A submodule of an ambient space of modular forms.
ambient_module – ModularFormsSpace submodule – a submodule of the ambient space. dual_module – (default: None) ignored check – (default: False) whether to check that the
submodule is Hecke equivariant
Compute all coefficients of the modular form element in self for indices in X.
TODO: Implement this function.
Compute q_expansions to precision prec for each element in self.basis().
sage: M = ModularForms(Gamma1(13),2); M Modular Forms space of dimension 13 for Congruence Subgroup Gamma1(13) of weight 2 over Rational Field
sage: S = M.eisenstein_subspace(); S Eisenstein subspace of dimension 11 of Modular Forms space of dimension 13 for Congruence Subgroup Gamma1(13) of weight 2 over Rational Field
sage: S._compute_q_expansion_basis(5) [1 + O(q^5), q + O(q^5), q^2 + O(q^5), q^3 + O(q^5), q^4 + O(q^5), O(q^5), O(q^5), O(q^5), O(q^5), O(q^5), O(q^5)]
Return the base change of this subspace of modular forms to base_ring.