Classical symmetric functions.

class sage.combinat.sf.classical.SymmetricFunctionAlgebraElement_classical(A, x)
A symmetric function.
class sage.combinat.sf.classical.SymmetricFunctionAlgebra_classical(R, basis, element_class, prefix)
__call__(x)

Coerce x into self.

EXAMPLES:

sage: s = SFASchur(QQ)
sage: s(2)
2*s[]
sage: s([2,1])
s[2, 1]
__init__(R, basis, element_class, prefix)

TESTS:

sage: from sage.combinat.sf.classical import SymmetricFunctionAlgebra_classical
sage: s = SFASchur(QQ)
sage: isinstance(s, SymmetricFunctionAlgebra_classical)
True
__repr__()

Text representation of this symmetric function algebra.

EXAMPLES:

sage: SFASchur(QQ).__repr__()
'Symmetric Function Algebra over Rational Field, Schur symmetric functions as basis'
is_commutative()

Return True if this symmetric function algebra is commutative.

EXAMPLES:

sage: s = SFASchur(QQ)
sage: s.is_commutative()
True
is_field()

EXAMPLES:

sage: s = SFASchur(QQ)
sage: s.is_field()
False
sage.combinat.sf.classical.init()

Set up the conversion functions between the classical bases.

EXAMPLES:

sage: from sage.combinat.sf.classical import init
sage: sage.combinat.sf.classical.conversion_functions = {}
sage: init()
sage: sage.combinat.sf.classical.conversion_functions[('schur', 'power')]
<built-in function t_SCHUR_POWSYM_symmetrica>

Previous topic

Symmetric Functions

Next topic

Schur symmetric functions

This Page