Finite combinatorial classes

class sage.combinat.finite_class.FiniteCombinatorialClass(l)
INPUT:
  • l a list or iterable

Returns l, wrapped as a combinatorial class

EXAMPLES:

sage: F = FiniteCombinatorialClass([1,2,3])
sage: F.list()
[1, 2, 3]
sage: F.cardinality()
3
sage: F.random_element()
1
sage: F.first()
1
sage: F.last()
3
__contains__(x)

EXAMPLES:

sage: F = FiniteCombinatorialClass([1,2,3])
sage: 1 in F
True
sage: 2 in F
True
sage: 4 in F
False
sage: ZZ in F
False
__getitem__(i)

EXAMPLES:

sage: F = FiniteCombinatorialClass(["a", "b", "c"])
sage: F[2]
'c'
__init__(l)

TESTS:

sage: F = FiniteCombinatorialClass([1,2,3])
sage: F == loads(dumps(F))
True
__repr__()

TESTS:

sage: F = FiniteCombinatorialClass([1,2,3])
sage: repr(F)
'Combinatorial class with elements in [1, 2, 3]'
cardinality()

EXAMPLES:

sage: F = FiniteCombinatorialClass([1,2,3])
sage: F.cardinality()
3
keys()
EXAMPLES:
sage: F = FiniteCombinatorialClass([1,2,3]) sage: F.keys() [0, 1, 2]
list()

TESTS:

sage: F = FiniteCombinatorialClass([1,2,3])
sage: F.list()
[1, 2, 3]
object_class(x)

EXAMPLES:

sage: F = FiniteCombinatorialClass([1,2,3])
sage: F.object_class(1)
1
sage.combinat.finite_class.FiniteCombinatorialClass_l
alias of FiniteCombinatorialClass

Previous topic

Dyck Words

Next topic

Tools for generating lists of integers in lexicographic order.

This Page