the inner lists repre-
sents a row of the matrix.
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m := matrix([ [1,2], [3,4] ])[
1 2
3 4

]
Type: Matrix Integer

The “collections” construct is useful for creating matrices whose entries are
given by formulas.

matrix([ [1/(i + j - x) for i in 1..4] for j in 1..4])


− 1

x−2 − 1
x−3 − 1

x−4 − 1
x−5

− 1
x−3 − 1

x−4 − 1
x−5 − 1

x−6

− 1
x−4 − 1

x−5 − 1
x−6 − 1

x−7

− 1
x−5 − 1

x−6 − 1
x−7 − 1

x−8


Type: Matrix Fraction Polynomial Integer

Let vm denote the three by three Vandermonde matrix.

vm := matrix [ [1,1,1], [x,y,z], [x*x,y*y,z*z] ] 1 1 1
x y z
x2 y2 z2


Type: Matrix Polynomial Integer

Use this syntax to extract an entry in the matrix.

vm(3,3)

z2

Type: Polynomial Integer

You can also pull out a row or a column.

column(vm,2)

[
1, y, y2

]
Type: Vector Polynomial Integer
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You can do arithmetic.

vm * vm  x2 + x+ 1 y2 + y + 1 z2 + z + 1
x2 z + x y + x y2 z + y2 + x z3 + y z + x

x2 z2 + x y2 + x2 y2 z2 + y3 + x2 z4 + y2 z + x2


Type: Matrix Polynomial Integer

You can perform operations such as transpose, trace, and determinant.

factor determinant vm

(y − x) (z − y) (z − x)

Type: Factored Polynomial Integer

3.11 Writing Your Own Functions

Axiom provides you with a very large library of predefined operations and ob-
jects to compute with. You can use the Axiom library of constructors to create
new objects dynamically of quite arbitrary complexity. For example, you can
make lists of matrices of fractions of polynomials with complex floating point
numbers as coefficients. Moreover, the library provides a wealth of operations
that allow you to create and manipulate these objects.

For many applications, you need to interact with the interpreter and write some
Axiom programs to tackle your application. Axiom allows you to write functions
interactively, thereby effectively extending the system library. Here we give a
few simple examples.

We begin by looking at several ways that you can define the “factorial” function
in Axiom. The first way is to give a piece-wise definition of the function. This
method is best for a general recurrence relation since the pieces are gathered
together and compiled into an efficient iterative function. Furthermore, enough
previously computed values are automatically saved so that a subsequent call
to the function can pick up from where it left off.

Define the value of fact at 0.

fact(0) == 1

Type: Void
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Define the value of fact(n) for general n.

fact(n) == n*fact(n-1)

Type: Void

Ask for the value at 50. The resulting function created by Axiom computes the
value by iteration.

fact(50)

Compiling function fact with type Integer -> Integer

Compiling function fact as a recurrence relation.

30414093201713378043612608166064768844377641568960512000000000000

Type: PositiveInteger

A second definition uses an if-then-else and recursion.

fac(n) == if n < 3 then n else n * fac(n - 1)

Type: Void

This function is less efficient than the previous version since each iteration in-
volves a recursive function call.

fac(50)

30414093201713378043612608166064768844377641568960512000000000000

Type: PositiveInteger

A third version directly uses iteration.

fa(n) == (a := 1; for i in 2..n repeat a := a*i; a)

Type: Void

This is the least space-consumptive version.
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fa(50)

Compiling function fac with type Integer -> Integer

30414093201713378043612608166064768844377641568960512000000000000

Type: PositiveInteger

A final version appears to construct a large list and then reduces over it with
multiplication.

f(n) == reduce(*,[i for i in 2..n])

Type: Void

In fact, the resulting computation is optimized into an efficient iteration loop
equivalent to that of the third version.

f(50)

Compiling function f with type

PositiveInteger -> PositiveInteger

30414093201713378043612608166064768844377641568960512000000000000

Type: PositiveInteger

The library version uses an algorithm that is different from the four above
because it highly optimizes the recurrence relation definition of factorial.

factorial(50)

30414093201713378043612608166064768844377641568960512000000000000

Type: PositiveInteger

Remember you are not limited to one-line functions in Axiom. If you place your
function definitions in .input files , you can have multi-line functions that use
indentation for grouping.

Given n elements, diagonalMatrix creates an n by n matrix with those ele-
ments down the diagonal. This function uses a permutation matrix that inter-
changes the ith and jth rows of a matrix by which it is right-multiplied.

This function definition shows a style of definition that can be used in .in-
put files. Indentation is used to create blocks: sequences of expressions that
are evaluated in sequence except as modified by control statements such as
if-then-else and return.
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permMat(n, i, j) ==

m := diagonalMatrix

[(if i = k or j = k then 0 else 1)

for k in 1..n]

m(i,j) := 1

m(j,i) := 1

m

This creates a four by four matrix that interchanges the second and third rows.

p := permMat(4,2,3)

Compiling function permMat with type (PositiveInteger,

PositiveInteger,PositiveInteger) -> Matrix Integer
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Type: Matrix Integer

Create an example matrix to permute.

m := matrix [ [4*i + j for j in 1..4] for i in 0..3]


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16


Type: Matrix Integer

Interchange the second and third rows of m.

permMat(4,2,3) * m


1 2 3 4
9 10 11 12
5 6 7 8
13 14 15 16


Type: Matrix Integer
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A function can also be passed as an argument to another function, which then
applies the function or passes it off to some other function that does. You often
have to declare the type of a function that has functional arguments.

This declares t to be a two-argument function that returns a Float. The first
argument is a function that takes one Float argument and returns a Float.

t : (Float -> Float, Float) -> Float

Type: Void

This is the definition of t.

t(fun, x) == fun(x)**2 + sin(x)**2

Type: Void

We have not defined a cos in the workspace. The one from the Axiom library
will do.

t(cos, 5.2058)

1.0

Type: Float

Here we define our own (user-defined) function.

cosinv(y) == cos(1/y)

Type: Void

Pass this function as an argument to t.

t(cosinv, 5.2058)

1.7392237241 8005164925 4147684772 932520785

Type: Float
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Axiom also has pattern matching capabilities for simplification of expressions
and for defining new functions by rules. For example, suppose that you want to
apply regularly a transformation that groups together products of radicals:

√
a
√
b 7→
√
ab, (∀a)(∀b)

Note that such a transformation is not generally correct. Axiom never uses it
automatically.

Give this rule the name groupSqrt.

groupSqrt := rule(sqrt(a) * sqrt(b) == sqrt(a*b))

%C
√
a
√
b== %C

√
a b

Type: RewriteRule(Integer,Integer,Expression Integer)

Here is a test expression.

a := (sqrt(x) + sqrt(y) + sqrt(z))**4(
(4 z + 4 y + 12 x)

√
y + (4 z + 12 y + 4 x)

√
x
) √

z+

(12 z + 4 y + 4 x)
√
x
√
y + z2 + (6 y + 6 x) z + y2 + 6 x y + x2

Type: Expression Integer

The rule groupSqrt successfully simplifies the expression.

groupSqrt a

(4 z + 4 y + 12 x)
√
y z + (4 z + 12 y + 4 x)

√
x z+

(12 z + 4 y + 4 x)
√
x y + z2 + (6 y + 6 x) z + y2 + 6 x y + x2

Type: Expression Integer

3.12 Polynomials

Polynomials are the commonly used algebraic types in symbolic computation.
Interactive users of Axiom generally only see one type of polynomial they can
use: Polynomial(R). This type represents polynomials in any number of un-
specified variables over a particular coefficient domain R. This type represents
its coefficients sparsely: only terms with non-zero coefficients are represented.
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In building applications, many other kinds of polynomial representations are
useful. Polynomials may have one variable or multiple variables, the variables
can be named or unnamed, the coefficients can be stored sparsely or densely. So-
called “distributed multivariate polynomials” store polynomials as coefficients
paired with vectors of exponents. This type is particularly efficient for use in
algorithms for solving systems of non-linear polynomial equations.

The polynomial constructor most familiar to the interactive user is Polynomial.

(x**2 - x*y**3 +3*y)**2

x2 y6 − 6 x y4 − 2 x3 y3 + 9 y2 + 6 x2 y + x4

Type: Polynomial Integer

If you wish to restrict the variables used, UnivariatePolynomial provides poly-
nomials in one variable.

p: UP(x,INT) := (3*x-1)**2 * (2*x + 8)

18 x3 + 60 x2 − 46 x+ 8

Type: UnivariatePolynomial(x,Integer)

The constructor MultivariatePolynomial, which can be abbreviated as MPOLY,
provides polynomials in one or more specified variables.

m: MPOLY([x,y],INT) := (x**2-x*y**3+3*y)**2

x4 − 2 y3 x3 +
(
y6 + 6 y

)
x2 − 6 y4 x+ 9 y2

Type: MultivariatePolynomial([x,y],Integer)

You can change the way the polynomial appears by modifying the variable
ordering in the explicit list.

m :: MPOLY([y,x],INT)

x2 y6 − 6 x y4 − 2 x3 y3 + 9 y2 + 6 x2 y + x4

Type: MultivariatePolynomial([y,x],Integer)

The constructor DistributedMultivariatePolynomial, which can be abbre-
viated as DMP, provides polynomials in one or more specified variables with
the monomials ordered lexicographically.
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m :: DMP([y,x],INT)

y6 x2 − 6 y4 x− 2 y3 x3 + 9 y2 + 6 y x2 + x4

Type: DistributedMultivariatePolynomial([y,x],Integer)

The constructor HomogeneousDistributedMultivariatePolynomial, which can
be abbreviated as HDMP, is similar except that the monomials are ordered by
total order refined by reverse lexicographic order.

m :: HDMP([y,x],INT)

y6 x2 − 2 y3 x3 − 6 y4 x+ x4 + 6 y x2 + 9 y2

Type:

HomogeneousDistributedMultivariatePolynomial([y,x],Integer)

More generally, the domain constructor GeneralDistributedMultivariatePolynomial
allows the user to provide an arbitrary predicate to define his own term ordering.
These last three constructors are typically used in Gröbner basis applications
and when a flat (that is, non-recursive) display is wanted and the term ordering
is critical for controlling the computation.

3.13 Limits

Axiom’s limit function is usually used to evaluate limits of quotients where the
numerator and denominator both tend to zero or both tend to infinity. To find
the limit of an expression f as a real variable x tends to a limit value a, enter
limit(f, x=a). Use complexLimit if the variable is complex.

You can take limits of functions with parameters.

g := csc(a*x) / csch(b*x)

csc (a x)

csch (b x)

Type: Expression Integer

As you can see, the limit is expressed in terms of the parameters.

limit(g,x=0)

b

a
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Type: Union(OrderedCompletion Expression Integer,...)

A variable may also approach plus or minus infinity:

h := (1 + k/x)**x

x+ k

x

x

Type: Expression Integer

Use %plusInfinity and %minusInfinity to denote ∞ and −∞.

limit(h,x=%plusInfinity)

ek

Type: Union(OrderedCompletion Expression Integer,...)

A function can be defined on both sides of a particular value, but may tend to
different limits as its variable approaches that value from the left and from the
right.

limit(sqrt(y**2)/y,y = 0)

[leftHandLimit = −1, rightHandLimit = 1]

Type: Union(Record(leftHandLimit: Union(OrderedCompletion

Expression Integer,"failed"),rightHandLimit:

Union(OrderedCompletion Expression Integer,"failed")),...)

As x approaches 0 along the real axis, exp(-1/x**2) tends to 0.

limit(exp(-1/x**2),x = 0)

0

Type: Union(OrderedCompletion Expression Integer,...)

However, if x is allowed to approach 0 along any path in the complex plane,
the limiting value of exp(-1/x**2) depends on the path taken because the
function has an essential singularity at x = 0. This is reflected in the error
message returned by the function.

complexLimit(exp(-1/x**2),x = 0)

"failed"

Type: Union("failed",...)
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3.14 Series

Axiom also provides power series. By default, Axiom tries to compute and
display the first ten elements of a series. Use )set streams calculate to
change the default value to something else. For the purposes of this document,
we have used this system command to display fewer than ten terms.

You can convert a functional expression to a power series by using the operation
series. In this example, sin(a*x) is expanded in powers of (x− 0), that is, in
powers of x.

series(sin(a*x),x = 0)

a x− a3

6
x3 +

a5

120
x5 − a7

5040
x7 +

a9

362880
x9 − a11

39916800
x11 +O

(
x12
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

This expression expands sin(a*x) in powers of (x - %pi/4).

series(sin(a*x),x = %pi/4)

sin
(a π

4

)
+ a cos

(a π

4

) (
x− π

4

)
−

a2 sin
(
a π
4

)
2

(
x− π

4

)2
−

a3 cos
(
a π
4

)
6

(
x− π

4

)3
+

a4 sin
(
a π
4

)
24

(
x− π

4

)4
+

a5 cos
(
a π
4

)
120

(
x− π

4

)5
−

a6 sin
(
a π
4

)
720

(
x− π

4

)6
−

a7 cos
(
a π
4

)
5040

(
x− π

4

)7
+

a8 sin
(
a π
4

)
40320

(
x− π

4

)8
+

a9 cos
(
a π
4

)
362880

(
x− π

4

)9
−

a10 sin
(
a π
4

)
3628800

(
x− π

4

)10
+O

((
x− π

4

)11)
Type: UnivariatePuiseuxSeries(Expression Integer,x,pi/4)

Axiom provides Puiseux series: series with rational number exponents. The first
argument to series is an in-place function that computes the n-th coefficient.
(Recall that the “+->” is an infix operator meaning “maps to.”)

series(n +-> (-1)**((3*n - 4)/6)/factorial(n - 1/3),x=0,4/3..,2)
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x
4
3 − 1

6
x

10
3 +O

(
x5
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

Once you have created a power series, you can perform arithmetic operations
on that series. We compute the Taylor expansion of 1/(1− x).

f := series(1/(1-x),x = 0)

1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 +O
(
x11
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

Compute the square of the series.

f ** 2

1+2 x+3 x2+4 x3+5 x4+6 x5+7 x6+8 x7+9 x8+10 x9+11 x10+O
(
x11
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

The usual elementary functions (log, exp, trigonometric functions, and so on)
are defined for power series.

f := series(1/(1-x),x = 0)

1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 +O
(
x11
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

g := log(f)

x+ 1
2 x2 + 1

3 x3 + 1
4 x4 + 1

5 x5 + 1
6 x6 + 1

7 x7+

1

8
x8 +

1

9
x9 +

1

10
x10 +

1

11
x11 +O

(
x12
)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

exp(g)

1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 +O
(
x11
)
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Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

Here is a way to obtain numerical approximations of e from the Taylor series
expansion of exp(x). First create the desired Taylor expansion.

f := taylor(exp(x))

1 + x+
1

2
x2 +

1

6
x3 +

1

24
x4 +

1

120
x5 +

1

720
x6 +

1

5040
x7 +

1

40320
x8 +

1

362880
x9 +

1

3628800
x10 +O

(
x11
)

Type: UnivariateTaylorSeries(Expression Integer,x,0)

Evaluate the series at the value 1.0. As you see, you get a sequence of partial
sums.

eval(f,1.0)

[1.0, 2.0, 2.5, 2.6666666666666666667,

2.7083333333333333333, 2.7166666666666666667,

2.7180555555555555556, 2.718253968253968254,

2.7182787698412698413, 2.7182815255731922399, . . . ]

Type: Stream Expression Float

3.15 Derivatives

Use the Axiom function D to differentiate an expression.

To find the derivative of an expression f with respect to a variable x, enter D(f,
x).

f := exp exp x

ee
x

Type: Expression Integer

D(f, x)
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ex ee
x

Type: Expression Integer

An optional third argument n in D asks Axiom for the n-th derivative of f .
This finds the fourth derivative of f with respect to x.

D(f, x, 4)

(
ex4 + 6 ex3 + 7 ex2 + ex

)
ee

x

Type: Expression Integer

You can also compute partial derivatives by specifying the order of differentia-
tion.

g := sin(x**2 + y)

sin
(
y + x2

)
Type: Expression Integer

D(g, y)

cos
(
y + x2

)
Type: Expression Integer

D(g, [y, y, x, x])

4 x2 sin
(
y + x2

)
− 2 cos

(
y + x2

)
Type: Expression Integer

Axiom can manipulate the derivatives (partial and iterated) of expressions in-
volving formal operators. All the dependencies must be explicit.

This returns 0 since F (so far) does not explicitly depend on x.

D(F,x)

0
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Type: Polynomial Integer

Suppose that we have F a function of x, y, and z, where x and y are themselves
functions of z.

Start by declaring that F , x, and y are operators.

F := operator ’F; x := operator ’x; y := operator ’y

y

Type: BasicOperator

You can use F, x, and y in expressions.

a := F(x z, y z, z**2) + x y(z+1)

x (y (z + 1)) + F
(
x (z), y (z), z2

)
Type: Expression Integer

Differentiate formally with respect to z. The formal derivatives appearing in
dadz are not just formal symbols, but do represent the derivatives of x, y, and
F.

dadz := D(a, z)

2 z F,3

(
x (z), y (z), z2

)
+ y, (z) F,2

(
x (z), y (z), z2

)
+

x, (z) F,1

(
x (z), y (z), z2

)
+ x, (y (z + 1)) y, (z + 1)

Type: Expression Integer

You can evaluate the above for particular functional values of F, x, and y. If
x(z) is exp(z) and y(z) is log(z+1), then evaluates dadz.

eval(eval(dadz, ’x, z +-> exp z), ’y, z +-> log(z+1))


(
2 z2 + 2 z

)
F,3

(
ez, log (z + 1), z2

)
+

F,2

(
ez, log (z + 1), z2

)
+

(z + 1) ez F,1

(
ez, log (z + 1), z2

)
+ z + 1


z + 1
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Type: Expression Integer

You obtain the same result by first evaluating a and then differentiating.

eval(eval(a, ’x, z +-> exp z), ’y, z +-> log(z+1))

F
(
ez, log (z + 1), z2

)
+ z + 2

Type: Expression Integer

D(%, z)


(
2 z2 + 2 z

)
F,3

(
ez, log (z + 1), z2

)
+

F,2

(
ez, log (z + 1), z2

)
+

(z + 1) ez F,1

(
ez, log (z + 1), z2

)
+ z + 1


z + 1

Type: Expression Integer

3.16 Integration

Axiom has extensive library facilities for integration.

The first example is the integration of a fraction with denominator that factors
into a quadratic and a quartic irreducible polynomial. The usual partial fraction
approach used by most other computer algebra systems either fails or introduces
expensive unneeded algebraic numbers.

We use a factorization-free algorithm.

integrate((x**2+2*x+1)/((x+1)**6+1),x)

arctan
(
x3 + 3 x2 + 3 x+ 1

)
3

Type: Union(Expression Integer,...)

When real parameters are present, the form of the integral can depend on the
signs of some expressions.

Rather than query the user or make sign assumptions, Axiom returns all possible
answers.
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integrate(1/(x**2 + a),x)

 log
(
(x2−a)

√
−a+2 a x

x2+a

)
2
√
−a

,
arctan

(
x

√
a

a

)
√
a


Type: Union(List Expression Integer,...)

The integrate operation generally assumes that all parameters are real. The
only exception is when the integrand has complex valued quantities.

If the parameter is complex instead of real, then the notion of sign is undefined
and there is a unique answer. You can request this answer by “prepending” the
word “complex” to the command name:

complexIntegrate(1/(x**2 + a),x)

log
(

x
√
−a+a√
−a

)
− log

(
x

√
−a−a√
−a

)
2
√
−a

Type: Expression Integer

The following two examples illustrate the limitations of table-based approaches.
The two integrands are very similar, but the answer to one of them requires the
addition of two new algebraic numbers.

This one is the easy one. The next one looks very similar but the answer is
much more complicated.

integrate(x**3 / (a+b*x)**(1/3),x)

(
120 b3 x3 − 135 a b2 x2 + 162 a2 b x− 243 a3

)
3
√
b x+ a

2

440 b4

Type: Union(Expression Integer,...)

Only an algorithmic approach is guaranteed to find what new constants must
be added in order to find a solution.

integrate(1 / (x**3 * (a+b*x)**(1/3)),x)
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

−2 b2 x2
√
3 log

(
3
√
a 3
√
b x+ a

2
+ 3
√
a
2 3
√
b x+ a+ a

)
+

4 b2 x2
√
3 log

(
3
√
a
2 3
√
b x+ a− a

)
+

12 b2 x2 arctan

(
2
√
3 3
√
a
2 3
√
b x+ a+ a

√
3

3 a

)
+

(12 b x− 9 a)
√
3 3
√
a

3
√
b x+ a

2


18 a2 x2

√
3 3
√
a

Type: Union(Expression Integer,...)

Some computer algebra systems use heuristics or table-driven approaches to
integration. When these systems cannot determine the answer to an integra-
tion problem, they reply “I don’t know.” Axiom uses an algorithm which is a
decision procedure for integration. If Axiom returns the original integral that
conclusively proves that an integral cannot be expressed in terms of elementary
functions.

When Axiom returns an integral sign, it has proved that no answer exists as an
elementary function.

integrate(log(1 + sqrt(a*x + b)) / x,x)

∫ x log
(√

b+%Q a+ 1
)

%Q
d%Q

Type: Union(Expression Integer,...)

Axiom can handle complicated mixed functions much beyond what you can find
in tables.

Whenever possible, Axiom tries to express the answer using the functions present
in the integrand.

integrate((sinh(1+sqrt(x+b))+2*sqrt(x+b)) / (sqrt(x+b) * (x +

cosh(1+sqrt(x + b)))), x)

2 log

(
−2 cosh

(√
x+ b+ 1

)
− 2 x

sinh
(√

x+ b+ 1
)
− cosh

(√
x+ b+ 1

))− 2
√
x+ b

Type: Union(Expression Integer,...)
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A strong structure-checking algorithm in Axiom finds hidden algebraic relation-
ships between functions.

integrate(tan(atan(x)/3),x)


8 log

(
3 tan

(
arctan(x)

3

)2
− 1

)
− 3 tan

(
arctan(x)

3

)2
+

18 x tan

(
arctan (x)

3

)


18

Type: Union(Expression Integer,...)

The discovery of this algebraic relationship is necessary for correct integration
of this function. Here are the details:

1. If x = tan t and g = tan(t/3) then the following algebraic relation is true:

g3 − 3xg2 − 3g + x = 0

2. Integrate g using this algebraic relation; this produces:

(24g2 − 8) log(3g2 − 1) + (81x2 + 24)g2 + 72xg − 27x2 − 16

54g2 − 18

3. Rationalize the denominator, producing:

8 log(3g2 − 1)− 3g2 + 18xg + 16

18

Replace g by the initial definition g = tan(arctan(x)/3) to produce the
final result.

This is an example of a mixed function where the algebraic layer is over the
transcendental one.

integrate((x + 1) / (x*(x + log x) ** (3/2)), x)

−
2
√
log (x) + x

log (x) + x

Type: Union(Expression Integer,...)

While incomplete for non-elementary functions, Axiom can handle some of them.
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integrate(exp(-x**2) * erf(x) / (erf(x)**3 - erf(x)**2 - erf(x) +

1),x)

(erf (x)− 1)
√
π log

(
erf(x)−1
erf(x)+1

)
− 2
√
π

8 erf (x)− 8

Type: Union(Expression Integer,...)

3.17 Differential Equations

The general approach used in integration also carries over to the solution of
linear differential equations.

Let’s solve some differential equations. Let y be the unknown function in terms
of x.

y := operator ’y

y

Type: BasicOperator

Here we solve a third order equation with polynomial coefficients.

deq := x**3 * D(y x, x, 3) + x**2 * D(y x, x, 2) - 2 * x * D(y x,

x) + 2 * y x = 2 * x**4

x3 y,,, (x) + x2 y,, (x)− 2 x y, (x) + 2 y (x) = 2 x4

Type: Equation Expression Integer

solve(deq, y, x)

[
particular = x5−10 x3+20 x2+4

15 x ,

basis =

[
2 x3 − 3 x2 + 1

x
,
x3 − 1

x
,
x3 − 3 x2 − 1

x

]]
Type: Union(Record(particular: Expression Integer,basis: List

Expression Integer),...)

Here we find all the algebraic function solutions of the equation.
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deq := (x**2 + 1) * D(y x, x, 2) + 3 * x * D(y x, x) + y x = 0

(
x2 + 1

)
y,, (x) + 3 x y, (x) + y (x) = 0

Type: Equation Expression Integer

solve(deq, y, x)

[
particular = 0, basis =

[
1√

x2 + 1
,
log
(√

x2 + 1− x
)

√
x2 + 1

]]

Type: Union(Record(particular: Expression Integer,basis: List

Expression Integer),...)

Coefficients of differential equations can come from arbitrary constant fields.
For example, coefficients can contain algebraic numbers.

This example has solutions whose logarithmic derivative is an algebraic function
of degree two.

eq := 2*x**3 * D(y x,x,2) + 3*x**2 * D(y x,x) - 2 * y x

2 x3 y,, (x) + 3 x2 y, (x)− 2 y (x)

Type: Expression Integer

solve(eq,y,x).basis

[
e

(
− 2√

x

)
, e

2√
x

]
Type: List Expression Integer

Here’s another differential equation to solve.

deq := D(y x, x) = y(x) / (x + y(x) * log y x)

y, (x) =
y (x)

y (x) log (y (x)) + x

Type: Equation Expression Integer
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solve(deq, y, x)

y (x) log (y (x))
2 − 2 x

2 y (x)

Type: Union(Expression Integer,...)

Rather than attempting to get a closed form solution of a differential equation,
you instead might want to find an approximate solution in the form of a series.

Let’s solve a system of nonlinear first order equations and get a solution in
power series. Tell Axiom that x is also an operator.

x := operator ’x

x

Type: BasicOperator

Here are the two equations forming our system.

eq1 := D(x(t), t) = 1 + x(t)**2

x, (t) = x (t)
2
+ 1

Type: Equation Expression Integer

eq2 := D(y(t), t) = x(t) * y(t)

y, (t) = x (t) y (t)

Type: Equation Expression Integer

We can solve the system around t = 0 with the initial conditions x(0) = 0 and
y(0) = 1. Notice that since we give the unknowns in the order [x, y], the answer
is a list of two series in the order [series for x(t), series for y(t)].

seriesSolve([eq2, eq1], [x, y], t = 0, [y(0) = 1, x(0) = 0])[
t+

1

3
t3 +

2

15
t5 +

17

315
t7 +

62

2835
t9 +O

(
t11
)
,

1 +
1

2
t2 +

5

24
t4 +

61

720
t6 +

277

8064
t8 +

50521

3628800
t10 +O

(
t11
)]

Type: List UnivariateTaylorSeries(Expression Integer,t,0)
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3.18 Solution of Equations

Axiom also has state-of-the-art algorithms for the solution of systems of poly-
nomial equations. When the number of equations and unknowns is the same,
and you have no symbolic coefficients, you can use solve for real roots and
complexSolve for complex roots. In each case, you tell Axiom how accurate
you want your result to be. All operations in the solve family return answers in
the form of a list of solution sets, where each solution set is a list of equations.

A system of two equations involving a symbolic parameter t.

S(t) == [x**2-2*y**2 - t,x*y-y-5*x + 5]

Type: Void

Find the real roots of S(19) with rational arithmetic, correct to within 1/1020.

solve(S(19),1/10**20)[[
y = 5, x = −2451682632253093442511

295147905179352825856

]
,[

y = 5, x =
2451682632253093442511

295147905179352825856

]]
Type: List List Equation Polynomial Fraction Integer

Find the complex roots of S(19) with floating point coefficients to 20 digits
accuracy in the mantissa.

complexSolve(S(19),10.e-20)

[[y = 5.0, x = 8.3066238629180748526],

[y = 5.0, x = −8.3066238629180748526],

[y = −3.0 i, x = 1.0], [y = 3.0 i, x = 1.0]]

Type: List List Equation Polynomial Complex Float

If a system of equations has symbolic coefficients and you want a solution in
radicals, try radicalSolve.

radicalSolve(S(a),[x,y])
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[[
x = −

√
a+ 50, y = 5

]
,
[
x =
√
a+ 50, y = 5

]
,[

x = 1, y =

√
−a+ 1

2

]
,

[
x = 1, y = −

√
−a+ 1

2

]]

Type: List List Equation Expression Integer

For systems of equations with symbolic coefficients, you can apply solve, listing
the variables that you want Axiom to solve for. For polynomial equations,
a solution cannot usually be expressed solely in terms of the other variables.
Instead, the solution is presented as a “triangular” system of equations, where
each polynomial has coefficients involving only the succeeding variables. This
is analogous to converting a linear system of equations to “triangular form”.

A system of three equations in five variables.

eqns := [x**2 - y + z,x**2*z + x**4 - b*y, y**2 *z - a - b*x]

[
z − y + x2, x2 z − b y + x4, y2 z − b x− a

]
Type: List Polynomial Integer

Solve the system for unknowns [x, y, z], reducing the solution to triangular form.

solve(eqns,[x,y,z])

[[
x = −a

b
, y = 0, z = −a2

b2

]
,[

x = z3+2 b z2+b2 z−a
b , y = z + b,

z6 + 4 b z5 + 6 b2 z4 +
(
4 b3 − 2 a

)
z3 +

(
b4 − 4 a b

)
z2 −

2 a b2 z − b3 + a2 = 0
]


Type: List List Equation Fraction Polynomial Integer
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Graphics

Figure 4.1: An Axiom Graphic

Axiom has a two- and three-dimensional drawing and rendering package that
allows you to draw, shade, color, rotate, translate, map, clip, scale and combine
graphic output of Axiom computations. The graphics interface is capable of
plotting functions of one or more variables and plotting parametric surfaces.
Once the graphics figure appears in a window, move your mouse to the window
and click. A control panel appears immediately and allows you to interactively
transform the object. Refer to the original Axiom book[1] and the input files
included with Axiom for additional examples.

This is an example of Axiom’s graphics. From the Control Panel you can rescale

129
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the plot, turn axes and units on and off and save the image, among other
things. Axiom is capable of many different kinds of graphs in both 2D and 3D
settings. Points, lines, planes, wireframe, solids, shaded solids, multiple graphs,
parametric graphs, tubes, and many other kinds of objects can be created and
manipulated by the algebra and on the control panels.

This is an example of Axiom’s three-dimensional plotting. It is a graph of the
complex arctangent function. The image displayed was rotated and had the
“shade” and “outline” display options set from the 3D Control Panel. The
PostScript output was produced by clicking on the save 3D Control Panel but-
ton and then clicking on the PS button.

draw((x,y) +-> real atan complex(x,y), -%pi..%pi, -%pi..%pi,

colorFunction == (x,y) +-> argument atan complex(x,y))

Figure 4.2: (x, y)→ realatancomplex(x, y),−π . . . π,−π . . . π

4.0.1 Plotting 2D graphs

There are three kinds of 2D graphs of curves defined by

1. a function y = f(x) over a finite interval of x (page 131)

2. parametric equations x = f(t) y = g(t) (page 132)

3. nonsingular solutions in a rectangular region (page 133)

PostScript output is available so that Axiom images can be printed.1

1PostScript is a trademark of Adobe Systems Incorporated, registered in the United States.
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Plotting 2D graphs of 1 variable

The general format for drawing a function defined by a formula f(x) is:

draw(f(x), x = a..b, options)

where a..b defines the range of x, and where options prescribes zero or
more options as described in 4.0.1 on page 134. An example of an option
is curveColor == brightred(). An alternative format involving functions f
and g is also available.

Give the names of the functions and drop the variable name specification in the
second argument. Axiom supplies a default title if one is not given.

draw(sin(tan(x)) - tan(sin(x)), x=0..6)

Figure 4.3: sin(tan(x))− tan(sin(x)), x = 0 . . . 6
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Plotting 2D parametric plane curves

The general format for drawing a two-dimensional plane curve defined by
parametric formulas x = f(t) and y = g(t) is:

draw(curve(f(t), g(t)), t = a..b, options)

where a..b defines the range of the independent variable t, and where options
prescribes zero or more options as described in 4.0.8 on page 155. An
example of an option is curveColor == brightred().

The second kind of two-dimensional graph are curves produced by parametric
equations. Let x = f(t) and y = g(t) be formulas of two functions f and g as
the parameter t ranges over an interval [a, b]. The function curve takes the two
functions f and g as its parameters.

draw(curve(sin(t)*sin(2*t)*sin(3*t), sin(4*t)*sin(5*t)*sin(6*t)),

t = 0..2*%pi)

Figure 4.4: curve(sin(t)∗sin(2∗t)∗sin(3∗t), sin(4∗t)∗sin(5∗t)∗sin(6∗t)), t =
0..2 ∗ π
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Plotting 2D algebraic curves

The general format for drawing a non-singular solution curve given by a
polynomial of the form p(x, y) = 0 is:

draw(p(x,y) = 0, x, y, range == [a..b, c..d], options)

where the second and third arguments name the first and second independent
variables of p. A range option is always given to designate a bounding
rectangular region of the plane a ≤ x ≤ b, c ≤ y ≤ d. Zero or more additional
options as described in 4.0.1 on page 134 may be given.

A third kind of two-dimensional graph is a non-singular “solution curve” in a
rectangular region of the plane. For example:

p := ((x**2 + y**2 + 1) - 8*x)**2 - (8*(x**2 + y**2 + 1)-4*x-1)

y4 +
(
2 x2 − 16 x− 6

)
y2 + x4 − 16 x3 + 58 x2 − 12 x− 6

Type: Polynomial Integer

draw(p = 0, x, y, range == [-1..11, -7..7])

Figure 4.5: p = 0, x, y, range == [−1..11,−7..7]

A solution curve is a curve defined by a polynomial equation p(x, y) = 0. Non-
singular means that the curve is “smooth” in that it does not cross itself or
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come to a point (cusp). Algebraically, this means that for any point (x, y) on
the curve, that is, a point such that p(x, y) = 0, the partial derivatives ∂p

∂x (x, y)

and ∂p
∂y (x, y) are not both zero. We require that the polynomial has rational

or integral coefficients.

The first argument is always expressed as an equation of the form p = 0 where
p is a polynomial.

Colors

The domain Color provides operations for manipulating colors in two-dimen-
sional graphs. Colors are objects of Color. Each color has a hue and a weight.
Hues are represented by integers that range from 1 to the numberOfHues(),
normally 27. Weights are floats and have the value 1.0 by default.

color (integer)

creates a color of hue integer and weight 1.0.

hue (color)

returns the hue of color as an integer.

red ()

blue(), green(), and yellow() create colors of that hue with weight
1.0.

color1 + color2 returns the color that results from additively combining the in-
dicated color1 and color2. Color addition is not commutative: changing
the order of the arguments produces different results.

integer * color changes the weight of color by integer without affecting its hue.
For example, red() + 3 ∗ yellow() produces a color closer to yellow than
to red. Color multiplication is not associative: changing the order of
grouping produces different results.

These functions can be used to change the point and curve colors for two- and
three-dimensional graphs. Use the pointColor option for points.

Two-Dimensional Options

The draw commands take an optional list of options, such as title shown
above. Each option is given by the syntax: name == value. Here is a list of the
available options in the order that they are described below.
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adaptive The adaptive option turns adaptive plotting on or off.
Adaptive plotting uses an algorithm that traverses a graph
and computes more points for those parts of the graph
with high curvature. The higher the curvature of a region is,
the more points the algorithm computes.
adaptive == true or adaptive == false

clip The clip option turns clipping on or off. If on,
large values are cut off according to clipPointsDefault
clip == true or clip == false or a range
clip == [-2*%pi..2*%pi,%pi..%pi]

unit The unit option sets the intervals to which the axis
units are plotted according to the indicated steps
unit == [2.0, 1.0]

curveColor The curveColor option sets the color of the graph curves
or lines to be the indicated palette and color
curveColor == bright red() (see pp 134 and 135)

range The range option sets the range of variables in a graph
to be within the ranges for solving plane algebraic curve plots
range=[-2..2,-2..1]

toScale The toScale option does plotting to scale if true
or uses the entire viewport if false. The default can
be determined using drawToScale
toScale == true or toScale == false

pointColor The pointColor option sets the color of the graph curves
or lines to be the indicated palette and color
pointColor == bright red() (see page 134)

coordinates The coordinates option indicates the coordinate system
in which the graph is plotted. This can be one of:
bipolar, bipolarCylindrical, cartesian,
conical, cylindrical, elliptic,
ellipticCylindrical, oblateSpheroidal,
parabolic, parabolicCylindrical, paraboloidal
polar, prolateSpheroidal, spherical, and
toroidal
coordinates == polar

4.0.2 Palette

Domain Palette is the domain of shades of colors: dark, dim, bright, pastel,
and light, designated by the integers 1 through 5, respectively.

Colors are normally “bright.”

shade red()

3
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Type: PositiveInteger

To change the shade of a color, apply the name of a shade to it.

myFavoriteColor := dark blue()

[Hue: 22Weight: 1.0] from the Darkpalette

Type: Palette

The expression shade(color) returns the value of a shade of color.

shade myFavoriteColor

1

Type: PositiveInteger

The expression hue(color) returns its hue.

hue myFavoriteColor

Hue: 22Weight: 1.0

Type: Color

Palettes can be used in specifying colors in two-dimensional graphs.

draw(x**2,x=-1..1,curveColor == dark blue())

4.0.3 Two-Dimensional Control-Panel

Once you have created a viewport, move your mouse to the viewport and click
with your left mouse button to display a control-panel. The panel is displayed
on the side of the viewport closest to where you clicked. Each of the buttons
which toggle on and off show the current state of the graph.
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Figure 4.6: Two-dimensional control-panel.

Transformations

Object transformations are executed from the control-panel by mouse-activated
potentiometer windows.

Scale: To scale a graph, click on a mouse button within the Scale window
in the upper left corner of the control-panel. The axes along which the
scaling is to occur are indicated by setting the toggles above the arrow.
With X On and Y On appearing, both axes are selected and scaling is



138 CHAPTER 4. GRAPHICS

uniform. If either is not selected, for example, if X Off appears, scaling is
non-uniform.

Translate: To translate a graph, click the mouse in the Translate window in
the direction you wish the graph to move. This window is located in the
upper right corner of the control-panel. Along the top of the Translate
window are two buttons for selecting the direction of translation. Trans-
lation along both coordinate axes results when X On and Y On appear or
along one axis when one is on, for example, X On and Y Off appear.

Messages

The window directly below the transformation potentiometer windows is used
to display system messages relating to the viewport and the control-panel. The
following format is displayed:

[scaleX, scaleY] >graph< [translateX, translateY]

The two values to the left show the scale factor along the X and Y coordinate
axes. The two values to the right show the distance of translation from the
center in the X and Y directions. The number in the center shows which graph
in the viewport this data pertains to. When multiple graphs exist in the same
viewport, the graph must be selected (see “Multiple Graphs,” below) in order
for its transformation data to be shown, otherwise the number is 1.

Multiple Graphs

The Graphs window contains buttons that allow the placement of two-dimen-
sional graphs into one of nine available slots in any other two-dimensional view-
port. In the center of the window are numeral buttons from one to nine that
show whether a graph is displayed in the viewport. Below each number button
is a button showing whether a graph that is present is selected for application
of some transformation. When the caret symbol is displayed, then the graph
in that slot will be manipulated. Initially, the graph for which the viewport is
created occupies the first slot, is displayed, and is selected.

Clear: The Clear button deselects every viewport graph slot. A graph slot is
reselected by selecting the button below its number.

Query: The Query button is used to display the scale and translate data for
the indicated graph. When this button is selected the message “Click
on the graph to query” appears. Select a slot number button from the
Graphs window. The scaling factor and translation offset of the graph
are then displayed in the message window.
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Pick: The Pick button is used to select a graph to be placed or dropped into
the indicated viewport. When this button is selected, the message “Click
on the graph to pick” appears. Click on the slot with the graph number
of the desired graph. The graph information is held waiting for you to
execute a Drop in some other graph.

Drop: Once a graph has been picked up using the Pick button, the Drop
button places it into a new viewport slot. The message “Click on the graph
to drop” appears in the message window when theDrop button is selected.
By selecting one of the slot number buttons in the Graphs window, the
graph currently being held is dropped into this slot and displayed.

Buttons

Axes turns the coordinate axes on or off.

Units turns the units along the x and y axis on or off.

Box encloses the area of the viewport graph in a bounding box, or removes the
box if already enclosed.

Pts turns on or off the display of points.

Lines turns on or off the display of lines connecting points.

PS writes the current viewport contents to a file axiom2d.ps or to a name
specified in the user’s .Xdefaults file. The file is placed in the directory
from which Axiom or the viewalone program was invoked.

Reset resets the object transformation characteristics and attributes back to
their initial states.

Hide makes the control-panel disappear.

Quit queries whether the current viewport session should be terminated.

4.0.4 Operations for Two-Dimensional Graphics

Here is a summary of useful Axiom operations for two-dimensional graphics.
Each operation name is followed by a list of arguments. Each argument is
written as a variable informally named according to the type of the argument
(for example, integer). If appropriate, a default value for an argument is given
in parentheses immediately following the name.

adaptive ([boolean(true)])

sets or indicates whether graphs are plotted according to the adaptive
refinement algorithm.
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axesColorDefault ([color(dark blue())])

sets or indicates the default color of the axes in a two-dimensional graph
viewport.

clipPointsDefault ([boolean(false)])

sets or indicates whether point clipping is to be applied as the default for
graph plots.

drawToScale ([boolean(false)])

sets or indicates whether the plot of a graph is “to scale” or uses the entire
viewport space as the default.

lineColorDefault ([color(pastel yellow())])

sets or indicates the default color of the lines or curves in a two-dimen-
sional graph viewport.

maxPoints ([integer(500)])

sets or indicates the default maximum number of possible points to be
used when constructing a two-dimensional graph.

minPoints ([integer(21)])

sets or indicates the default minimum number of possible points to be
used when constructing a two-dimensional graph.

pointColorDefault ([color(bright red())])

sets or indicates the default color of the points in a two-dimensional graph
viewport.

pointSizeDefault ([integer(5)])

sets or indicates the default size of the dot used to plot points in a two-
dimensional graph.

screenResolution ([integer(600)])

sets or indicates the default screen resolution constant used in setting the
computation limit of adaptively generated curve plots.

unitsColorDefault ([color(dim green())])

sets or indicates the default color of the unit labels in a two-dimensional
graph viewport.

viewDefaults ()

resets the default settings for the following attributes: point color, line
color, axes color, units color, point size, viewport upper left-hand corner
position, and the viewport size.

viewPosDefault ([list([100,100])])

sets or indicates the default position of the upper left-hand corner of a
two-dimensional viewport, relative to the display root window. The upper
left-hand corner of the display is considered to be at the (0, 0) position.
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viewSizeDefault ([list([200,200])])

sets or indicates the default size in which two dimensional viewport win-
dows are shown. It is defined by a width and then a height.

viewWriteAvailable ([list(["pixmap","bitmap", "postscript", "image"])])

indicates the possible file types that can be created with the write func-
tion.

viewWriteDefault ([list([])])

sets or indicates the default types of files, in addition to the data file, that
are created when a write function is executed on a viewport.

units (viewport, integer(1), string("off"))

turns the units on or off for the graph with index integer.

axes (viewport, integer(1), string("on"))

turns the axes on or off for the graph with index integer.

close (viewport)

closes viewport.

connect (viewport, integer(1), string("on"))

declares whether lines connecting the points are displayed or not.

controlPanel (viewport, string("off"))

declares whether the two-dimensional control-panel is automatically dis-
played or not.

graphs (viewport)

returns a list describing the state of each graph. If the graph state is not
being used this is shown by "undefined", otherwise a description of the
graph’s contents is shown.

graphStates (viewport)

displays a list of all the graph states available for viewport, giving the
values for every property.

key (viewport)

returns the process ID number for viewport.

move (viewport, integerx(viewPosDefault), integery(viewPosDefault))

moves viewport on the screen so that the upper left-hand corner of viewport
is at the position (x,y).

options (viewport)

returns a list of all the DrawOptions used by viewport.

points (viewport, integer(1), string("on"))

specifies whether the graph points for graph integer are to be displayed or
not.
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region (viewport, integer(1), string("off"))

declares whether graph integer is or is not to be displayed with a bounding
rectangle.

reset (viewport)

resets all the properties of viewport.

resize (viewport, integerwidth,integerheight)

resizes viewport with a new width and height.

scale (viewport, integern(1), integerx(0.9), integery(0.9))

scales values for the x and y coordinates of graph n.

show (viewport, integern(1), string("on"))

indicates if graph n is shown or not.

title (viewport, string("Axiom 2D"))

designates the title for viewport.

translate (viewport, integern(1), floatx(0.0), floaty(0.0))

causes graph n to be moved x and y units in the respective directions.

write (viewport, stringdirectory, [strings])

if no third argument is given, writes the data file onto the directory with
extension data. The third argument can be a single string or a list of
strings with some or all the entries "pixmap", "bitmap", "postscript",
and "image".

4.0.5 Building Two-Dimensional Graphs Manually

In this section we demonstrate how to create two-dimensional graphs from lists
of points and give an example showing how to read the lists of points from a
file.

Creating a Two-Dimensional Viewport from a List of Points

Axiom creates lists of points in a two-dimensional viewport by utilizing the
GraphImage and TwoDimensionalViewport domains. The makeGraphImage
function takes a list of lists of points parameter, a list of colors for each point in
the graph, a list of colors for each line in the graph, and a list of sizes for each
point in the graph.

The following expressions create a list of lists of points which will be read by
Axiom and made into a two-dimensional viewport.

p1 := point [1,1]$(Point DFLOAT)

[1.0, 1.0]
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Type: Point DoubleFloat

p2 := point [0,1]$(Point DFLOAT)

[0.0, 1.0]

Type: Point DoubleFloat

p3 := point [0,0]$(Point DFLOAT)

[0.0, 0.0]

Type: Point DoubleFloat

p4 := point [1,0]$(Point DFLOAT)

[1.0, 0.0]

Type: Point DoubleFloat

p5 := point [1,.5]$(Point DFLOAT)

[1.0, 0.5]

Type: Point DoubleFloat

p6 := point [.5,0]$(Point DFLOAT)

[0.5, 0.0]

Type: Point DoubleFloat

p7 := point [0,0.5]$(Point DFLOAT)

[0.0, 0.5]

Type: Point DoubleFloat
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p8 := point [.5,1]$(Point DFLOAT)

[0.5, 1.0]

Type: Point DoubleFloat

p9 := point [.25,.25]$(Point DFLOAT)

[0.25, 0.25]

Type: Point DoubleFloat

p10 := point [.25,.75]$(Point DFLOAT)

[0.25, 0.75]

Type: Point DoubleFloat

p11 := point [.75,.75]$(Point DFLOAT)

[0.75, 0.75]

Type: Point DoubleFloat

p12 := point [.75,.25]$(Point DFLOAT)

[0.75, 0.25]

Type: Point DoubleFloat

Finally, here is the list.

llp := [ [p1,p2], [p2,p3], [p3,p4], [p4,p1], [p5,p6], [p6,p7],

[p7,p8], [p8,p5], [p9,p10], [p10,p11], [p11,p12], [p12,p9] ]

[[[1.0, 1.0], [0.0, 1.0]], [[0.0, 1.0], [0.0, 0.0]], [[0.0, 0.0], [1.0, 0.0]],

[[1.0, 0.0], [1.0, 1.0]], [[1.0, 0.5], [0.5, 0.0]], [[0.5, 0.0], [0.0, 0.5]],

[[0.0, 0.5], [0.5, 1.0]], [[0.5, 1.0], [1.0, 0.5]], [[0.25, 0.25], [0.25, 0.75]],

[[0.25, 0.75], [0.75, 0.75]], [[0.75, 0.75], [0.75, 0.25]], [[0.75, 0.25], [0.25, 0.25]]]
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Type: List List Point DoubleFloat

Now we set the point sizes for all components of the graph.

size1 := 6::PositiveInteger

6

Type: PositiveInteger

size2 := 8::PositiveInteger

8

Type: PositiveInteger

size3 := 10::PositiveInteger

lsize := [size1, size1, size1, size1, size2, size2, size2, size2,

size3, size3, size3, size3]

[6, 6, 6, 6, 8, 8, 8, 8, 10, 10, 10, 10]

Type: List PositiveInteger

Here are the colors for the points.

pc1 := pastel red()

[Hue: 1Weight: 1.0] from the Pastelpalette

Type: Palette

pc2 := dim green()

[Hue: 14Weight: 1.0] from the Dimpalette

Type: Palette
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pc3 := pastel yellow()

[Hue: 11Weight: 1.0] from the Pastelpalette

Type: Palette

lpc := [pc1, pc1, pc1, pc1, pc2, pc2, pc2, pc2, pc3, pc3, pc3,

pc3]

[[Hue: 1Weight: 1.0] from the Pastelpalette,

[Hue: 1Weight: 1.0] from the Pastelpalette,

[Hue: 1Weight: 1.0] from the Pastelpalette,

[Hue: 1Weight: 1.0] from the Pastelpalette,

[Hue: 14Weight: 1.0] from the Dimpalette,

[Hue: 14Weight: 1.0] from the Dimpalette,

[Hue: 14Weight: 1.0] from the Dimpalette,

[Hue: 14Weight: 1.0] from the Dimpalette,

[Hue: 11Weight: 1.0] from the Pastelpalette,

[Hue: 11Weight: 1.0] from the Pastelpalette,

[Hue: 11Weight: 1.0] from the Pastelpalette,

[Hue: 11Weight: 1.0] from the Pastelpalette]

Type: List Palette

Here are the colors for the lines.

lc := [pastel blue(), light yellow(), dim green(), bright red(),

light green(), dim yellow(), bright blue(), dark red(), pastel

red(), light blue(), dim green(), light yellow()]

[[Hue: 22Weight: 1.0] from the Pastelpalette,

[Hue: 11Weight: 1.0] from the Lightpalette,

[Hue: 14Weight: 1.0] from the Dimpalette,

[Hue: 1Weight: 1.0] from the Brightpalette,

[Hue: 14Weight: 1.0] from the Lightpalette,

[Hue: 11Weight: 1.0] from the Dimpalette,
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[Hue: 22Weight: 1.0] from the Brightpalette,

[Hue: 1Weight: 1.0] from the Darkpalette,

[Hue: 1Weight: 1.0] from the Pastelpalette,

[Hue: 22Weight: 1.0] from the Lightpalette,

[Hue: 14Weight: 1.0] from the Dimpalette,

[Hue: 11Weight: 1.0] from the Lightpalette]

Type: List Palette

Now the GraphImage is created according to the component specifications indi-
cated above.

g := makeGraphImage(llp,lpc,lc,lsize)$GRIMAGE

The makeViewport2D function now creates a TwoDimensionalViewport for
this graph according to the list of options specified within the brackets.

makeViewport2D(g,[title("Lines")])$VIEW2D

Figure 4.7: The Hand Constructed Line Graph

This example demonstrates the use of the GraphImage functions component
and appendPoint in adding points to an empty GraphImage.
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g := graphImage()$GRIMAGE

Graph with 0point lists

Type: GraphImage

p1 := point [0,0]$(Point DFLOAT)

[0.0, 0.0]

Type: Point DoubleFloat

p2 := point [.25,.25]$(Point DFLOAT)

[0.25, 0.25]

Type: Point DoubleFloat

p3 := point [.5,.5]$(Point DFLOAT)

[0.5, 0.5]

Type: Point DoubleFloat

p4 := point [.75,.75]$(Point DFLOAT)

[0.75, 0.75]

Type: Point DoubleFloat

p5 := point [1,1]$(Point DFLOAT)

[1.0, 1.0]

Type: Point DoubleFloat

component(g,p1)$GRIMAGE
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Type: Void

component(g,p2)$GRIMAGE

Type: Void

appendPoint(g,p3)$GRIMAGE

Type: Void

appendPoint(g,p4)$GRIMAGE

Type: Void

appendPoint(g,p5)$GRIMAGE

Type: Void

g1 := makeGraphImage(g)$GRIMAGE

makeViewport2D(g1,[title("Graph Points")])$VIEW2D

Figure 4.8: Graph Points

A list of points can also be made into a GraphImage by using the operation
coerce. It is equivalent to adding each point to g2 using component.



150 CHAPTER 4. GRAPHICS

g2 := coerce([ [p1],[p2],[p3],[p4],[p5] ])$GRIMAGE

Now, create an empty TwoDimensionalViewport.

v := viewport2D()$VIEW2D

options(v,[title("Just Points")])$VIEW2D

Place the graph into the viewport.

putGraph(v,g2,1)$VIEW2D

Take a look.

makeViewport2D(v)$VIEW2D

Figure 4.9: Just Points

Creating a Two-Dimensional Viewport of a List of Points from a File

The following three functions read a list of points from a file and then draw the
points and the connecting lines. The points are stored in the file in readable form
as floating point numbers (specifically, DoubleFloat values) as an alternating
stream of x- and y-values. For example,

0.0 0.0 1.0 1.0 2.0 4.0

3.0 9.0 4.0 16.0 5.0 25.0

drawPoints(lp:List Point DoubleFloat):VIEW2D ==

g := graphImage()$GRIMAGE
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for p in lp repeat

component(g,p,pointColorDefault(),lineColorDefault(),

pointSizeDefault())

gi := makeGraphImage(g)$GRIMAGE

makeViewport2D(gi,[title("Points")])$VIEW2D

drawLines(lp:List Point DoubleFloat):VIEW2D ==

g := graphImage()$GRIMAGE

component(g, lp, pointColorDefault(), lineColorDefault(),

pointSizeDefault())$GRIMAGE

gi := makeGraphImage(g)$GRIMAGE

makeViewport2D(gi,[title("Points")])$VIEW2D

plotData2D(name, title) ==

f:File(DFLOAT) := open(name,"input")

lp:LIST(Point DFLOAT) := empty()

while ((x := readIfCan!(f)) case DFLOAT) repeat

y : DFLOAT := read!(f)

lp := cons(point [x,y]$(Point DFLOAT), lp)

lp

close!(f)

drawPoints(lp)

drawLines(lp)

This command will actually create the viewport and the graph if the point data
is in the file ”file.data”.

plotData2D("file.data", "2D Data Plot")

4.0.6 Appending a Graph to a Viewport Window Con-
taining a Graph

This section demonstrates how to append a two-dimensional graph to a viewport
already containing other graphs. The default draw command places a graph
into the first GraphImage slot position of the TwoDimensionalViewport.

We createa a graph in the first slot of a viewport.

v1 := draw(sin(x),x=0..2*%pi)

Then we create a second graph.

v2 := draw(cos(x),x=0..2*%pi, curveColor==light red())

The operation getGraph retrieves the GraphImage g1 from the first slot posi-
tion in the viewport v1.
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g1 := getGraph(v1,1)

Now putGraph places g1 into the the second slot position of v2.

putGraph(v2,g1,2)

Display the new TwoDimensionalViewport containing both graphs.

makeViewport2D(v2)

Figure 4.10: Two graphs on one viewport

In general you can plot up to 9 graphs on the 2D viewport. Each graph can be
manipulated separately using the 2D control panel.

The Pick and Drop buttons on the 2D control panel work like cut and paste
mechanisms in a windowing environment (except that they don’t use the clip-
board). So it is possible to pick one graph and drop it on a different graph.

4.0.7 Plotting 3D Graphs

There are 3 kinds of three dimensional graphs you can generate:

1. surfaces defined by a function of two real variables (page 153)

2. space curves and tubes defined by parametric equations (page 154)

3. surfaces defined by parametric equations (page 155)
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Plotting 3D functions of 2 variables

The general format for drawing a surface defined by a formula f(x, y) of two
variables x and y is:

draw(f(x,y), x = a..b, y = c..d, options)

where a..b and c..d define the range of x and y, and where options prescribes
zero or more options as described in 4.0.8 on page 155. An example of
an option is title == ”TitleofGraph”. An alternative format involving a
function f is also available.

The simplest way to plot a function of two variables is to use a formula. With
formulas you always precede the range specifications with the variable name
and an = sign.

draw(cos(x*y),x=-3..3,y=-3..3)

Figure 4.11: cos(x ∗ y), x = −3..3, y = −3..3
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Plotting 3D parametric space curves

The general format for drawing a three-dimensional space curve defined by
parametric formulas x = f(t), y = g(t), and z = h(t) is:

draw(curve(f(t),g(t),h(t)), t = a..b, options)

where a..b defines the range of the independent variable t, and where options
prescribes zero or more options as described in 4.0.8 on page 155. An
example of an option is title == ”TitleofGraph”. An alternative format
involving functions f , g and h is also available.

If you use explicit formulas to draw a space curve, always precede the range
specification with the variable name and an = sign.

draw(curve(5*cos(t), 5*sin(t),t), t=-12..12)

Figure 4.12: curve(5 ∗ cos(t), 5 ∗ sin(t), t), t = −12..12
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Plotting 3D parametric surfaces

The general format for drawing a three-dimensional graph defined by para-
metric formulas x = f(u, v), y = g(u, v), and z = h(u, v) is:

draw(surface(f(u,v),g(u,v),h(u,v)), u = a..b, v = c..d, options)

where a..b and c..d define the range of the independent variables u and v,
and where options prescribes zero or more options as described in 4.0.8
on page 155. An example of an option is title == ”TitleofGraph”. An
alternative format involving functions f , g and h is also available.

This example draws a graph of a surface plotted using the parabolic cylindrical
coordinate system option. The values of the functions supplied to surface are
interpreted in coordinates as given by a coordinates option, here as parabolic
cylindrical coordinates.

draw(surface(u*cos(v), u*sin(v), v*cos(u)), u=-4..4, v=0..%pi,

coordinates== parabolicCylindrical)

Figure 4.13: surface(u ∗ cos(v), u ∗ sin(v), v ∗ cos(u)), u = −4..4, v = 0..π

4.0.8 Three-Dimensional Options

The draw commands optionally take an optional list of options such as coordinates
as shown in the last example. Each option is given by the syntax: name ==
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value. Here is a list of the available options in the order that they are described
below:

title The title option gives a title to the graph
title == "Title of Graph"

coordinates The coordinates option indicates the coordinate system
in which the graph is plotted. This can be one of:
bipolar, bipolarCylindrical, cartesian,
conical, cylindrical, elliptic,
ellipticCylindrical, oblateSpheroidal,
parabolic, parabolicCylindrical, paraboloidal
polar, prolateSpheroidal, spherical, and
toroidal
coordinates == polar

var1Steps The var1Steps option specifies the number of intervals
to divide a surface plot for the first parameter
var1Steps == 30

var2Steps The var1Steps option specifies the number of intervals
to divide a surface plot for the second parameter
var2Steps == 30

style The style determines which of four rendering algorithms
is used for the graph. The choices are wireMesh,
solid, shade, smooth
style == "smooth"

colorFunction The colorFunction names a function that will be called
to determine the color of each point. If we have the function
color2(u,v) == u**2 - v**2 we can call it with
colorFunction == color2

tubeRadius The tubeRadius option specifies the radius of the tube
that encircles the specified space curve.
tubeRadius == .3

tubePoints The tubePoints option specifies the number of vertices
defining the polygon that is used to create a tube around the
specified space curve. The larger this number is the more
cylindrical the tube becomes.
tubePoints == 3

space The space option lets you build multiple graphs in
three space. To use this option, first create an empty
three-space object calling create3Space as in:
s:=create3Space()$(ThreeSpace SF)

and then use the space option thereafter.
space == s
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4.0.9 Three-Dimensional Control-Panel

Once you have created a viewport, move your mouse to the viewport and click
with your left mouse button. This displays a control-panel on the side of the
viewport that is closest to where you clicked.

Figure 4.14: Three-dimensional control-panel.

Transformations

We recommend you first select the Bounds button while executing transfor-
mations since the bounding box displayed indicates the object’s position as it
changes.

Rotate: A rotation transformation occurs by clicking the mouse within the
Rotate window in the upper left corner of the control-panel. The rotation
is computed in spherical coordinates, using the horizontal mouse position
to increment or decrement the value of the longitudinal angle θ within the
range of 0 to 2π and the vertical mouse position to increment or decrement
the value of the latitudinal angle ϕ within the range of -π to π. The active
mode of rotation is displayed in green on a color monitor or in clear text
on a black and white monitor, while the inactive mode is displayed in red
for color display or a mottled pattern for black and white.

origin: The origin button indicates that the rotation is to occur with
respect to the origin of the viewing space, that is indicated by the
axes.
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object: The object button indicates that the rotation is to occur with
respect to the center of volume of the object, independent of the axes’
origin position.

Scale: A scaling transformation occurs by clicking the mouse within the Scale
window in the upper center of the control-panel, containing a zoom arrow.
The axes along which the scaling is to occur are indicated by selecting the
appropriate button above the zoom arrow window. The selected axes are
displayed in green on a color monitor or in clear text on a black and white
monitor, while the unselected axes are displayed in red for a color display
or a mottled pattern for black and white.

uniform: Uniform scaling along the x, y and z axes occurs when all the
axes buttons are selected.

non-uniform: If any of the axes buttons are not selected, non-uniform
scaling occurs, that is, scaling occurs only in the direction of the axes
that are selected.

Translate: Translation occurs by indicating with the mouse in the Translate
window the direction you want the graph to move. This window is located
in the upper right corner of the control-panel and contains a potentiometer
with crossed arrows pointing up, down, left and right. Along the top of
the Translate window are three buttons (XY, XZ, and YZ) indicating
the three orthographic projection planes. Each orientates the group as a
view into that plane. Any translation of the graph occurs only along this
plane.

Messages

The window directly below the potentiometer windows for transformations is
used to display system messages relating to the viewport, the control-panel and
the current graph displaying status.

Colormap

Directly below the message window is the colormap range indicator window.
The Axiom Colormap shows a sampling of the spectrum from which hues can
be drawn to represent the colors of a surface. The Colormap is composed of
five shades for each of the hues along this spectrum. By moving the markers
above and below the Colormap, the range of hues that are used to color the
existing surface are set. The bottom marker shows the hue for the low end of
the color range and the top marker shows the hue for the upper end of the range.
Setting the bottom and top markers at the same hue results in monochromatic
smooth shading of the graph when Smoothmode is selected. At each end of the
Colormap are + and - buttons. When clicked on, these increment or decrement
the top or bottom marker.
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Buttons

Below the Colormap window and to the left are located various buttons that
determine the characteristics of a graph. The buttons along the bottom and
right hand side all have special meanings; the remaining buttons in the first
row indicate the mode or style used to display the graph. The second row are
toggles that turn on or off a property of the graph. On a color monitor, the
property is on if green (clear text, on a monochrome monitor) and off if red
(mottled pattern, on a monochrome monitor). Here is a list of their functions.

Wire displays surface and tube plots as a wireframe image in a single color
(blue) with no hidden surfaces removed, or displays space curve plots in
colors based upon their parametric variables. This is the fastest mode
for displaying a graph. This is very useful when you want to find a good
orientation of your graph.

Solid displays the graph with hidden surfaces removed, drawing each polygon
beginning with the furthest from the viewer. The edges of the polygons
are displayed in the hues specified by the range in the Colormap window.

Shade displays the graph with hidden surfaces removed and with the polygons
shaded, drawing each polygon beginning with the furthest from the viewer.
Polygons are shaded in the hues specified by the range in the Colormap
window using the Phong illumination model.

Smooth displays the graph using a renderer that computes the graph one line
at a time. The location and color of the graph at each visible point
on the screen are determined and displayed using the Phong illumination
model. Smooth shading is done in one of two ways, depending on the range
selected in the colormap window and the number of colors available from
the hardware and/or window manager. When the top and bottom markers
of the colormap range are set to different hues, the graph is rendered
by dithering between the transitions in color hue. When the top and
bottom markers of the colormap range are set to the same hue, the graph
is rendered using the Phong smooth shading model. However, if enough
colors cannot be allocated for this purpose, the renderer reverts to the
color dithering method until a sufficient color supply is available. For this
reason, it may not be possible to render multiple Phong smooth shaded
graphs at the same time on some systems.

Bounds encloses the entire volume of the viewgraph within a bounding box,
or removes the box if previously selected. The region that encloses the
entire volume of the viewport graph is displayed.

Axes displays Cartesian coordinate axes of the space, or turns them off if pre-
viously selected.

Outline causes quadrilateral polygons forming the graph surface to be outlined
in black when the graph is displayed in Shade mode.
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BW converts a color viewport to black and white, or vice-versa. When this
button is selected the control-panel and viewport switch to an immutable
colormap composed of a range of grey scale patterns or tiles that are used
wherever shading is necessary.

Light takes you to a control-panel described below.

ViewVolume takes you to another control-panel as described below.

Save creates a menu of the possible file types that can be written using the
control-panel. The Exit button leaves the save menu. The Pixmap but-
ton writes an Axiom pixmap of the current viewport contents. The file
is called axiom3d.pixmap and is located in the directory from which
Axiom or viewalone was started. The PS button writes the current
viewport contents to PostScript output rather than to the viewport win-
dow. By default the file is called axiom3d.ps; however, if a file name is
specified in the user’s .Xdefaults file it is used. The file is placed in the
directory from which the Axiom or viewalone session was begun. See
also the write function.

Reset returns the object transformation characteristics back to their initial
states.

Hide causes the control-panel for the corresponding viewport to disappear from
the screen.

Quit queries whether the current viewport session should be terminated.

Light

The Light button changes the control-panel into the Lighting Control-Panel.
At the top of this panel, the three axes are shown with the same orientation as
the object. A light vector from the origin of the axes shows the current position
of the light source relative to the object. At the bottom of the panel is anAbort
button that cancels any changes to the lighting that were made, and a Return
button that carries out the current set of lighting changes on the graph.

XY: TheXY lighting axes window is below the Lighting Control-Panel title
and to the left. This changes the light vector within the XY view plane.

Z: The Z lighting axis window is below the Lighting Control-Panel title and
in the center. This changes the Z location of the light vector.

Intensity: Below the Lighting Control-Panel title and to the right is the
light intensity meter. Moving the intensity indicator down decreases the
amount of light emitted from the light source. When the indicator is at
the top of the meter the light source is emitting at 100% intensity. At the
bottom of the meter the light source is emitting at a level slightly above
ambient lighting.
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View Volume

The View Volume button changes the control-panel into the Viewing Vol-
ume Panel. At the bottom of the viewing panel is an Abort button that
cancels any changes to the viewing volume that were made and a Return button
that carries out the current set of viewing changes to the graph.

Eye Reference: At the top of this panel is the Eye Reference window. It
shows a planar projection of the viewing pyramid from the eye of the
viewer relative to the location of the object. This has a bounding region
represented by the rectangle on the left. Below the object rectangle is the
Hither window. By moving the slider in this window the hither clipping
plane sets the front of the view volume. As a result of this depth clipping
all points of the object closer to the eye than this hither plane are not
shown. The Eye Distance slider to the right of the Hither slider is used
to change the degree of perspective in the image.

Clip Volume: The Clip Volume window is at the bottom of the Viewing
Volume Panel. On the right is a Settings menu. In this menu are
buttons to select viewing attributes. Selecting the Perspective button
computes the image using perspective projection. The Show Region
button indicates whether the clipping region of the volume is to be drawn
in the viewport and the Clipping On button shows whether the view
volume clipping is to be in effect when the image is drawn. The left side
of the Clip Volume window shows the clipping boundary of the graph.
Moving the knobs along the X, Y, and Z sliders adjusts the volume of the
clipping region accordingly.

4.0.10 Operations for Three-Dimensional Graphics

Here is a summary of useful Axiom operations for three-dimensional graphics.
Each operation name is followed by a list of arguments. Each argument is
written as a variable informally named according to the type of the argument
(for example, integer). If appropriate, a default value for an argument is given
in parentheses immediately following the name.

adaptive3D? ()

tests whether space curves are to be plotted according to the adaptive
refinement algorithm.

axes (viewport, string("on"))

turns the axes on and off.

close (viewport)

closes the viewport.
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colorDef (viewport, color1(1), color2(27))

sets the colormap range to be from color1 to color2.

controlPanel (viewport, string("off"))

declares whether the control-panel for the viewport is to be displayed or
not.

diagonals (viewport, string("off"))

declares whether the polygon outline includes the diagonals or not.

drawStyle (viewport, style)

selects which of four drawing styles are used: "wireMesh", "solid",

"shade", or "smooth".

eyeDistance (viewport,float(500))

sets the distance of the eye from the origin of the object for use in the
perspective.

key (viewport)

returns the operating system process ID number for the viewport.

lighting (viewport, floatx(-0.5), floaty(0.5), floatz(0.5))

sets the Cartesian coordinates of the light source.

modifyPointData (viewport,integer,point)

replaces the coordinates of the point with the index integer with point.

move (viewport, integerx(viewPosDefault), integery(viewPosDefault))

moves the upper left-hand corner of the viewport to screen position
(integerx, integery).

options (viewport)

returns a list of all current draw options.

outlineRender (viewport, string("off"))

turns polygon outlining off or on when drawing in "shade" mode.

perspective (viewport, string("on"))

turns perspective viewing on and off.

reset (viewport)

resets the attributes of a viewport to their initial settings.

resize (viewport, integerwidth (viewSizeDefault), integerheight
(viewSizeDefault))

resets the width and height values for a viewport.

rotate (viewport, numberθ(viewThetaDefapult), numberϕ(viewPhiDefault))

rotates the viewport by rotation angles for longitude (θ) and latitude (ϕ).
Angles designate radians if given as floats, or degrees if given as integers.
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setAdaptive3D (boolean(true))

sets whether space curves are to be plotted according to the adaptive
refinement algorithm.

setMaxPoints3D (integer(1000))

sets the default maximum number of possible points to be used when
constructing a three-dimensional space curve.

setMinPoints3D (integer(49))

sets the default minimum number of possible points to be used when
constructing a three-dimensional space curve.

setScreenResolution3D (integer(49))

sets the default screen resolution constant used in setting the computation
limit of adaptively generated three-dimensional space curve plots.

showRegion (viewport, string("off"))

declares whether the bounding box of a graph is shown or not.

subspace (viewport)

returns the space component.

subspace (viewport, subspace)

resets the space component to subspace.

title (viewport, string)

gives the viewport the title string.

translate (viewport, floatx(viewDeltaXDefault), floaty(viewDeltaYDefault))

translates the object horizontally and vertically relative to the center of
the viewport.

intensity (viewport,float(1.0))

resets the intensity I of the light source, 0 ≤ I ≤ 1.

tubePointsDefault ([integer(6)])

sets or indicates the default number of vertices defining the polygon that
is used to create a tube around a space curve.

tubeRadiusDefault ([float(0.5)])

sets or indicates the default radius of the tube that encircles a space curve.

var1StepsDefault ([integer(27)])

sets or indicates the default number of increments into which the grid
defining a surface plot is subdivided with respect to the first parameter
declared in the surface function.

var2StepsDefault ([integer(27)])

sets or indicates the default number of increments into which the grid
defining a surface plot is subdivided with respect to the second parameter
declared in the surface function.
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viewDefaults ([integerpoint, integerline, integeraxes, integerunits, floatpoint,

listposition, listsize])

resets the default settings for the point color, line color, axes color, units
color, point size, viewport upper left-hand corner position, and the view-
port size.

viewDeltaXDefault ([float(0)])

resets the default horizontal offset from the center of the viewport, or
returns the current default offset if no argument is given.

viewDeltaYDefault ([float(0)])

resets the default vertical offset from the center of the viewport, or returns
the current default offset if no argument is given.

viewPhiDefault ([float(-π/4)])

resets the default latitudinal view angle, or returns the current default
angle if no argument is given. ϕ is set to this value.

viewpoint (viewport, floatx, floaty, floatz)

sets the viewing position in Cartesian coordinates.

viewpoint (viewport, floatθ, Floatϕ)

sets the viewing position in spherical coordinates.

viewpoint (viewport, Floatθ, Floatϕ, FloatscaleFactor, FloatxOffset,

FloatyOffset)

sets the viewing position in spherical coordinates, the scale factor, and
offsets. θ (longitude) and ϕ (latitude) are in radians.

viewPosDefault ([list([0,0])])

sets or indicates the position of the upper left-hand corner of a two-dimen-
sional viewport, relative to the display root window (the upper left-hand
corner of the display is [0, 0]).

viewSizeDefault ([list([400,400])])

sets or indicates the width and height dimensions of a viewport.

viewThetaDefault ([float(π/4)])

resets the default longitudinal view angle, or returns the current default
angle if no argument is given. When a parameter is specified, the default
longitudinal view angle θ is set to this value.

viewWriteAvailable ([list(["pixmap", "bitmap", "postscript",

"image"])])

indicates the possible file types that can be created with the write
function.

viewWriteDefault ([list([])])

sets or indicates the default types of files that are created in addition to
the data file when a write command is executed on a viewport.
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viewScaleDefault ([float])

sets the default scaling factor, or returns the current factor if no argument
is given.

write (viewport, directory, [option])

writes the file data for viewport in the directory directory. An optional
third argument specifies a file type (one of pixmap, bitmap, postscript,
or image), or a list of file types. An additional file is written for each file
type listed.

scale (viewport, float(2.5))

specifies the scaling factor.

4.0.11 Customization using .Xdefaults

Both the two-dimensional and three-dimensional drawing facilities consult the
.Xdefaults file for various defaults. The list of defaults that are recognized by
the graphing routines is discussed in this section. These defaults are preceded
by Axiom.3D. for three-dimensional viewport defaults, Axiom.2D. for two-di-
mensional viewport defaults, or Axiom* (no dot) for those defaults that are
acceptable to either viewport type.

Axiom*buttonFont: font
This indicates which font type is used for the button text on the control-
panel. Rom11

Axiom.2D.graphFont: font (2D only)
This indicates which font type is used for displaying the graph numbers
and slots in the Graphs section of the two-dimensional control-panel.
Rom22

Axiom.3D.headerFont: font
This indicates which font type is used for the axes labels and potentiometer
header names on three-dimensional viewport windows. This is also used
for two-dimensional control-panels for indicating which font type is used
for potentionmeter header names and multiple graph title headers. Itl14

Axiom*inverse: switch
This indicates whether the background color is to be inverted from white to
black. If on, the graph viewports use black as the background color. If off
or no declaration is made, the graph viewports use a white background.
off

Axiom.3D.lightingFont: font (3D only)
This indicates which font type is used for the x, y, and z labels of the two
lighting axes potentiometers, and for the Intensity title on the lighting
control-panel. Rom10
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Axiom.2D.messageFont, Axiom.3D.messageFont: font
These indicate the font type to be used for the text in the control-panel
message window. Rom14

Axiom*monochrome: switch
This indicates whether the graph viewports are to be displayed as if the
monitor is black and white, that is, a 1 bit plane. If on is specified, the
viewport display is black and white. If off is specified, or no declaration
for this default is given, the viewports are displayed in the normal fashion
for the monitor in use. off

Axiom.2D.postScript: filename
This specifies the name of the file that is generated when a 2D PostScript
graph is saved. axiom2d.ps

Axiom.3D.postScript: filename
This specifies the name of the file that is generated when a 3D PostScript
graph is saved. axiom3d.ps

Axiom*titleFont font
This indicates which font type is used for the title text and, for three-di-
mensional graphs, in the lighting and viewing-volume control-panel win-
dows. Rom14

Axiom.2D.unitFont: font (2D only)
This indicates which font type is used for displaying the unit labels on
two-dimensional viewport graphs. 6x10

Axiom.3D.volumeFont: font (3D only)
This indicates which font type is used for the x, y, and z labels of the clip-
ping region sliders; for the Perspective, Show Region, and Clipping
On buttons under Settings, and above the windows for the Hither and
Eye Distance sliders in the Viewing Volume Panel of the three-di-
mensional control-panel. Rom8
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Using Types and Modes

In this chapter we look at the key notion of type and its generalization mode. We
show that every Axiom object has a type that determines what you can do with
the object. In particular, we explain how to use types to call specific functions
from particular parts of the library and how types and modes can be used to
create new objects from old. We also look at Record and Union types and the
special type Any . Finally, we give you an idea of how Axiom manipulates types
and modes internally to resolve ambiguities.

5.1 The Basic Idea

The Axiom world deals with many kinds of objects. There are mathematical
objects such as numbers and polynomials, data structure objects such as lists
and arrays, and graphics objects such as points and graphic images. Functions
are objects too.

Axiom organizes objects using the notion of domain of computation, or simply
domain. Each domain denotes a class of objects. The class of objects it denotes
is usually given by the name of the domain: Integer for the integers, Float
for floating-point numbers, and so on. The convention is that the first letter
of a domain name is capitalized. Similarly, the domain Polynomial(Integer)

denotes “polynomials with integer coefficients.” Also, Matrix(Float) denotes
“matrices with floating-point entries.”

Every basic Axiom object belongs to a unique domain. The integer 3 be-
longs to the domain Integer and the polynomial x + 3 belongs to the domain
Polynomial(Integer). The domain of an object is also called its type. Thus
we speak of “the type Integer” and “the type Polynomial(Integer).”

After an Axiom computation, the type is displayed toward the right-hand side
of the page (or screen).

167
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-3

−3

Type: Integer

Here we create a rational number but it looks like the last result. The type
however tells you it is different. You cannot identify the type of an object by
how Axiom displays the object.

-3/1

−3

Type: Fraction Integer

When a computation produces a result of a simpler type, Axiom leaves the type
unsimplified. Thus no information is lost.

x + 3 - x

3

Type: Polynomial Integer

This seldom matters since Axiom retracts the answer to the simpler type if it
is necessary.

factorial(%)

6

Type: Expression Integer

When you issue a positive number, the type PositiveInteger is printed. Surely,
3 also has type Integer! The curious reader may now have two questions. First,
is the type of an object not unique? Second, how is PositiveInteger related
to Integer?

3

3

Type: PositiveInteger
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Any domain can be refined to a subdomain by a membership predicate. A
predicate is a function that, when applied to an object of the domain, re-
turns either true or false. For example, the domain Integer can be refined
to the subdomain PositiveInteger, the set of integers x such that x > 0, by
giving the Axiom predicate x +-> x > 0. Similarly, Axiom can define subdo-
mains such as “the subdomain of diagonal matrices,” “the subdomain of lists
of length two,” “the subdomain of monic irreducible polynomials in x,” and so
on. Trivially, any domain is a subdomain of itself.

While an object belongs to a unique domain, it can belong to any number of
subdomains. Any subdomain of the domain of an object can be used as the type
of that object. The type of 3 is indeed both Integer and PositiveInteger as
well as any other subdomain of integer whose predicate is satisfied, such as “the
prime integers,” “the odd positive integers between 3 and 17,” and so on.

5.1.1 Domain Constructors

In Axiom, domains are objects. You can create them, pass them to functions,
and, as we’ll see later, test them for certain properties.

You ask for a value of a function by applying its name to a set of arguments.

To ask for “the factorial of 7” you enter this expression to Axiom. This applies
the function factorial to the value 7 to compute the result.

factorial(7)

5040

Type: PositiveInteger

Enter the type Polynomial (Integer) as an expression to Axiom. This looks
much like a function call as well. It is! The result is appropriately stated to be
of type Domain, which according to our usual convention, denotes the class of
all domains.

Polynomial(Integer)

Polynomial Integer

Type: Domain

The most basic operation involving domains is that of building a new domain
from a given one. To create the domain of “polynomials over the integers,”
Axiom applies the function Polynomial to the domain Integer. A function
like Polynomial is called a domain constructor or, more simply, a constructor.
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A domain constructor is a function that creates a domain. An argument to a
domain constructor can be another domain or, in general, an arbitrary kind of
object. Polynomial takes a single domain argument while SquareMatrix takes
a positive integer as a first argument to give the matrix dimension and a domain
as a second argument to give the type of its components.

What kinds of domains can you use as the argument to List or Polynomial

or SquareMatrix? Well, the last two are mathematical in nature. You want to
be able to perform algebraic operations like “+” and “*” on polynomials and
square matrices, and operations such as determinant on square matrices. So
you want to allow polynomials of integers and polynomials of square matrices
with complex number coefficients and, in general, anything that “makes sense.”
At the same time, you don’t want Axiom to be able to build nonsense domains
such as “polynomials of strings!”

In contrast to algebraic structures, data structures can hold any kind of object.
Operations on lists such as insert, delete, and concat just manipulate the list
itself without changing or operating on its elements. Thus you can build List

over almost any datatype, including itself.

Create a complicated algebraic domain.

List (List (Matrix (Polynomial (Complex (Fraction (Integer))))))

List List Matrix Polynomial Complex Fraction Integer

Type: Domain

Try to create a meaningless domain.

Polynomial(String)

Polynomial String is not a valid type.

Evidently from our last example, Axiom has some mechanism that tells what a
constructor can use as an argument. This brings us to the notion of category.
As domains are objects, they too have a domain. The domain of a domain is a
category. A category is simply a type whose members are domains.

A common algebraic category is Ring, the class of all domains that are “rings.”
A ring is an algebraic structure with constants 0 and 1 and operations “+”, “-”,
and “*”. These operations are assumed “closed” with respect to the domain,
meaning that they take two objects of the domain and produce a result object
also in the domain. The operations are understood to satisfy certain “axioms,”
certain mathematical principles providing the algebraic foundation for rings.
For example, the additive inverse axiom for rings states:

Every element x has an additive inverse y such that x+ y = 0.
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The prototypical example of a domain that is a ring is the integers. Keep them
in mind whenever we mention Ring.

Many algebraic domain constructors such as Complex, Polynomial, Fraction,
take rings as arguments and return rings as values. You can use the infix
operator “has” to ask a domain if it belongs to a particular category.

All numerical types are rings. Domain constructor Polynomial builds “the ring
of polynomials over any other ring.”

Polynomial(Integer) has Ring

true

Type: Boolean

Constructor List never produces a ring.

List(Integer) has Ring

false

Type: Boolean

The constructor Matrix(R) builds “the domain of all matrices over the ring R.”
This domain is never a ring since the operations “+”, “-”, and “*” on matrices
of arbitrary shapes are undefined.

Matrix(Integer) has Ring

false

Type: Boolean

Thus you can never build polynomials over matrices.

Polynomial(Matrix(Integer))

Polynomial Matrix Integer is not a valid type.

Use SquareMatrix(n,R) instead. For any positive integer n, it builds “the ring
of n by n matrices over R.”

Polynomial(SquareMatrix(7,Complex(Integer)))
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Polynomial SquareMatrix(7,Complex Integer)

Type: Domain

Another common category is Field, the class of all fields. A field is a ring with
additional operations. For example, a field has commutative multiplication and
a closed operation “/” for the division of two elements. Integer is not a field
since, for example, 3/2 does not have an integer result. The prototypical exam-
ple of a field is the rational numbers, that is, the domain Fraction(Integer).
In general, the constructor Fraction takes an IntegralDomain, which is a ring
with additional properties, as an argument and returns a field. Other domain
constructors, such as Complex, build fields only if their argument domain is a
field.

The complex integers (often called the “Gaussian integers”) do not form a field.

Complex(Integer) has Field

false

Type: Boolean

But fractions of complex integers do.

Fraction(Complex(Integer)) has Field

true

Type: Boolean

The algebraically equivalent domain of complex rational numbers is a field since
domain constructor Complex produces a field whenever its argument is a field.

Complex(Fraction(Integer)) has Field

true

Type: Boolean

The most basic category is Type. It denotes the class of all domains and sub-
domains. Note carefully that Type does not denote the class of all types. The
type of all categories is Category. The type of Type itself is undefined. Domain
constructor List is able to build “lists of elements from domain D” for arbitrary
D simply by requiring that D belong to category Type.

Now, you may ask, what exactly is a category? Like domains, categories can be
defined in the Axiom language. A category is defined by three components:
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1. a name (for example, Ring), used to refer to the class of domains that the
category represents;

2. a set of operations, used to refer to the operations that the domains of
this class support (for example, “+”, “-”, and “*” for rings); and

3. an optional list of other categories that this category extends.

This last component is a new idea. And it is key to the design of Axiom. Because
categories can extend one another, they form hierarchies. All categories are
extensions of Type and that Field is an extension of Ring.

The operations supported by the domains of a category are called the exports
of that category because these are the operations made available for system-
wide use. The exports of a domain of a given category are not only the ones
explicitly mentioned by the category. Since a category extends other categories,
the operations of these other categories—and all categories these other categories
extend—are also exported by the domains.

For example, polynomial domains belong to PolynomialCategory. This cat-
egory explicitly mentions some twenty-nine operations on polynomials, but it
extends eleven other categories (including Ring). As a result, the current system
has over one hundred operations on polynomials.

If a domain belongs to a category that extends, say, Ring, it is convenient to
say that the domain exports Ring. The name of the category thus provides a
convenient shorthand for the list of operations exported by the category. Rather
than listing operations such as “+” and “*” of Ring each time they are needed,
the definition of a type simply asserts that it exports category Ring.

The category name, however, is more than a shorthand. The name Ring, in
fact, implies that the operations exported by rings are required to satisfy a set
of “axioms” associated with the name Ring. This subtle but important feature
distinguishes Axiom from other abstract datatype designs.

Why is it not correct to assume that some type is a ring if it exports all of
the operations of Ring? Here is why. Some languages such as APL denote the
Boolean constants true and false by the integers 1 and 0 respectively, then
use “+” and “*” to denote the logical operators or and and. But with these
definitions Boolean is not a ring since the additive inverse axiom is violated.
That is, there is no inverse element a such that 1+a = 0, or, in the usual terms:
true or a = false. This alternative definition of Boolean can be easily and
correctly implemented in Axiom, since Boolean simply does not assert that it is
of category Ring. This prevents the system from building meaningless domains
such as Polynomial(Boolean) and then wrongfully applying algorithms that
presume that the ring axioms hold.

Enough on categories. We now return to our discussion of domains.

Domains export a set of operations to make them available for system-wide use.
Integer, for example, exports the operations “+” and “=” given by the signa-
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tures “+”: (Integer,Integer) → Integer and “=”: (Integer,Integer) → Boolean,
respectively. Each of these operations takes two Integer arguments. The
“+” operation also returns an Integer but “=” returns a Boolean: true or
false. The operations exported by a domain usually manipulate objects of the
domain—but not always.

The operations of a domain may actually take as arguments, and return as
values, objects from any domain. For example, Fraction (Integer) exports
the operations “/”: (Integer,Integer) → Fraction(Integer) and characteristic:
→ NonNegativeInteger.

Suppose all operations of a domain take as arguments and return as values, only
objects from other domains. This kind of domain is what Axiom calls a package.

A package does not designate a class of objects at all. Rather, a package is just
a collection of operations. Actually the bulk of the Axiom library of algorithms
consists of packages. The facilities for factorization; integration; solution of lin-
ear, polynomial, and differential equations; computation of limits; and so on,
are all defined in packages. Domains needed by algorithms can be passed to
a package as arguments or used by name if they are not “variable.” Packages
are useful for defining operations that convert objects of one type to another,
particularly when these types have different parameterizations. As an exam-
ple, the package PolynomialFunction2(R,S) defines operations that convert
polynomials over a domain R to polynomials over S. To convert an object
from Polynomial(Integer) to Polynomial(Float), Axiom builds the pack-
age PolynomialFunctions2(Integer,Float) in order to create the required
conversion function. (This happens “behind the scenes” for you.)

Axiom categories, domains and packages and all their contained functions are
written in the Axiom programming language, called the Spad language, and
have been compiled into machine code. This is what comprises the Axiom
library. We will show you how to use these domains and their functions and
how to write your own functions.

There is a second language, called Aldor[4] that is compatible with the Spad
language. They both can create programs than can execute under Axiom. Aldor
is a standalone version of the Spad language and contains some additional
syntax to support standalone programs. In addition, Aldor includes some new
ideas such as post-facto domain extensions.

5.2 Writing Types and Modes

We have already seen in the last section several examples of types. Most of these
examples had either no arguments (for example, Integer) or one argument (for
example, Polynomial (Integer)). In this section we give details about writing
arbitrary types. We then define modes and discuss how to write them. We
conclude the section with a discussion on constructor abbreviations.
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When might you need to write a type or mode? You need to do so when you
declare variables.

a : PositiveInteger

Type: Void

You need to do so when you declare functions

f : Integer -> String

Type: Void

You need to do so when you convert an object from one type to another.

factor(2 :: Complex(Integer))

−i (1 + i)
2

Type: Factored Complex Integer

(2 = 3)$Integer

false

Type: Boolean

You need to do so when you give computation target type information.

(2 = 3)@Boolean

false

Type: Boolean

5.2.1 Types with No Arguments

A constructor with no arguments can be written either with or without trailing
opening and closing parentheses “()”.

Boolean() is the same as Boolean
Integer() is the same as Integer
String() is the same as String
Void() is the same as Void

It is customary to omit the parentheses.
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5.2.2 Types with One Argument

A constructor with one argument can frequently be written with no parentheses.
Types nest from right to left so that Complex Fraction Polynomial Integer

is the same as Complex (Fraction (Polynomial (Integer))). You need to
use parentheses to force the application of a constructor to the correct argument,
but you need not use any more than is necessary to remove ambiguities.

Here are some guidelines for using parentheses (they are possibly slightly more
restrictive than they need to be).

If the argument is an expression like 2 + 3 then you must enclose the argument
in parentheses.

e : PrimeField(2 + 3)

Type: Void

If the type is to be used with package calling then you must enclose the argument
in parentheses.

content(2)$Polynomial(Integer)

2

Type: Integer

Alternatively, you can write the type without parentheses then enclose the whole
type expression with parentheses.

content(2)$(Polynomial Complex Fraction Integer)

2

Type: Complex Fraction Integer

If you supply computation target type information then you should enclose the
argument in parentheses.

(2/3)@Fraction(Polynomial(Integer))

2

3

Type: Fraction Polynomial Integer
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If the type itself has parentheses around it and we are not in the case of the
first example above, then the parentheses can usually be omitted.

(2/3)@Fraction(Polynomial Integer)

2

3

Type: Fraction Polynomial Integer

If the type is used in a declaration and the argument is a single-word type,
integer or symbol, then the parentheses can usually be omitted.

(d,f,g) : Complex Polynomial Integer

Type: Void

5.2.3 Types with More Than One Argument

If a constructor has more than one argument, you must use parentheses. Some
examples are

UnivariatePolynomial(x, Float)

MultivariatePolynomial([z,w,r], Complex Float)

SquareMatrix(3, Integer)

FactoredFunctions2(Integer,Fraction Integer)

5.2.4 Modes

A mode is a type that possibly is a question mark (?) or contains one in an
argument position. For example, the following are all modes.

?

Polynomial ?

Matrix Polynomial ?

SquareMatrix(3,?)

Integer

OneDimensionalArray(Float)

As is evident from these examples, a mode is a type with a part that is not
specified (indicated by a question mark). Only one “?” is allowed per mode
and it must appear in the most deeply nested argument that is a type. Thus
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?(Integer), Matrix(? (Polynomial)), SquareMatrix(?, Integer) (it re-
quires a numeric argument) and SquareMatrix(?, ?) are all invalid. The
question mark must take the place of a domain, not data. This rules out, for
example, the two SquareMatrix expressions.

Modes can be used for declarations and conversions. However, you cannot use
a mode for package calling or giving target type information.

5.2.5 Abbreviations

Every constructor has an abbreviation that you can freely substitute for the
constructor name. In some cases, the abbreviation is nothing more than the
capitalized version of the constructor name.

Aside from allowing types to be written more concisely, abbreviations are
used by Axiom to name various system files for constructors (such as library
filenames, test input files and example files). Here are some common abbre-
viations.

COMPLEX abbreviates Complex DFLOAT abbreviates DoubleFloat

EXPR abbreviates Expression FLOAT abbreviates Float

FRAC abbreviates Fraction INT abbreviates Integer

MATRIX abbreviates Matrix NNI abbreviates NonNegativeInteger

PI abbreviates PositiveInteger POLY abbreviates Polynomial

STRING abbreviates String UP abbreviates UnivariatePolynomial

You can combine both full constructor names and abbreviations in a type ex-
pression. Here are some types using abbreviations.

POLY INT is the same as Polynomial(INT)

POLY(Integer) is the same as Polynomial(Integer)

POLY(Integer) is the same as Polynomial(INT)

FRAC(COMPLEX(INT)) is the same as Fraction Complex Integer

FRAC(COMPLEX(INT)) is the same as FRAC(Complex Integer)

There are several ways of finding the names of constructors and their abbrevia-
tions. For a specific constructor, use )abbreviation query. You can also use
the )what system command to see the names and abbreviations of constructors.

)abbreviation query can be abbreviated (no pun intended) to )abb q.

)abb q Integer

INT abbreviates domain Integer
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The )abbreviation query command lists the constructor name if you give the
abbreviation. Issue )abb q if you want to see the names and abbreviations of
all Axiom constructors.

)abb q DMP

DMP abbreviates domain DistributedMultivariatePolynomial

Issue this to see all packages whose names contain the string “ode”.

)what packages ode

---------------------- Packages -----------------------

Packages with names matching patterns:

ode

EXPRODE ExpressionSpaceODESolver

FCPAK1 FortranCodePackage1

GRAY GrayCode

LODEEF ElementaryFunctionLODESolver

NODE1 NonLinearFirstOrderODESolver

ODECONST ConstantLODE

ODEEF ElementaryFunctionODESolver

ODEINT ODEIntegration

ODEPAL PureAlgebraicLODE

ODERAT RationalLODE

ODERED ReduceLODE

ODESYS SystemODESolver

ODETOOLS ODETools

UTSODE UnivariateTaylorSeriesODESolver

UTSODETL UTSodetools

5.3 Declarations

A declaration is an expression used to restrict the type of values that can be
assigned to variables. A colon “:” is always used after a variable or list of
variables to be declared.

For a single variable, the syntax for declaration is

variableName : typeOrMode

For multiple variables, the syntax is

(variableName1, variableName2, ...variableNameN): typeOrMode
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You can always combine a declaration with an assignment. When you do, it is
equivalent to first giving a declaration statement, then giving an assignment.

This declares one variable to have a type.

a : Integer

Type: Void

This declares several variables to have a type.

(b,c) : Integer

Type: Void

a, b and c can only hold integer values.

a := 45

45

Type: Integer

If a value cannot be converted to a declared type, an error message is displayed.

b := 4/5

Cannot convert right-hand side of assignment

4

-

5

to an object of the type Integer of the left-hand side.

This declares a variable with a mode.

n : Complex ?

Type: Void

This declares several variables with a mode.
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(p,q,r) : Matrix Polynomial ?

Type: Void

This complex object has integer real and imaginary parts.

n := -36 + 9 * %i

−36 + 9 i

Type: Complex Integer

This complex object has fractional symbolic real and imaginary parts.

n := complex(4/(x + y),y/x)

4

y + x
+

y

x
i

Type: Complex Fraction Polynomial Integer

This matrix has entries that are polynomials with integer coefficients.

p := [ [1,2],[3,4],[5,6] ]  1 2
3 4
5 6


Type: Matrix Polynomial Integer

This matrix has a single entry that is a polynomial with rational number coef-
ficients.

q := [ [x - 2/3] ]

[
x− 2

3

]
Type: Matrix Polynomial Fraction Integer

This matrix has entries that are polynomials with complex integer coefficients.

r := [ [1-%i*x,7*y+4*%i] ]
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[
−i x+ 1 7 y + 4 i

]
Type: Matrix Polynomial Complex Integer

Note the difference between this and the next example. This is a complex object
with polynomial real and imaginary parts.

f : COMPLEX POLY ? := (x + y*%i)**2

−y2 + x2 + 2 x y i

Type: Complex Polynomial Integer

This is a polynomial with complex integer coefficients. The objects are convert-
ible from one to the other.

g : POLY COMPLEX ? := (x + y*%i)**2

−y2 + 2 i x y + x2

Type: Polynomial Complex Integer

5.4 Records

A Record is an object composed of one or more other objects, each of which is
referenced with a selector. Components can all belong to the same type or each
can have a different type.

The syntax for writing a Record type is

Record(selector1:type1, selector2:type2, ..., selectorN:typeN)

You must be careful if a selector has the same name as a variable in the
workspace. If this occurs, precede the selector name by a single quote.

Record components are implicitly ordered. All the components of a record can
be set at once by assigning the record a bracketed tuple of values of the proper
length. For example:

r : Record(a:Integer, b: String) := [1, "two"]

[a = 1, b = "two"]
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Type: Record(a: Integer,b: String)

To access a component of a record r, write the name r, followed by a period,
followed by a selector.

The object returned by this computation is a record with two components: a
quotient part and a remainder part.

u := divide(5,2)

[quotient = 2, remainder = 1]

Type: Record(quotient: Integer,remainder: Integer)

This is the quotient part.

u.quotient

2

Type: PositiveInteger

This is the remainder part.

u.remainder

1

Type: PositiveInteger

You can use selector expressions on the left-hand side of an assignment to change
destructively the components of a record.

u.quotient := 8978

8978

Type: PositiveInteger

The selected component quotient has the value 8978, which is what is returned
by the assignment. Check that the value of u was modified.

u

[quotient = 8978, remainder = 1]
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Type: Record(quotient: Integer,remainder: Integer)

Selectors are evaluated. Thus you can use variables that evaluate to selectors
instead of the selectors themselves.

s := ’quotient

quotient

Type: Variable quotient

Be careful! A selector could have the same name as a variable in the workspace.
If this occurs, precede the selector name by a single quote, as in u.′quotient.

divide(5,2).s

2

Type: PositiveInteger

Here we declare that the value of bd has two components: a string, to be accessed
via name, and an integer, to be accessed via birthdayMonth.

bd : Record(name : String, birthdayMonth : Integer)

Type: Void

You must initially set the value of the entire Record at once.

bd := ["Judith", 3]

[name = "Judith", birthdayMonth = 3]

Type: Record(name: String,birthdayMonth: Integer)

Once set, you can change any of the individual components.

bd.name := "Katie"

"Katie"

Type: String
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Records may be nested and the selector names can be shared at different levels.

r : Record(a : Record(b: Integer, c: Integer), b: Integer)

Type: Void

The record r has a b selector at two different levels. Here is an initial value for
r.

r := [ [1,2], 3 ]

[a = [b = 1, c = 2], b = 3]

Type: Record(a: Record(b: Integer,c: Integer),b: Integer)

This extracts the b component from the a component of r.

r.a.b

1

Type: PositiveInteger

This extracts the b component from r.

r.b

3

Type: PositiveInteger

You can also use spaces or parentheses to refer to Record components. This is
the same as r.a.

r(a)

[b = 1, c = 2]

Type: Record(b: Integer,c: Integer)

This is the same as r.b.

r b
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3

Type: PositiveInteger

This is the same as r.b := 10.

r(b) := 10

10

Type: PositiveInteger

Look at r to make sure it was modified.

r

[a = [b = 1, c = 2], b = 10]

Type: Record(a: Record(b: Integer,c: Integer),b: Integer)

5.5 Unions

Type Union is used for objects that can be of any of a specific finite set of types.
Two versions of unions are available, one with selectors (like records) and one
without.

5.5.1 Unions Without Selectors

The declaration x : Union(Integer, String, F loat) states that x can have values
that are integers, strings or “big” floats. If, for example, the Union object is an
integer, the object is said to belong to the Integer branch of the Union. Note
that we are being a bit careless with the language here. Technically, the type
of x is always Union(Integer, String, Float). If it belongs to the Integer

branch, x may be converted to an object of type Integer.

The syntax for writing a Union type without selectors is

Union(type1, type2, ..., typeN)

The types in a union without selectors must be distinct.
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It is possible to create unions like Union(Integer, PositiveInteger) but they
are difficult to work with because of the overlap in the branch types. See below
for the rules Axiom uses for converting something into a union object.

The case infix operator returns a Boolean and can be used to determine the
branch in which an object lies.

This function displays a message stating in which branch of the Union the object
(defined as x above) lies.

sayBranch(x : Union(Integer,String,Float)) : Void ==

output

x case Integer => "Integer branch"

x case String => "String branch"

"Float branch"

This tries sayBranch with an integer.

sayBranch 1

Compiling function sayBranch with type Union(Integer,String,Float)

-> Void

Integer branch

Type: Void

This tries sayBranch with a string.

sayBranch "hello"

String branch

Type: Void

This tries sayBranch with a floating-point number.

sayBranch 2.718281828

Float branch

Type: Void

There are two things of interest about this particular example to which we would
like to draw your attention.
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1. Axiom normally converts a result to the target value before passing it to
the function. If we left the declaration information out of this function
definition then the sayBranch call would have been attempted with an
Integer rather than a Union, and an error would have resulted.

2. The types in a Union are searched in the order given. So if the type were
given as

sayBranch(x: Union(String,Integer,Float,Any)): Void

then the result would have been “String branch” because there is a con-
version from Integer to String.

Sometimes Union types can have extremely long names. Axiom therefore ab-
breviates the names of unions by printing the type of the branch first within
the Union and then eliding the remaining types with an ellipsis (...).

Here the Integer branch is displayed first. Use “::” to create a Union object
from an object.

78 :: Union(Integer,String)

78

Type: Union(Integer,...)

Here the String branch is displayed first.

s := "string" :: Union(Integer,String)

"string"

Type: Union(String,...)

Use typeOf to see the full and actual Union type.

typeOf s

Union(Integer, String)

Type: Domain

A common operation that returns a union is exquo which returns the “exact
quotient” if the quotient is exact,

three := exquo(6,2)
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3

Type: Union(Integer,...)

and "failed" if the quotient is not exact.

exquo(5,2)

"failed"

Type: Union("failed",...)

A union with a "failed" is frequently used to indicate the failure or lack of
applicability of an object. As another example, assign an integer a variable r
declared to be a rational number.

r: FRAC INT := 3

3

Type: Fraction Integer

The operation retractIfCan tries to retract the fraction to the underlying
domain Integer. It produces a union object. Here it succeeds.

retractIfCan(r)

3

Type: Union(Integer,...)

Assign it a rational number.

r := 3/2

3

2

Type: Fraction Integer

Here the retraction fails.

retractIfCan(r)

"failed"

Type: Union("failed",...)
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5.5.2 Unions With Selectors

Like records, you can write Union types with selectors.

The syntax for writing a Union type with selectors is

Union(selector1:type1, selector2:type2, ..., selectorN:typeN)

You must be careful if a selector has the same name as a variable in the
workspace. If this occurs, precede the selector name by a single quote. It
is an error to use a selector that does not correspond to the branch of the
Union in which the element actually lies.

Be sure to understand the difference between records and unions with selectors.
Records can have more than one component and the selectors are used to refer
to the components. Unions always have one component but the type of that
one component can vary. An object of type Record(a: Integer, b: Float,

c: String) contains an integer and a float and a string. An object of type
Union(a: Integer, b: Float, c: String) contains an integer or a float
or a string.

Here is a version of the sayBranch function that works with a union with
selectors. It displays a message stating in which branch of the Union the object
lies.

sayBranch(x:Union(i:Integer,s:String,f:Float)):Void==

output

x case i => "Integer branch"

x case s => "String branch"

"Float branch"

Note that case uses the selector name as its right-hand argument. If you ac-
cidentally use the branch type on the right-hand side of case, false will be
returned.

Declare variable u to have a union type with selectors.

u : Union(i : Integer, s : String)

Type: Void

Give an initial value to u.

u := "good morning"

"good morning"
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Type: Union(s: String,...)

Use case to determine in which branch of a Union an object lies.

u case i

false

Type: Boolean

u case s

true

Type: Boolean

To access the element in a particular branch, use the selector.

u.s

"good morning"

Type: String

5.6 The “Any” Domain

With the exception of objects of type Record, all Axiom data structures are
homogenous, that is, they hold objects all of the same type. If you need to get
around this, you can use type Any. Using Any, for example, you can create lists
whose elements are integers, rational numbers, strings, and even other lists.

Declare u to have type Any.

u: Any

Type: Void

Assign a list of mixed type values to u

u := [1, 7.2, 3/2, x**2, "wally"]
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1, 7.2,

3

2
, x2, "wally"

]
Type: List Any

When we ask for the elements, Axiom displays these types.

u.1

1

Type: PositiveInteger

Actually, these objects belong to Any but Axiom automatically converts them
to their natural types for you.

u.3

3

2

Type: Fraction Integer

Since type Any can be anything, it can only belong to type Type. Therefore it
cannot be used in algebraic domains.

v : Matrix(Any)

Matrix Any is not a valid type.

Perhaps you are wondering how Axiom internally represents objects of type
Any. An object of type Any consists not only a data part representing its nor-
mal value, but also a type part (a badge) giving its type. For example, the
value 1 of type PositiveInteger as an object of type Any internally looks like
[1, PositiveInteger()].

When should you use Any instead of a Union type? For a Union, you must know
in advance exactly which types you are going to allow. For Any, anything that
comes along can be accommodated.

5.7 Conversion

Conversion is the process of changing an object of one type into an object of
another type. The syntax for conversion is:

object ::newType
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By default, 3 has the type PositiveInteger.

3

3

Type: PositiveInteger

We can change this into an object of type Fraction Integer by using “::”.

3 :: Fraction Integer

3

Type: Fraction Integer

A coercion is a special kind of conversion that Axiom is allowed to do automati-
cally when you enter an expression. Coercions are usually somewhat safer than
more general conversions. The Axiom library contains operations called coerce
and convert. Only the coerce operations can be used by the interpreter to
change an object into an object of another type unless you explicitly use a ::.

By now you will be quite familiar with what types and modes look like. It is
useful to think of a type or mode as a pattern for what you want the result to
be.

Let’s start with a square matrix of polynomials with complex rational number
coefficients.

m : SquareMatrix(2,POLY COMPLEX FRAC INT)

Type: Void

m := matrix [ [x-3/4*%i,z*y**2+1/2],[3/7*%i*y**4 - x,12-%i*9/5] ]

[
x− 3

4 i y2 z + 1
2

3
7 i y4 − x 12− 9

5 i

]
Type: SquareMatrix(2,Polynomial Complex Fraction Integer)

We first want to interchange the Complex and Fraction layers. We do the
conversion by doing the interchange in the type expression.

m1 := m :: SquareMatrix(2,POLY FRAC COMPLEX INT)
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x− 3 i

4 y2 z + 1
2

3 i
7 y4 − x 60−9 i

5

]
Type: SquareMatrix(2,Polynomial Fraction Complex Integer)

Interchange the Polynomial and the Fraction levels.

m2 := m1 :: SquareMatrix(2,FRAC POLY COMPLEX INT)

[
4 x−3 i

4
2 y2 z+1

2
3 i y4−7 x

7
60−9 i

5

]

Type: SquareMatrix(2,Fraction Polynomial Complex Integer)

Interchange the Polynomial and the Complex levels.

m3 := m2 :: SquareMatrix(2,FRAC COMPLEX POLY INT)

[
4 x−3 i

4
2 y2 z+1

2
−7 x+3 y4 i

7
60−9 i

5

]

Type: SquareMatrix(2,Fraction Complex Polynomial Integer)

All the entries have changed types, although in comparing the last two results
only the entry in the lower left corner looks different. We did all the intermediate
steps to show you what Axiom can do.

In fact, we could have combined all these into one conversion.

m :: SquareMatrix(2,FRAC COMPLEX POLY INT)

[
4 x−3 i

4
2 y2 z+1

2
−7 x+3 y4 i

7
60−9 i

5

]

Type: SquareMatrix(2,Fraction Complex Polynomial Integer)

There are times when Axiom is not be able to do the conversion in one step.
You may need to break up the transformation into several conversions in order
to get an object of the desired type.

We cannot move either Fraction or Complex above (or to the left of, depend-
ing on how you look at it) SquareMatrix because each of these levels requires
that its argument type have commutative multiplication, whereas SquareMatrix
does not. That is because Fraction requires that its argument belong to the
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category IntegralDomain and Complex requires that its argument belong to
CommutativeRing. The Integer level did not move anywhere because it does
not allow any arguments. We also did not move the SquareMatrix part any-
where, but we could have.

Recall that m looks like this.

m [
x− 3

4 i y2 z + 1
2

3
7 i y4 − x 12− 9

5 i

]
Type: SquareMatrix(2,Polynomial Complex Fraction Integer)

If we want a polynomial with matrix coefficients rather than a matrix with
polynomial entries, we can just do the conversion.

m :: POLY SquareMatrix(2,COMPLEX FRAC INT)

[
0 1
0 0

]
y2 z +

[
0 0
3
7 i 0

]
y4 +

[
1 0
−1 0

]
x+

[
− 3

4 i 1
2

0 12− 9
5 i

]
Type: Polynomial SquareMatrix(2,Complex Fraction Integer)

We have not yet used modes for any conversions. Modes are a great shorthand
for indicating the type of the object you want. Instead of using the long type
expression in the last example, we could have simply said this.

m :: POLY ?[
0 1
0 0

]
y2 z +

[
0 0
3
7 i 0

]
y4 +

[
1 0
−1 0

]
x+

[
− 3

4 i 1
2

0 12− 9
5 i

]
Type: Polynomial SquareMatrix(2,Complex Fraction Integer)

We can also indicate more structure if we want the entries of the matrices to be
fractions.

m :: POLY SquareMatrix(2,FRAC ?)

[
0 1
0 0

]
y2 z +

[
0 0
3 i
7 0

]
y4 +

[
1 0
−1 0

]
x+

[
− 3 i

4
1
2

0 60−9 i
5

]
Type: Polynomial SquareMatrix(2,Fraction Complex Integer)
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5.8 Subdomains Again

A subdomain S of a domain D is a domain consisting of

1. those elements of D that satisfy some predicate (that is, a test that returns
true or false) and

2. a subset of the operations of D.

Every domain is a subdomain of itself, trivially satisfying the membership test:
true.

Currently, there are only two system-defined subdomains in Axiom that re-
ceive substantial use. PositiveInteger and NonNegativeInteger are subdo-
mains of Integer. An element x of NonNegativeInteger is an integer that
is greater than or equal to zero, that is, satisfies x >= 0. An element x of
PositiveInteger is a nonnegative integer that is, in fact, greater than zero,
that is, satisfies x > 0. Not all operations from Integer are available for these
subdomains. For example, negation and subtraction are not provided since the
subdomains are not closed under those operations. When you use an integer in
an expression, Axiom assigns to it the type that is the most specific subdomain
whose predicate is satisfied.

This is a positive integer.

5

5

Type: PositiveInteger

This is a nonnegative integer.

0

0

Type: NonNegativeInteger

This is neither of the above.

-5

−5

Type: Integer
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Furthermore, unless you are assigning an integer to a declared variable or using
a conversion, any integer result has as type the most specific subdomain.

(-2) - (-3)

1

Type: PositiveInteger

0 :: Integer

0

Type: Integer

x : NonNegativeInteger := 5

5

Type: NonNegativeInteger

When necessary, Axiom converts an integer object into one belonging to a less
specific subdomain. For example, in 3 − 2, the arguments to “-” are both
elements of PositiveInteger, but this type does not provide a subtraction
operation. Neither does NonNegativeInteger, so 3 and 2 are viewed as elements
of Integer, where their difference can be calculated. The result is 1, which
Axiom then automatically assigns the type PositiveInteger.

Certain operations are very sensitive to the subdomains to which their argu-
ments belong. This is an element of PositiveInteger.

2 ** 2

4

Type: PositiveInteger

This is an element of Fraction Integer.

2 ** (-2)

1

4
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Type: Fraction Integer

It makes sense then that this is a list of elements of PositiveInteger.

[10**i for i in 2..5]

[100, 1000, 10000, 100000]

Type: List PositiveInteger

What should the type of [10**(i-1) for i in 2..5] be? On one hand, i− 1
is always an integer greater than zero as i ranges from 2 to 5 and so 10 ∗ ∗i is
also always a positive integer. On the other, i − 1 is a very simple function of
i. Axiom does not try to analyze every such function over the index’s range of
values to determine whether it is always positive or nowhere negative. For an
arbitrary Axiom function, this analysis is not possible.

So, to be consistent no such analysis is done and we get this.

[10**(i-1) for i in 2..5]

[10, 100, 1000, 10000]

Type: List Fraction Integer

To get a list of elements of PositiveInteger instead, you have two choices.
You can use a conversion.

[10**((i-1) :: PI) for i in 2..5]

Compiling function G82696 with type Integer -> Boolean

Compiling function G82708 with type NonNegativeInteger -> Boolean

[10, 100, 1000, 10000]

Type: List PositiveInteger

Or you can use pretend.

[10**((i-1) pretend PI) for i in 2..5]

[10, 100, 1000, 10000]

Type: List PositiveInteger
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The operation pretend is used to defeat the Axiom type system. The expression
object pretend D means “make a new object (without copying) of type D from
object.” If object were an integer and you told Axiom to pretend it was a list,
you would probably see a message about a fatal error being caught and memory
possibly being damaged. Lists do not have the same internal representation as
integers!

You use pretend at your peril.

Use pretend with great care! Axiom trusts you that the value is of the specified
type.

(2/3) pretend Complex Integer

2 + 3 i

Type: Complex Integer

5.9 Package Calling and Target Types

Axiom works hard to figure out what you mean by an expression without your
having to qualify it with type information. Nevertheless, there are times when
you need to help it along by providing hints (or even orders!) to get Axiom to
do what you want.

Declarations using types and modes control the type of the results produced.
For example, we can either produce a complex object with polynomial real and
imaginary parts or a polynomial with complex integer coefficients, depending
on the declaration.

Package calling is used to tell Axiom to use a particular function from a partic-
ular part of the library.

Use the “/” from Fraction Integer to create a fraction of two integers.

2/3

2

3

Type: Fraction Integer

If we wanted a floating point number, we can say “use the “/” in Float.”

(2/3)$Float

0.66666666666666666667
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Type: Float

Perhaps we actually wanted a fraction of complex integers.

(2/3)$Fraction(Complex Integer)

2

3

Type: Fraction Complex Integer

In each case, Axiom used the indicated operations, sometimes first needing to
convert the two integers into objects of the appropriate type. In these examples,
“/” is written as an infix operator.

To use package calling with an infix operator, use the following syntax:

( arg1 op arg2 )$type

We used, for example, (2/3)$Float. The expression 2 + 3 + 4 is equivalent to
(2+3)+4. Therefore in the expression (2+3+4)$Float the second “+” comes
from the Float domain. The first “+” comes from Float because the package
call causes Axiom to convert (2 + 3) and 4 to type Float. Before the sum is
converted, it is given a target type of Float by Axiom and then evaluated. The
target type causes the “+” from Float to be used.

For an operator written before its arguments, you must use parentheses
around the arguments (even if there is only one), and follow the closing
parenthesis by a “$” and then the type.

fun ( arg1, arg2, . . . , argN )$type

For example, to call the “minimum” function from DoubleFloat on two integers,
you could write min(4,89)$DoubleFloat. Another use of package calling is to
tell Axiom to use a library function rather than a function you defined.

Sometimes rather than specifying where an operation comes from, you just want
to say what type the result should be. We say that you provide a target type for
the expression. Instead of using a “$”, use a “@” to specify the requested target
type. Otherwise, the syntax is the same. Note that giving a target type is not
the same as explicitly doing a conversion. The first says “try to pick operations
so that the result has such-and-such a type.” The second says “compute the
result and then convert to an object of such-and-such a type.”
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Sometimes it makes sense, as in this expression, to say “choose the operations
in this expression so that the final result is Float.

(2/3)@Float

0.66666666666666666667

Type: Float

Here we used “@” to say that the target type of the left-hand side was Float. In
this simple case, there was no real difference between using “$” and “@”. You
can see the difference if you try the following.

This says to try to choose “+” so that the result is a string. Axiom cannot do
this.

(2 + 3)@String

An expression involving @ String actually evaluated to one of

type PositiveInteger . Perhaps you should use :: String .

This says to get the + from String and apply it to the two integers. Axiom also
cannot do this because there is no + exported by String.

(2 + 3)$String

The function + is not implemented in String .

(By the way, the operation concat or juxtaposition is used to concatenate two
strings.)

When we have more than one operation in an expression, the difference is even
more evident. The following two expressions show that Axiom uses the target
type to create different objects. The “+”, “*” and “**” operations are all chosen
so that an object of the correct final type is created.

This says that the operations should be chosen so that the result is a Complex

object.

((x + y * %i)**2)@(Complex Polynomial Integer)

−y2 + x2 + 2 x y i

Type: Complex Polynomial Integer
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This says that the operations should be chosen so that the result is a Polynomial
object.

((x + y * %i)**2)@(Polynomial Complex Integer)

−y2 + 2 i x y + x2

Type: Polynomial Complex Integer

What do you think might happen if we left off all target type and package call
information in this last example?

(x + y * %i)**2

−y2 + 2 i x y + x2

Type: Polynomial Complex Integer

We can convert it to Complex as an afterthought. But this is more work than
just saying making what we want in the first place.

% :: Complex ?

−y2 + x2 + 2 x y i

Type: Complex Polynomial Integer

Finally, another use of package calling is to qualify fully an operation that is
passed as an argument to a function.

Start with a small matrix of integers.

h := matrix [ [8,6],[-4,9] ][
8 6
−4 9

]
Type: Matrix Integer

We want to produce a new matrix that has for entries the multiplicative inverses
of the entries of h. One way to do this is by calling map with the inv function
from Fraction (Integer).

map(inv$Fraction(Integer),h)
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1
8

1
6

−1
4

1
9

]
Type: Matrix Fraction Integer

We could have been a bit less verbose and used abbreviations.

map(inv$FRAC(INT),h) [
1
8

1
6

−1
4

1
9

]
Type: Matrix Fraction Integer

As it turns out, Axiom is smart enough to know what we mean anyway. We
can just say this.

map(inv,h) [
1
8

1
6

−1
4

1
9

]
Type: Matrix Fraction Integer

5.10 Resolving Types

In this section we briefly describe an internal process by which Axiom determines
a type to which two objects of possibly different types can be converted. We do
this to give you further insight into how Axiom takes your input, analyzes it,
and produces a result.

What happens when you enter x+1 to Axiom? Let’s look at what you get from
the two terms of this expression.

This is a symbolic object whose type indicates the name.

x

x

Type: Variable x

This is a positive integer.

1
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1

Type: PositiveInteger

There are no operations in PositiveInteger that add positive integers to ob-
jects of type Variable(x) nor are there any in Variable(x). Before it can
add the two parts, Axiom must come up with a common type to which both x
and 1 can be converted. We say that Axiom must resolve the two types into a
common type. In this example, the common type is Polynomial(Integer).

Once this is determined, both parts are converted into polynomials, and the
addition operation from Polynomial(Integer) is used to get the answer.

x + 1

x+ 1

Type: Polynomial Integer

Axiom can always resolve two types: if nothing resembling the original types
can be found, then Any is be used. This is fine and useful in some cases.

["string",3.14159]

["string", 3.14159]

Type: List Any

In other cases objects of type Any can’t be used by the operations you specified.

"string" + 3.14159

There are 11 exposed and 5 unexposed library operations named +

having 2 argument(s) but none was determined to be applicable.

Use HyperDoc Browse, or issue

)display op +

to learn more about the available operations. Perhaps

package-calling the operation or using coercions on the

arguments will allow you to apply the operation.

Cannot find a definition or applicable library operation named +

with argument type(s)

String

Float

Perhaps you should use "@" to indicate the required return type,

or "$" to specify which version of the function you need.
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Although this example was contrived, your expressions may need to be qualified
slightly to help Axiom resolve the types involved. You may need to declare a
few variables, do some package calling, provide some target type information or
do some explicit conversions.

We suggest that you just enter the expression you want evaluated and see what
Axiom does. We think you will be impressed with its ability to “do what I
mean.” If Axiom is still being obtuse, give it some hints. As you work with
Axiom, you will learn where it needs a little help to analyze quickly and perform
your computations.

5.11 Exposing Domains and Packages

In this section we discuss how Axiom makes some operations available to you
while hiding others that are meant to be used by developers or only in rare
cases. If you are a new user of Axiom, it is likely that everything you need is
available by default and you may want to skip over this section on first reading.

Every domain and package in the Axiom library is either exposed (meaning
that you can use its operations without doing anything special) or it is hidden
(meaning you have to either package call the operations it contains or explicitly
expose it to use the operations). The initial exposure status for a constructor
is set in the file exposed.lsp (see the Installer’s Note for Axiom if you need to
know the location of this file). Constructors are collected together in exposure
groups. Categories are all in the exposure group “categories” and the bulk of
the basic set of packages and domains that are exposed are in the exposure
group “basic.” Here is an abbreviated sample of the file (without the Lisp
parentheses):

basic

AlgebraicNumber AN

AlgebraGivenByStructuralConstants ALGSC

Any ANY

AnyFunctions1 ANY1

BinaryExpansion BINARY

Boolean BOOLEAN

CardinalNumber CARD

CartesianTensor CARTEN

Character CHAR

CharacterClass CCLASS

CliffordAlgebra CLIF

Color COLOR

Complex COMPLEX

ContinuedFraction CONTFRAC

DecimalExpansion DECIMAL

...

categories
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AbelianGroup ABELGRP

AbelianMonoid ABELMON

AbelianMonoidRing AMR

AbelianSemiGroup ABELSG

Aggregate AGG

Algebra ALGEBRA

AlgebraicallyClosedField ACF

AlgebraicallyClosedFunctionSpace ACFS

ArcHyperbolicFunctionCategory AHYP

...

For each constructor in a group, the full name and the abbreviation is given.
There are other groups in exposed.lsp but initially only the constructors in
exposure groups “basic” “categories” “naglink” and “anna” are exposed.

As an interactive user of Axiom, you do not need to modify this file. Instead,
use )set expose to expose, hide or query the exposure status of an individual
constructor or exposure group. The reason for having exposure groups is to
be able to expose or hide multiple constructors with a single command. For
example, you might group together into exposure group “quantum” a number
of domains and packages useful for quantum mechanical computations. These
probably should not be available to every user, but you want an easy way to
make the whole collection visible to Axiom when it is looking for operations to
apply.

If you wanted to hide all the basic constructors available by default, you would
issue )set expose drop group basic. We do not recommend that you do
this. If, however, you discover that you have hidden all the basic construc-
tors, you should issue )set expose add group basic to restore your default
environment.

It is more likely that you would want to expose or hide individual constructors.
We use several operations from OutputForm, a domain usually hidden. To avoid
package calling every operation from OutputForm, we expose the domain and
let Axiom conclude that those operations should be used. Use )set expose

add constructor and )set expose drop constructor to expose and hide a
constructor, respectively. You should use the constructor name, not the abbre-
viation. The )set expose command guides you through these options.

If you expose a previously hidden constructor, Axiom exhibits new behavior
(that was your intention) though you might not expect the results that you get.
OutputForm is, in fact, one of the worst offenders in this regard. This domain is
meant to be used by other domains for creating a structure that Axiom knows
how to display. It has functions like “+” that form output representations rather
than do mathematical calculations. Because of the order in which Axiom looks
at constructors when it is deciding what operation to apply, OutputForm might
be used instead of what you expect.

This is a polynomial.
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x + x

2 x

Type: Polynomial Integer

Expose OutputForm.

)set expose add constructor OutputForm

OutputForm is now explicitly exposed in frame G82322

This is what we get when OutputForm is automatically available.

x + x

x+ x

Type: OutputForm

Hide OutputForm so we don’t run into problems with any later examples!

)set expose drop constructor OutputForm

OutputForm is now explicitly hidden in frame G82322

Finally, exposure is done on a frame-by-frame basis. A frame is one of pos-
sibly several logical Axiom workspaces within a physical one, each having its
own environment (for example, variables and function definitions). If you have
several Axiom workspace windows on your screen, they are all different frames,
automatically created for you by HyperDoc. Frames can be manually created,
made active and destroyed by the )frame system command. They do not share
exposure information, so you need to use )set expose in each one to add or
drop constructors from view.

5.12 Commands for Snooping

To conclude this chapter, we introduce you to some system commands that you
can use for getting more information about domains, packages, categories, and
operations. The most powerful Axiom facility for getting information about
constructors and operations is the Browse component of HyperDoc.

Use the )what system command to see lists of system objects whose name
contain a particular substring (uppercase or lowercase is not significant).

Issue this to see a list of all operations with “complex” in their names.
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)what operation complex

Operations whose names satisfy the above pattern(s):

complex complex?

complexEigenvalues complexEigenvectors

complexElementary complexExpand

complexForm complexIntegrate

complexLimit complexNormalize

complexNumeric complexNumericIfCan

complexRoots complexSolve

complexZeros createLowComplexityNormalBasis

createLowComplexityTable doubleComplex?

drawComplex drawComplexVectorField

fortranComplex fortranDoubleComplex

pmComplexintegrate

To get more information about an operation such as

complexZeros, issue the command )display op complexZeros

If you want to see all domains with “matrix” in their names, issue this.

)what domain matrix

----------------------- Domains -----------------------

Domains with names matching patterns:

matrix

DHMATRIX DenavitHartenbergMatrix

DPMM DirectProductMatrixModule

IMATRIX IndexedMatrix

LSQM LieSquareMatrix

M3D ThreeDimensionalMatrix

MATCAT- MatrixCategory&

MATRIX Matrix

RMATCAT- RectangularMatrixCategory&

RMATRIX RectangularMatrix

SMATCAT- SquareMatrixCategory&

SQMATRIX SquareMatrix

Similarly, if you wish to see all packages whose names contain “gauss”, enter
this.

)what package gauss
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---------------------- Packages -----------------------

Packages with names matching patterns:

gauss

GAUSSFAC GaussianFactorizationPackage

This command shows all the operations that Any provides. Wherever $ appears,
it means “Any”.

)show Any

Any is a domain constructor

Abbreviation for Any is ANY

This constructor is exposed in this frame.

Issue )edit /usr/local/axiom/mnt/algebra/any.spad

to see algebra source code for ANY

--------------------- Operations ----------------------

?=? : (%,%) -> Boolean

any : (SExpression,None) -> %

coerce : % -> OutputForm

dom : % -> SExpression

domainOf : % -> OutputForm

hash : % -> SingleInteger

latex : % -> String

obj : % -> None

objectOf : % -> OutputForm

?~=? : (%,%) -> Boolean

showTypeInOutput : Boolean -> String

This displays all operations with the name complex.

)display operation complex

There is one exposed function called complex :

[1] (D1,D1) -> D from D if D has COMPCAT D1 and D1 has COMRING

Let’s analyze this output.

First we find out what some of the abbreviations mean.

)abbreviation query COMPCAT

COMPCAT abbreviates category ComplexCategory
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)abbreviation query COMRING

COMRING abbreviates category CommutativeRing

So if D1 is a commutative ring (such as the integers or floats) and D belongs
to ComplexCategory D1, then there is an operation called complex that takes
two elements of D1 and creates an element of D. The primary example of a
constructor implementing domains belonging to ComplexCategory is Complex.
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Using HyperDoc

Figure 6.1: The HyperDoc root window page

HyperDoc is the gateway to Axiom. It’s both an on-line tutorial and an on-line
reference manual. It also enables you to use Axiom simply by using the mouse
and filling in templates. HyperDoc is available to you if you are running Axiom
under the X Window System.

Pages usually have active areas, marked in this font (bold face). As you move
the mouse pointer to an active area, the pointer changes from a filled dot to an
open circle. The active areas are usually linked to other pages. When you click

211
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on an active area, you move to the linked page.

6.1 Headings

Most pages have a standard set of buttons at the top of the page. This is what
they mean:

Click on this to get help. The button only appears if there is specific
help for the page you are viewing. You can get general help for HyperDoc
by clicking the help button on the home page.

Click here to go back one page. By clicking on this button repeatedly,
you can go back several pages and then take off in a new direction.

Go back to the home page, that is, the page on which you started. Use
HyperDoc to explore, to make forays into new topics. Don’t worry about
how to get back. HyperDoc remembers where you came from. Just click
on this button to return.

From the root window (the one that is displayed when you start
the system) this button leaves the HyperDoc program, and it must be
restarted if you want to use it again. From any other HyperDoc window,
it just makes that one window go away. You must use this button to get
rid of a window. If you use the window manager “Close” button, then all
of HyperDoc goes away.

The buttons are not displayed if they are not applicable to the page you are

viewing. For example, there is no button on the top-level menu.

6.2 Key Definitions

The following keyboard definitions are in effect throughout HyperDoc.

F1 Display the main help page.

F3 Same as , makes the window go away if you are not at the top-level
window or quits the HyperDoc facility if you are at the top-level.

F5 Rereads the HyperDoc database, if necessary (for system developers).

F9 Displays this information about key definitions.

F12 Same as F3.

Up Arrow Scroll up one line.
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Down Arrow Scroll down one line.

Page Up Scroll up one page.

Page Down Scroll down one page.

6.3 Scroll Bars

Whenever there is too much text to fit on a page, a scroll bar automatically
appears along the right side.

With a scroll bar, your page becomes an aperture, that is, a window into a
larger amount of text than can be displayed at one time. The scroll bar lets you
move up and down in the text to see different parts. It also shows where the
aperture is relative to the whole text. The aperture is indicated by a strip on
the scroll bar.

Move the cursor with the mouse to the “down-arrow” at the bottom of the scroll
bar and click. See that the aperture moves down one line. Do it several times.
Each time you click, the aperture moves down one line. Move the mouse to the
“up-arrow” at the top of the scroll bar and click. The aperture moves up one
line each time you click.

Next move the mouse to any position along the middle of the scroll bar and
click. HyperDoc attempts to move the top of the aperture to this point in the
text.

You cannot make the aperture go off the bottom edge. When the aperture is
about half the size of text, the lowest you can move the aperture is halfway
down.

To move up or down one screen at a time, use the PageUp and PageDown

keys on your keyboard. They move the visible part of the region up and down
one page each time you press them.

If the HyperDoc page does not contain an input area, you can also use the

Home and ↑ and ↓ arrow keys to navigate. When you press the Home

key, the screen is positioned at the very top of the page. Use the ↑ and ↓
arrow keys to move the screen up and down one line at a time, respectively.

6.4 Input Areas

Input areas are boxes where you can put data.

To enter characters, first move your mouse cursor to somewhere within the
HyperDoc page. Characters that you type are inserted in front of the underscore.
This means that when you type characters at your keyboard, they go into this
first input area.
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The input area grows to accommodate as many characters as you type. Use the

Backspace key to erase characters to the left. To modify what you type, use

the right-arrow → and left-arrow keys ← and the keys Insert , Delete ,

Home and End . These keys are found immediately on the right of the
standard IBM keyboard.

If you press the Home key, the cursor moves to the beginning of the line and

if you press the End key, the cursor moves to the end of the line. Pressing

Ctrl – End deletes all the text from the cursor to the end of the line.

A page may have more than one input area. Only one input area has an under-
score cursor. When you first see apage, the top-most input area contains the

cursor. To type information into another input area, use the Enter or Tab
key to move from one input area to xanother. To move in the reverse order, use

Shift – Tab .

You can also move from one input area to another using your mouse. Notice
that each input area is active. Click on one of the areas. As you can see, the
underscore cursor moves to that window.

6.5 Radio Buttons and Toggles

Some pages have radio buttons and toggles. Radio buttons are a group of buttons
like those on car radios: you can select only one at a time.

Once you have selected a button, it appears to be inverted and contains a
checkmark. To change the selection, move the cursor with the mouse to a
different radio button and click.

A toggle is an independent button that displays some on/off state. When “on”,
the button appears to be inverted and contains a checkmark. When “off”, the
button is raised.

Unlike radio buttons, you can set a group of them any way you like. To change
toggle the selection, move the cursor with the mouse to the button and click.

6.6 Search Strings

A search string is used for searching some database. To learn about search
strings, we suggest that you bring up the HyperDoc glossary. To do this from
the top-level page of HyperDoc:

1. Click on Reference, bringing up the Axiom Reference page.

2. Click on Glossary, bringing up the glossary.
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The glossary has an input area at its bottom. We review the various kinds of
search strings you can enter to search the glossary.

The simplest search string is a word, for example, operation. A word only
matches an entry having exactly that spelling. Enter the word operation into
the input area above then click on Search. As you can see, operation matches
only one entry, namely with operation itself.

Normally matching is insensitive to whether the alphabetic characters of your
search string are in uppercase or lowercase. Thus operation and OperAtion

both have the same effect.

You will very often want to use the wildcard “*” in your search string so as
to match multiple entries in the list. The search key “*” matches every entry
in the list. You can also use “*” anywhere within a search string to match an
arbitrary substring. Try “cat*” for example: enter “cat*” into the input area
and click on Search. This matches several entries.

You use any number of wildcards in a search string as long as they are not
adjacent. Try search strings such as “*dom*”. As you see, this search string
matches “domain”, “domain constructor”, “subdomain”, and so on.

6.6.1 Logical Searches

For more complicated searches, you can use “and”, “or”, and “not” with ba-
sic search strings; write logical expressions using these three operators just as
in the Axiom language. For example, domain or package matches the two
entries domain and package. Similarly, “dom* and *con*” matches “domain
constructor” and others. Also “not *a*” matches every entry that does not
contain the letter “a” somewhere.

Use parentheses for grouping. For example, “dom* and (not *con*)” matches
“domain” but not “domain constructor”.

There is no limit to how complex your logical expression can be. For example,

a* or b* or c* or d* or e* and (not *a*)

is a valid expression.

6.7 Example Pages

Many pages have Axiom example commands.

Each command has an active “button” along the left margin. When you click
on this button, the output for the command is “pasted-in.” Click again on the
button and you see that the pasted-in output disappears.

Maybe you would like to run an example? To do so, just click on any part of
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its text! When you do, the example line is copied into a new interactive Axiom
buffer for this HyperDoc page.

Sometimes one example line cannot be run before you run an earlier one. Don’t
worry—HyperDoc automatically runs all the necessary lines in the right order!

The new interactive Axiom buffer disappears when you leave HyperDoc. If
you want to get rid of it beforehand, use the Cancel button of the X Window
manager or issue the Axiom system command )close.

6.8 X Window Resources for HyperDoc

You can control the appearance of HyperDoc while running under Version 11 of
the X Window System by placing the following resources in the file .Xdefaults
in your home directory. In what follows, font is any valid X11 font name (for
example, Rom14) and color is any valid X11 color specification (for example,
NavyBlue). For more information about fonts and colors, refer to the X Window
documentation for your system.

Axiom.hyperdoc.RmFont: font
This is the standard text font. The default value is Rom14

Axiom.hyperdoc.RmColor: color
This is the standard text color. The default value is black

Axiom.hyperdoc.ActiveFont: font
This is the font used for HyperDoc link buttons. The default value is
Bld14

Axiom.hyperdoc.ActiveColor: color
This is the color used for HyperDoc link buttons. The default value is
black

Axiom.hyperdoc.AxiomFont: font
This is the font used for active Axiom commands. The default value is
Bld14

Axiom.hyperdoc.AxiomColor: color
This is the color used for active Axiom commands. The default value is
black

Axiom.hyperdoc.BoldFont: font
This is the font used for bold face. The default value is Bld14

Axiom.hyperdoc.BoldColor: color
This is the color used for bold face. The default value is black
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Axiom.hyperdoc.TtFont: font
This is the font used for Axiom output in HyperDoc. This font must be
fixed-width. The default value is Rom14

Axiom.hyperdoc.TtColor: color
This is the color used for Axiom output in HyperDoc. The default value
is black

Axiom.hyperdoc.EmphasizeFont: font
This is the font used for italics. The default value is Itl14

Axiom.hyperdoc.EmphasizeColor: color
This is the color used for italics. The default value is black

Axiom.hyperdoc.InputBackground: color
This is the color used as the background for input areas. The default value
is black

Axiom.hyperdoc.InputForeground: color
This is the color used as the foreground for input areas. The default value
is white

Axiom.hyperdoc.BorderColor: color
This is the color used for drawing border lines. The default value is black

Axiom.hyperdoc.Background: color
This is the color used for the background of all windows. The default
value is white



218 CHAPTER 6. USING HYPERDOC



Chapter 7

Input Files and Output
Styles

In this chapter we discuss how to collect Axiom statements and commands
into files and then read the contents into the workspace. We also show how
to display the results of your computations in several different styles including
TEX, FORTRAN and monospace two-dimensional format.1

The printed version of this book uses the Axiom TEX output formatter. When
we demonstrate a particular output style, we will need to turn TEX formatting
off and the output style on so that the correct output is shown in the text.

7.1 Input Files

In this section we explain what an input file is and why you would want to know
about it. We discuss where Axiom looks for input files and how you can direct
it to look elsewhere. We also show how to read the contents of an input file into
the workspace and how to use the history facility to generate an input file from
the statements you have entered directly into the workspace.

An input file contains Axiom expressions and system commands. Anything that
you can enter directly to Axiom can be put into an input file. This is how you
save input functions and expressions that you wish to read into Axiom more
than one time.

To read an input file into Axiom, use the )read system command. For example,
you can read a file in a particular directory by issuing

)read /spad/src/input/matrix.input

1TEX is a trademark of the American Mathematical Society.
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The “.input” is optional; this also works:

)read /spad/src/input/matrix

What happens if you just enter )read matrix.input or even )read matrix?
Axiom looks in your current working directory for input files that are not qual-
ified by a directory name. Typically, this directory is the directory from which
you invoked Axiom.

To change the current working directory, use the )cd system command. The
command )cd by itself shows the current working directory. To change it to the
src/input subdirectory for user “babar”, issue

)cd /u/babar/src/input

Axiom looks first in this directory for an input file. If it is not found, it looks in
the system’s directories, assuming you meant some input file that was provided
with Axiom.

If you have the Axiom history facility turned on (which it is by default), you
can save all the lines you have entered into the workspace by entering
)history )write
Axiom tells you what input file to edit to see your statements. The file is in
your home directory or in the directory you specified with )cd.

7.2 The .axiom.input File

When Axiom starts up, it tries to read the input file .axiom.input2 from your
home directory. It there is no .axiom.input in your home directory, it reads
the copy located in its own src/input directory. The file usually contains
system commands to personalize your Axiom environment. In the remainder
of this section we mention a few things that users frequently place in their
.axiom.input files.

In order to have FORTRAN output always produced from your computations,
place the system command )set output fortran on in .axiom.input. If you
do not want to be prompted for confirmation when you issue the )quit system
command, place )set quit unprotected in .axiom.input. If you then decide
that you do want to be prompted, issue )set quit protected. This is the
default setting so that new users do not leave Axiom inadvertently. The system
command )pquit always prompts you for confirmation.

2.axiom.input used to be called axiom.input in the NAG version
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7.3 Common Features of Using Output Formats

In this section we discuss how to start and stop the display of the different
output formats and how to send the output to the screen or to a file. To fix
ideas, we use FORTRAN output format for most of the examples.

You can use the )set output system command to toggle or redirect the differ-
ent kinds of output. The name of the kind of output follows “output” in the
command. The names are

fortran for FORTRAN output.
algebra for monospace two-dimensional mathematical output.
tex for TEX output.
script for IBM Script Formula Format output.

For example, issue )set output fortran on to turn on FORTRAN format
and issue )set output fortran off to turn it off. By default, algebra is on
and all others are off. When output is started, it is sent to the screen. To send
the output to a file, give the file name without directory or extension. Axiom
appends a file extension depending on the kind of output being produced.

Issue this to redirect FORTRAN output to, for example, the file linalg.sfort.

)set output fortran linalg

FORTRAN output will be written to file linalg.sfort .

You must also turn on the creation of FORTRAN output. The above just says
where it goes if it is created.

)set output fortran on

In what directory is this output placed? It goes into the directory from which
you started Axiom, or if you have used the )cd system command, the one that
you specified with )cd. You should use )cd before you send the output to the
file.

You can always direct output back to the screen by issuing this.

)set output fortran console

Let’s make sure FORTRAN formatting is off so that nothing we do from now
on produces FORTRAN output.

)set output fortran off

We also delete the demonstrated output file we created.
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)system rm linalg.sfort

You can abbreviate the words “on,” “off,” and “console” to the minimal num-
ber of characters needed to distinguish them. Because of this, you cannot send
output to files called on.sfort, off.sfort, of.sfort, console.sfort, consol.sfort
and so on.

The width of the output on the page is set by )set output length for all for-
mats except FORTRAN. Use )set fortran fortlength to change the FOR-
TRAN line length from its default value of 72.

7.4 Monospace Two-Dimensional Mathematical
Format

This is the default output format for Axiom. It is usually on when you start
the system.

If it is not, issue this.

)set output algebra on

Since the printed version of this book (as opposed to the HyperDoc version)
shows output produced by the TEX output formatter, let us temporarily turn
off TEX output.

)set output tex off

Here is an example of what it looks like.

matrix [ [i*x**i + j*%i*y**j for i in 1..2] for j in 3..4]

+ 3 3 2+

|3%i y + x 3%i y + 2x |

(1) | |

| 4 4 2|

+4%i y + x 4%i y + 2x +

Type: Matrix Polynomial Complex Integer

Issue this to turn off this kind of formatting.

)set output algebra off

Turn TEX output on again.
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)set output tex on

The characters used for the matrix brackets above are rather ugly. You get this
character set when you issue )set output characters plain. This character
set should be used when you are running on a machine that does not support
the IBM extended ASCII character set. If you are running on an IBM work-
station, for example, issue )set output characters default to get better
looking output.

7.5 TeX Format

Axiom can produce TEX output for your expressions. The output is produced us-
ing macros from the LATEX document preparation system by Leslie Lamport[5].
The printed version of this book was produced using this formatter.

To turn on TEX output formatting, issue this.

)set output tex on

Here is an example of its output.

matrix [ [i*x**i + j*\%i*y**j for i in 1..2] for j in 3..4]

$$

\left[

\begin{array}{cc}

{{3 \ i \ {y \sp 3}}+x} &

{{3 \ i \ {y \sp 3}}+{2 \ {x \sp 2}}} \\

{{4 \ i \ {y \sp 4}}+x} &

{{4 \ i \ {y \sp 4}}+{2 \ {x \sp 2}}}

\end{array}

\right]

$$

This formats as [
3 i y3 + x 3 i y3 + 2 x2

4 i y4 + x 4 i y4 + 2 x2

]
To turn TEX output formatting off, issue )set output tex off. The LATEXmacros
in the output generated by Axiom are all standard except for the following def-
initions:

\def\csch{\mathop{\rm csch}\nolimits}

\def\erf{\mathop{\rm erf}\nolimits}
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\def\zag#1#2{

{{\hfill \left. {#1} \right|}

\over

{\left| {#2} \right. \hfill}

}

}

7.6 IBM Script Formula Format

Axiom can produce IBM Script Formula Format output for your expressions.

To turn IBM Script Formula Format on, issue this.

)set output script on

Here is an example of its output.

matrix [ [i*x**i + j*%i*y**j for i in 1..2] for j in 3..4]

.eq set blank @

:df.

<left lb < < < <3 @@ %i @@ <y sup 3> >+x> here < <3 @@ %i @@

<y sup 3> >+<2 @@ <x sup 2> > > > habove < < <4 @@ %i @@

<y sup 4> >+x> here < <4 @@ %i @@ <y sup 4> >+<2 @@

<x up 2> > > > > right rb>

:edf.

To turn IBM Script Formula Format output formatting off, issue this.

)set output script off

7.7 FORTRAN Format

In addition to turning FORTRAN output on and off and stating where the
output should be placed, there are many options that control the appearance of
the generated code. In this section we describe some of the basic options. Issue
)set fortran to see a full list with their current settings.

The output FORTRAN expression usually begins in column 7. If the expression
needs more than one line, the ampersand character & is used in column 6.
Since some versions of FORTRAN have restrictions on the number of lines
per statement, Axiom breaks long expressions into segments with a maximum
of 1320 characters (20 lines of 66 characters) per segment. If you want to
change this, say, to 660 characters, issue the system command )set fortran



7.7. FORTRAN FORMAT 225

explength 660. You can turn off the line breaking by issuing )set fortran

segment off. Various code optimization levels are available.

FORTRAN output is produced after you issue this.

)set output fortran on

For the initial examples, we set the optimization level to 0, which is the lowest
level.

)set fortran optlevel 0

The output is usually in columns 7 through 72, although fewer columns are used
in the following examples so that the output fits nicely on the page.

)set fortran fortlength 60

By default, the output goes to the screen and is displayed before the standard
Axiom two-dimensional output. In this example, an assignment to the variable
R1 was generated because this is the result of step 1.

(x+y)**3

R1=y**3+3*x*y*y+3*x*x*y+x**3

y3 + 3 x y2 + 3 x2 y + x3

Type: Polynomial Integer

Here is an example that illustrates the line breaking.

(x+y+z)**3

R2=z**3+(3*y+3*x)*z*z+(3*y*y+6*x*y+3*x*x)*z+y**3+3*x*y

&*y+3*x*x*y+x**3

z3 + (3 y + 3 x) z2 +
(
3 y2 + 6 x y + 3 x2

)
z + y3 + 3 x y2 + 3 x2 y + x3

Type: Polynomial Integer

Note in the above examples that integers are generally converted to floating
point numbers, except in exponents. This is the default behavior but can be
turned off by issuing )set fortran ints2floats off. The rules governing
when the conversion is done are:
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1. If an integer is an exponent, convert it to a floating point number if it is
greater than 32767 in absolute value, otherwise leave it as an integer.

2. Convert all other integers in an expression to floating point numbers.

These rules only govern integers in expressions. Numbers generated by Axiom
for DIMENSION statements are also integers.

To set the type of generated FORTRAN data, use one of the following:

)set fortran defaulttype REAL

)set fortran defaulttype INTEGER

)set fortran defaulttype COMPLEX

)set fortran defaulttype LOGICAL

)set fortran defaulttype CHARACTER

When temporaries are created, they are given a default type of REAL. Also, the
REAL versions of functions are used by default.

sin(x)

R3=DSIN(x)

sin (x)

Type: Expression Integer

At optimization level 1, Axiom removes common subexpressions.

)set fortran optlevel 1

(x+y+z)**3

T2=y*y

T3=x*x

R4=z**3+(3*y+3*x)*z*z+(3*T2+6*x*y+3*T3)*z+y**3+3*x*T2+

&3*T3*y+x**3

z3 + (3 y + 3 x) z2 +
(
3 y2 + 6 x y + 3 x2

)
z + y3 + 3 x y2 + 3 x2 y + x3

Type: Polynomial Integer

This changes the precision to DOUBLE. Substitute single for double to return
to single precision.



7.7. FORTRAN FORMAT 227

)set fortran precision double

Complex constants display the precision.

2.3 + 5.6*%i

R5=(2.3D0,5.6D0)

2.3 + 5.6 i

Type: Complex Float

The function names that Axiom generates depend on the chosen precision.

sin %e

R6=DSIN(DEXP(1))

sin (e)

Type: Expression Integer

Reset the precision to single and look at these two examples again.

)set fortran precision single

2.3 + 5.6*%i

R7=(2.3,5.6)

2.3 + 5.6 i

Type: Complex Float

sin %e

R8=SIN(EXP(1))

sin (e)
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Type: Expression Integer

Expressions that look like lists, streams, sets or matrices cause array code to be
generated.

[x+1,y+1,z+1]

T1(1)=x+1

T1(2)=y+1

T1(3)=z+1

R9=T1

[x+ 1, y + 1, z + 1]

Type: List Polynomial Integer

A temporary variable is generated to be the name of the array. This may have
to be changed in your particular application.

set[2,3,4,3,5]

T1(1)=2

T1(2)=3

T1(3)=4

T1(4)=5

R10=T1

{2, 3, 4, 5}

Type: Set PositiveInteger

By default, the starting index for generated FORTRAN arrays is 0.

matrix [ [2.3,9.7],[0.0,18.778] ]

T1(0,0)=2.3

T1(0,1)=9.7

T1(1,0)=0.0

T1(1,1)=18.778

T1 [
2.3 9.7
0.0 18.778

]
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Type: Matrix Float

To change the starting index for generated FORTRAN arrays to be 1, issue this.
This value can only be 0 or 1.

)set fortran startindex 1

Look at the code generated for the matrix again.

matrix [ [2.3,9.7],[0.0,18.778] ]

T1(1,1)=2.3

T1(1,2)=9.7

T1(2,1)=0.0

T1(2,2)=18.778

T1 [
2.3 9.7
0.0 18.778

]
Type: Matrix Float



230 CHAPTER 7. INPUT FILES AND OUTPUT STYLES



Chapter 8

Axiom System Commands

This chapter describes system commands, the command-line facilities used to
control the Axiom environment. The first section is an introduction and dis-
cusses the common syntax of the commands available.

8.1 Introduction

System commands are used to perform Axiom environment management. Among
the commands are those that display what has been defined or computed, set
up multiple logical Axiom environments (frames), clear definitions, read files of
expressions and commands, show what functions are available, and terminate
Axiom.

Some commands are restricted: the commands

)set userlevel interpreter

)set userlevel compiler

)set userlevel development

set the user-access level to the three possible choices. All commands are available
at development level and the fewest are available at interpreter level. The
default user-level is interpreter. In addition to the )set command you can
use the HyperDoc settings facility to change the user-level.

Each command listing begins with one or more syntax pattern descriptions plus
examples of related commands. The syntax descriptions are intended to be easy
to read and do not necessarily represent the most compact way of specifying all
possible arguments and options; the descriptions may occasionally be redundant.

All system commands begin with a right parenthesis which should be in the first
available column of the input line (that is, immediately after the input prompt,
if any). System commands may be issued directly to Axiom or be included in
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.input files.

A system command argument is a word that directly follows the command name
and is not followed or preceded by a right parenthesis. A system command op-
tion follows the system command and is directly preceded by a right parenthesis.
Options may have arguments: they directly follow the option. This example may
make it easier to remember what is an option and what is an argument:

)syscmd arg1 arg2 )opt1 opt1arg1 opt1arg2 )opt2 opt2arg1 ...

In the system command descriptions, optional arguments and options are en-
closed in brackets (“[” and “]”). If an argument or option name is in italics,
it is meant to be a variable and must have some actual value substituted for
it when the system command call is made. For example, the syntax pattern
description

)read fileName [)quietly]

would imply that you must provide an actual file name for fileName but need
not use the )quietly option. Thus

)read matrix.input

is a valid instance of the above pattern.

System command names and options may be abbreviated and may be in upper
or lower case. The case of actual arguments may be significant, depending on
the particular situation (such as in file names). System command names and
options may be abbreviated to the minimum number of starting letters so that
the name or option is unique. Thus

)s Integer

is not a valid abbreviation for the )set command, because both )set and
)show begin with the letter “s”. Typically, two or three letters are sufficient for
disambiguating names. In our descriptions of the commands, we have used no
abbreviations for either command names or options.

In some syntax descriptions we use a vertical line “|” to indicate that you must
specify one of the listed choices. For example, in

)set output fortran on | off

only on and off are acceptable words for following boot. We also sometimes
use “...” to indicate that additional arguments or options of the listed form
are allowed. Finally, in the syntax descriptions we may also list the syntax of
related commands.
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8.2 )abbreviation

User Level Required: compiler

Command Syntax:

)abbreviation query [nameOrAbbrev]

)abbreviation category abbrev fullname [)quiet]

)abbreviation domain abbrev fullname [)quiet]

)abbreviation package abbrev fullname [)quiet]

)abbreviation remove nameOrAbbrev

Command Description:

This command is used to query, set and remove abbreviations for category,
domain and package constructors. Every constructor must have a unique ab-
breviation. This abbreviation is part of the name of the subdirectory under
which the components of the compiled constructor are stored. Furthermore,
by issuing this command you let the system know what file to load automati-
cally if you use a new constructor. Abbreviations must start with a letter and
then be followed by up to seven letters or digits. Any letters appearing in the
abbreviation must be in uppercase.

When used with the query argument, this command may be used to list the
name associated with a particular abbreviation or the abbreviation for a con-
structor. If no abbreviation or name is given, the names and corresponding
abbreviations for all constructors are listed.

The following shows the abbreviation for the constructor List:

)abbreviation query List

The following shows the constructor name corresponding to the abbreviation
NNI:

)abbreviation query NNI

The following lists all constructor names and their abbreviations.

)abbreviation query

To add an abbreviation for a constructor, use this command with category,
domain or package. The following add abbreviations to the system for a
category, domain and package, respectively:

)abbreviation domain SET Set

)abbreviation category COMPCAT ComplexCategory

)abbreviation package LIST2MAP ListToMap
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If the )quiet option is used, no output is displayed from this command. You
would normally only define an abbreviation in a library source file. If this com-
mand is issued for a constructor that has already been loaded, the constructor
will be reloaded next time it is referenced. In particular, you can use this com-
mand to force the automatic reloading of constructors.

To remove an abbreviation, the remove argument is used. This is usually only
used to correct a previous command that set an abbreviation for a constructor
name. If, in fact, the abbreviation does exist, you are prompted for confirma-
tion of the removal request. Either of the following commands will remove the
abbreviation VECTOR2 and the constructor name VectorFunctions2 from the
system:

)abbreviation remove VECTOR2

)abbreviation remove VectorFunctions2

Also See: )compile

8.3 )boot

User Level Required: development

Command Syntax:

)boot bootExpression

Command Description:

This command is used by Axiom system developers to execute expressions writ-
ten in the BOOT language. For example,

)boot times3(x) == 3*x

creates and compiles the Common Lisp function “times3” obtained by translat-
ing the BOOT code.

Also See: )fin )lisp , )set , and )system .

8.4 )cd

User Level Required: interpreter

Command Syntax:

)cd directory

Command Description:

This command sets the Axiom working current directory. The current directory
is used for looking for input files (for )read), Axiom library source files (for
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)compile), saved history environment files (for )history )restore), compiled
Axiom library files (for )library), and files to edit (for )edit). It is also used
for writing spool files (via )spool), writing history input files (via )history

)write) and history environment files (via )history )save),and compiled Ax-
iom library files (via )compile).

If issued with no argument, this command sets the Axiom current directory to
your home directory. If an argument is used, it must be a valid directory name.
Except for the “)” at the beginning of the command, this has the same syntax
as the operating system cd command.

Also See: )compile , )edit , )history , )library , )read , and )spool .

8.5 )close

User Level Required: interpreter

Command Syntax:

)close

)close )quietly

Command Description:

This command is used to close down interpreter client processes. Such processes
are started by HyperDoc to run Axiom examples when you click on their text.
When you have finished examining or modifying the example and you do not
want the extra window around anymore, issue

)close

to the Axiom prompt in the window.

If you try to close down the last remaining interpreter client process, Axiom will
offer to close down the entire Axiom session and return you to the operating
system by displaying something like

This is the last Axiom session. Do you want to kill Axiom?

Type “y” (followed by the Return key) if this is what you had in mind. Type
“n” (followed by the Return key) to cancel the command.

You can use the )quietly option to force Axiom to close down the interpreter
client process without closing down the entire Axiom session.

Also See: )quit and )pquit

8.6 )clear

User Level Required: interpreter
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Command Syntax:

)clear all

)clear completely

)clear properties all

)clear properties obj1 [obj2 ...]

)clear value all

)clear value obj1 [obj2 ...]

)clear mode all

)clear mode obj1 [obj2 ...]

Command Description:

This command is used to remove function and variable declarations, definitions
and values from the workspace. To empty the entire workspace and reset the
step counter to 1, issue

)clear all

To remove everything in the workspace but not reset the step counter, issue

)clear properties all

To remove everything about the object x, issue

)clear properties x

To remove everything about the objects x, y and f, issue

)clear properties x y f

The word properties may be abbreviated to the single letter “p”.

)clear p all

)clear p x

)clear p x y f

All definitions of functions and values of variables may be removed by either

)clear value all

)clear v all

This retains whatever declarations the objects had. To remove definitions and
values for the specific objects x, y and f, issue



8.7. )COMPILE 237

)clear value x y f

)clear v x y f

To remove the declarations of everything while leaving the definitions and values,
issue

)clear mode all

)clear m all

To remove declarations for the specific objects x, y and f, issue

)clear mode x y f

)clear m x y f

The )display names and )display properties commands may be used to
see what is currently in the workspace.

The command

)clear completely

does everything that )clear all does, and also clears the internal system func-
tion and constructor caches.

Also See: )display , )history , and )undo .

8.7 )compile

User Level Required: compiler

Command Syntax:

)compile

)compile fileName

)compile fileName.spad

)compile directory/fileName.spad

)compile fileName )quiet

)compile fileName )noquiet

)compile fileName )break

)compile fileName )nobreak

)compile fileName )library

)compile fileName )nolibrary
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)compile fileName )vartrace

)compile fileName )constructor nameOrAbbrev

Command Description:

You use this command to invoke the Axiom library compiler. This compiles
files with file extension .spad with the Axiom system compiler. The command
first looks in the standard system directories for files with extension .spad.

Should you not want the )library command automatically invoked, call )compile
with the )nolibrary option. For example,

)compile mycode )nolibrary

By default, the )library system command exposes all domains and categories
it processes. This means that the Axiom intepreter will consider those domains
and categories when it is trying to resolve a reference to a function. Sometimes
domains and categories should not be exposed. For example, a domain may
just be used privately by another domain and may not be meant for top-level
use. The )library command should still be used, though, so that the code will
be loaded on demand. In this case, you should use the )nolibrary option on
)compile and the )noexpose option in the )library command. For example,

)compile mycode.spad )nolibrary

)library mycode )noexpose

Once you have established your own collection of compiled code, you may find
it handy to use the )dir option on the )library command. This causes )library
to process all compiled code in the specified directory. For example,

)library )dir /u/jones/quantum

You must give an explicit directory after )dir, even if you want all compiled
code in the current working directory processed.

)library )dir .

You can compile category, domain, and package constructors contained in files
with file extension .spad. You can compile individual constructors or every
constructor in a file.

The full filename is remembered between invocations of this command and
)edit commands. The sequence of commands

)compile matrix.spad

)edit

)compile
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will call the compiler, edit, and then call the compiler again on the file ma-
trix.spad. If you do not specify a directory, the working current directory (see
description of command )cd ) is searched for the file. If the file is not found, the
standard system directories are searched.

If you do not give any options, all constructors within a file are compiled. Each
constructor should have an )abbreviation command in the file in which it is
defined. We suggest that you place the )abbreviation commands at the top of
the file in the order in which the constructors are defined. The list of commands
serves as a table of contents for the file.

The )library option causes directories containing the compiled code for each
constructor to be created in the working current directory. The name of such
a directory consists of the constructor abbreviation and the .nrlib file exten-
sion. For example, the directory containing the compiled code for the MATRIX

constructor is called MATRIX.nrlib. The )nolibrary option says that such
files should not be created.

The )vartrace option causes the compiler to generate extra code for the con-
structor to support conditional tracing of variable assignments. Without this
option, this code is suppressed and one cannot use the )vars option for the trace
command.

The )constructor option is used to specify a particular constructor to com-
pile. All other constructors in the file are ignored. The constructor name or
abbreviation follows )constructor. Thus either

)compile matrix.spad )constructor RectangularMatrix

or

)compile matrix.spad )constructor RMATRIX

compiles the RectangularMatrix constructor defined in matrix.spad.

The )break and )nobreak options determine what the compiler does when it
encounters an error. )break is the default and it indicates that processing should
stop at the first error. The value of the )set break variable then controls what
happens.

Also See: )abbreviation , )edit , and )library .

8.8 )display

User Level Required: interpreter

Command Syntax:

)display all

)display properties
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)display properties all

)display properties [obj1 [obj2 ...]]

)display value all

)display value [obj1 [obj2 ...]]

)display mode all

)display mode [obj1 [obj2 ...]]

)display names

)display operations opName

Command Description:

This command is used to display the contents of the workspace and signatures
of functions with a given name.

The command

)display names

lists the names of all user-defined objects in the workspace. This is useful if you
do not wish to see everything about the objects and need only be reminded of
their names.

The commands

)display all

)display properties

)display properties all

all do the same thing: show the values and types and declared modes of all
variables in the workspace. If you have defined functions, their signatures and
definitions will also be displayed.

To show all information about a particular variable or user functions, for exam-
ple, something named d, issue

)display properties d

To just show the value (and the type) of d, issue

)display value d

To just show the declared mode of d, issue

)display mode d



8.9. )EDIT 241

All modemaps for a given operation may be displayed by using )display operations.
A modemap is a collection of information about a particular reference to an op-
eration. This includes the types of the arguments and the return value, the
location of the implementation and any conditions on the types. The modemap
may contain patterns. The following displays the modemaps for the operation
complex:

)d op complex

Also See: )clear , )history , )set , )show , and )what .

8.9 )edit

User Level Required: interpreter

Command Syntax:

)edit [filename]

Command Description:

This command is used to edit files. It works in conjunction with the )read

and )compile commands to remember the name of the file on which you are
working. By specifying the name fully, you can edit any file you wish. Thus

)edit /u/julius/matrix.input

will place you in an editor looking at the file /u/julius/matrix.input. By
default, the editor is vi, but if you have an EDITOR shell environment variable
defined, that editor will be used. When Axiom is running under the X Window
System, it will try to open a separate xterm running your editor if it thinks one
is necessary. For example, under the Korn shell, if you issue

export EDITOR=emacs

then the emacs editor will be used by )edit.

If you do not specify a file name, the last file you edited, read or compiled will
be used. If there is no “last file” you will be placed in the editor editing an
empty unnamed file.

It is possible to use the )system command to edit a file directly. For example,

)system emacs /etc/rc.tcpip

calls emacs to edit the file.

Also See: )system , )compile , and )read .
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8.10 )fin

User Level Required: development

Command Syntax:

)fin

Command Description:

This command is used by Axiom developers to leave the Axiom system and
return to the underlying Common Lisp system. To return to Axiom, issue the
“(|spad|)” function call to Common Lisp.

Also See: )pquit and )quit .

8.11 )frame

User Level Required: interpreter

Command Syntax:

)frame new frameName

)frame drop [frameName]

)frame next

)frame last

)frame names

)frame import frameName [objectName1 [objectName2 ...]]

)set message frame on | off

)set message prompt frame

Command Description:

A frame can be thought of as a logical session within the physical session that
you get when you start the system. You can have as many frames as you
want, within the limits of your computer’s storage, paging space, and so on.
Each frame has its own step number, environment and history. You can have
a variable named a in one frame and it will have nothing to do with anything
that might be called a in any other frame.

Some frames are created by the HyperDoc program and these can have pretty
strange names, since they are generated automatically. To find out the names
of all frames, issue

)frame names
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It will indicate the name of the current frame.

You create a new frame “quark” by issuing

)frame new quark

The history facility can be turned on by issuing either )set history on or
)history )on. If the history facility is on and you are saving history infor-
mation in a file rather than in the Axiom environment then a history file with
filename quark.axh will be created as you enter commands. If you wish to go
back to what you were doing in the “initial” frame, use

)frame next

or

)frame last

to cycle through the ring of available frames to get back to “initial”.

If you want to throw away a frame (say “quark”), issue

)frame drop quark

If you omit the name, the current frame is dropped.

If you do use frames with the history facility on and writing to a file, you may
want to delete some of the older history files. These are directories, so you may
want to issue a command like rm -r quark.axh to the operating system.

You can bring things from another frame by using )frame import. For example,
to bring the f and g from the frame “quark” to the current frame, issue

)frame import quark f g

If you want everything from the frame “quark”, issue

)frame import quark

You will be asked to verify that you really want everything.

There are two )set flags to make it easier to tell where you are.

)set message frame on | off

will print more messages about frames when it is set on. By default, it is off.

)set message prompt frame

will give a prompt that looks like

initial (1) ->

when you start up. In this case, the frame name and step make up the prompt.

Also See: )history and )set .
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8.12 )hd

User Level Required: interpreter

Command Syntax:

)hd

Command Description:

This command will start the HyperDoc facility if it is not running. Note that
if it issues the message:

binding UNIX server socket: Address already in use

(HyperDoc) Warning: Not connected to AXIOM Server!

then you probably already had HyperDoc running and the new copy cannot
connect. In this circumstance HyperDoc will still work but certain interactions
with Axiom will not, such as the Basic Commands facility.

8.13 )help

User Level Required: interpreter

Command Syntax:

)help

)help commandName

Command Description:

This command displays help information about system commands. If you issue

)help

then this very text will be shown. You can also give the name or abbreviation
of a system command to display information about it. For example,

)help clear

will display the description of the )clear system command.

All this material is available in the Axiom User Guide and in HyperDoc. In
HyperDoc, choose the Commands item from the Reference menu.

8.14 )history

User Level Required: interpreter

Command Syntax:
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)history )on

)history )off

)history )write historyInputFileName

)history )show [n] [both]

)history )save savedHistoryName

)history )restore [savedHistoryName]

)history )reset

)history )change n

)history )memory

)history )file

%

%%(n)

)set history on | off

Command Description:

The history facility within Axiom allows you to restore your environment to
that of another session and recall previous computational results. Additional
commands allow you to review previous input lines and to create an .input file
of the lines typed to Axiom.

Axiom saves your input and output if the history facility is turned on (which is
the default). This information is saved if either of

)set history on

)history )on

has been issued. Issuing either

)set history off

)history )off

will discontinue the recording of information.

Whether the facility is disabled or not, the value of % in Axiom always refers
to the result of the last computation. If you have not yet entered anything, %
evaluates to an object of type Variable(’%). The function %% may be used
to refer to other previous results if the history facility is enabled. In that case,
%%(n) is the output from step n if n > 0. If n < 0, the step is computed relative
to the current step. Thus %%(-1) is also the previous step, %%(-2), is the step
before that, and so on. If an invalid step number is given, Axiom will signal an
error.
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The environment information can either be saved in a file or entirely in memory
(the default). Each frame has its own history database. When it is kept in a
file, some of it may also be kept in memory for efficiency. When the information
is saved in a file, the name of the file is of the form FRAME.axh where
“FRAME” is the name of the current frame. The history file is placed in the
current working directory. Note that these history database files are not text
files (in fact, they are directories themselves), and so are not in human-readable
format.

The options to the )history command are as follows:

)change n will set the number of steps that are saved in memory to n. This
option only has effect when the history data is maintained in a file. If you
have issued )history )memory (or not changed the default) there is no
need to use )history )change.

)on will start the recording of information. If the workspace is not empty, you
will be asked to confirm this request. If you do so, the workspace will be
cleared and history data will begin being saved. You can also turn the
facility on by issuing )set history on.

)off will stop the recording of information. The )history )show command
will not work after issuing this command. Note that this command may be
issued to save time, as there is some performance penalty paid for saving
the environment data. You can also turn the facility off by issuing )set

history off.

)file indicates that history data should be saved in an external file on disk.

)memory indicates that all history data should be kept in memory rather than
saved in a file. Note that if you are computing with very large objects it
may not be practical to kept this data in memory.

)reset will flush the internal list of the most recent workspace calculations
so that the data structures may be garbage collected by the underlying
Common Lisp system. Like )history )change, this option only has real
effect when history data is being saved in a file.

)restore [savedHistoryName ] completely clears the environment and restores
it to a saved session, if possible. The )save option below allows you to
save a session to a file with a given name. If you had issued )history

)save jacobi the command )history )restore jacobi would clear the
current workspace and load the contents of the named saved session. If no
saved session name is specified, the system looks for a file called last.axh.

)save savedHistoryName is used to save a snapshot of the environment in a
file. This file is placed in the current working directory. Use )history

)restore to restore the environment to the state preserved in the file.
This option also creates an input file containing all the lines of input since
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you created the workspace frame (for example, by starting your Axiom
session) or last did a )clear all or )clear completely.

)show [n [both]] can show previous input lines and output results. )show will
display up to twenty of the last input lines (fewer if you haven’t typed in
twenty lines). )show n will display up to n of the last input lines. )show
both will display up to five of the last input lines and output results. )show
n both will display up to n of the last input lines and output results.

)write historyInputFile creates an .input file with the input lines typed since
the start of the session/frame or the last )clear all or )clear completely.
If historyInputFileName does not contain a period (“.”) in the filename,
.input is appended to it. For example, )history )write chaos and
)history )write chaos.input both write the input lines to a file called
chaos.input in your current working directory. If you issued one or more
)undo commands, )history )write eliminates all input lines backtracked
over as a result of )undo. You can edit this file and then use )read to
have Axiom process the contents.

Also See: )frame , )read , )set , and )undo .

8.15 )library

User Level Required: interpreter

Command Syntax:

)library libName1 [libName2 ...]

)library )dir dirName

)library )only objName1 [objlib2 ...]

)library )noexpose

Command Description:

This command replaces the )load system command that was available in Axiom
releases before version 2.0. The )library command makes available to Axiom
the compiled objects in the libraries listed.

For example, if you )compile dopler.as in your home directory, issue )library
dopler to have Axiom look at the library, determine the category and domain
constructors present, update the internal database with various properties of
the constructors, and arrange for the constructors to be automatically loaded
when needed. If the )noexpose option has not been given, the constructors will
be exposed (that is, available) in the current frame.

If you compiled a file with the Spad compiler, you will have an nrlib present,
for example, DOPLER.nrlib, where DOPLER is a constructor abbreviation. The
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command )library DOPLER will then do the analysis and database updates as
above.

To tell the system about all libraries in a directory, use )library )dir dirName

where dirName is an explicit directory. You may specify “.” as the directory,
which means the current directory from which you started the system or the
one you set via the )cd command. The directory name is required.

You may only want to tell the system about particular constructors within a
library. In this case, use the )only option. The command )library dopler

)only Test1 will only cause the Test1 constructor to be analyzed, autoloaded,
etc..

Finally, each constructor in a library are usually automatically exposed when
the )library command is used. Use the )noexpose option if you not want
them exposed. At a later time you can use )set expose add constructor to
expose any hidden constructors.

Also See: )cd , )compile , )frame , and )set .

8.16 )lisp

User Level Required: development

Command Syntax:

)lisp [lispExpression]

Command Description:

This command is used by Axiom system developers to have single expressions
evaluated by the Common Lisp system on which Axiom is built. The lispExpres-
sion is read by the Common Lisp reader and evaluated. If this expression is not
complete (unbalanced parentheses, say), the reader will wait until a complete
expression is entered.

Since this command is only useful for evaluating single expressions, the )fin

command may be used to drop out of Axiom into Common Lisp.

Also See: )system , )boot , and )fin .

8.17 )ltrace

User Level Required: development

Command Syntax:

This command has the same arguments as options as the )trace command.

Command Description:
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This command is used by Axiom system developers to trace Common Lisp or
BOOT functions. It is not supported for general use.

Also See: )boot , )lisp , and )trace .

8.18 )pquit

User Level Required: interpreter

Command Syntax:

)pquit

Command Description:

This command is used to terminate Axiom and return to the operating sys-
tem. Other than by redoing all your computations or by using the )history

)restore command to try to restore your working environment, you cannot
return to Axiom in the same state.

)pquit differs from the )quit in that it always asks for confirmation that you
want to terminate Axiom (the “p” is for “protected”). When you enter the
)pquit command, Axiom responds

Please enter y or yes if you really want to leave the interactive
environment and return to the operating system:

If you respond with y or yes, Axiom will terminate and return you to the
operating system (or the environment from which you invoked the system). If
you responded with something other than y or yes, then the message

You have chosen to remain in the Axiom interactive environment.

will be displayed and, indeed, Axiom would still be running.

Also See: )fin , )history , )close , )quit , and )system .

8.19 )quit

User Level Required: interpreter

Command Syntax:

)quit

)set quit protected | unprotected

Command Description:

This command is used to terminate Axiom and return to the operating sys-
tem. Other than by redoing all your computations or by using the )history
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)restore command to try to restore your working environment, you cannot
return to Axiom in the same state.

)quit differs from the )pquit in that it asks for confirmation only if the com-
mand

)set quit protected

has been issued. Otherwise, )quit will make Axiom terminate and return you to
the operating system (or the environment from which you invoked the system).

The default setting is )set quit protected so that )quit and )pquit behave
in the same way. If you do issue

)set quit unprotected

we suggest that you do not (somehow) assign )quit to be executed when you
press, say, a function key.

Also See: )fin , )history , )close , )pquit , and )system .

8.20 )read

User Level Required: interpreter

Command Syntax:

)read [fileName]

)read [fileName] [)quiet] [)ifthere]

Command Description:

This command is used to read .input files into Axiom. The command

)read matrix.input

will read the contents of the file matrix.input into Axiom. The “.input” file
extension is optional.

This command remembers the previous file you edited, read or compiled. If you
do not specify a file name, the previous file will be read.

The )ifthere option checks to see whether the .input file exists. If it does
not, the )read command does nothing. If you do not use this option and the
file does not exist, you are asked to give the name of an existing .input file.

The )quiet option suppresses output while the file is being read.

Also See: )compile , )edit , and )history .
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8.21 )set

User Level Required: interpreter

Command Syntax:

)set

)set label1 [... labelN]

)set label1 [... labelN] newValue

Command Description:

The )set command is used to view or set system variables that control what
messages are displayed, the type of output desired, the status of the history
facility, the way Axiom user functions are cached, and so on. Since this collection
is very large, we will not discuss them here. Rather, we will show how the facility
is used. We urge you to explore the )set options to familiarize yourself with
how you can modify your Axiom working environment. There is a HyperDoc
version of this same facility available from the main HyperDoc menu.

The )set command is command-driven with a menu display. It is tree-structured.
To see all top-level nodes, issue )set by itself.

)set

Variables with values have them displayed near the right margin. Subtrees of
selections have “...” displayed in the value field. For example, there are many
kinds of messages, so issue )set message to see the choices.

)set message

The current setting for the variable that displays whether computation times
are displayed is visible in the menu displayed by the last command. To see more
information, issue

)set message time

This shows that time printing is on now. To turn it off, issue

)set message time off

As noted above, not all settings have so many qualifiers. For example, to change
the )quit command to being unprotected (that is, you will not be prompted
for verification), you need only issue

)set quit unprotected

Also See: )quit .
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8.22 )show

User Level Required: interpreter

Command Syntax:

)show nameOrAbbrev

)show nameOrAbbrev )operations

)show nameOrAbbrev )attributes

Command Description: This command displays information about Axiom
domain, package and category constructors. If no options are given, then the
)operations option is assumed. For example,

)show POLY

)show POLY )operations

)show Polynomial

)show Polynomial )operations

each display basic information about the Polynomial domain constructor and
then provide a listing of operations. Since Polynomial requires a Ring (for
example, Integer) as argument, the above commands all refer to a unspecified
ring R. In the list of operations, $ means Polynomial(R).

The basic information displayed includes the signature of the constructor (the
name and arguments), the constructor abbreviation, the exposure status of the
constructor, and the name of the library source file for the constructor.

If operation information about a specific domain is wanted, the full or abbrevi-
ated domain name may be used. For example,

)show POLY INT

)show POLY INT )operations

)show Polynomial Integer

)show Polynomial Integer )operations

are among the combinations that will display the operations exported by the
domain Polynomial(Integer) (as opposed to the general domain constructor
Polynomial). Attributes may be listed by using the )attributes option.

Also See: )display , )set , and )what .

8.23 )spool

User Level Required: interpreter

Command Syntax:
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)spool [fileName]

)spool

Command Description:

This command is used to save (spool) all Axiom input and output into a file,
called a spool file. You can only have one spool file active at a time. To start
spool, issue this command with a filename. For example,

)spool integrate.out

To stop spooling, issue )spool with no filename.

If the filename is qualified with a directory, then the output will be placed in
that directory. If no directory information is given, the spool file will be placed
in the current directory. The current directory is the directory from which you
started Axiom or is the directory you specified using the )cd command.

Also See: )cd .

8.24 )synonym

User Level Required: interpreter

Command Syntax:

)synonym

)synonym synonym fullCommand

)what synonyms

Command Description:

This command is used to create short synonyms for system command expres-
sions. For example, the following synonyms might simplify commands you often
use.

)synonym save history )save

)synonym restore history )restore

)synonym mail system mail

)synonym ls system ls

)synonym fortran set output fortran

Once defined, synonyms can be used in place of the longer command expressions.
Thus

)fortran on

is the same as the longer
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)set fortran output on

To list all defined synonyms, issue either of

)synonyms

)what synonyms

To list, say, all synonyms that contain the substring “ap”, issue

)what synonyms ap

Also See: )set and )what .

8.25 )system

User Level Required: interpreter

Command Syntax:

)system cmdExpression

Command Description:

This command may be used to issue commands to the operating system while
remaining in Axiom. The cmdExpression is passed to the operating system for
execution.

To get an operating system shell, issue, for example, )system sh. When you

enter the key combination, Ctrl – D (pressing and holding the Ctrl key and

then pressing the D key) the shell will terminate and you will return to Axiom.
We do not recommend this way of creating a shell because Common Lisp may
field some interrupts instead of the shell. If possible, use a shell running in
another window.

If you execute programs that misbehave you may not be able to return to Axiom.
If this happens, you may have no other choice than to restart Axiom and restore
the environment via )history )restore, if possible.

Also See: )boot , )fin , )lisp , )pquit , and )quit .

8.26 )trace

User Level Required: interpreter

Command Syntax:

)trace

)trace )off
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)trace function [options]

)trace constructor [options ]

)trace domainOrPackage [options ]

where options can be one or more of

)after S-expression

)before S-expression

)break after

)break before

)cond S-expression

)count

)count n

)depth n

)local op1 [... opN ]

)nonquietly

)nt

)off

)only listOfDataToDisplay

)ops

)ops op1 [... opN ]

)restore

)stats

)stats reset

)timer

)varbreak

)varbreak var1 [... varN ]

)vars

)vars var1 [... varN ]
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)within executingFunction

Command Description:

This command is used to trace the execution of functions that make up the
Axiom system, functions defined by users, and functions from the system library.
Almost all options are available for each type of function but exceptions will be
noted below.

To list all functions, constructors, domains and packages that are traced, )issue

)trace

To untrace everything that is traced, issue

)trace )off

When a function is traced, the default system action is to display the arguments
to the function and the return value when the function is exited. Note that if a
function is left via an action such as a THROW, no return value will be displayed.
Also, optimization of tail recursion may decrease the number of times a function
is actually invoked and so may cause less trace information to be displayed.
Other information can be displayed or collected when a function is traced and
this is controlled by the various options. Most options will be of interest only to
Axiom system developers. If a domain or package is traced, the default action
is to trace all functions exported.

Individual interpreter, lisp or boot functions can be traced by listing their names
after )trace. Any options that are present must follow the functions to be
traced.

)trace f

traces the function f. To untrace f, issue

)trace f )off

Note that if a function name contains a special character, it will be necessary
to escape the character with an underscore

)trace _/D_,1

To trace all domains or packages that are or will be created from a particular
constructor, give the constructor name or abbreviation after )trace.

)trace MATRIX

)trace List Integer

The first command traces all domains currently instantiated with Matrix. If
additional domains are instantiated with this constructor (for example, if you
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have used Matrix(Integer) and Matrix(Float)), they will be automatically
traced. The second command traces List(Integer). It is possible to trace
individual functions in a domain or package. See the )ops option below.

The following are the general options for the )trace command.

)break after causes a Common Lisp break loop to be entered after exiting
the traced function.

)break before causes a Common Lisp break loop to be entered before entering
the traced function.

)break is the same as )break before.

)count causes the system to keep a count of the number of times the traced
function is entered. The total can be displayed with )trace )stats and
cleared with )trace )stats reset.

)count n causes information about the traced function to be displayed for the
first n executions. After the n-th execution, the function is untraced.

)depth n causes trace information to be shown for only n levels of recursion of
the traced function. The command

)trace fib )depth 10

will cause the display of only 10 levels of trace information for the recursive
execution of a user function fib.

)math causes the function arguments and return value to be displayed in the
Axiom monospace two-dimensional math format.

)nonquietly causes the display of additional messages when a function is traced.

)nt This suppresses all normal trace information. This option is useful if the
)count or )timer options are used and you are interested in the statistics
but not the function calling information.

)off causes untracing of all or specific functions. Without an argument, all
functions, constructors, domains and packages are untraced. Otherwise,
the given functions and other objects are untraced. To immediately retrace
the untraced functions, issue )trace )restore.

)only listOfDataToDisplay causes only specific trace information to be shown.
The items are listed by using the following abbreviations:

a display all arguments

v display return value

1 display first argument
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2 display second argument

15 display the 15th argument, and so on

)restore causes the last untraced functions to be retraced. If additional op-
tions are present, they are added to those previously in effect.

)stats causes the display of statistics collected by the use of the )count and
)timer options.

)stats reset resets to 0 the statistics collected by the use of the )count and
)timer options.

)timer causes the system to keep a count of execution times for the traced
function. The total can be displayed with )trace )stats and cleared
with )trace )stats reset.

)varbreak var1 [... varN ] causes a Common Lisp break loop to be entered
after the assignment to any of the listed variables in the traced function.

)vars causes the display of the value of any variable after it is assigned in the
traced function. Note that library code must have been compiled using
the )vartrace option in order to support this option.

)vars var1 [... varN ] causes the display of the value of any of the specified
variables after they are assigned in the traced function. Note that library
code must have been compiled using the )vartrace option in order to
support this option.

)within executingFunction causes the display of trace information only if the
traced function is called when the given executingFunction is running.

The following are the options for tracing constructors, domains and packages.

)local [ op1 [. . . opN]] causes local functions of the constructor to be traced.
Note that to untrace an individual local function, you must use the fully
qualified internal name, using the escape character before the semicolon.

)trace FRAC )local

)trace FRAC_;cancelGcd )off

)ops op1 [... opN ] By default, all operations from a domain or package are
traced when the domain or package is traced. This option allows you to
specify that only particular operations should be traced. The command

)trace Integer )ops min max _+ _-

traces four operations from the domain Integer. Since + and - are special
characters, it is necessary to escape them with an underscore.

Also See: )boot , )lisp , and )ltrace .
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8.27 )undo

User Level Required: interpreter

Command Syntax:

)undo

)undo integer

)undo integer [option ]

)undo )redo

where option is one of

)after

)before

Command Description:

This command is used to restore the state of the user environment to an earlier
point in the interactive session. The argument of an )undo is an integer which
must designate some step number in the interactive session.

)undo n

)undo n )after

These commands return the state of the interactive environment to that imme-
diately after step n. If n is a positive number, then n refers to step nummber
n. If n is a negative number, it refers to the n-th previous command (that is,
undoes the effects of the last −n commands).

A )clear all resets the )undo facility. Otherwise, an )undo undoes the effect
of )clear with options properties, value, and mode, and that of a previous
undo. If any such system commands are given between steps n and n+1 (n > 0),
their effect is undone for )undo m for any 0 < m ≤ n..

The command )undo is equivalent to )undo -1 (it undoes the effect of the
previous user expression). The command )undo 0 undoes any of the above
system commands issued since the last user expression.

)undo n )before

This command returns the state of the interactive environment to that immedi-
ately before step n. Any )undo or )clear system commands given before step
n will not be undone.

)undo )redo
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This command reads the file redo.input. created by the last )undo command.
This file consists of all user input lines, excluding those backtracked over due to
a previous )undo.

Also See: )history . The command )history )write will eliminate the
“undone” command lines of your program.

8.28 )what

User Level Required: interpreter

Command Syntax:

)what categories pattern1 [pattern2 ...]

)what commands pattern1 [pattern2 ...]

)what domains pattern1 [pattern2 ...]

)what operations pattern1 [pattern2 ...]

)what packages pattern1 [pattern2 ...]

)what synonym pattern1 [pattern2 ...]

)what things pattern1 [pattern2 ...]

)apropos pattern1 [pattern2 ...]

Command Description:

This command is used to display lists of things in the system. The patterns are
all strings and, if present, restrict the contents of the lists. Only those items
that contain one or more of the strings as substrings are displayed. For example,

)what synonym

displays all command synonyms,

)what synonym ver

displays all command synonyms containing the substring “ver”,

)what synonym ver pr

displays all command synonyms containing the substring “ver” or the substring
“pr”. Output similar to the following will be displayed

---------------- System Command Synonyms -----------------

user-defined synonyms satisfying patterns:
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ver pr

)apr ........................... )what things

)apropos ....................... )what things

)prompt ........................ )set message prompt

)version ....................... )lisp *yearweek*

Several other things can be listed with the )what command:

categories displays a list of category constructors.

commands displays a list of system commands available at your user-level. Your
user-level is set via the )set userlevel command. To get a description
of a particular command, such as “)what”, issue )help what.

domains displays a list of domain constructors.

operations displays a list of operations in the system library. It is recom-
mended that you qualify this command with one or more patterns, as
there are thousands of operations available. For example, say you are
looking for functions that involve computation of eigenvalues. To find
their names, try )what operations eig. A rather large list of operations
is loaded into the workspace when this command is first issued. This list
will be deleted when you clear the workspace via )clear all or )clear
completely. It will be re-created if it is needed again.

packages displays a list of package constructors.

synonym lists system command synonyms.

things displays all of the above types for items containing the pattern strings
as substrings. The command synonym )apropos is equivalent to )what

things.

Also See: )display , )set , and )show .

8.29 Makefile

This book is actually a literate program[2] and can contain executable source
code. In particular, the Makefile for this book is part of the source of the book
and is included below. Axiom uses the “noweb” literate programming system
by Norman Ramsey[6].

⟨* ⟩≡
PROJECT=bookvol1

TANGLE=/usr/local/bin/NOTANGLE

WEAVE=/usr/local/bin/NOWEAVE
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LATEX=/usr/bin/latex

MAKEINDEX=/usr/bin/makeindex

all:

${WEAVE} -t8 -delay ${PROJECT}.pamphlet >${PROJECT}.tex

${LATEX} ${PROJECT}.tex 2>/dev/null 1>/dev/null

${MAKEINDEX} ${PROJECT}.idx

${LATEX} ${PROJECT}.tex 2>/dev/null 1>/dev/null
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∗ Multiplication, 39
∗∗ Exponentiation, 39
+ Addition, 39
− Numerical Negation, 39
− Subtraction, 39
/ Division, 39
< less than, 39
<= less than or equal, 39
=> block exit, 78, 80, 81
> greater than, 39
>= greater than or equal, 39
˜Logical Negation, 39
)abb, 178
)abbreviation, 178, 239
)boot, 234, 248, 249, 254, 258
)cd, 234, 248, 253
)clear, 50, 235, 241
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)edit, 235, 239, 241, 250
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)history, 51, 235, 237, 241, 243, 244,
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)library, 235, 239, 247
)lisp, 234, 248, 249, 254, 258
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)pquit, 235, 242, 249, 250, 254
)quit, 235, 242, 249, 251, 254
)read, 50, 71, 235, 241, 247, 250
)set, 234, 241, 243, 247, 248, 251, 252,

254, 261
)set streams calculate, 115
)show, 241, 252, 261

)spool, 235, 252
)synonym, 253
)system, 50, 234, 241, 248–250, 254
)trace, 249, 254
)undo, 51, 237, 247, 259
)what, 51, 241, 252, 254, 260
++ comments, 32, 49
+++ comments, 32, 49
– comments, 32, 49
. Record selector, 183
: declaration, 179
::, 29
:: conversion, 34, 49, 50, 175, 192
:: failure, 34
; output suppression, 43, 47
# list length, 57
$ package call, 175, 199
$ package calling, 49, 50
%, 9, 24, 34, 48
%%, 24, 48
%e, 31
%i, 31
%infinity, 31
%minusInfinity, 31, 114
%pi, 31, 91
%plusInfinity, 31, 114
escape, 31, 48

abbreviation, 178, 233
constructor, 178

abbreviation category, 233
abbreviation domain, 233
abbreviation package, 233
abbreviation query, 233
abbreviation remove, 234
abs, 36
acos, 38
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Ada, 13
adaptive, 135
adaptive plotting, 139, 140, 161, 163
Aldor, 174

Spad, 174
Any, 167, 191, 204
APL, 173
append, 55
appendPoint , 147
apropos, 261
arctan, 123
array

flexible, 100
one-dimensional, 99
two-dimensional, 104

asin, 38
assignment, 26

delayed, 26
immediate, 26

assignment delayed, 75
assignment immediate, 39
AssociationList, 102
atan, 38, 123
axiom, 21

badge, 192
balanced binary tree, 101
BalancedBinaryTree, 101
BasicOperator, 124
binary search tree, 101
BinarySearchTree, 101
binarySearchTree, 101
bit? , 14
Bits, 67, 100
bits, 68, 100
Blocks, 72
blue, 134
Boolean, 175
boot, 234
break, 79–81
by for, 88

case, 187, 190
Category, 172
category, 15, 170, 172, 195
category exports, 173

cd, 220, 221, 234, 253
character set, 223
characteristic , 174
Choices, 78
clear, 235
Clef, 22
clip, 135
close, 216, 235
coefficient, 6, 8
coerce , 149
Color, 134
color, 134, 216

multiplication, 134
shade, 136

colormap, 158
Colors, 134
command line editor, 22
CommutativeRing, 195
compactFraction, 45
compile, 235, 237
complete, 66
complex, 92
complex , 241
complex numbers, 41, 91
Complex(Fraction(Integer)), 172
Complex(Integer), 175
ComplexCategory, 241
complexIntegrate, 121
complexLimit, 113, 114
complexSolve, 127
component , 147, 149
computation timings

displaying, 251
concat

concat
, 98

concat , 170, 201
concat 57, 98
conjugate, 92
conjugate, complex numbers, 41
cons, 55
constructor

abbreviation, 178
domain, 169
exposed, 205
hidden, 205
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package, 174
continuedFraction, 44, 93
conversion, 29
coordinate system

parabolic cylindrical, 155
coordinates, 135
copy, 61
copyInto 68
cos, 38
cosh, 122
curve

non-singular, 134
parametric plane, 132
plane algebraic, 133
smooth, 134

curveColor, 135
cyclic list, 98

D Derivatives, 117
decimal, 44, 93
DecimalExpansion, 44
declaration, 26
declarations, 179
delayed assignment, 26, 75
delete , 170
delete 70
derivative, 117
Derivatives, 117
destructive operations, 31
determinant, 106
diagonalMatrix, 108
differentiation, 117

formal, 118
partial, 118

digits, 91
digits , 91
digits function, 42
directory

default for searching, 220
for spool files, 253

display, 239
display operation, 209
DistributedMultivariatePolynomial, 112
dithering, 159
divide, 30, 38
Domain, 169

domain, 14, 167
domain constructor, 169
DoubleFloat, 90

edit, 235, 241
editing files, 241
elt, 59
emacs, 241
empty?, 56, 101
Equation, 124
erf, 123
eval, 40, 117, 119
even?, 38
exiting Axiom, 22
exp, 91, 92, 114, 116, 117, 123
expand, 63
exports

category, 173
Domain, 173

exposed
constructor, 205

exposed.lsp, 205
exposure

group, 205
exquo , 188
extract 101

factor, 30, 38, 89, 90, 92, 98, 106
factor, complex numbers, 42
FactoredFunctions2, 177
factorial, 30, 38, 106, 108, 115, 169
Fibonacci, 64
Field, 172
field, 172
file

.Xdefaults, 216

.Xdefaults, 139, 160, 165

.axiom.input, 220
exposed.lsp, 205
history, 243
input, 108, 219, 232, 245, 250
where found, 220

sending output to, 221
spool, 253
start-up profile, 220

fin, 242
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first, 55, 97
first , 97
firstDenom, 46
firstNumer, 46
Flexible Arrays, 69
FlexibleArray, 67
flexibleArray, 100
Float, 91, 167, 199
floating point, 91
font, 216
for, 85
for by, 88
for list, 85
for segment, 85
FORTRAN, 13
FORTRAN output format, 224

arrays, 228
breaking into multiple statements,

225
data types, 226
integers vs. floats, 225
line length, 225
optimization level, 226
precision, 226

Fraction, 18, 172, 174, 189, 199, 202
fraction

partial, 93
Fraction(Complex(Integer)), 172
Fraction(Integer), 172
fractionPart, 35
frame, 207, 242

exposure and, 207
frame drop, 243
frame import, 243
frame last, 243
frame names, 242
frame new, 243
frame next, 243
function, 106

calling, 30
piece-wise definition, 106

Gaussian Integers, 172
gcd, 38
generate, 64
getGraph , 151

Gröbner, 113
graphics, 129

.Xdefaults, 165
button font, 165
graph label font, 165
graph number font, 165
inverting background, 165
lighting font, 165
message font, 166
monochrome, 166
PostScript file name, 139, 160,

166
title font, 166
unit label font, 166
volume label font, 166

2D commands
axes, 141
close, 141
connect, 141
graphs, 141
key, 141
move, 141
options, 141
points, 141
resize, 142
scale, 142
state of graphs, 141
translate, 142

2D control-panel, 136
axes, 139
box, 139
buttons, 139
clear, 138
drop, 139
hide, 139
lines, 139
messages, 138
multiple graphs, 138
pick, 139
points, 139
ps, 139
query, 138
quit, 139
reset, 139
scale, 137
transformations, 137
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translate, 138
units, 139

2D defaults
available viewport writes, 141

3D commands
axes, 161
close, 161
control-panel, 162
define color, 162
deltaX default, 164
deltaY default, 164
diagonals, 162
drawing style, 162
eye distance, 162
intensity, 163
key, 162
lighting, 162
modify point data, 162
move, 162
outline, 162
perspective, 162
phi default, 164
reset, 162
resize, 162
rotate, 162
scale, 165
scale default, 165
showRegion, 163
subspace, 163
theta default, 164
title, 163
translate, 163
viewpoint, 164

3D control-panel, 157
axes, 159
bounds, 159
buttons, 159
bw, 160
clip volume, 161
clipping on, 161
color map, 158
eye reference, 161
hide, 160
intensity, 160
light, 160
messages, 158

move xy, 160
move z, 160
outline, 159
perspective, 161
pixmap, 160
ps, 160
quit, 160
reset, 160
rotate, 157
save, 160
scale, 158
shade, 159
show clip region, 161
smooth, 159
solid, 159
transformations, 157
translate, 158
view volume, 161
wire, 159

3D defaults
available viewport writes, 164
reset viewport defaults, 164
tube points, 163
tube radius, 163
var1 steps, 163
var2 steps, 163
viewport position, 164
viewport size, 164
viewport writes, 164

3D options, 155
color, 134
color function, 134
hue function, 134
multiply function, 134
number of hues, 134
primary color functions, 134

palette, 135
plot3d defaults
adaptive, 161
set adaptive, 163
set max points, 163
set min points, 163
set screen resolution, 163

set 2D defaults
adaptive, 139
axes color, 140
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clip points, 140
line color, 140
max points, 140
min points, 140
point color, 140
point size, 140
reset viewport, 140
screen resolution, 140
to scale, 140
units color, 140
viewport position, 140
viewport size, 141
write viewport, 141

Xdefaults
2d, 166

GraphImage, 142, 147, 149
green, 134
group

exposure, 205
groupSqrt, 111

HashTable, 102
hd, 244
heap, 101
help, 244
history, 244
history )change, 246
history )off, 245
history )on, 245
history )restore, 235
history )save, 235
history )write, 220, 235
hither clipping plane, 161
HomogeneousDistributedMultivariatePolynomial,

113
howMany, 103
hue, 134
HyperDoc, 22
HyperDoc, 211
HyperDoc X Window System defaults,

216

IBM Script Formula Format, 224
if-then-else, 78
imag, complex numbers, 41
immediate assignment, 26, 39

∞ (= %infinity), 31
insert , 170
insert 69, 100
Integer, 14, 16, 167, 173–175, 188, 197
IntegerMod, 47, 95
IntegralDomain, 172, 195
integrate, 120, 122
integration, 120
interrupt, 22
inv , 202
iterate, 80, 85

KeyedAccessFile, 102
Korn shell, 241

last, 60
lcm, 38
Legendre Polynomial, 5
Legendre polynomials, 5
Library, 102
library, 247

operations
* , 14–16, 18, 170, 173
+ , 14–16, 170, 173, 174, 206
- , 14–16, 170, 197
/ , 172, 174, 199
= , 173, 174
0 , 15
1 , 15

limit, 113, 114
of function with parameters, 113

lisp, 248
List, 97, 98, 170
list, 55

cyclic, 98
log, 116
Loops, 79
Loops repeat, 79
ltrace, 248

macro
predefined, 31

makeGraphImage , 142
makeViewport2D , 147
map, 90
map , 202
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map 67
Matrix, 18, 104
matrix, 104

creating, 104
Hilbert, 105

Matrix(Float), 167
MatrixCategoryFunctions2, 202
max, 38
member?, 56
merge 70
min, 38
mode, 167, 177
modTree, 101
Modula 2, 13
monospace 2D output format, 222
multiset, 102
MultivariatePolynomial, 112, 177

negative?, 37
nextPrime, 64
non-singular curve, 134
not Logical Negation, 39
nthFractionalTerm, 45
numberOfFractionalTerms, 45
numberOfHues() , 134

Octonion, 97
odd?, 37
odd? , 14
one?, 37
OneDimensionalArray, 66, 177
oneDimensionalArray, 99
operation name completion, 22
operator, 119
operator function, 119, 124, 126
OrderedCompletion, 114
output formats

common features, 221
FORTRAN, 224
IBM Script Formula Format, 224
line length, 222
monospace 2D, 222
sending to file, 221
sending to screen, 221
starting, 221
stopping, 221

TEX, 223
outputFixed, 43
outputFloating, 42
OutputForm, 206
outputGeneral, 43
outputSpacing, 42

package, 17, 174
padicFraction, 44, 93
Palette, 135
Palettes, 134
parabolic cylindrical coordinate system,

155
parametric plane curve, 132
parentheses

using with types, 175–177
partialFraction, 44, 93
PASCAL, 13
pattern matching, 111
PendantTree, 101
%%, 24
peril, 199
Permanent, 104
permutation matrix, 108
perspective , 162
Phong

illumination model, 159
smooth shading model, 159

physicalLength, 70
physicalLength 70
π (= %pi), 31
piece-wise function definition, 106
pile, 72, 78
plane algebraic curve, 133
pointColor, 135
polynomial, 111
Polynomial(Integer), 167
Polynomial(R), 111
PolynomialFunction2(R,S), 174
positive?, 37
PositiveInteger, 168, 175
PostScript, 130, 139, 160, 166
pquit, 249, 250
pretend, 198
prime?, 38
PrimeField, 46, 94
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primes, 102, 103
priority queue, 101
prompt, 21

with frame name, 243
Puiseux series, 115
putGraph , 152

quatern, 30, 97
Quaternion, 97
quit, 220, 249
quo Quotient, 39
quote, 29, 182, 190
quote symbols, 29

radical, 94
radicalSolve, 10, 127
radix, 43, 89, 93
RadixExpansion, 43
range, 135
ratDenom, 96
read, 219, 235, 250
real, complex numbers, 41
Record, 103, 167, 182
Record, 103
record, 103

difference from union, 190
selector, 182

red, 134
reduce, 108
rem, 103
rem Remainder, 39
removeDuplicates, 57
removeDuplicates 69
repeat, 81
repeat Loops, 79
resolve, 203
rest, 56, 97
rest , 97
result

previous, 24
retract, 168
retractIfCan , 189
return, 79, 80
reverse, 56
Ring, 15, 16, 104, 170, 173
roman, 90

Roman numerals, 90
rootOf, 95
round, 35
rule, 9, 111

scaling graphs, 165
scroll bar, 213
search, 103
Segmented Lists, 63
selector

quoting, 184, 190
record, 182
union, 190

series, 8, 115
power, 115
Puiseux, 115
Taylor, 116

seriesSolve, 126
set, 102, 251
set expose, 206
set expose add constructor, 206
set expose add group, 206
set expose drop constructor, 206
set expose drop group, 206
set fortran, 224
set fortran explength, 224
set fortran ints2floats, 225
set fortran optlevel, 225, 226
set fortran precision double, 226
set fortran precision single, 226
set fortran segment, 225
set fortran startindex, 229
set history off, 245
set history on, 245
set message frame, 243
set message prompt frame, 243
set message time, 251
set output, 221
set output algebra, 222
set output characters, 223
set output fortran, 221, 225
set output length, 222
set output script, 224
set output tex, 223
set quit protected, 220, 250
set quit unprotected, 220, 250, 251
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set userlevel, 261
set userlevel compiler, 231
set userlevel development, 231
set userlevel interpreter, 231
setrest

setrest
, 98

setrest 58, 98
shade, 136
show, 209, 252
shrinkable, 71
sign, 36
simplification, 111
sin, 38, 115, 118, 131
SingleInteger, 90
sinh, 122
smooth curve, 134
solve, 10, 124, 125
sort, 57
sort 70
Spad, 174

Aldor, 174
spad, 238
SparseTable, 102
spool, 235, 252
sqrt, 91, 114, 122
SquareMatrix, 104, 171, 177, 193
start-up profile file, 220
step number, 21
stopping Axiom, 22
stream, 7, 98
Streams, 64
String, 67, 100, 175, 201
StringTable, 102
subdomain, 15, 169
subdomains, 196
such that, 86
swap 67
symbol

naming, 26
symbol quoting, 29
synonym, 253
system, 254

Table, 102
table, 102

tan, 38, 123, 131
target type, 175, 200
taylor, 117
TEX output format, 223
ThreeDimensionalViewport, 160, 162,

164
timings

displaying, 251
toScale, 135
TournamentTree, 101
trace, 106, 254
transpose, 106
tree, 101

balanced binary, 101
binary search, 101

truncate, 35
TwoDimensionalArray, 104
TwoDimensionalViewport, 141, 147, 151,

152
Type, 172
type, 167

using parentheses, 175–177
type target, 50
typeOf, 188

undo, 259
Union, 104, 167, 186
Union, 104
union, 104, 186

difference from record, 190
selector, 190

unit, 135
UnivariatePolynomial, 112, 177
UnivariatePuiseuxSeries, 115
UnivariateTaylorSeries, 126
UniversalSegment, 63
user-level, 231, 261

variable
naming, 26

Vector, 67, 100, 104
vector, 68
vi, 241
Void, 175

weight, 134
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what, 178, 207, 260
what categories, 261
what commands, 261
what domain, 208
what domains, 261
what operation, 207
what operations, 261
what packages, 179, 208, 261
what synonym, 261
what things, 261
while, 81
wholePart, 45
window, 22
write , 141, 160, 164

X Window System, 22, 216

zero?, 37
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