
Writing R Extensions
Version 2.8.1 (2008-12-22)

R Development Core Team

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the R Development Core Team.
Copyright c© 1999–2006 R Development Core Team
ISBN 3-900051-11-9

i

Table of Contents

Acknowledgements . 1

1 Creating R packages . 2
1.1 Package structure . 2

1.1.1 The ‘DESCRIPTION’ file . 3
1.1.2 The ‘INDEX’ file . 6
1.1.3 Package subdirectories . 7
1.1.4 Package bundles . 9

1.2 Configure and cleanup . 10
1.2.1 Using ‘Makevars’ . 12
1.2.2 Configure example . 14
1.2.3 Using F95 code . 16

1.3 Checking and building packages . 17
1.3.1 Checking packages . 17
1.3.2 Building packages . 19
1.3.3 Customizing checking and building . 20

1.4 Writing package vignettes . 21
1.5 Submitting a package to CRAN . 22
1.6 Package name spaces . 23

1.6.1 Specifying imports and exports . 23
1.6.2 Registering S3 methods . 24
1.6.3 Load hooks . 24
1.6.4 An example . 27
1.6.5 Summary – converting an existing package 28
1.6.6 Name spaces with formal classes and methods. 28

1.7 Writing portable packages . 29
1.7.1 Encoding issues . 30

1.8 Diagnostic messages . 31
1.9 Internationalization . 32

1.9.1 C-level messages . 32
1.9.2 R messages . 33

1.10 CITATION files . 33
1.11 Package types . 34

1.11.1 Frontend . 34
1.11.2 Translation . 35

1.12 Services . 35

2 Writing R documentation files 36
2.1 Rd format . 36

2.1.1 Documenting functions . 37
2.1.2 Documenting data sets . 41
2.1.3 Documenting S4 classes and methods . 41

ii

2.1.4 Documenting packages . 42
2.2 Sectioning . 42
2.3 Marking text . 43
2.4 Lists and tables . 44
2.5 Cross-references . 45
2.6 Mathematics . 45
2.7 Insertions . 46
2.8 Indices . 47
2.9 Platform-specific documentation . 47
2.10 Encoding . 48
2.11 Processing Rd format . 48
2.12 Back-compatibility issues . 49

3 Tidying and profiling R code 50
3.1 Tidying R code . 50
3.2 Profiling R code for speed . 50
3.3 Profiling R code for memory use . 52

3.3.1 Memory statistics from Rprof . 53
3.3.2 Tracking memory allocations . 53
3.3.3 Tracing copies of an object . 53

3.4 Profiling compiled code . 54
3.4.1 Linux . 54

3.4.1.1 sprof . 54
3.4.1.2 oprofile . 55

3.4.2 Solaris . 56
3.4.3 MacOS X . 56

4 Debugging . 57
4.1 Browsing . 57
4.2 Debugging R code . 58
4.3 Using gctorture and valgrind . 62

4.3.1 Using gctorture . 62
4.3.2 Using valgrind . 63

4.4 Debugging compiled code . 64
4.4.1 Finding entry points in dynamically loaded code 65
4.4.2 Inspecting R objects when debugging . 66

5 System and foreign language interfaces 68
5.1 Operating system access . 68
5.2 Interface functions .C and .Fortran . 68
5.3 dyn.load and dyn.unload . 70
5.4 Registering native routines . 72
5.5 Creating shared objects . 74
5.6 Interfacing C++ code . 76
5.7 Fortran I/O . 78
5.8 Linking to other packages . 78

5.8.1 Unix-alikes . 78

iii

5.8.2 Windows . 79
5.9 Handling R objects in C . 80

5.9.1 Handling the effects of garbage collection 81
5.9.2 Allocating storage . 83
5.9.3 Details of R types . 83
5.9.4 Attributes . 84
5.9.5 Classes . 86
5.9.6 Handling lists . 87
5.9.7 Handling character data . 88
5.9.8 Finding and setting variables . 88
5.9.9 Some convenience functions . 89
5.9.10 Named objects and copying. 90

5.10 Interface functions .Call and .External 91
5.10.1 Calling .Call . 91
5.10.2 Calling .External . 92
5.10.3 Missing and special values . 94

5.11 Evaluating R expressions from C . 94
5.11.1 Zero-finding . 96
5.11.2 Calculating numerical derivatives . 97

5.12 Parsing R code from C . 100
5.13 External pointers and weak references . 101
5.14 Vector accessor functions . 103
5.15 Character encoding issues . 103

6 The R API: entry points for C code 105
6.1 Memory allocation . 105

6.1.1 Transient storage allocation . 106
6.1.2 User-controlled memory . 106

6.2 Error handling . 107
6.2.1 Error handling from FORTRAN . 107

6.3 Random number generation . 107
6.4 Missing and IEEE special values . 108
6.5 Printing . 108

6.5.1 Printing from FORTRAN . 108
6.6 Calling C from FORTRAN and vice versa 109
6.7 Numerical analysis subroutines . 110

6.7.1 Distribution functions . 110
6.7.2 Mathematical functions . 111
6.7.3 Numerical Utilities . 112
6.7.4 Mathematical constants . 113

6.8 Optimization . 114
6.9 Integration . 115
6.10 Utility functions . 116
6.11 Re-encoding . 118
6.12 Allowing interrupts . 118
6.13 Platform and version information . 119
6.14 Inlining C functions . 119
6.15 Controlling visibility . 119

iv

6.16 Using these functions in your own C code 120
6.17 Organization of header files . 121

7 Generic functions and methods 123
7.1 Adding new generics . 124

8 Linking GUIs and other front-ends to R . . 125
8.1 Embedding R under Unix-alikes . 125

8.1.1 Compiling against the R library. 127
8.1.2 Setting R callbacks . 127
8.1.3 Registering symbols . 130
8.1.4 Meshing event loops . 130
8.1.5 Threading issues . 131

8.2 Embedding R under Windows . 132
8.2.1 Using (D)COM . 132
8.2.2 Calling R.dll directly . 132

Function and variable index 136

Concept index . 139

Acknowledgements 1

Acknowledgements

The contributions of Saikat DebRoy (who wrote the first draft of a guide to using .Call
and .External) and of Adrian Trapletti (who provided information on the C++ interface)
are gratefully acknowledged.

Chapter 1: Creating R packages 2

1 Creating R packages

Packages provide a mechanism for loading optional code and attached documentation as
needed. The R distribution provides several packages.

In the following, we assume that you know the ‘library()’ command, including its
‘lib.loc’ argument, and we also assume basic knowledge of the INSTALL utility. Otherwise,
please look at R’s help pages

?library
?INSTALL

before reading on.
A computing environment including a number of tools is assumed; the “R Installation

and Administration” manual describes what is needed. Under a Unix-alike most of the
tools are likely to be present by default, but Microsoft Windows and MacOS X will require
careful setup.

Once a source package is created, it must be installed by the command R CMD INSTALL.
See section “Add-on-packages” in R Installation and Administration, for further details.

Other types of extensions are supported: See Section 1.11 [Package types], page 34.

1.1 Package structure

A package consists of a subdirectory containing a file ‘DESCRIPTION’ and the subdirectories
‘R’, ‘data’, ‘demo’, ‘exec’, ‘inst’, ‘man’, ‘po’, ‘src’, and ‘tests’ (some of which can be miss-
ing). The package subdirectory may also contain files ‘INDEX’, ‘NAMESPACE’, ‘configure’,
‘cleanup’, ‘LICENSE’, ‘LICENCE’, ‘COPYING’ and ‘NEWS’. Other files such as ‘README’ or
‘ChangeLog’ will be ignored by R, but may be useful to end-users.

The ‘DESCRIPTION’ and ‘INDEX’ files are described in the sections below. The ‘NAMESPACE’
file is described in Section 1.6 [Package name spaces], page 23.

The optional files ‘configure’ and ‘cleanup’ are (Bourne shell) script files which are
executed before and (provided that option ‘--clean’ was given) after installation on Unix-
alikes, see Section 1.2 [Configure and cleanup], page 10.

The optional file ‘LICENSE’/‘LICENCE’ or ‘COPYING’ (where the former names are pre-
ferred) contains a copy of the license to the package, e.g. a copy of the GNU public license.
Whereas you should feel free to include a license file in your source distribution, please
do not arrange to install yet another copy of the GNU ‘COPYING’ or ‘COPYING.LIB’ files
but refer to the copies on http://www.r-project.org/Licenses/ and included in the R
distribution (in directory ‘share/licenses’).

For the conventions for files ‘NEWS’ and ‘ChangeLog’ in the GNU project see http://
www.gnu.org/prep/standards/standards.html#Documentation.

The package subdirectory should be given the same name as the package. Because some
file systems (e.g., those on Windows) are not case-sensitive, to maintain portability it is
strongly recommended that case distinctions not be used to distinguish different packages.
For example, if you have a package named ‘foo’, do not also create a package named ‘Foo’.

To ensure that file names are valid across file systems and supported operating system
platforms, the ASCII control characters as well as the characters ‘"’, ‘*’, ‘:’, ‘/’, ‘<’, ‘>’, ‘?’,

http://www.r-project.org/Licenses/
http://penalty z@ www.gnu.org/prep/standards/standards.html#Documentation
http://penalty z@ www.gnu.org/prep/standards/standards.html#Documentation

Chapter 1: Creating R packages 3

‘\’, and ‘|’ are not allowed in file names. In addition, files with names ‘con’, ‘prn’, ‘aux’,
‘clock$’, ‘nul’, ‘com1’ to ‘com9’, and ‘lpt1’ to ‘lpt9’ after conversion to lower case and
stripping possible “extensions” (e.g., ‘lpt5.foo.bar’), are disallowed. Also, file names in
the same directory must not differ only by case (see the previous paragraph). In addition,
the names of ‘.Rd’ files will be used in URLs and so must be ASCII and not contain %.
For maximal portability filenames should only contain only ASCII characters not excluded
already (that is A-Za-z0-9._!#$%&+,;=@^(){}’[] we exclude space as many utilities do
not accept spaces in file paths): non-English alphabetic characters cannot be guaranteed
to be supported in all locales. It would be good practice to avoid the shell metacharacters
(){}’[]$.

A source package if possible should not contain binary executable files: they are not
portable, and a security risk if they are of the appropriate architecture. R CMD check will
warn about them1 unless they are listed (one filepath per line) in a file ‘BinaryFiles’ at
the top level of the package or bundle.

The R function package.skeleton can help to create the structure for a new package:
see its help page for details.

1.1.1 The ‘DESCRIPTION’ file

The ‘DESCRIPTION’ file contains basic information about the package in the following format:� �
Package: pkgname

Version: 0.5-1

Date: 2004-01-01

Title: My First Collection of Functions

Author: Joe Developer <Joe.Developer@some.domain.net>, with

contributions from A. User <A.User@whereever.net>.

Maintainer: Joe Developer <Joe.Developer@some.domain.net>

Depends: R (>= 1.8.0), nlme

Suggests: MASS

Description: A short (one paragraph) description of what

the package does and why it may be useful.

License: GPL (>= 2)

URL: http://www.r-project.org, http://www.another.url
 	
The format is that of a ‘Debian Control File’ (see the help for ‘read.dcf’). Continuation
lines (for example, for descriptions longer than one line) start with a space or tab. The
‘Package’, ‘Version’, ‘License’, ‘Description’, ‘Title’, ‘Author’, and ‘Maintainer’ fields
are mandatory, the remaining fields (‘Date’, ‘Depends’, ‘URL’, . . .) are optional.

The ‘DESCRIPTION’ file should be written entirely in ASCII for maximal portability.

The ‘Package’ and ‘Version’ fields give the name and the version of the package, respec-
tively. The name should consist of letters, numbers, and the dot character and start with
a letter. The version is a sequence of at least two (and usually three) non-negative integers
separated by single ‘.’ or ‘-’ characters. The canonical form is as shown in the example,
and a version such as ‘0.01’ or ‘0.01.0’ will be handled as if it were ‘0.1-0’. (Translation
packages are allowed names of the form ‘Translation-ll ’.)

1 false positives are possible, but only one has been seen so far.

Chapter 1: Creating R packages 4

The ‘License’ field should specify the license of the package in the following standardized
form. Alternatives are indicated via vertical bars. Individual specifications must be one of
• One of the “standard” short specifications

GPL-2 GPL-3 LGPL-2 LGPL-2.1 LGPL-3 AGPL-3 Artistic-1.0 Artistic-2.0

as made available via http://www.r-project.org/Licenses/ and contained in sub-
directory ‘share/licenses’ of the R source or home directory.

• The names of abbreviations of free or open software licenses as contained in the license
data base in file ‘share/licenses/license.db’ in the R source or home directory, pos-
sibly (for versioned licenses) followed by a version restriction of the form ‘(op v)’ with
op one of the comparison operators ‘<’, ‘<=’, ‘>’, ‘>=’, ‘==’, or ‘!=’ and v a numeric ver-
sion specification (strings of non-negative integers separated by ‘.’), possibly combined
via ‘,’ (see below for an example). For versioned licenses, one can also specify the name
followed by the version, or combine an existing abbreviation and the version with a ‘-’.
Further free (see http://www.fsf.org/licenses/license-list.html) or open soft-
ware (see http://www.opensource.org/licenses/bsd-license.php) licenses will be
added to this data base if necessary.

• One of the strings ‘file LICENSE’ or ‘file LICENCE’ referring to a file named ‘LICENSE’
or ‘LICENCE’ in the package (source and installation) top-level directory.

• The string ‘Unlimited’, meaning that there no are restrictions on distribution or use
other than those imposed by relevant laws.

Examples for standardized specifications include
License: GPL-2
License: GPL (>= 2) | BSD
License: LGPL (>= 2.0, < 3) | Mozilla Public License
License: GPL-2 | file LICENCE

Please note in particular that “Public domain” is not a valid license. It is very important
that you include this information! Otherwise, it may not even be legally correct for others
to distribute copies of the package.

The ‘Description’ field should give a comprehensive description of what the package
does. One can use several (complete) sentences, but only one paragraph.

The ‘Title’ field should give a short description of the package. Some package listings
may truncate the title to 65 characters in order to keep the overall size of the listing limited.
It should be capitalized, not use any markup, not have any continuation lines, and not end
in a period. Older versions of R used a separate file ‘TITLE’ for giving this information; this
is now defunct, and the ‘Title’ field in ‘DESCRIPTION’ is required.

The ‘Author’ field describes who wrote the package. It is a plain text field intended for
human readers, but not for automatic processing (such as extracting the email addresses of
all listed contributors).

The ‘Maintainer’ field should give a single name with a valid (RFC 2822) email address
in angle brackets (for sending bug reports etc.). It should not end in a period or comma.

The optional ‘Date’ field gives the release date of the current version of the package. It
is strongly recommended to use the yyyy-mm-dd format conforming to the ISO standard.

The optional ‘Depends’ field gives a comma-separated list of package names which this
package depends on. The package name may be optionally followed by a comment in

http://penalty z@ www.r-project.org/penalty z@ Licenses/
http://penalty z@ www.fsf.org/penalty z@ licenses/penalty z@ license-list.html
http://penalty z@ www.opensource.org/penalty z@ licenses/penalty z@ bsd-license.php

Chapter 1: Creating R packages 5

parentheses. The comment should contain a comparison operator (only ‘>=’ and ‘<=’ were
supported prior to R 2.7.0), whitespace and a valid version number). (List package names
even if they are part of a bundle.) You can also use the special package name ‘R’ if your
package depends on a certain version of R. E.g., if the package works only with R version
2.4.0 or newer, include ‘R (>= 2.4.0)’ in the ‘Depends’ field. Both library and the R
package checking facilities use this field, hence it is an error to use improper syntax or
misuse the ‘Depends’ field for comments on other software that might be needed. Other
dependencies (external to the R system) should be listed in the ‘SystemRequirements’
field or a separate ‘README’ file. The R INSTALL facilities check if the version of R used is
recent enough for the package being installed, and the list of packages which is specified
will be attached (after checking version requirements) before the current package, both
when library is called and when saving an image of the package’s code or preparing for
lazy-loading.

As from R 2.7.0 a package (or ‘R’) can appear more than once in the ‘Depends’, but only
the first occurrence will be used in earlier versions of R. (Unfortunately all occurrences will
be checked, so only ‘>=’ and ‘<=’ can be used.)

The optional ‘Imports’ field lists packages whose name spaces are imported from but
which do not need to be attached. Name spaces accessed by the ‘::’ and ‘:::’ operators
must be listed here, or in ‘Suggests’ or ‘Enhances’ (see below). Ideally this field will include
all the standard packages, and it is important to include S4-using packages (as their class
definitions can change and the ‘DESCRIPTION’ file is used to decide which packages to re-
install when this happens). Packages declared in the ‘Depends’ field should not also be in
the ‘Imports’ field. Versions can be specified, but will not be checked when the namespace
is loaded.

The optional ‘Suggests’ field uses the same syntax as ‘Depends’ and lists packages that
are not necessarily needed. This includes packages used only in examples or vignettes
(see Section 1.4 [Writing package vignettes], page 21), and packages loaded in the body of
functions. E.g., suppose an example from package foo uses a dataset from package bar.
Then it is not necessary to have bar for routine use of foo, unless one wants to execute the
examples: it is nice to have bar, but not necessary.

Finally, the optional ‘Enhances’ field lists packages “enhanced” by the package at hand,
e.g., by providing methods for classes from these packages.

The general rules are
• Packages whose name space only is needed to load the package using

library(pkgname) must be listed in the ‘Imports’ field and not in the ‘Depends’
field.

• Packages that need to be attached to successfully load the package using
library(pkgname) must be listed in the ‘Depends’ field, only.

• All packages that are needed to successfully run R CMD check on the package must be
listed in one of ‘Depends’ or ‘Suggests’ or ‘Imports’.

In particular, large packages providing “only” data for examples or vignettes should be
listed in ‘Suggests’ rather than ‘Depends’ in order to make lean installations possible.

Currently adding version dependencies for packages only makes sense for the ‘Depends’
field, as only library checks version requirements, and only for the packages it loads via
the ‘Depends’ field.

Chapter 1: Creating R packages 6

The optional ‘URL’ field may give a list of URLs separated by commas or whitespace,
for example the homepage of the author or a page where additional material describing the
software can be found. These URLs are converted to active hyperlinks on CRAN.

Base and recommended packages (i.e., packages contained in the R source distribution
or available from CRAN and recommended to be included in every binary distribution of R)
have a ‘Priority’ field with value ‘base’ or ‘recommended’, respectively. These priorities
must not be used by “other” packages.

An optional ‘Collate’ field (or OS-specific variants ‘Collate.OStype ’, such as e.g.
‘Collate.windows’) can be used for controlling the collation order for the R code files
in a package when these are concatenated into a single file upon installation from source.
The default is to try collating according to the ‘C’ locale. If present, the collate specifica-
tion must list all R code files in the package (taking possible OS-specific subdirectories into
account, see Section 1.1.3 [Package subdirectories], page 7) as a whitespace separated list of
file paths relative to the ‘R’ subdirectory. Paths containing white space or quotes need to be
quoted. An applicable OS-specific collation field (‘Collate.unix’ or ‘Collate.windows’)
will be used instead of ‘Collate’.

The optional ‘LazyLoad’ and ‘LazyData’ fields control whether the R objects and the
datasets (respectively) use lazy-loading: set the field’s value to ‘yes’ or ‘true’ for lazy-
loading and ‘no’ or ‘false’ for no lazy-loading. (Capitalized values are also accepted.)

If the package you are writing uses the methods package, specify ‘LazyLoad: yes’.
The optional ‘ZipData’ field controls whether the automatic Windows build will zip up

the data directory or no: set this to ‘no’ if your package will not work with a zipped data
directory.

If the ‘DESCRIPTION’ file is not entirely in ASCII it should contain an ‘Encoding’ field
specifying an encoding. This is currently used as the encoding of the ‘DESCRIPTION’ file
itself and of the ‘R’ and ‘NAMESPACE’ files, and as the default encoding of ‘.Rd’ files. The
examples are assumed to be in this encoding when running R CMD check. As from R 2.8.0
it is used for the encoding of the CITATION file. Only encoding names latin1, latin2 and
UTF-8 are known to be portable. (Do not specify an encoding unless one is actually needed:
doing so makes the package less portable.)

The optional ‘OS_type’ field specifies the OS(es) for which the package is intended. If
present, it should be one of unix or windows, and indicates that the package should only
be installed on a platform with ‘.Platform$OS.type’ having that value.

The optional ‘Type’ field specifies the type of the package: see Section 1.11 [Package
types], page 34.

Note: There should be no ‘Built’ or ‘Packaged’ fields, as these are added by
the package management tools.

1.1.2 The ‘INDEX’ file

The optional file ‘INDEX’ contains a line for each sufficiently interesting object in the pack-
age, giving its name and a description (functions such as print methods not usually called
explicitly might not be included). Normally this file is missing, and the corresponding
information is automatically generated from the documentation sources (using Rdindex()
from package tools) when installing from source and when using the package builder (see
Section 1.3 [Checking and building packages], page 17).

Chapter 1: Creating R packages 7

Rather than editing this file, it is preferable to put customized information about the
package into an overview man page (see Section 2.1.4 [Documenting packages], page 42)
and/or a vignette (see Section 1.4 [Writing package vignettes], page 21).

1.1.3 Package subdirectories

The ‘R’ subdirectory contains R code files, only. The code files to be installed must start
with an ASCII (lower or upper case) letter or digit and have one of the extensions ‘.R’,
‘.S’, ‘.q’, ‘.r’, or ‘.s’. We recommend using ‘.R’, as this extension seems to be not used
by any other software. It should be possible to read in the files using source(), so R
objects must be created by assignments. Note that there need be no connection between
the name of the file and the R objects created by it. Ideally, the R code files should only
directly assign R objects and definitely should not call functions with side effects such as
require and options. If computations are required to create objects these can use code
‘earlier’ in the package (see the ‘Collate’ field) plus, only if lazyloading is used, functions in
the ‘Depends’ packages provided that the objects created do not depend on those packages
except via name space imports. (Packages without namespaces will work under somewhat
less restrictive assumptions.)

Two exceptions are allowed: if the ‘R’ subdirectory contains a file ‘sysdata.rda’ (a saved
image of R objects) this will be lazy-loaded into the name space/package environment –
this is intended for system datasets that are not intended to be user-accessible via data.
Also, files ending in ‘.in’ will be allowed in the ‘R’ directory to allow a ‘configure’ script
to generate suitable files.

Only ASCII characters (and the control characters tab, formfeed, LF and CR) should be
used in code files. Other characters are accepted in comments, but then the comments may
not be readable in e.g. a UTF-8 locale. Non-ASCII characters in object names will normally2

fail when the package is installed. Any byte will be allowed3 in a quoted character string
(but \uxxxx escapes should not be used), but non-ASCII character strings may not be usable
in some locales and may display incorrectly in others.

Various R functions in a package can be used to initialize and clean up. For packages
without a name space, these are .First.lib and .Last.lib. (See Section 1.6.3 [Load
hooks], page 24, for packages with a name space.) It is conventional to define these func-
tions in a file called ‘zzz.R’. If .First.lib is defined in a package, it is called with
arguments libname and pkgname after the package is loaded and attached. (If a package
is installed with version information, the package name includes the version information,
e.g. ‘ash_1.0.9’.) A common use is to call library.dynam inside .First.lib to load com-
piled code: another use is to call those functions with side effects. If .Last.lib exists in
a package it is called (with argument the full path to the installed package) just before the
package is detached. It is uncommon to detach packages and rare to have a .Last.lib
function: one use is to call library.dynam.unload to unload compiled code.

The ‘man’ subdirectory should contain (only) documentation files for the objects in the
package in R documentation (Rd) format. The documentation filenames must start with

2 This is true for OSes which implement the ‘C’ locale, unless neither lazy-loading nor saving an image
are used, in which case it would fail if loaded in a ‘C’ locale. (Windows’ idea of the ‘C’ locale uses the
WinAnsi charset.)

3 It is good practice to encode them as octal or hex escape sequences.

Chapter 1: Creating R packages 8

an ASCII (lower or upper case) letter or digit and have the extension ‘.Rd’ (the default) or
‘.rd’. Further, the names must be valid in ‘file://’ URLs, which means4 they must be
entirely ASCII and not contain ‘%’. See Chapter 2 [Writing R documentation files], page 36,
for more information. Note that all user-level objects in a package should be documented;
if a package pkg contains user-level objects which are for “internal” use only, it should
provide a file ‘pkg-internal.Rd’ which documents all such objects, and clearly states that
these are not meant to be called by the user. See e.g. the sources for package grid in the
R distribution for an example. Note that packages which use internal objects extensively
should hide those objects in a name space, when they do not need to be documented (see
Section 1.6 [Package name spaces], page 23).

The ‘R’ and ‘man’ subdirectories may contain OS-specific subdirectories named ‘unix’ or
‘windows’.

The sources and headers for the compiled code are in ‘src’, plus optionally file
‘Makevars’ or ‘Makefile’. When a package is installed using R CMD INSTALL, Make is
used to control compilation and linking into a shared object for loading into R. There
are default variables and rules for this (determined when R is configured and recorded in
‘R_HOME/etcR_ARCH/Makeconf’), providing support for C, C++, FORTRAN 77, Fortran
9x5, Objective C and Objective C++ with associated extensions ‘.c’, ‘.cc’ or ‘.cpp’ or
‘.C’, ‘.f’, ‘.f90’ or ‘.f95’, ‘.m’, and ‘.mm’ or ‘.M’, respectively. We recommend using ‘.h’
for headers, also for C++6 or Fortran 9x include files. The default rules can be tweaked by
setting macros in a file ‘src/Makevars’ (see Section 1.2.1 [Using Makevars], page 12). Note
that this mechanism should be general enough to eliminate the need for a package-specific
‘src/Makefile’. If such a file is to be distributed, considerable care is needed to make
it general enough to work on all R platforms. It should have an appropriate first target
(conventionally called ‘all’) and a (possibly empty) target ‘clean’ which removes all
files generated by Make (to be used by ‘R CMD INSTALL --clean’ and ‘R CMD INSTALL
--preclean’). There are platform-specific file names on Windows: ‘src/Makevars.win’
takes precedence over ‘src/Makevars’ and ‘src/Makefile.win’ must be used.

The ‘data’ subdirectory is for additional data files the package makes available for load-
ing using data(). Currently, data files can have one of three types as indicated by their
extension: plain R code (‘.R’ or ‘.r’), tables (‘.tab’, ‘.txt’, or ‘.csv’, see ?data for the
file formats), or save() images (‘.RData’ or ‘.rda’). (All ports of R use the same binary
(XDR) format and can read compressed images. Use images saved with save(, compress
= TRUE), the default, to save space.) Note that R code should be “self-sufficient” and not
make use of extra functionality provided by the package, so that the data file can also be
used without having to load the package. It is no longer necessary to provide a ‘00Index’
file in the ‘data’ directory—the corresponding information is generated automatically from
the documentation sources when installing from source, or when using the package builder
(see Section 1.3 [Checking and building packages], page 17). If your data files are enormous

4 More precisely, they can contain the English alphanumeric characters and the symbols ‘$ - _ . + ! ’ (

) , ; = &’.
5 Note that Ratfor is not supported. If you have Ratfor source code, you need to convert it to FORTRAN.

Only FORTRAN-77 (which we write in upper case) is supported on all platforms, but most also support
Fortran-95 (for which we use title case). If you want to ship Ratfor source files, please do so in a
subdirectory of ‘src’ and not in the main subdirectory.

6 Using ‘.hpp’, although somewhat popular, is not guaranteed to be portable.

Chapter 1: Creating R packages 9

you can speed up installation by providing a file ‘datalist’ in the ‘data’ subdirectory.
This should have one line per topic that data() will find, in the format ‘foo’ if data(foo)
provides ‘foo’, or ‘foo: bar bah’ if data(foo) provides ‘bar’ and ‘bah’.

The ‘demo’ subdirectory is for R scripts (for running via demo()) that demonstrate
some of the functionality of the package. Demos may be interactive and are not checked
automatically, so if testing is desired use code in the ‘tests’ directory. The script files
must start with a (lower or upper case) letter and have one of the extensions ‘.R’ or ‘.r’.
If present, the ‘demo’ subdirectory should also have a ‘00Index’ file with one line for each
demo, giving its name and a description separated by white space. (Note that it is not
possible to generate this index file automatically.)

The contents of the ‘inst’ subdirectory will be copied recursively to the installation
directory. Subdirectories of ‘inst’ should not interfere with those used by R (currently, ‘R’,
‘data’, ‘demo’, ‘exec’, ‘libs’, ‘man’, ‘help’, ‘html’, ‘latex’, ‘R-ex’, ‘chtml’, and ‘Meta’).
The copying of the ‘inst’ happens after ‘src’ is built so its ‘Makefile’ can create files to
be installed. Note that with the exceptions of ‘INDEX’, ‘LICENSE’/‘LICENCE’, ‘COPYING’ and
‘NEWS’ (from R 2.7.0), information files at the top level of the package will not be installed
and so not be known to users of Windows and MacOS X compiled packages (and not seen
by those who use R CMD INSTALL or install.packages on the tarball). So any information
files you wish an end user to see should be included in ‘inst’.

One thing you might like to add to ‘inst’ is a ‘CITATION’ file for use by the citation
function. Note that if the named exceptions also occur in ‘inst’, the version in ‘inst’ will
be that seen in the installed package. If you want ‘NEWS’ to be installed by your package in
earlier versions of R, you need to include it in ‘inst’.

Subdirectory ‘tests’ is for additional package-specific test code, similar to the specific
tests that come with the R distribution. Test code can either be provided directly in a
‘.R’ file, or via a ‘.Rin’ file containing code which in turn creates the corresponding ‘.R’
file (e.g., by collecting all function objects in the package and then calling them with the
strangest arguments). The results of running a ‘.R’ file are written to a ‘.Rout’ file. If
there is a corresponding ‘.Rout.save’ file, these two are compared, with differences being
reported but not causing an error. The directory ‘tests’ is copied to the check area, and
the tests are run with the copy as the working directory and with R_LIBS set to ensure that
the copy of the package installed during testing will be found by library(pkg_name).

Subdirectory ‘exec’ could contain additional executables the package needs, typically
scripts for interpreters such as the shell, Perl, or Tcl. This mechanism is currently used
only by a very few packages, and still experimental.

Subdirectory ‘po’ is used for files related to localization: see Section 1.9 [International-
ization], page 32.

1.1.4 Package bundles

Sometimes it is convenient to distribute several packages as a bundle. (An example is
VR which contains four packages.) The installation procedures on both Unix-alikes and
Windows can handle package bundles.

The ‘DESCRIPTION’ file of a bundle has a ‘Bundle’ field and no ‘Package’ field, as in

Chapter 1: Creating R packages 10

� �
Bundle: VR

Priority: recommended

Contains: MASS class nnet spatial

Version: 7.2-36

Date: 2007-08-29

Depends: R (>= 2.4.0), grDevices, graphics, stats, utils

Suggests: lattice, nlme, survival

Author: S original by Venables & Ripley.

R port by Brian Ripley <ripley@stats.ox.ac.uk>, following earlier

work by Kurt Hornik and Albrecht Gebhardt.

Maintainer: Brian Ripley <ripley@stats.ox.ac.uk>

BundleDescription: Functions and datasets to support Venables and

Ripley, ’Modern Applied Statistics with S’ (4th edition).

License: GPL-2 | GPL-3

URL: http://www.stats.ox.ac.uk/pub/MASS4/
 	
The ‘Contains’ field lists the packages (space separated), which should be contained in

separate subdirectories with the names given. During building and installation, packages
will be installed in the order specified. Be sure to order this list so that dependencies are
met appropriately.

The packages contained in a bundle are standard packages in all respects except that
the ‘DESCRIPTION’ file is replaced by a ‘DESCRIPTION.in’ file which just contains fields
additional to the ‘DESCRIPTION’ file of the bundle, for example� �

Package: spatial

Description: Functions for kriging and point pattern analysis.

Title: Functions for Kriging and Point Pattern Analysis
 	
Any files in the package bundle except the ‘DESCRIPTION’ file and the named packages

will be ignored.

The ‘Depends’ field in the bundle’s ‘DESCRIPTION’ file should list the dependencies
of all the constituent packages (and similarly for ‘Imports’ and ‘Suggests’), and then
‘DESCRIPTION.in’ files should not contain these fields.

1.2 Configure and cleanup

Note that most of this section is Unix-specific: see the comments later on about the Windows
port of R.

If your package needs some system-dependent configuration before installation you can
include an executable (Bourne shell) script ‘configure’ in your package which (if present)
is executed by R CMD INSTALL before any other action is performed. This can be a script
created by the Autoconf mechanism, but may also be a script written by yourself. Use
this to detect if any nonstandard libraries are present such that corresponding code in the
package can be disabled at install time rather than giving error messages when the package
is compiled or used. To summarize, the full power of Autoconf is available for your extension
package (including variable substitution, searching for libraries, etc.).

Under a Unix-alike only, an executable (Bourne shell) script ‘cleanup’ is executed as last
thing by R CMD INSTALL if option ‘--clean’ was given, and by R CMD build when preparing
the package for building from its source. It can be used to clean up the package source tree.
In particular, it should remove all files created by configure.

Chapter 1: Creating R packages 11

As an example consider we want to use functionality provided by a (C or FORTRAN)
library foo. Using Autoconf, we can create a configure script which checks for the library,
sets variable HAVE_FOO to TRUE if it was found and with FALSE otherwise, and then substi-
tutes this value into output files (by replacing instances of ‘@HAVE_FOO@’ in input files with
the value of HAVE_FOO). For example, if a function named bar is to be made available by
linking against library foo (i.e., using ‘-lfoo’), one could use

AC_CHECK_LIB(foo, fun, [HAVE_FOO=TRUE], [HAVE_FOO=FALSE])
AC_SUBST(HAVE_FOO)
......
AC_CONFIG_FILES([foo.R])
AC_OUTPUT

in ‘configure.ac’ (assuming Autoconf 2.50 or later).
The definition of the respective R function in ‘foo.R.in’ could be

foo <- function(x) {
if(!@HAVE_FOO@)

stop("Sorry, library ’foo’ is not available"))
...

From this file configure creates the actual R source file ‘foo.R’ looking like
foo <- function(x) {

if(!FALSE)
stop("Sorry, library ’foo’ is not available"))

...

if library foo was not found (with the desired functionality). In this case, the above R code
effectively disables the function.

One could also use different file fragments for available and missing functionality, respec-
tively.

You will very likely need to ensure that the same C compiler and compiler flags are used
in the ‘configure’ tests as when compiling R or your package. Under Unix, you can achieve
this by including the following fragment early in ‘configure.ac’

: ${R_HOME=‘R RHOME‘}
if test -z "${R_HOME}"; then
echo "could not determine R_HOME"
exit 1

fi
CC=‘"${R_HOME}/bin/R" CMD config CC‘
CFLAGS=‘"${R_HOME}/bin/R" CMD config CFLAGS‘
CPPFLAGS=‘"${R_HOME}/bin/R" CMD config CPPFLAGS‘

(using ‘${R_HOME}/bin/R’ rather than just ‘R’ is necessary in order to use the ‘right’ version
of R when running the script as part of R CMD INSTALL.)

Note that earlier versions of this document recommended obtaining the configure in-
formation by direct extraction (using grep and sed) from ‘R_HOME/etcR_ARCH/Makeconf’,
which only works for variables recorded there as literals. You can use R CMD config for
getting the value of the basic configuration variables, or the header and library flags neces-
sary for linking against R, see R CMD config --help for details. (This works on Windows
as from R 2.6.0.)

Chapter 1: Creating R packages 12

To check for an external BLAS library using the ACX_BLAS macro from the official Au-
toconf Macro Archive, one can simply do

F77=‘"${R_HOME}/bin/R" CMD config F77‘
AC_PROG_F77
FLIBS=‘"${R_HOME}/bin/R" CMD config FLIBS‘
ACX_BLAS([], AC_MSG_ERROR([could not find your BLAS library], 1))

Note that FLIBS as determined by R must be used to ensure that FORTRAN 77 code
works on all R platforms. Calls to the Autoconf macro AC_F77_LIBRARY_LDFLAGS, which
would overwrite FLIBS, must not be used (and hence e.g. removed from ACX_BLAS). (Re-
cent versions of Autoconf in fact allow an already set FLIBS to override the test for the
FORTRAN linker flags. Also, recent versions of R can detect external BLAS and LAPACK
libraries.)

You should bear in mind that the configure script may well not work on Windows
systems (this seems normally to be the case for those generated by Autoconf, although
simple shell scripts do work). If your package is to be made publicly available, please
give enough information for a user on a non-Unix platform to configure it manually, or
provide a ‘configure.win’ script to be used on that platform. (Optionally, there can be a
‘cleanup.win’ script as well. Both should be shell scripts to be executed by ash, which is
a minimal version of Bourne-style sh.)

In some rare circumstances, the configuration and cleanup scripts need to know the
location into which the package is being installed. An example of this is a package that uses
C code and creates two shared object/DLLs. Usually, the object that is dynamically loaded
by R is linked against the second, dependent, object. On some systems, we can add the
location of this dependent object to the object that is dynamically loaded by R. This means
that each user does not have to set the value of the LD_LIBRARY_PATH (or equivalent)
environment variable, but that the secondary object is automatically resolved. Another
example is when a package installs support files that are required at run time, and their
location is substituted into an R data structure at installation time. (This happens with
the Java Archive files in the SJava package.) The names of the top-level library directory
(i.e., specifiable via the ‘-l’ argument) and the directory of the package itself are made
available to the installation scripts via the two shell/environment variables R_LIBRARY_DIR
and R_PACKAGE_DIR. Additionally, the name of the package (e.g., ‘survival’ or ‘MASS’)
being installed is available from the shell variable R_PACKAGE_NAME.

1.2.1 Using ‘Makevars’

Sometimes writing your own ‘configure’ script can be avoided by supplying a file
‘Makevars’: also one of the most common uses of a ‘configure’ script is to make
‘Makevars’ from ‘Makevars.in’.

The most common use of a ‘Makevars’ file is to set additional preprocessor (for example
include paths) flags via PKG_CPPFLAGS, and additional compiler flags by setting PKG_CFLAGS,
PKG_CXXFLAGS and PKG_FFLAGS, for C, C++, or FORTRAN respectively (see Section 5.5
[Creating shared objects], page 74).

Also, ‘Makevars’ can be used to set flags for the linker, for example ‘-L’ and ‘-l’ options.

Chapter 1: Creating R packages 13

When writing a ‘Makevars’ file for a package you intend to distribute, take care to ensure
that it is not specific to your compiler: flags such as ‘-O2 -Wall -pedantic’ are all specific
to GCC.

There are some macros which are built whilst configuring the building of R itself, are
stored on Unix-alikes in ‘R_HOME/etcR_ARCH/Makeconf’ and can be used in ‘Makevars’.
These include

FLIBS A macro containing the set of libraries need to link FORTRAN code. This may
need to be included in PKG_LIBS.

BLAS_LIBS
A macro containing the BLAS libraries used when building R. This may need
to be included in PKG_LIBS. Beware that if it is empty then the R executable
will contain all the double-precision and double-complex BLAS routines, but
no single-precision or complex routines. If BLAS_LIBS is included, then FLIBS
also needs to be7, as most BLAS libraries are written in FORTRAN.

LAPACK_LIBS
A macro containing the LAPACK libraries (and paths where appropriate) used
when building R. This may need to be included in PKG_LIBS. This may point to
a dynamic library libRlapack which contains all the double-precision LAPACK
routines as well as those double-complex LAPACK and BLAS routines needed
to build R, or it may point to an external LAPACK library, or may be empty
if an external BLAS library also contains LAPACK.

[There is no guarantee that the LAPACK library will provide more than all the
double-precision and double-complex routines, and some do not provide all the
auxiliary routines.]

The macros BLAS_LIBS and FLIBS should always be included after LAPACK_
LIBS.

SAFE_FFLAGS
A macro containing flags which are needed to circumvent over-optimization of
FORTRAN code: it is typically ‘-g -O2 -ffloat-store’ on ‘ix86’ platforms
using g77 or gfortran. Note that this is not an additional flag to be used
as part of PKG_FFLAGS, but a replacement for FFLAGS, and that it is intended
for the FORTRAN-77 compiler ‘F77’ and not necessarily for the Fortran 90/95
compiler ‘FC’. See the example later in this section.

Setting certain macros in ‘Makevars’ will prevent R CMD SHLIB setting them: in particular
if ‘Makevars’ sets ‘OBJECTS’ it will not be set on the make command line. This can be useful
in conjunction with implicit rules to allow other types of source code to be compiled and
included in the shared object.

Note that ‘Makevars’ should not normally contain targets, as it is (except on Windows)
included before the default makefile and make is called without an explicit target. To
circumvent that, use a suitable phony target before any actual targets: for example fastICA
has

7 on Unix-alikes: Windows resolves such dependencies at link time.

Chapter 1: Creating R packages 14

SLAMC_FFLAGS=$(R_XTRA_FFLAGS) $(FPICFLAGS) $(SHLIB_FFLAGS) $(SAFE_FFLAGS)

all: $(SHLIB)

slamc.o: slamc.f

$(F77) $(SLAMC_FFLAGS) -c -o slamc.o slamc.f

to ensure that the LAPACK routines find some constants without infinite looping. The
Windows equivalent is

slamc.o: slamc.f

$(F77) $(SAFE_FFLAGS) -c -o slamc.o slamc.f

More generally, on a Unix-alike one could have something like
.PHONY: all

all: before $(SHLIB) after

before:

Things that need to be done first like creating libraries

after:

Cleanup needed after ’before’

On Windows, one can add dependencies to the ‘all’ target (which is what will get called),
e.g. (based on package rcom)

all: ../inst/tst/bin/rcom_test.exe extraclean

../inst/tst/bin/rcom_test.exe: rcom_test.exe

$(MKDIR) -p ../inst/tst/bin

$(CP) $? $ rcom_test.exe: rcom_test.o

rcom_test-LIBS = -L. -lsupc++ -luuid -lole32 -loleaut32

extraclean:

$(RM) rcom_test.exe

The added dependencies will be built after the DLL: it is also possible (but not advisable)
to have a target ‘all’ with commands (rather than dependencies)

There are two another targets, ‘before’ and ‘after’, which by default have neither
dependencies nor commands so can be overridden in a ‘Makevars.win’. See the example in
Section 5.8 [Linking to other packages], page 78.

1.2.2 Configure example

It may be helpful to give an extended example of using a ‘configure’ script to create a
‘src/Makevars’ file: this is based on that in the RODBC package.

The ‘configure.ac’ file follows: ‘configure’ is created from this by running autoconf
in the top-level package directory (containing ‘configure.ac’).

AC_INIT([RODBC], 1.1.8) dnl package name, version

dnl A user-specifiable option

odbc_mgr=""

AC_ARG_WITH([odbc-manager],

AC_HELP_STRING([--with-odbc-manager=MGR],

[specify the ODBC manager, e.g. odbc or iodbc]),

[odbc_mgr=$withval])

if test "$odbc_mgr" = "odbc" ; then

Chapter 1: Creating R packages 15

AC_PATH_PROGS(ODBC_CONFIG, odbc_config)

fi

dnl Select an optional include path, from a configure option

dnl or from an environment variable.

AC_ARG_WITH([odbc-include],

AC_HELP_STRING([--with-odbc-include=INCLUDE_PATH],

[the location of ODBC header files]),

[odbc_include_path=$withval])

RODBC_CPPFLAGS="-I."

if test [-n "$odbc_include_path"] ; then

RODBC_CPPFLAGS="-I. -I${odbc_include_path}"

else

if test [-n "${ODBC_INCLUDE}"] ; then

RODBC_CPPFLAGS="-I. -I${ODBC_INCLUDE}"

fi

fi

dnl ditto for a library path

AC_ARG_WITH([odbc-lib],

AC_HELP_STRING([--with-odbc-lib=LIB_PATH],

[the location of ODBC libraries]),

[odbc_lib_path=$withval])

if test [-n "$odbc_lib_path"] ; then

LIBS="-L$odbc_lib_path ${LIBS}"

else

if test [-n "${ODBC_LIBS}"] ; then

LIBS="-L${ODBC_LIBS} ${LIBS}"

else

if test -n "${ODBC_CONFIG}"; then

odbc_lib_path=‘odbc_config --libs | sed s/-lodbc//‘

LIBS="${odbc_lib_path} ${LIBS}"

fi

fi

fi

dnl Now find the compiler and compiler flags to use

: ${R_HOME=‘R RHOME‘}

if test -z "${R_HOME}"; then

echo "could not determine R_HOME"

exit 1

fi

CC=‘"${R_HOME}/bin/R" CMD config CC‘

CPP=‘"${R_HOME}/bin/R" CMD config CPP‘

CFLAGS=‘"${R_HOME}/bin/R" CMD config CFLAGS‘

CPPFLAGS=‘"${R_HOME}/bin/R" CMD config CPPFLAGS‘

AC_PROG_CC

AC_PROG_CPP

if test -n "${ODBC_CONFIG}"; then

RODBC_CPPFLAGS=‘odbc_config --cflags‘

fi

CPPFLAGS="${CPPFLAGS} ${RODBC_CPPFLAGS}"

dnl Check the headers can be found

AC_CHECK_HEADERS(sql.h sqlext.h)

if test "${ac_cv_header_sql_h}" = no ||

Chapter 1: Creating R packages 16

test "${ac_cv_header_sqlext_h}" = no; then

AC_MSG_ERROR("ODBC headers sql.h and sqlext.h not found")

fi

dnl search for a library containing an ODBC function

if test [-n "${odbc_mgr}"] ; then

AC_SEARCH_LIBS(SQLTables, ${odbc_mgr}, ,

AC_MSG_ERROR("ODBC driver manager ${odbc_mgr} not found"))

else

AC_SEARCH_LIBS(SQLTables, odbc odbc32 iodbc, ,

AC_MSG_ERROR("no ODBC driver manager found"))

fi

dnl for 64-bit ODBC need SQL[U]LEN, and it is unclear where they are defined.

AC_CHECK_TYPES([SQLLEN, SQLULEN], , , [# include <sql.h>])

dnl for unixODBC header

AC_CHECK_SIZEOF(long, 4)

dnl substitute RODBC_CPPFLAGS and LIBS

AC_SUBST(RODBC_CPPFLAGS)

AC_SUBST(LIBS)

AC_CONFIG_HEADERS([src/config.h])

dnl and do substitution in the src/Makevars.in and src/config.h

AC_CONFIG_FILES([src/Makevars])

AC_OUTPUT

where ‘src/Makevars.in’ would be simply
PKG_CPPFLAGS = @RODBC_CPPFLAGS@
PKG_LIBS = @LIBS@

A user can then be advised to specify the location of the ODBC driver manager files by
options like (lines broken for easier reading)

R CMD INSTALL
--configure-args=’--with-odbc-include=/opt/local/include
--with-odbc-lib=/opt/local/lib --with-odbc-manager=iodbc’
RODBC

or by setting the environment variables ODBC_INCLUDE and ODBC_LIBS.

1.2.3 Using F95 code

R currently does not distinguish between FORTRAN 77 and Fortran 90/95 code, and
assumes all FORTRAN comes in source files with extension ‘.f’. Commercial Unix systems
typically use a F95 compiler, but only since the release of gcc 4.0.0 in April 2005 have
Linux and other non-commercial OSes had much support for F95. Only wih R 2.6.0 did
the Windows port adopt a Fortran 90 compiler.

This means that portable packages need to be written in correct FORTRAN 77, which
will also be valid Fortran 95. See http://developer.r-project.org/Portability.html
for reference resources. In particular, free source form F95 code is not portable.

On some systems an alternative F95 compiler is available: from the gcc family this
might be gfortran or g95. Configuring R will try to find a compiler which (from its name)
appears to be a Fortran 90/95 compiler, and set it in macro ‘FC’. Note that it does not check
that such a compiler is fully (or even partially) compliant with Fortran 90/95. Packages
making use of Fortran 90/95 features should use file extension ‘.f90’ or ‘.f95’ for the source

http://developer.r-project.org/Portability.html

Chapter 1: Creating R packages 17

files: the variable PKG_FCFLAGS specifies any special flags to be used. There is no guarantee
that compiled Fortran 90/95 code can be mixed with any other type of code, nor that a
build of R will have support for such packages.

1.3 Checking and building packages

Before using these tools, please check that your package can be installed and loaded. R CMD
check will inter alia do this, but you will get more informative error messages doing the
checks directly.

1.3.1 Checking packages

Using R CMD check, the R package checker, one can test whether source R packages work
correctly. It can be run on one or more directories, or gzipped package tar archives8 with
extension ‘.tar.gz’ or ‘.tgz’. This runs a series of checks, including

1. The package is installed. This will warn about missing cross-references and duplicate
aliases in help files.

2. The file names are checked to be valid across file systems and supported operating
system platforms.

3. The files and directories are checked for sufficient permissions (Unix only).
4. The files are checked for binary executables, using a suitable version of file if available.

(There may be rare false positives – package foreign has one.)
5. The ‘DESCRIPTION’ file is checked for completeness, and some of its entries for cor-

rectness. Unless installation tests are skipped, checking is aborted if the package de-
pendencies cannot be resolved at run time. One check is that the package name is
not that of a standard package, nor of the defunct standard packages (‘ctest’, ‘eda’,
‘lqs’, ‘mle’, ‘modreg’, ‘mva’, ‘nls’, ‘stepfun’ and ‘ts’) which are handled specially
by library. Another check is that all packages mentioned in library or requires
or from which the ‘NAMESPACE’ file imports or are called via :: or ::: are listed (in
‘Depends’, ‘Imports’, ‘Suggests’ or ‘Contains’): this is not an exhaustive check of the
actual imports.

6. Available index information (in particular, for demos and vignettes) is checked for
completeness.

7. The package subdirectories are checked for suitable file names and for not being empty.
The checks on file names are controlled by the option ‘--check-subdirs=value ’. This
defaults to ‘default’, which runs the checks only if checking a tarball: the default
can be overridden by specifying the value as ‘yes’ or ‘no’. Further, the check on
the ‘src’ directory is only run if the package/bundle does not contain a ‘configure’
script (which corresponds to the value ‘yes-maybe’) and there is no ‘src/Makefile’ or
‘src/Makefile.in’.
To allow a ‘configure’ script to generate suitable files, files ending in ‘.in’ will be
allowed in the ‘R’ directory.
A warning is given for directory names that look like R package check directories –
many packages have been submitted to CRAN containing these.

8 This may require GNU tar: the command used can be set with environment variable TAR.

Chapter 1: Creating R packages 18

8. The R files are checked for syntax errors. Bytes which are non-ASCII are reported as
warnings, but these should be regarded as errors unless it is known that the package
will always be used in the same locale.

9. It is checked that the package can be loaded, first with the usual default packages and
then only with package base already loaded. If the package has a namespace, it is
checked if this can be loaded in an empty session with only the base namespace loaded.
(Namespaces and packages can be loaded very early in the session, before the default
packages are available, so packages should work then.)

10. The R files are checked for correct calls to library.dynam (with no extension). In ad-
dition, it is checked whether methods have all arguments of the corresponding generic,
and whether the final argument of replacement functions is called ‘value’. All for-
eign function calls (.C, .Fortran, .Call and .External calls) are tested to see if
they have a PACKAGE argument, and if not, whether the appropriate DLL might be
deduced from the name space of the package. Any other calls are reported. (The
check is generous, and users may want to supplement this by examining the output of
tools::checkFF("mypkg", verbose=TRUE), especially if the intention were to always
use a PACKAGE argument)

11. The Rd files are checked for correct syntax and meta data, including the presence of
the mandatory (\name, \alias, \title and \description) fields. The Rd name and
title are checked for being non-empty, and the keywords found are compared to the
standard ones. There is a check for missing cross-references (links).

12. A check is made for missing documentation entries, such as undocumented user-level
objects in the package.

13. Documentation for functions, data sets, and S4 classes is checked for consistency with
the corresponding code.

14. It is checked whether all function arguments given in \usage sections of Rd files are
documented in the corresponding \arguments section.

15. C, C++ and FORTRAN source and header files are tested for portable (LF-only) line
endings. If there is a ‘Makefile’ or ‘Makefile.in’ or ‘Makevars’ or ‘Makevars.in’
in the ‘src’ directory, it is checked for portable line endings and the correct use of
‘$(BLAS_LIBS)’.

16. The examples provided by the package’s documentation are run. (see Chapter 2 [Writ-
ing R documentation files], page 36, for information on using \examples to create
executable example code.)

Of course, released packages should be able to run at least their own examples. Each
example is run in a ‘clean’ environment (so earlier examples cannot be assumed to have
been run), and with the variables T and F redefined to generate an error unless they
are set in the example: See section “Logical vectors” in An Introduction to R.

17. If the package sources contain a ‘tests’ directory then the tests specified in that direc-
tory are run. (Typically they will consist of a set of ‘.R’ source files and target output
files ‘.Rout.save’.)

18. The code in package vignettes (see Section 1.4 [Writing package vignettes], page 21) is
executed.

Chapter 1: Creating R packages 19

19. If a working pdflatex or latex program is available, the ‘.pdf’ or ‘.dvi’ version,
respectively, of the package’s manual is created (to check that the Rd files can be
converted successfully).

Use R CMD check --help to obtain more information about the usage of the R package
checker. A subset of the checking steps can be selected by adding flags.

You do need to ensure that the package is checked in a suitable locale if it contains
non-ASCII characters. Such packages are likely to fail some of the checks in a C locale, and
R CMD check will warn if it spots the problem. You should be able to check any package
in a UTF-8 locale (if one is available). Beware that although a C locale is rarely used at a
console, it may be the default if logging in remotely or for batch jobs.

1.3.2 Building packages

Using R CMD build, the R package builder, one can build R packages from their sources (for
example, for subsequent release).

Prior to actually building the package in the common gzipped tar file format, a few
diagnostic checks and cleanups are performed. In particular, it is tested whether object
indices exist and can be assumed to be up-to-date, and C, C++ and FORTRAN source files
and relvant make files are tested and converted to LF line-endings if necessary.

Run-time checks whether the package works correctly should be performed using R CMD
check prior to invoking the build procedure.

To exclude files from being put into the package, one can specify a list of exclude patterns
in file ‘.Rbuildignore’ in the top-level source directory. These patterns should be Perl
regexps, one per line, to be matched against the file names relative to the top-level source
directory. In addition, directories from source control systems9, directories with names
ending ‘.Rcheck’ or ‘Old’ or ‘old’ and files ‘GNUMakefile’ or with base names starting with
‘.#’, or starting and ending with ‘#’, or ending in ‘~’, ‘.bak’ or ‘.swp’, are excluded by
default. In addition, those files in the ‘R’, ‘demo’ and ‘man’ directories which are flagged by
R CMD check as having invalid names will be excluded.

Use R CMD build --help to obtain more information about the usage of the R package
builder.

Unless R CMD build is invoked with the ‘--no-vignettes’ option, it will attempt to
rebuild the vignettes (see Section 1.4 [Writing package vignettes], page 21) in the package.
To do so it installs the current package/bundle into a temporary library tree, but any
dependent packages need to be installed in an available library tree (see the Note: below).

One of the checks that R CMD build runs is for empty source directories. These are in
most cases unintentional, in which case they should be removed and the build re-run.

It can be useful to run R CMD check --check-subdirs=yes on the built tarball as a final
check on the contents.

R CMD build can also build pre-compiled version of packages for binary distributions,
but R CMD INSTALL --build is preferred (and is considerably more flexible). In particular,
Windows users are recommended to use R CMD INSTALL --build and install into the main
library tree (the default) so that HTML links are resolved.

9 called ‘CVS’ or ‘.svn’ or ‘.arch-ids’ or ‘.bzr’ or ‘git’.

Chapter 1: Creating R packages 20

Note: R CMD check and R CMD build run R with ‘--vanilla’, so none of the
user’s startup files are read. If you need R_LIBS set (to find packages in a
non-standard library) you will need to set it in the environment.
Note to Windows users: R CMD check and R CMD build need you to have in-
stalled the files for building source packages (which is the default), as well as
the Windows toolset (see the “R Installation and Administration” manual).
You may need to set TMPDIR to point to a suitable writeable directory with a
path not containing spaces – use forward slashes for the separators. Also, the
directory needs to be on a case-honouring file system (some network-mounted
file systems are not).

1.3.3 Customizing checking and building

In addition to the available command line options, R CMD check also allows customization
by setting (Perl) configuration variables in a configuration file, the location of which can be
specified via the ‘--rcfile’ option and defaults to ‘$HOME/.R/check.conf’ provided that
the environment variable HOME is set.

The following configuration variables are currently available.

$R_check_use_install_log
If true, record the output from installing a package as part of its check to a log
file (‘00install.out’ by default), even when running interactively. Default:
true.

$R_check_all_non_ISO_C
If true, do not ignore compiler (typically GCC) warnings about non ISO C code
in system headers. Default: false.

$R_check_weave_vignettes
If true, weave package vignettes in the process of checking them. Default: true.

$R_check_latex_vignettes
If true (and $R_check_weave_vignettes is also true), latex package vignettes
in the process of checking them: this will show up Sweave source errors, includ-
ing missing source files. Default: true.

$R_check_subdirs_nocase
If true, check the case of directories such as ‘R’ and ‘man’. Default: false.

$R_check_subdirs_strict
Initial setting for ‘--check-subdirs’. Default: ‘default’ (which checks only
tarballs, and checks in the ‘src’ only if there is no ‘configure’ file).

$R_check_force_suggests
If true, give an error if suggested packages are not available. Default: true.

$R_check_use_codetools
If true, make use of the codetools package, which provides a detailed analysis
of visibility of objects (but may give false positives). Default: true.

$R_check_Rd_style
If true, check whether Rd usage entries for S3 methods use the full function
name rather than the appropriate \method markup. Default: true.

Chapter 1: Creating R packages 21

$R_check_Rd_xrefs
If true, check the cross-references in ‘.Rd’ files. Default: true.

Values ‘1’ or a string with lower-cased version ‘"yes"’ or ‘"true"’ can be used for setting
the variables to true; similarly, ‘0’ or strings with lower-cased version ‘"no"’ or ‘"false"’
give false.

For example, a configuration file containing

$R_check_use_install_log = "TRUE";
$R_check_weave_vignettes = 0;

results in using install logs and turning off weaving.

Future versions of R may enhance this customization mechanism, and provide a similar
scheme for R CMD build.

There are other internal settings that can be changed via environment variables
_R_CHECK_*_: see the Perl source code.

1.4 Writing package vignettes

In addition to the help files in Rd format, R packages allow the inclusion of documents
in arbitrary other formats. The standard location for these is subdirectory ‘inst/doc’ of
a source package, the contents will be copied to subdirectory ‘doc’ when the package is
installed. Pointers from package help indices to the installed documents are automatically
created. Documents in ‘inst/doc’ can be in arbitrary format, however we strongly rec-
ommend to provide them in PDF format, such that users on all platforms can easily read
them. To ensure that they can be accessed from a browser, the file names should start with
an ASCII letter and be comprised entirely of ASCII letters or digits or minus or underscore.

A special case are documents in Sweave format, which we call package vignettes. Sweave
allows the integration of LATEX documents and R code and is contained in package utils
which is part of the base R distribution, see the Sweave help page for details on the doc-
ument format. Package vignettes found in directory ‘inst/doc’ are tested by R CMD check
by executing all R code chunks they contain to ensure consistency between code and docu-
mentation. Code chunks with option eval=FALSE are not tested. The R working directory
for all vignette tests in R CMD check is the installed version of the ‘doc’ subdirectory. Make
sure all files needed by the vignette (data sets, . . .) are accessible by either placing them
in the ‘inst/doc’ hierarchy of the source package, or using calls to system.file().

R CMD build will automatically create PDF versions of the vignettes for distribution with
the package sources. By including the PDF version in the package sources it is not necessary
that the vignettes can be compiled at install time, i.e., the package author can use private
LATEX extensions which are only available on his machine.10

By default R CMD build will run Sweave on all files in Sweave format. If no ‘Makefile’
is found in directory ‘inst/doc’, then texi2dvi --pdf is run on all vignettes. Whenever a
‘Makefile’ is found, then R CMD build will try to run make after the Sweave step, such that
PDF manuals can be created from arbitrary source formats (plain LATEX files, . . .). The
‘Makefile’ should take care of both creation of PDF files and cleaning up afterwards, i.e.,

10 provided the conditions of the licence are met: many would see this as incompatible with an Open Source
licence.

Chapter 1: Creating R packages 22

delete all files that shall not appear in the final package archive. Note that the make step is
executed independently from the presence of any files in Sweave format.

It is no longer necessary to provide a ‘00Index.dcf’ file in the ‘inst/doc’ directory—
the corresponding information is generated automatically from the \VignetteIndexEntry
statements in all Sweave files when installing from source, or when using the package builder
(see Section 1.3 [Checking and building packages], page 17). The \VignetteIndexEntry
statement is best placed in LATEX comment, such that no definition of the command is
necessary.

At install time an HTML index for all vignettes is automatically created from the
\VignetteIndexEntry statements unless a file ‘index.html’ exists in directory ‘inst/doc’.
This index is linked into the HTML help system for each package.

1.5 Submitting a package to CRAN

CRAN is a network of WWW sites holding the R distributions and contributed code, es-
pecially R packages. Users of R are encouraged to join in the collaborative project and to
submit their own packages to CRAN.

Before submitting a package mypkg, do run the following steps to test it is complete and
will install properly. (Unix procedures only, run from the directory containing ‘mypkg ’ as a
subdirectory.)
1. Run R CMD build to make the release ‘.tar.gz’ file.
2. Run R CMD check on the ‘.tar.gz’ file to check that the package will install and will

run its examples, and that the documentation is complete and can be processed. If the
package contains code that needs to be compiled, try to enable a reasonable amount of
diagnostic messaging (“warnings”) when compiling, such as e.g. ‘-Wall -pedantic’ for
tools from GCC, the Gnu Compiler Collection. (If R was not configured accordingly,
one can achieve this e.g. via PKG_CFLAGS and related variables.)

3. Look for any problems with help file conversions. For example, you should
• Read through the PDF manual that was produced by R CMD check at

‘mypkg.Rcheck/mypkg-manual.pdf’, or produce another copy by R CMD Rd2dvi
--pdf mypkg .

• Check for any left-over internal constructs by
grep -r ’normal-bracket’ mypkg.Rcheck/mypkg/help

If any occurrences are found these almost always indicate errors in the help files,
some of which are discussed in the next chapter.

Please ensure that you can run through the complete procedure with only warnings that
you understand and have reasons not to eliminate. In principle, packages must pass R
CMD check without warnings to be admitted to the main CRAN package area. If there are
warnings you cannot eliminate (for example because you believe them to be spurious) send
an explanatory note with your submission.

When all the testing is done, upload the ‘.tar.gz’ file, using ‘anonymous’ as log-in name
and your e-mail address as password, to ftp://CRAN.R-project.org/incoming/ (note: use
‘ftp’ and not ‘sftp’ to connect to this server) and send a message to CRAN@R-project.org
about it. The CRAN maintainers will run these tests before putting a submission in the
main archive.

ftp://CRAN.R-project.org/incoming/
mailto:CRAN@R-project.org

Chapter 1: Creating R packages 23

Note that CRAN generally does not accept submissions of precompiled binaries due to
security reasons.

1.6 Package name spaces

R has a name space management system for packages. This system allows the package
writer to specify which variables in the package should be exported to make them available
to package users, and which variables should be imported from other packages.

The current mechanism for specifying a name space for a package is to place a
‘NAMESPACE’ file in the top level package directory. This file contains name space directives
describing the imports and exports of the name space. Additional directives register
any shared objects to be loaded and any S3-style methods that are provided. Note that
although the file looks like R code (and often has R-style comments) it is not processed as
R code. Only very simple conditional processing of if statements is implemented.

Like other packages, packages with name spaces are loaded and attached to the search
path by calling library. Only the exported variables are placed in the attached frame.
Loading a package that imports variables from other packages will cause these other packages
to be loaded as well (unless they have already been loaded), but they will not be placed on
the search path by these implicit loads.

Name spaces are sealed once they are loaded. Sealing means that imports and exports
cannot be changed and that internal variable bindings cannot be changed. Sealing allows
a simpler implementation strategy for the name space mechanism. Sealing also allows code
analysis and compilation tools to accurately identify the definition corresponding to a global
variable reference in a function body.

Note that adding a name space to a package changes the search strategy. The package
name space comes first in the search, then the imports, then the base name space and then
the normal search path.

1.6.1 Specifying imports and exports

Exports are specified using the export directive in the ‘NAMESPACE’ file. A directive of the
form

export(f, g)

specifies that the variables f and g are to be exported. (Note that variable names may be
quoted, and reserved words and non-standard names such as [<-.fractions must be.)

For packages with many variables to export it may be more convenient to specify the
names to export with a regular expression using exportPattern. The directive

exportPattern("^[^\\.]")

exports all variables that do not start with a period.

A package with a name space implicitly imports the base name space. Variables exported
from other packages with name spaces need to be imported explicitly using the directives
import and importFrom. The import directive imports all exported variables from the
specified package(s). Thus the directives

import(foo, bar)

Chapter 1: Creating R packages 24

specifies that all exported variables in the packages foo and bar are to be imported. If only
some of the exported variables from a package are needed, then they can be imported using
importFrom. The directive

importFrom(foo, f, g)

specifies that the exported variables f and g of the package foo are to be imported.
It is possible to export variables from a name space that it has imported from other

namespaces.
If a package only needs a few objects from another package it can use a fully qualified

variable reference in the code instead of a formal import. A fully qualified reference to the
function f in package foo is of the form foo:::f. This is less efficient than a formal import
and also loses the advantage of recording all dependencies in the ‘NAMESPACE’ file, so this
approach is usually not recommended. Evaluating foo:::f will cause package foo to be
loaded, but not attached, if it was not loaded already—this can be an advantage is delaying
the loading of a rarely used package.

Using foo:::f allows access to unexported objects: to confine references to exported
objects use foo::f.

1.6.2 Registering S3 methods

The standard method for S3-style UseMethod dispatching might fail to locate methods
defined in a package that is imported but not attached to the search path. To ensure
that these methods are available the packages defining the methods should ensure that the
generics are imported and register the methods using S3method directives. If a package
defines a function print.foo intended to be used as a print method for class foo, then
the directive

S3method(print, foo)

ensures that the method is registered and available for UseMethod dispatch. The function
print.foo does not need to be exported. Since the generic print is defined in base it does
not need to be imported explicitly. This mechanism is intended for use with generics that
are defined in a name space. Any methods for a generic defined in a package that does not
use a name space should be exported, and the package defining and exporting the methods
should be attached to the search path if the methods are to be found.

(Note that function and class names may be quoted, and reserved words and non-
standard names such as [<- and function must be.)

1.6.3 Load hooks

There are a number of hooks that apply to packages with name spaces. See
help(".onLoad") for more details.

Packages with name spaces do not use the .First.lib function. Since loading and
attaching are distinct operations when a name space is used, separate hooks are provided
for each. These hook functions are called .onLoad and .onAttach. They take the same
arguments as .First.lib; they should be defined in the name space but not exported.

However, packages with name spaces do use the .Last.lib function. There is also a hook
.onUnload which is called when the name space is unloaded (via a call to unloadNamespace)
with argument the full path to the installed package’s directory. .onUnload should be
defined in the name space and not exported, but .Last.lib does need to be exported.

Chapter 1: Creating R packages 25

Packages are not likely to need .onAttach (except perhaps for a start-up banner); code
to set options and load shared objects should be placed in a .onLoad function, or use made
of the useDynLib directive described next.

There can be one or more useDynLib directives which allow shared objects that need to
be loaded to be specified in the ‘NAMESPACE’ file. The directive

useDynLib(foo)

registers the shared object foo for loading with library.dynam. Loading of registered
object(s) occurs after the package code has been loaded and before running the load hook
function. Packages that would only need a load hook function to load a shared object can
use the useDynLib directive instead.

User-level hooks are also available: see the help on function setHook.
The useDynLib directive also accepts the names of the native routines that are to be

used in R via the .C, .Call, .Fortran and .External interface functions. These are given
as additional arguments to the directive, for example,

useDynLib(foo, myRoutine, myOtherRoutine)

By specifying these names in the useDynLib directive, the native symbols are resolved
when the package is loaded and R variables identifying these symbols are added to the
package’s name space with these names. These can be used in the .C, .Call, .Fortran
and .External calls in place of the name of the routine and the PACKAGE argument. For
instance, we can call the routine myRoutine from R with the code

.Call(myRoutine, x, y)

rather than
.Call("myRoutine", x, y, PACKAGE = "foo")

There are at least two benefits to this approach. Firstly, the symbol lookup is done just
once for each symbol rather than each time it the routine is invoked. Secondly, this removes
any ambiguity in resolving symbols that might be present in several compiled libraries.
In particular, it allows for correctly resolving routines when different versions of the same
package are loaded concurrently in the same R session.

In some circumstances, there will already be an R variable in the package with the
same name as a native symbol. For example, we may have an R function in the package
named myRoutine. In this case, it is necessary to map the native symbol to a different R
variable name. This can be done in the useDynLib directive by using named arguments.
For instance, to map the native symbol name myRoutine to the R variable myRoutine_sym,
we would use

useDynLib(foo, myRoutine_sym = myRoutine, myOtherRoutine)

We could then call that routine from R using the command
.Call(myRoutine_sym, x, y)

Symbols without explicit names are assigned to the R variable with that name.
In some cases, it may be preferable not to create R variables in the package’s name space

that identify the native routines. It may be too costly to compute these for many routines
when the package is loaded if many of these routines are not likely to be used. In this case,
one can still perform the symbol resolution correctly using the DLL, but do this each time
the routine is called. Given a reference to the DLL as an R variable, say dll, we can call
the routine myRoutine using the expression

Chapter 1: Creating R packages 26

.Call(dll$myRoutine, x, y)

The $ operator resolves the routine with the given name in the DLL using a call to
getNativeSymbol. This is the same computation as above where we resolve the symbol
when the package is loaded. The only difference is that this is done each time in the case
of dll$myRoutine.

In order to use this dynamic approach (e.g., dll$myRoutine), one needs the reference
to the DLL as an R variable in the package. The DLL can be assigned to a variable by
using the variable = dllName format used above for mapping symbols to R variables. For
example, if we wanted to assign the DLL reference for the DLL foo in the example above
to the variable myDLL, we would use the following directive in the ‘NAMESPACE’ file:

myDLL = useDynLib(foo, myRoutine_sym = myRoutine, myOtherRoutine)

Then, the R variable myDLL is in the package’s name space and available for calls such
as myDLL$dynRoutine to access routines that are not explicitly resolved at load time.

If the package has registration information (see Section 5.4 [Registering native routines],
page 72), then we can use that directly rather than specifying the list of symbols again in the
useDynLib directive in the ‘NAMESPACE’ file. Each routine in the registration information is
specified by giving a name by which the routine is to be specified along with the address
of the routine and any information about the number and type of the parameters. Using
the .registration argument of useDynLib, we can instruct the name space mechanism to
create R variables for these symbols. For example, suppose we have the following registration
information for a DLL named myDLL:

R_CMethodDef cMethods[] = {
{"foo", &foo, 4, {REALSXP, INTSXP, STRSXP, LGLSXP}},
{"bar_sym", &bar, 0},
{NULL, NULL, 0}

};

R_CallMethodDef callMethods[] = {
{"R_call_sym", &R_call, 4},
{"R_version_sym", &R_version, 0},
{NULL, NULL, 0}

};

Then, the directive in the ‘NAMESPACE’ file

useDynLib(myDLL, .registration = TRUE)

causes the DLL to be loaded and also for the R variables foo, bar_sym, R_call_sym and
R_version_sym to be defined in the package’s name space.

Note that the names for the R variables are taken from the entry in the registration
information and do not need to be the same as the name of the native routine. This allows
the creator of the registration information to map the native symbols to non-conflicting
variable names in R, e.g. R_version to R_version_sym for use in an R function such as

R_version <- function()
{
.Call(R_version_sym)

}

Chapter 1: Creating R packages 27

Using argument .fixes allows an automatic prefix to be added to the registered sym-
bols, which can be useful when working with an existing package. For example, package
KernSmooth has

useDynLib(KernSmooth, .registration = TRUE, .fixes = "F_")

which makes the R variables corresponding to the FORTRAN symbols F_bkde and so on,
and so avoid clashes with R code in the name space.

More information about this symbol lookup, along with some approaches for customizing
it, is available from http://www.omegahat.org/examples/RDotCall.

1.6.4 An example

As an example consider two packages named foo and bar. The R code for package foo in
file ‘foo.R’ is� �

x <- 1
f <- function(y) c(x,y)
foo <- function(x) .Call("foo", x, PACKAGE="foo")
print.foo <- function(x, ...) cat("<a foo>\n")
 	

Some C code defines a C function compiled into DLL foo (with an appropriate extension).
The ‘NAMESPACE’ file for this package is� �

useDynLib(foo)
export(f, foo)
S3method(print, foo)
 	

The second package bar has code file ‘bar.R’� �
c <- function(...) sum(...)
g <- function(y) f(c(y, 7))
h <- function(y) y+9
 	

and ‘NAMESPACE’ file� �
import(foo)
export(g, h)
 	

Calling library(bar) loads bar and attaches its exports to the search path. Package foo
is also loaded but not attached to the search path. A call to g produces

> g(6)
[1] 1 13

This is consistent with the definitions of c in the two settings: in bar the function c is
defined to be equivalent to sum, but in foo the variable c refers to the standard function c
in base.

http://www.omegahat.org/examples/RDotCall

Chapter 1: Creating R packages 28

1.6.5 Summary – converting an existing package

To summarize, converting an existing package to use a name space involves several simple
steps:
• Identify the public definitions and place them in export directives.
• Identify S3-style method definitions and write corresponding S3method declarations.
• Identify dependencies and replace any require calls by import directives (and make

appropriate changes in the Depends and Imports fields of the ‘DESCRIPTION’ file).
• Replace .First.lib functions with .onLoad functions or useDynLib directives.

Some code analysis tools to aid in this process are currently under development.

1.6.6 Name spaces with formal classes and methods

Some additional steps are needed for packages which make use of formal (S4-style) classes
and methods (unless these are purely used internally). The package should have Depends:
methods in its ‘DESCRIPTION’ file and any classes and methods which are to be exported
need to be declared in the ‘NAMESPACE’ file. For example, the stats package has

export(mle)
importFrom(graphics, plot)
importFrom(stats, AIC, coef, confint, logLik, optim, profile,

qchisq, update, vcov)
exportClasses(mle, profile.mle, summary.mle)
exportMethods(BIC, coef, confint, logLik, plot, profile,

summary, show, update, vcov)
export(AIC)

All formal classes need to be listed in an exportClasses directive. Generics for which formal
methods are defined need to be declared in an exportMethods directive, and where the
generics are formed by taking over existing functions, those functions need to be imported
(explicitly unless they are defined in the base name space).

Note that exporting methods on a generic in the namespace will also export the generic,
and exporting a generic in the namespace will also export its methods. Where a generic has
been created in the package solely to add S4 methods to it, it can be declared via either
or both of exports or exportMethods, but the latter seems clearer (and is used in the
stats4 example above). On the other hand, where a generic is created in a package without
methods (such as AIC in stats4), exports must be used.

Further, a package using classes and methods defined in another package needs to import
them, with directives

importClassesFrom(package, ...)
importMethodsFrom(package, ...)

listing the classes and functions with methods respectively. Suppose we had two small
packages A and B with B using A. Then they could have NAMESPACE files� �

export(f1, ng1)
exportMethods("[")
exportClasses(c1)
 	

Chapter 1: Creating R packages 29

and � �
importFrom(A, ng1)
importClassesFrom(A, c1)
importMethodsFrom(A, f1)
export(f4, f5)
exportMethods(f6, "[")
exportClasses(c1, c2)
 	

respectively.

Note that importMethodsFrom will also import any generics defined in the namespace
on those methods.

If your package imports the whole of a name space, it will automatically import the
classes from that namespace. It will also import methods, but it is best to do so explicitly,
especially where there are methods being imported from more than one namespace.

1.7 Writing portable packages

Portable packages should have simple file names: use only alphanumeric ASCII characters
and ., and avoid those names not allowed under Windows which are mentioned above.

R CMD check provides a basic set of checks, but often further problems emerge when
people try to install and use packages submitted to CRAN – many of these involve compiled
code. Here are some further checks that you can do to make your package more portable.

• If your package has a ‘configure’ script, provide a ‘configure.win’ script to be used
on Windows. The CRAN binary packages for Windows are built automatically, and if
your package does not build without intervention it is unlikely to be easily available to
a high proportion of R users.

• Make use of the abilities of your compilers to check the standards-conformance of your
code. For example, gcc can be used with options ‘-Wall -pedantic’ to alert you to
potential problems. Do not be tempted to assume that these are pure pedantry: for
example R is still used on platforms where the C compiler does not accept C++/C99
comments (starting //).
If you use FORTRAN, ftnchek (http://www.dsm.fordham.edu/~ftnchek/) provides
thorough testing of conformance to the standard.

• Do be very careful with passing arguments between R, C and FORTRAN code. In
particular, long in C will be 32-bit on most R platforms (including those mostly used
by the CRAN maintainers), but 64-bit on many modern Unix and Linux platforms. It
is rather unlikely that the use of long in C code has been thought through: if you
need a longer type than int you should use a configure test for a C99 type such as
int_fast64_t (and failing that, long long) and typedef your own type to be long
or long long, or use another suitable type (such as size_t). Note that integer in
FORTRAN corresponds to int in C on all R platforms.

• Errors in memory allocation and reading/writing outside arrays are very common
causes of crashes (e.g., segfaults) on some machines. See Section 4.3.2 [Using valgrind],
page 63 for a tool which can be used to look for this.

http://www.dsm.fordham.edu/~ftnchek/

Chapter 1: Creating R packages 30

• The Mac OS X linker has some restrictions not found on other platforms. Try to ensure
that C entry points shared between source files are declared as extern in all but one
of the files. (This is no longer needed in recent versions of R, but is if your package is
not restricted to such versions.)

• Many platforms will allow unsatisfied entry points in compiled code, but will crash the
application (here R) if they are ever used. Some (notably Windows) will not. Looking
at the output of

nm -pg mypkg.so # or other extension such as ‘.sl’ or ‘.dylib’
and checking if any of the symbols marked U is unexpected is a good way to avoid this.

• Conflicts between symbols in DLLs are handled in very platform-specific ways. Good
ways to avoid trouble are to make as many symbols as possible static (check with
nm -pg), and to use unusual names, as well as ensuring you have used the PACKAGE
argument that R CMD check checks for.

1.7.1 Encoding issues

Care is needed if your package contains non-ASCII text, and in particular if it is intended
to be used in more than one locale. It is possible to mark the encoding used in the
‘DESCRIPTION’ file and in ‘.Rd’ files, as discussed elsewhere in this manual. What was
not possible before R 2.5.0 was to mark the encoding used by character strings in R: if you
want your package to work with earlier versions of R please consult the advice in the R
2.4.x version of this manual.

First, consider carefully if you really need non-ASCII text. Most users of R will only be
able to view correctly text in their native language group (e.g. Western European, Eastern
European, Simplified Chinese) and ASCII. Other characters may not be rendered at all,
rendered incorrectly, or cause your R code to give an error. For documentation, marking
the encoding and including ASCII transliterations is likely to do a reasonable job.

Function showNonASCII in package tools can help in finding non-ASCII bytes in files.
The most favourable circumstance is using UTF-8-encoded text in a package that will

only ever be used in a UTF-8 locale (and hence not on Windows, for example). In that
case it is likely that text will be rendered correctly in the terminal/console used to run R,
and files written will be readable by other UTF-8-aware applications. However, plotting
will be problematic. On-screen plotting using the ‘X11()’ device will use a font that only
covers a small proportion of UTF-8, and different fonts will likely need to be selected for
Polish, Russian and Japanese (see help("X11")). Using ‘postscript’ or ‘pdf’ will choose
a default 8-bit encoding depending on the language of the UTF-8 locale, and your users
would need to be told how to select the ‘encoding’ argument.

Another fairly common scenario is where a package will only be used in one language,
e.g. French. It is not very safe to assume that all such users would have their computers
set to a French locale, but let us assume so. The problem then is that there are several
possible encodings for French locales, the most common ones being ‘CP1252’ (Windows),
‘ISO 8859-1’ (latin-1), ‘ISO 8859-15’ (latin-9 which includes the Euro), and ‘UTF-8’. For
characters in the French language the first three agree, but they do not agree with ‘UTF-8’.
Further, you (or different users) can run R in different locales in different sessions, say
‘fr_CA.utf8’ one day and ‘fr_CH.iso88591’ the next. As from R 2.5.0, declaring the
encoding as either ‘latin1’ or ‘UTF-8’ in the ‘DESCRIPTION’ file will enable this to work. If

Chapter 1: Creating R packages 31

you have character data in ‘.rda’ files (for use by data or LazyData) these need to have
been prepared and saved in R 2.5.0 in an appropriate locale (or marked via Encoding).
For example (from package FactoMineR version 1.02):

> library(FactoMineR)
> data(wine)
> Encoding(names(wine)) <- "latin1"
> Encoding(levels(wine$Terroir)) <- "latin1"
> save(wine, file="wine.rda")

was used to update a ‘.rda’ file.

If you want to run R CMD check on a Unix-alike over a package that sets the encoding you
may need to specify a suitable locale via an environment variable. The default is equivalent
setting R_ENCODING_LOCALES to

"latin1=en_US:latin2=pl_PL:UTF-8=en_US.utf8:latin9=fr_FR.iso885915@euro"

(which is appropriate for a system based on glibc) except if the current locale is UTF-8
and ‘iconv’ is available, when the package code is translated to UTF-8 for syntax checking.

1.8 Diagnostic messages

Now that diagnostic messages can be made available for translation, it is important to write
them in a consistent style. Using the tools described in the next section to extract all the
messages can give a useful overview of your consistency (or lack of it).

Some guidelines follow.

• Messages are sentence fragments, and not viewed in isolation. So it is conventional not
to capitalize the first word and not to end with a period (or other punctuation).

• Try not to split up messages into small pieces. In C error messages use a single format
string containing all English words in the messages.

In R error messages do not construct a message with paste (such messages will not be
translated) but via multiple arguments to stop or warning, or via gettextf.

• Do not use colloquialisms such as “can’t” and “don’t”.

• If possible, make quotation marks part of your message as different languages have
different conventions. In R messages this means not using sQuote or dQuote except
where the argument is a variable.

Conventionally single quotation marks are used for quotations such as

’ord’ must be a positive integer, at most the number of knots

and double quotation marks when referring to an R character string such as

’format’ must be "normal" or "short" - using "normal"

Since ASCII does not contain directional quotation marks, it is best to use ‘’’ and let the
translator (including automatic translation) use directional quotations where available.
The range of quotation styles is immense: unfortunately we cannot reproduce them in
a portable texinfo document. But as a taster, some languages use ‘up’ and ‘down’
(comma) quotes rather than left or right quotes, and some use guillemets (and some
use what Adobe calls ‘guillemotleft’ to start and others use it to end).

Chapter 1: Creating R packages 32

• Occasionally messages need to be singular or plural (and in other languages there may
be no such concept or several plural forms – Slovenian has four). So avoid constructions
such as was once used in library

if((length(nopkgs) > 0) && !missing(lib.loc)) {
if(length(nopkgs) > 1)

warning("libraries ",
paste(sQuote(nopkgs), collapse = ", "),
" contain no packages")

else
warning("library ", paste(sQuote(nopkgs)),

" contains no package")
}

and was replaced by
if((length(nopkgs) > 0) && !missing(lib.loc)) {

pkglist <- paste(sQuote(nopkgs), collapse = ", ")
msg <- sprintf(ngettext(length(nopkgs),

"library %s contains no packages",
"libraries %s contain no packages"),

pkglist)
warning(msg, domain=NA)

}

Note that it is much better to have complete clauses as here, since in another language
one might need to say ‘There is no package in library %s’ or ‘There are no packages in
libraries %s’.

1.9 Internationalization

There are mechanisms to translate the R- and C-level error and warning messages. There
are only available if R is compiled with NLS support (which is requested by configure
option ‘--enable-nls’, the default).

The procedures make use of msgfmt and xgettext which are part of GNU
gettext and this will need to be installed: Windows users can find pre-compiled
binaries at the GNU archive mirrors and packaged with the poEdit package (http://
poedit.sourceforge.net/download.php#win32).

1.9.1 C-level messages

The process of enabling translations is
• In a header file that will be included in all the C files containing messages that should

be translated, declare
#include <R.h> /* to include Rconfig.h */

#ifdef ENABLE_NLS
#include <libintl.h>
#define _(String) dgettext ("pkg", String)
/* replace pkg as appropriate */
#else

http://penalty z@ poedit.sourceforge.net/penalty z@ download.php#win32
http://penalty z@ poedit.sourceforge.net/penalty z@ download.php#win32

Chapter 1: Creating R packages 33

#define _(String) (String)
#endif

• For each message that should be translated, wrap it in _(...), for example

error(_("’ord’ must be a positive integer"));

• In the package’s ‘src’ directory run

xgettext --keyword=_ -o pkg.pot *.c

The file ‘src/pkg.pot’ is the template file, and conventionally this is shipped as
‘po/pkg.pot’. A translator to another language makes a copy of this file and edits
it (see the gettext manual) to produce say ‘ll.po’, where ll is the code for the
language in which the translation is to be used. (This file would be shipped in the
‘po’ directory.) Next run msgfmt on ‘ll.po’ to produce ‘ll.mo’, and copy that to
‘inst/po/ll/LC_MESSAGES/pkg.mo’. Now when the package is loaded after installation
it will look for translations of its messages in the ‘po/lang/LC_MESSAGES/pkg.mo’ file for
any language lang that matches the user’s preferences (via the setting of the LANGUAGE
environment variable or from the locale settings).

1.9.2 R messages

Mechanisms to support the automatic translation of R stop, warning and message messages
are in place, most easily if the package has a name space. They make use of message catalogs
in the same way as C-level messages, but using domain R-pkg rather than pkg . Translation
of character strings inside stop, warning and message calls is automatically enabled, as
well as other messages enclosed in calls to gettext or gettextf. (To suppress this, use
argument domain=NA.)

Tools to prepare the ‘R-pkg.pot’ file are provided in package tools: xgettext2pot
will prepare a file from all strings occurring inside gettext/gettextf, stop, warning and
message calls. Some of these are likely to be spurious and so the file is likely to need
manual editing. xgettext extracts the actual calls and so is more useful when tidying up
error messages.

Translation of messages which might be singular or plural can be very intricate: lan-
guages can have up to four different forms. The R function ngettext provides an interface
to the C function of the same name, and will choose an appropriate singular or plural form
for the selected language depending on the value of its first argument n.

Packages without name spaces will need to use domain="R-pkg" explicitly in calls to
stop, warning, message, gettext/gettextf and ngettext.

1.10 CITATION files

An installed file named ‘CITATION’ will be used by the citation() function. (To be in-
stalled, it needed to be in the ‘inst’ subdirectory of the package sources.)

The ‘CITATION’ file is parsed as R code, currently in Latin-1. (This will change once
there is a means to declare an encoding.) If no such file is present, citation generates a
standard contents, and an example of what that would look like as a ‘CITATION’ file can be
seen in recommended package nlme (see below): recommended packages boot, cluster and
mgcv have further examples.

Chapter 1: Creating R packages 34

A ‘CITATION’ file will contain calls to the functions citHeader, citEntry and (option-
ally) citFooter. Here is that for nlme, re-formatted:

citHeader("To cite package ’nlme’ in publications use:")

desc <- packageDescription("nlme")
year <- sub(".*(2[[:digit:]]{3})-.*", "\\1", desc$Date)
vers <- paste("R package version", desc$Version)

citEntry(entry="Manual",
title = "nlme: Linear and Nonlinear Mixed Effects Models",
author = personList(as.person("Jose Pinheiro"),

as.person("Douglas Bates"),
as.person("Saikat DebRoy"),
as.person("Deepayan Sarkar"),
as.person("the R Core team")),

year = year,
note = vers,

textVersion =
paste("Jose Pinheiro, Douglas Bates, Saikat DebRoy,",

"Deepayan Sarkar and the R Core team (",
year,
"). nlme: Linear and Nonlinear Mixed Effects Models. ",
vers, ".", sep=""))

Note the way that information that may need to be updated is picked up from the
‘DESCRIPTION’ file – it is tempting to hardcode such information, but it normally then gets
outdated. See ?citEntry for further details of the information which can be provided.

The ‘CITATION’ should itself produce no output.
As from R 2.8.0, the ‘CITATION’ file will be read in Latin-1 unless a package encoding

is declared in the package’s ‘DESCRIPTION’ file. (R 2.7.0 read the ‘CITATION’ file in Latin-
1, which covered all the examples at the time. Earlier versions of R read the file in the
encoding of the session.)

1.11 Package types

The ‘DESCRIPTION’ file has an optional field Type which if missing is assumed to be Package,
the sort of extension discussed so far in this chapter. Currently two other types are recog-
nized, both of which need write permission in the R installation tree.

1.11.1 Frontend

This is a rather general mechanism, designed for adding new front-ends such as the
gnomeGUI package. If a ‘configure’ file is found in the top-level directory of the package
it is executed, and then if a Makefile is found (often generated by ‘configure’), make is
called. If R CMD INSTALL --clean is used make clean is called. No other action is taken.

R CMD build can package up this type of extension, but R CMD check will check the type
and skip it.

Chapter 1: Creating R packages 35

1.11.2 Translation

Conventionally, a translation package for language ll is called Translation-ll and has Type:
Translation. It needs to contain the directories ‘share/locale/ll ’ and ‘library/
pkgname/po/ll ’, or at least those for which translations are available. The files ‘.mo’ are
installed in the parallel places in the R installation tree.

For example, a package Translation-it might be prepared from an installed (and tested)
version of R by

mkdir Translation-it
cd Translation-it
(cd $R_HOME; tar cf - share/locale/it library/*/po/it) | tar xf -
the next step is not needed on Windows
msgfmt -c -o share/locale/it/LC_MESSAGES/RGui.mo $R_SRC_HOME/po/RGui-it.gmo
create a DESCRIPTION file
cd ..
R CMD build Translation-it

It is probably appropriate to give the package a version number based on the version of
R which has been translated. So the ‘DESCRIPTION’ file might look like

Package: Translation-it
Type: Translation
Version: 2.2.1-1
Title: Italian Translations for R 2.2.1
Description: Italian Translations for R 2.2.1
Author: The translators
Maintainer: Some Body <somebody@some.where.net>
License: GPL (>= 2)

1.12 Services

Several members of the R project have set up services to assist those writing R packages,
particularly those intended for public distribution.

win-builder.r-project.org offers the automated preparation of Windows binaries from
well-tested source packages.

R-Forge (R-Forge.r-project.org) and RForge (www.rforge.net) are similar services with
similar names. Both provide source-code management through SVN, daily building and
checking, mailing lists and a repository that can be accessed via install.packages. Pack-
age developers have the opportunity to present their work on the basis of project websites or
news announcements. Mailing lists, forums or wikis provide useRs with convenient instru-
ments for discussions and for exchanging information between developers and/or interested
useRs.

http://win-builder.r-project.org
http://R-Forge.r-project.org
http://www.rforge.net

Chapter 2: Writing R documentation files 36

2 Writing R documentation files

2.1 Rd format

R objects are documented in files written in “R documentation” (Rd) format, a simple
markup language closely resembling (La)TEX, which can be processed into a variety of
formats, including LATEX, HTML and plain text. The translation is carried out by the Perl
script Rdconv in ‘R_HOME/bin’ and by the installation scripts for packages.

The R distribution contains more than 1200 such files which can be found in the
‘src/library/pkg/man’ directories of the R source tree, where pkg stands for the stan-
dard packages which are included in the R distribution.

As an example, let us look at the file ‘src/library/base/man/load.Rd’ which docu-
ments the R function load.� �

\name{load}

\alias{load}

\title{Reload Saved Datasets}

\description{

Reload the datasets written to a file with the function

\code{save}.

}

\usage{

load(file, envir = parent.frame())

}

\arguments{

\item{file}{a connection or a character string giving the

name of the file to load.}

\item{envir}{the environment where the data should be

loaded.}

}

\seealso{

\code{\link{save}}.

}

\examples{

save all data

save(list = ls(), file= "all.Rdata")

restore the saved values to the current environment

load("all.Rdata")

restore the saved values to the workspace

load("all.Rdata", .GlobalEnv)

}

\keyword{file}
 	
An Rd file consists of three parts. The header gives basic information about the name of

the file, the topics documented, a title, a short textual description and R usage information
for the objects documented. The body gives further information (for example, on the
function’s arguments and return value, as in the above example). Finally, there is a footer
with keyword information. The header and footer are mandatory.

See the “Guidelines for Rd files” for guidelines for writing documentation in Rd format
which should be useful for package writers.

http://developer.r-project.org/Rds.html

Chapter 2: Writing R documentation files 37

2.1.1 Documenting functions

The basic markup commands used for documenting R objects (in particular, functions) are
given in this subsection.

\name{name}
name typically1 is the basename of the Rd file containing the documentation.
It is the “name” of the Rd object represented by the file and has to be unique
in a package.

\alias{topic}
The \alias entries specify all “topics” the file documents. This information is
collected into index data bases for lookup by the on-line (plain text and HTML)
help systems. The topic can contain spaces, but (for historical reasons) leading
and trailing spaces will be stripped.

There may be several \alias entries. Quite often it is convenient to document
several R objects in one file. For example, file ‘Normal.Rd’ documents the den-
sity, distribution function, quantile function and generation of random variates
for the normal distribution, and hence starts with

\name{Normal}
\alias{Normal}
\alias{dnorm}
\alias{pnorm}
\alias{qnorm}
\alias{rnorm}

Also, it is often convenient to have several different ways to refer to an R object,
and an \alias does not need to be the name of an object.

Note that the \name is not necessarily a topic documented, and if so desired it
needs to have an explicit \alias entry (as in this example).

\title{Title}
Title information for the Rd file. This should be capitalized, not end in a period,
and not use any markup (which would cause problems for hypertext search).
Use of characters other than English text and punctuation (e.g., ‘<’) may limit
portability.

\description{...}
A short description of what the function(s) do(es) (one paragraph, a few lines
only). (If a description is “too long” and cannot easily be shortened, the file
probably tries to document too much at once.)

\usage{fun(arg1, arg2, ...)}
One or more lines showing the synopsis of the function(s) and variables doc-
umented in the file. These are set in typewriter font. This is a verbatim-like
command, so some characters need to be escaped (see Section 2.7 [Insertions],
page 46).

1 There can be exceptions: for example Rd files are not allowed to start with a dot, and have to be uniquely
named on a case-insensitive file system.

Chapter 2: Writing R documentation files 38

The usage information specified should match the function definition exactly
(such that automatic checking for consistency between code and documentation
is possible).

It is no longer advisable to use \synopsis for the actual synopsis and show mod-
ified synopses in the \usage. Support for \synopsis will be removed eventually.
To indicate that a function can be “used” in several different ways, depending
on the named arguments specified, use section \details. E.g., ‘abline.Rd’
contains

\details{
Typical usages are

\preformatted{
abline(a, b, untf = FALSE, \dots)
......
}

Use \method{generic}{class} to indicate the name of an S3 method for
the generic function generic for objects inheriting from class "class". In the
printed versions, this will come out as generic (reflecting the understanding that
methods should not be invoked directly but via method dispatch), but codoc()
and other QC tools always have access to the full name.

For example, ‘print.ts.Rd’ contains

\usage{
\method{print}{ts}(x, calendar, \dots)
}

which will print as

Usage:

S3 method for class ’ts’:
print(x, calendar, ...)

Usage for replacement functions should be given in the style of dim(x) <- value
rather than explicitly indicating the name of the replacement function ("dim<-"
in the above). Similarly, one can use \method{generic}{class}(arglist)
<- value to indicate the usage of an S3 replacement method for the generic
replacement function "generic<-" for objects inheriting from class "class".

Usage for S3 methods for extracting or replacing parts of an object, S3 meth-
ods for members of the Ops group, and S3 methods for user-defined (binary)
infix operators (‘%xxx%’) follows the above rules, using the appropriate function
names. E.g., ‘Extract.factor.Rd’ contains

\usage{
\method{[}{factor}(x, \dots, drop = FALSE)
\method{[[}{factor}(x, i)
\method{[}{factor}(x, \dots) <- value
}

which will print as

Chapter 2: Writing R documentation files 39

Usage:

S3 method for class ’factor’:
x[..., drop = FALSE]
S3 method for class ’factor’:
x[[i]]
S3 replacement method for class ’factor’:
x[...] <- value

\arguments{...}
Description of the function’s arguments, using an entry of the form

\item{arg_i}{Description of arg_i.}

for each element of the argument list. There may be optional text before and
after these entries. (Note that there is no whitespace between the three parts
of the entry.)

\details{...}
A detailed if possible precise description of the functionality provided, extending
the basic information in the \description slot.

\value{...}
Description of the function’s return value.
If a list with multiple values is returned, you can use entries of the form

\item{comp_i}{Description of comp_i.}

for each component of the list returned. Optional text may precede this list (see
the introductory example for rle). Note that \value is implicitly a \itemize
environment, so that environment should not be used for listing components,
just individual \item entries.

\references{...}
A section with references to the literature. Use \url{} for web pointers.

\note{...}
Use this for a special note you want to have pointed out.
For example, ‘pie.Rd’ contains

\note{
Pie charts are a very bad way of displaying information.
The eye is good at judging linear measures and bad at
judging relative areas.
......

}

\author{...}
Information about the author(s) of the Rd file. Use \email{} without extra
delimiters (‘()’ or ‘< >’) to specify email addresses, or \url{} for web pointers.

\seealso{...}
Pointers to related R objects, using \code{\link{...}} to refer to them (\code
is the correct markup for R object names, and \link produces hyperlinks in

Chapter 2: Writing R documentation files 40

output formats which support this. See Section 2.3 [Marking text], page 43,
and Section 2.5 [Cross-references], page 45).

\examples{...}
Examples of how to use the function. These are set as formatted in typewriter
font: see Section 2.7 [Insertions], page 46 for when characters need to be es-
caped. (Markup \link and \var will be interpreted, but no other.) Code in
this section is run by example() unless marked otherswise (see below).

Examples are not only useful for documentation purposes, but also provide test
code used for diagnostic checking of R. By default, text inside \examples{} will
be displayed in the output of the help page and run by example() and by R
CMD check. You can use \dontrun{} for commands that should only be shown,
but not run, and \dontshow{} for extra commands for testing that should not
be shown to users, but will be run by example(). (Previously this was called
\testonly, and that is still accepted.)

For example,

x <- runif(10) # Shown and run.
\dontrun{plot(x)} # Only shown.
\dontshow{log(x)} # Only run.

Thus, example code not included in \dontrun must be executable! In addition,
it should not use any system-specific features or require special facilities (such
as Internet access or write permission to specific directories). Code included in
\dontrun is indicated by comments in the processed help files.

Data needed for making the examples executable can be obtained by random
number generation (for example, x <- rnorm(100)), or by using standard data
sets listed by data() (see ?data for more info).

Finally, there is \donttest, used to mark code that should be run by
examples() but not by R CMD check. This should be needed only occasionally
but can be used for code which might fail, for example in some locales.

\keyword{key}
Each \keyword entry should specify one of the standard keywords as listed
in file ‘KEYWORDS’ in the R documentation directory (default ‘R_HOME/doc’).
Use e.g. file.show(file.path(R.home("doc"), "KEYWORDS")) to inspect the
standard keywords from within R. There can be more than \keyword entry if
the R object being documented falls into more than one category.

The special keyword ‘internal’ marks a page of internal objects that are
not part of the packages’ API. If the help page for object foo has keyword
‘internal’, then help(foo) gives this help page, but foo is excluded from
several object indices, like the alphabetical list of objects in the HTML help
system.

The R function prompt facilitates the construction of files documenting R objects. If
foo is an R function, then prompt(foo) produces file ‘foo.Rd’ which already contains the
proper function and argument names of foo, and a structure which can be filled in with
information.

Chapter 2: Writing R documentation files 41

2.1.2 Documenting data sets

The structure of Rd files which document R data sets is slightly different. Whereas sections
such as \arguments and \value are not needed, the format and source of the data should
be explained.

As an example, let us look at ‘src/library/datasets/man/rivers.Rd’ which docu-
ments the standard R data set rivers.� �

\name{rivers}

\docType{data}

\alias{rivers}

\title{Lengths of Major North American Rivers}

\description{

This data set gives the lengths (in miles) of 141 \dQuote{major}

rivers in North America, as compiled by the US Geological

Survey.

}

\usage{rivers}

\format{A vector containing 141 observations.}

\source{World Almanac and Book of Facts, 1975, page 406.}

\references{

McNeil, D. R. (1977) \emph{Interactive Data Analysis}.

New York: Wiley.

}

\keyword{datasets}
 	
This uses the following additional markup commands.

\docType{...}
Indicates the “type” of the documentation object. Always ‘data’ for data sets.

\format{...}
A description of the format of the data set (as a vector, matrix, data frame,
time series, . . .). For matrices and data frames this should give a description
of each column, preferably as a list or table. See Section 2.4 [Lists and tables],
page 44, for more information.

\source{...}
Details of the original source (a reference or URL). In addition, section
\references could give secondary sources and usages.

Note also that when documenting data set bar,
• The \usage entry is always bar or (for packages which do not use lazy-loading of data)

data(bar). (In particular, only document a single data object per Rd file.)
• The \keyword entry is always ‘datasets’.

If bar is a data frame, documenting it as a data set can be initiated via prompt(bar).

2.1.3 Documenting S4 classes and methods

There are special ways to use the ‘?’ operator, namely ‘class?topic ’ and ‘methods?topic ’,
to access documentation for S4 classes and methods, respectively. This mechanism depends
on conventions for the topic names used in \alias entries. The topic names for S4 classes
and methods respectively are of the form

Chapter 2: Writing R documentation files 42

class-class
generic,signature_list-method

where signature list contains the names of the classes in the signature of the method (with-
out quotes) separated by ‘,’ (without whitespace), with ‘ANY’ used for arguments without an
explicit specification. E.g., ‘genericFunction-class’ is the topic name for documentation
for the S4 class "genericFunction", and ‘coerce,ANY,NULL-method’ is the topic name for
documentation for the S4 method for coerce for signature c("ANY", "NULL").

Skeletons of documentation for S4 classes and methods can be generated by using the
functions promptClass() and promptMethods() from package methods. If it is necessary
or desired to provide an explicit function declaration (in a \usage section) for an S4 method
(e.g., if it has “surprising arguments” to be mentioned explicitly), one can use the special
markup

\S4method{generic}{signature_list}(argument_list)

(e.g., ‘\S4method{coerce}{ANY,NULL}(from, to)’).
To allow for making full use of the potential of the on-line documentation system, all

user-visible S4 classes and methods in a package should at least have a suitable \alias entry
in one of the package’s Rd files. If a package has methods for a function defined originally
somewhere else, and does not change the underlying default method for the function, the
package is responsible for documenting the methods it creates, but not for the function itself
or the default method.

See help("Documentation", package = "methods") for more information on using and
creating on-line documentation for S4 classes and methods.

2.1.4 Documenting packages

Packages may have an overview man page with an \alias pkgname-package, e.g.
‘utils-package’ for the utils package, when package?pkgname will open that help page.
If a topic named pkgname does not exist in another Rd file, it is helpful to use this as an
additional \alias.

Skeletons of documentation for a package can be generated using the function
promptPackage(). If the final = TRUE argument is used, then the Rd file will
be generated in final form, containing the information that would be produced by
library(help = pkgname). Otherwise (the default) comments will be inserted giving
suggestions for content.

The only requirement for this page is that it include a \docType{package} statement.
All other content is optional. We suggest that it should be a short overview, to give a
reader unfamiliar with the package enough information to get started. More extensive
documentation is better placed into a package vignette (see Section 1.4 [Writing package
vignettes], page 21) and referenced from this page, or into individual man pages for the
functions, datasets, or classes.

2.2 Sectioning

To begin a new paragraph or leave a blank line in an example, just insert an empty line (as
in (La)TEX). To break a line, use \cr.

In addition to the predefined sections (such as \description{}, \value{}, etc.), you
can “define” arbitrary ones by \section{section_title}{...}. For example

Chapter 2: Writing R documentation files 43

\section{Warning}{You must not call this function unless ...}

For consistency with the pre-assigned sections, the section name (the first argument to
\section) should be capitalized (but not all upper case). Note that there is no whitespace
between the first and second braced expressions.

Note that additional named sections are always inserted at a fixed position in the output
(before \note, \seealso and the examples), no matter where they appear in the input (but
in the same order as the input).

2.3 Marking text

The following logical markup commands are available for emphasizing or quoting text.

\emph{text}
\strong{text}

Emphasize text using italic and bold font if possible; \strong is stronger.

\bold{text}
Set text in bold font if possible.

\sQuote{text}
\dQuote{text}

Portably single or double quote text (without hard-wiring the quotation marks).

The following logical markup commands are available for indicating specific kinds of
text.

\code{text}
Indicate text that is a literal example of a piece of a program, e.g., a fragment
of R code or the name of an R object, using typewriter font if possible. Some
characters will need to be escaped (see Section 2.7 [Insertions], page 46). The
only markup interpreted inside \code is \link and \var.

\preformatted{text}
Indicate text that is a literal example of a piece of a program, using typewriter
font if possible. The same characters need to be escaped as for \code. All other
formatting, e.g. line breaks, is preserved. The closing brace should be on a line
by itself.

\kbd{keyboard-characters}
Indicate keyboard input, using slanted typewriter font if possible, so users
can distinguish the characters they are supposed to type from those the com-
puter outputs.

\samp{text}
Indicate text that is a literal example of a sequence of characters.

\pkg{package_name}
Indicate the name of an R package.

\file{file_name}
Indicate the name of a file. Note that special characters do need to be escaped.

\email{email_address}
Indicate an electronic mail address.

Chapter 2: Writing R documentation files 44

\url{uniform_resource_locator}
Indicate a uniform resource locator (URL) for the World Wide Web.

\var{metasyntactic_variable}
Indicate a metasyntactic variable. In some cases this will be rendered distinctly,
e.g. in italic, but not in all2.

\env{environment_variable}
Indicate an environment variable.

\option{option}
Indicate a command-line option.

\command{command_name}
Indicate the name of a command.

\dfn{term}
Indicate the introductory or defining use of a term.

\cite{reference}
Indicate a reference without a direct cross-reference via \link (see Section 2.5
[Cross-references], page 45), such as the name of a book.

\acronym{acronym}
Indicate an acronym (an abbreviation written in all capital letters), such as
GNU.

Note that unless explicitly stated otherwise, special characters (see Section 2.7 [Inser-
tions], page 46) must be escaped inside the above markup commands.

2.4 Lists and tables

The \itemize and \enumerate commands take a single argument, within which there may
be one or more \item commands. The text following each \item is formatted as one or
more paragraphs, suitably indented and with the first paragraph marked with a bullet point
(\itemize) or a number (\enumerate).

\itemize and \enumerate commands may be nested.

The \describe command is similar to \itemize but allows initial labels to be specified.
The \items take two arguments, the label and the body of the item, in exactly the same
way as argument and value \items. \describe commands are mapped to <DL> lists in
HTML and \description lists in LATEX.

The \tabular command takes two arguments. The first gives for each of the columns
the required alignment (‘l’ for left-justification, ‘r’ for right-justification or ‘c’ for centring.)
The second argument consists of an arbitrary number of lines separated by \cr, and with
fields separated by \tab. For example:

2 Currently it is rendered differently only in HTML conversions, and latex conversion outside ‘\usage’ and
‘\examples’ environments.

Chapter 2: Writing R documentation files 45

\tabular{rlll}{
[,1] \tab Ozone \tab numeric \tab Ozone (ppb)\cr
[,2] \tab Solar.R \tab numeric \tab Solar R (lang)\cr
[,3] \tab Wind \tab numeric \tab Wind (mph)\cr
[,4] \tab Temp \tab numeric \tab Temperature (degrees F)\cr
[,5] \tab Month \tab numeric \tab Month (1--12)\cr
[,6] \tab Day \tab numeric \tab Day of month (1--31)

}

There must be the same number of fields on each line as there are alignments in the first
argument, and they must be non-empty (but can contain only spaces). (There is no white-
space between \tabular and the first argument, nor between the two arguments.)

2.5 Cross-references

The markup \link{foo} (usually in the combination \code{\link{foo}}) produces a
hyperlink to the help for foo. Here foo is a topic, that is the argument of \alias markup
in another Rd file (possibly in another package). Hyperlinks are supported in some of the
formats to which Rd files are converted, for example HTML and PDF, but ignored in others,
e.g. the text and S nroff formats.

One main usage of \link is in the \seealso section of the help page, see Section 2.1
[Rd format], page 36.

Note that whereas leading and trailing spaces are stripped when extracting a topic from
a \alias, they are not stripped when looking up the topic of a \link.

You can specify a link to a different topic than its name by \link[=dest]{name}
which links to topic dest with name name. This can be used to refer to the documentation
for S3/4 classes, for example \code{"\link[=abc-class]{abc}"} would be a way
to refer to the documentation of an S4 class "abc" defined in your package, and
\code{"\link[=terms.object]{terms}"} to the S3 "terms" class (in package stats). To
make these easy to read, \code{"\linkS4class{abc}"} expands to the form given above.

There are two other forms of optional argument specified as \link[pkg]{foo} and
\link[pkg:bar]{foo} to link to the package pkg, to files ‘foo.html’ and ‘bar.html’ re-
spectively. These are rarely needed, perhaps to refer to not-yet-installed packages (but there
the HTML help system will resolve the link at run time) or in the normally undesirable event
that more than one package offers help on a topic3 (in which case the present package has
precedence so this is only needed to refer to other packages). They are only in used in
(C)HTML help (and not for hyperlinks in LATEX nor S sgml conversions of help pages), and
link to the file rather than the topic (since there is no way to know which topics are in
which files in an uninstalled package).

2.6 Mathematics

Mathematical formulae should be set beautifully for printed documentation yet we still
want something useful for text and HTML online help. To this end, the two commands
\eqn{latex}{ascii} and \deqn{latex}{ascii} are used. Where \eqn is used for “in-

3 a common example in CRAN packages is \link[mgcv]{gam}.

Chapter 2: Writing R documentation files 46

line” formulae (corresponding to TEX’s $...$, \deqn gives “displayed equations” (as in
LATEX’s displaymath environment, or TEX’s $$...$$).

Both commands can also be used as \eqn{latexascii} (only one argument) which then
is used for both latex and ascii. No whitespace is allowed between command and the first
argument, nor between the first and second arguments.

The following example is from ‘Poisson.Rd’:

\deqn{p(x) = \frac{\lambda^x e^{-\lambda}}{x!}}{%
p(x) = lambda^x exp(-lambda)/x!}

for \eqn{x = 0, 1, 2, \ldots}.

For the LATEX manual, this becomes� �
p(x) = λx

e−λ

x!
for x = 0, 1, 2,
 	

For HTML and text on-line help we get� �
p(x) = lambda^x exp(-lambda)/x!

for x = 0, 1, 2,
 	
See Section 2.12 [Back-compatibility issues], page 49 for earlier problems with \eqn with

one argument immediately followed by a right brace.

2.7 Insertions

Use \R for the R system itself (you don’t need extra ‘{}’ or ‘\’). Use \dots for the dots in
function argument lists ‘...’, and \ldots for ellipsis dots in ordinary text.

After a ‘%’, you can put your own comments regarding the help text. The rest of the
line will be completely disregarded, normally. Therefore, you can also use it to make part
of the “help” invisible.

You can produce a backslash (‘\’) by escaping it by another backslash. (Note that \cr
is used for generating line breaks.)

The “comment” character ‘%’ and unpaired braces4 always need to be escaped by ‘\’, and
‘\\’ can be used for backslash and needs to be when there two or more adjacent backslashes).
Inside the verbatim-like commands (usage, \code, \preformatted and \examples), no
other characters are special. Note that \file is not a verbatim-like command.

In “regular” text (not verbatim-like, no \eqn, . . .), you currently must escape
most LATEX special characters, i.e., besides ‘%’, ‘{’, and ‘}’, the specials ‘$’, ‘#’, and
‘_’ are produced by preceding each with a ‘\’. (‘&’ can also be escaped, but need
not be.) Further, enter ‘^’ as \eqn{\mbox{\textasciicircum}}{^}, and ‘~’ by
\eqn{\mbox{\textasciitilde}}{~} or \eqn{\sim}{~} (for a short and long tilde

4 See the examples section in the file ‘Paren.Rd’ for an example.

Chapter 2: Writing R documentation files 47

respectively). Also, ‘<’, ‘>’, and ‘|’ must only be used in math mode, i.e., within \eqn or
\deqn.

Text which might need to be represented differently in different encodings should be
marked by \enc, e.g. \enc{Jöreskog}{Joreskog} where the first argument will be used
where encodings are allowed and the second should be ASCII (and is used for e.g. the text
conversion).

2.8 Indices

The \alias command (see Section 2.1.1 [Documenting functions], page 37) is used to specify
the “topics” documented, which should include all R objects in a package such as functions
and variables, data sets, and S4 classes and methods (see Section 2.1.3 [Documenting S4
classes and methods], page 41). The on-line help system searches the index data base
consisting of all alias topics.

In addition, it is possible to provide “concept index entries” using \concept, which can
be used for help.search() lookups. E.g., file ‘cor.test.Rd’ in the standard package stats
contains

\concept{Kendall correlation coefficient}
\concept{Pearson correlation coefficient}
\concept{Spearman correlation coefficient}

so that e.g. ??Spearman will succeed in finding the help page for the test for association be-
tween paired samples using Spearman’s ρ. (Note that concepts are not currently supported
by the HTML search accessed via ‘help.start()’.)

(Note that help.search() only uses “sections” of documentation objects with no addi-
tional markup.)

If you want to cross reference such items from other help files via \link, you need to
use \alias and not \concept.

2.9 Platform-specific documentation

Sometimes the documentation needs to differ by platform. Currently two OS-specific options
are available, ‘unix’ and ‘windows’, and lines in the help source file can be enclosed in

#ifdef OS

...
#endif

or

#ifndef OS

...
#endif

for OS-specific inclusion or exclusion.

If the differences between platforms are extensive or the R objects documented are only
relevant to one platform, platform-specific Rd files can be put in a ‘unix’ or ‘windows’
subdirectory.

Chapter 2: Writing R documentation files 48

2.10 Encoding

Rd files are text files and so it is impossible to deduce the encoding they are written in unless
ASCII: files with 8-bit characters could be UTF-8, Latin-1, Latin-9, KOI8-R, EUC-JP, etc.
So the \encoding{} directive must be used to specify the encoding if it is not ASCII. (The
\encoding{} directive must be on a line by itself, and in particular one containing no non-
ASCII characters. As from R 2.6.0 the encoding declared in the ‘DESCRIPTION’ file will be
used if none is declared in the file.) This is used when creating the header of the HTML
conversion (if not present, for back-compatibility the processing to HTML assumes that the
file is in Latin-1 (ISO-8859-1)) and to add comments to the text and examples conversions.
It is also used to indicate to LATEX how to process the file (see below).

Wherever possible, avoid non-ASCII chars in Rd files, and even symbols such as ‘<’, ‘>’,
‘$’, ‘^’, ‘&’, ‘|’, ‘@’, ‘~’, and ‘*’ outside verbatim environments (since they may disappear
in fonts designed to render text). (Function showNonASCII in package tools can help in
finding non-ASCII bytes in the files.)

For convenience, encoding names ‘latin1’ and ‘latin2’ are always recognized: these and
‘UTF-8’ are likely to work fairly widely. However, this does not mean that all characters in
‘UTF-8’ will be recognized, and the coverage of non-Latin characters is often low, especially
when converting to LATEX.

The \enc command (see Section 2.7 [Insertions], page 46) can be used to provide translit-
erations which will be used in conversions that do not support the declared encoding.

The LATEX conversion converts an explicit encoding of the file to a

\inputencoding{some_encoding}

command, and this needs to be matched by a suitable invocation of the
\usepackage{inputenc} command. The R utility R CMD Rd2dvi looks at the
converted code and includes the encodings used: it might for example use

\usepackage[latin1,latin9,utf8]{inputenc}

(Use of utf8 as an encoding requires LATEX dated 2003/12/01 or later. Also, the use of
Cyrillic characters in ‘UTF-8’ appears to also need ‘\usepackage[T2A]{fontenc}’.)

Note that this mechanism works best with Latin letters and for example the copyright
symbol may be rendered as a subscript and the plus–minus symbol cannot be used in text.

2.11 Processing Rd format

There are several commands to process Rd files from the system command line. All of these
need Perl to be installed.

Using R CMD Rdconv one can convert R documentation format to other formats, or extract
the executable examples for run-time testing. Currently, conversions to plain text, HTML,
LATEX, and S version 3 or 4 documentation formats are supported.

In addition to this low-level conversion tool, the R distribution provides two user-level
programs for processing Rd format. R CMD Rd2txt produces “pretty” plain text output from
an Rd file, and is particularly useful as a previewer when writing Rd format documentation
within Emacs. R CMD Rd2dvi generates DVI (or, if option ‘--pdf’ is given, PDF) output
from documentation in Rd files, which can be specified either explicitly or by the path
to a directory with the sources of a package (or bundle). In the latter case, a reference

Chapter 2: Writing R documentation files 49

manual for all documented objects in the package is created, including the information in
the ‘DESCRIPTION’ files.

R CMD Sd2Rd converts S version 3 documentation files (which use an extended Nroff
format) and S version 4 documentation (which uses SGML markup) to Rd format. This
is useful when porting a package originally written for the S system to R. S version 3 files
usually have extension ‘.d’, whereas version 4 ones have extension ‘.sgml’ or ‘.sgm’.

R CMD Sweave and R CMD Stangle process ‘Sweave’ documentation files (usually with
extension ‘.Snw’ or ‘.Rnw’): R CMD Stangle is use to extract the R code fragments.

The exact usage and a detailed list of available options for all but the last two of the above
commands can be obtained by running R CMD command --help, e.g., R CMD Rdconv --help.
All available commands can be listed using R --help (or Rcmd --help under Windows).

All of these work under Windows. You will need to have installed the files in the R binary
Windows distribution for installing source packages (this is true for a default installation),
and for R CMD Rd2dvi also the tools to build packages from source as described in the “R
Installation and Administration” manual.

2.12 Back-compatibility issues

Packages that are intended to work with earlier versions of R need to be written in a rather
stricter dialect, and some notes follow.

Versions of R prior to 2.8.1 failed to process correctly constructions such as
\item{name}{some text \eqn{x}}

the problem being the one- or two-argument command \eqn immediately followed by a right
brace. In many cases this can be resolved by adding punctuation, and even space before
the final brace sufficed.

It was never intended to allow whitespace between arguments to two-argument com-
mands, e.g.

\item{name} {some text}

has always been an error. However, this error is not looked for and results in incorrect
output (often by omitting entirely the text for the item, sometimes with a warning). Future
versions of R will detect and fixup most cases of this error, with a warning.

A \value block is implicitly a \itemize environment, but quite a few package writers
have ignored this. As from R 2.8.1 this is detected, and the \itemize command (but not
its contents) removed, with a warning.

Chapter 3: Tidying and profiling R code 50

3 Tidying and profiling R code

R code which is worth preserving in a package and perhaps making available for others
to use is worth documenting, tidying up and perhaps optimizing. The last two of these
activities are the subject of this chapter.

3.1 Tidying R code

R treats function code loaded from packages and code entered by users differently. Code
entered by users has the source code stored in an attribute, and when the function is listed,
the original source is reproduced. Loading code from a package (by default) discards the
source code, and the function listing is re-created from the parse tree of the function.

Normally keeping the source code is a good idea, and in particular it avoids comments
being moved around in the source. However, we can make use of the ability to re-create a
function listing from its parse tree to produce a tidy version of the function, for example with
consistent indentation and spaces around operators. This tidied version is much easier to
read, not least by other users who are used to the standard format. Although the deparsing
cannot do so, we recommend the consistent use of the preferred assignment operator ‘<-’
(rather than ‘=’) for assignment.

We can subvert the keeping of source in two ways.
1. The option keep.source can be set to FALSE before the code is loaded into R.
2. The stored source code can be removed by removing the source attribute, for example

by
attr(myfun, "source") <- NULL

In each case if we then list the function we will get the standard layout.
Suppose we have a file of functions ‘myfuns.R’ that we want to tidy up. Create a file

‘tidy.R’ containing
options(keep.source = FALSE)
source("myfuns.R")
dump(ls(all = TRUE), file = "new.myfuns.R")

and run R with this as the source file, for example by R --vanilla < tidy.R or by pasting
into an R session. Then the file ‘new.myfuns.R’ will contain the functions in alphabetical
order in the standard layout. Warning: comments in your functions will be lost.

The standard format provides a good starting point for further tidying. Many package
authors use a version of Emacs (on Unix or Windows) to edit R code, using the ESS[S]
mode of the ESS Emacs package. See section “R coding standards” in R Internals for style
options within the ESS[S] mode recommended for the source code of R itself.

3.2 Profiling R code for speed

It is possible to profile R code on Windows and most1 Unix-like versions of R.
The command Rprof is used to control profiling, and its help page can be consulted

for full details. Profiling works by recording at fixed intervals2 (by default every 20 msecs)

1 R has to be built to enable this, but the option ‘--enable-R-profiling’ is the default.
2 For Unix-alikes these are intervals of CPU time, and for Windows of elapsed time.

Chapter 3: Tidying and profiling R code 51

which R function is being used, and recording the results in a file (default ‘Rprof.out’ in
the working directory). Then the function summaryRprof or the command-line utility R CMD
Rprof Rprof.out can be used to summarize the activity.

As an example, consider the following code (from Venables & Ripley, 2002).

library(MASS); library(boot)

storm.fm <- nls(Time ~ b*Viscosity/(Wt - c), stormer,

start = c(b=29.401, c=2.2183))

st <- cbind(stormer, fit=fitted(storm.fm))

storm.bf <- function(rs, i) {

st$Time <- st$fit + rs[i]

tmp <- nls(Time ~ (b * Viscosity)/(Wt - c), st,

start = coef(storm.fm))

tmpmgetAllPars()

}

rs <- scale(resid(storm.fm), scale = FALSE) # remove the mean

Rprof("boot.out")

storm.boot <- boot(rs, storm.bf, R = 4999) # pretty slow

Rprof(NULL)

Having run this we can summarize the results by

R CMD Rprof boot.out

Each sample represents 0.02 seconds.

Total run time: 80.74 seconds.

Total seconds: time spent in function and callees.

Self seconds: time spent in function alone.

% total % self

total seconds self seconds name

100.00 80.74 0.22 0.18 "boot"

99.65 80.46 1.19 0.96 "statistic"

96.33 77.78 2.68 2.16 "nls"

50.21 40.54 1.54 1.24 "<Anonymous>"

47.11 38.04 1.83 1.48 ".Call"

23.06 18.62 2.43 1.96 "eval"

19.87 16.04 0.67 0.54 "as.list"

18.97 15.32 0.64 0.52 "switch"

17.88 14.44 0.47 0.38 "model.frame"

17.41 14.06 1.73 1.40 "model.frame.default"

17.41 14.06 2.80 2.26 "nlsModel"

15.43 12.46 1.88 1.52 "qr.qty"

13.40 10.82 3.07 2.48 "assign"

12.73 10.28 2.33 1.88 "storage.mode<-"

12.34 9.96 1.81 1.46 "qr.coef"

10.13 8.18 5.42 4.38 "paste"

...

Chapter 3: Tidying and profiling R code 52

% self % total

self seconds total seconds name

5.42 4.38 10.13 8.18 "paste"

3.37 2.72 6.71 5.42 "as.integer"

3.29 2.66 5.00 4.04 "as.double"

3.20 2.58 4.29 3.46 "seq.default"

3.07 2.48 13.40 10.82 "assign"

2.92 2.36 5.95 4.80 "names"

2.80 2.26 17.41 14.06 "nlsModel"

2.68 2.16 96.33 77.78 "nls"

2.53 2.04 2.53 2.04 ".Fortran"

2.43 1.96 23.06 18.62 "eval"

2.33 1.88 12.73 10.28 "storage.mode<-"

...

This often produces surprising results and can be used to identify bottlenecks or pieces of
R code that could benefit from being replaced by compiled code.

R CMD Rprof uses a Perl script that may be a little faster than summaryRprof for large
files. On the other hand summaryRprof does not require Perl and provides the results as an
R object.

Two warnings: profiling does impose a small performance penalty, and the output files
can be very large if long runs are profiled.

Profiling short runs can sometimes give misleading results. R from time to time performs
garbage collection to reclaim unused memory, and this takes an appreciable amount of time
which profiling will charge to whichever function happens to provoke it. It may be useful
to compare profiling code immediately after a call to gc() with a profiling run without a
preceding call to gc.

More detailed analysis of the output can be achieved by the tools in the CRAN packages
proftools and prof: in particular these allow call graphs to be studied.

3.3 Profiling R code for memory use

Measuring memory use in R code is useful either when the code takes more memory than is
conveniently available or when memory allocation and copying of objects is responsible for
slow code. There are three ways to profile memory use over time in R code. All three require
R to have been compiled with ‘--enable-memory-profiling’, which is not the default. All
can be misleading, for different reasons.

In understanding the memory profiles it is useful to know a little more about R’s memory
allocation. Looking at the results of gc() shows a division of memory into Vcells used
to store the contents of vectors and Ncells used to store everything else, including all the
administrative overhead for vectors such as type and length information. In fact the vector
contents are divided into two pools. Memory for small vectors (by default 128 bytes or
less) is obtained in large chunks and then parcelled out by R; memory for larger vectors is
obtained directly from the operating system.

Some memory allocation is obvious in interpreted code, for example,
y <- x + 1

allocates memory for a new vector y. Other memory allocation is less obvious and occurs
because R is forced to make good on its promise of ‘call-by-value’ argument passing. When
an argument is passed to a function it is not immediately copied. Copying occurs (if

Chapter 3: Tidying and profiling R code 53

necessary) only when the argument is modified. This can lead to surprising memory use.
For example, in the ‘survey’ package we have

print.svycoxph <- function (x, ...)

{

print(x$survey.design, varnames = FALSE, design.summaries = FALSE,

...)

x$call <- x$printcall

NextMethod()

}

It may not be obvious that the assignment to x$call will cause the entire object x to be
copied. This copying to preserve the call-by-value illusion is usually done by the internal C
function duplicate.

The main reason that memory-use profiling is difficult is garbage collection. Memory is
allocated at well-defined times in an R program, but is freed whenever the garbage collector
happens to run.

3.3.1 Memory statistics from Rprof

The sampling profiler Rprof described in the previous section can be given the option
memory.profiling=TRUE. It then writes the total R memory allocation in small vectors,
large vectors, and cons cells or nodes at each sampling interval. It also writes out the number
of calls to the internal function duplicate, which is called to copy R objects. summaryRprof
provides summaries of this information. The main reason that this can be misleading is
that the memory use is attributed to the function running at the end of the sampling
interval. A second reason is that garbage collection can make the amount of memory in
use decrease, so a function appears to use little memory. Running under gctorture helps
with both problems: it slows down the code to effectively increase the sampling frequency
and it makes each garbage collection release a smaller amount of memory. Changing the
memory limits with mem.limits() may also be useful, to see how the code would run under
different memory conditions.

3.3.2 Tracking memory allocations

The second method of memory profiling uses a memory-allocation profiler, Rprofmem(),
which writes out a stack trace to an output file every time a large vector is allocated (with
a user-specified threshold for ‘large’) or a new page of memory is allocated for the R heap.
Summary functions for this output are still being designed.

Running the example from the previous section with
> Rprofmem("boot.memprof",threshold=1000)

> storm.boot <- boot(rs, storm.bf, R = 4999)

> Rprofmem(NULL)

shows that apart from some initial and final work in boot there are no vector allocations
over 1000 bytes.

3.3.3 Tracing copies of an object

The third method of memory profiling involves tracing copies made of a specific (presumably
large) R object. Calling tracemem on an object marks it so that a message is printed to
standard output when the object is copied via duplicate or coercion to another type, or
when a new object of the same size is created in arithmetic operations. The main reason

Chapter 3: Tidying and profiling R code 54

that this can be misleading is that copying of subsets or components of an object is not
tracked. It may be helpful to use tracemem on these components.

In the example above we can run tracemem on the data frame st
> tracemem(st)

[1] "<0x9abd5e0>"

> storm.boot <- boot(rs, storm.bf, R = 4)

memtrace[0x9abd5e0->0x92a6d08]: statistic boot

memtrace[0x92a6d08->0x92a6d80]: $<-.data.frame $<- statistic boot

memtrace[0x92a6d80->0x92a6df8]: $<-.data.frame $<- statistic boot

memtrace[0x9abd5e0->0x9271318]: statistic boot

memtrace[0x9271318->0x9271390]: $<-.data.frame $<- statistic boot

memtrace[0x9271390->0x9271408]: $<-.data.frame $<- statistic boot

memtrace[0x9abd5e0->0x914f558]: statistic boot

memtrace[0x914f558->0x914f5f8]: $<-.data.frame $<- statistic boot

memtrace[0x914f5f8->0x914f670]: $<-.data.frame $<- statistic boot

memtrace[0x9abd5e0->0x972cbf0]: statistic boot

memtrace[0x972cbf0->0x972cc68]: $<-.data.frame $<- statistic boot

memtrace[0x972cc68->0x972cd08]: $<-.data.frame $<- statistic boot

memtrace[0x9abd5e0->0x98ead98]: statistic boot

memtrace[0x98ead98->0x98eae10]: $<-.data.frame $<- statistic boot

memtrace[0x98eae10->0x98eae88]: $<-.data.frame $<- statistic boot

The object is duplicated fifteen times, three times for each of the R+1 calls to storm.bf.
This is surprising, since none of the duplications happen inside nls. Stepping through
storm.bf in the debugger shows that all three happen in the line

st$Time <- st$fit + rs[i]

Data frames are slower than matrices and this is an example of why. Using
tracemem(st$Viscosity) does not reveal any additional copying.

3.4 Profiling compiled code

Profiling compiled code is highly system-specific, but this section contains some hints
gleaned from various R users. Some methods need to be different for a compiled exe-
cutable and for dynamic/shared libraries/objects as used by R packages. We know of no
good way to profile DLLs on Windows.

3.4.1 Linux

Options include using sprof for a shared object, and oprofile (see http://
oprofile.sourceforge.net/) for any executable or shared object.

3.4.1.1 sprof

You can select shared objects to be profiled with sprof by setting the environment variable
LD_PROFILE. For example

% setenv LD_PROFILE /path/to/R_HOME/library/stats/libs/stats.so
R
... run the boot example
% sprof /path/to/R_HOME/library/stats/libs/stats.so \
/var/tmp/path/to/R_HOME/library/stats/libs/stats.so.profile

Flat profile:

http://penalty z@ oprofile.sourceforge.net/
http://penalty z@ oprofile.sourceforge.net/

Chapter 3: Tidying and profiling R code 55

Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls us/call us/call name
76.19 0.32 0.32 0 0.00 numeric_deriv
16.67 0.39 0.07 0 0.00 nls_iter
7.14 0.42 0.03 0 0.00 getListElement

rm /path/to/R_HOME/library/stats/libs/stats.so.profile
... to clean up ...

It is possible that root access is needed to create the directories used for the profile data.

3.4.1.2 oprofile

oprofile works by running a daemon which collects information. The daemon must be
started as root, e.g.

% su
% opcontrol --no-vmlinux
% (optional, some platforms) opcontrol --callgraph=5
% opcontrol --start
% exit

Then as a user
% R
... run the boot example
% opcontrol --dump
% opreport -l /path/to/R_HOME/library/stats/libs/stats.so
...
samples % symbol name
1623 75.5939 anonymous symbol from section .plt
349 16.2552 numeric_deriv
113 5.2632 nls_iter
62 2.8878 getListElement
% opreport -l /path/to/R_HOME/bin/exec/R
...
samples % symbol name
76052 11.9912 Rf_eval
54670 8.6198 Rf_findVarInFrame3
37814 5.9622 Rf_allocVector
31489 4.9649 Rf_duplicate
28221 4.4496 Rf_protect
26485 4.1759 Rf_cons
23650 3.7289 Rf_matchArgs
21088 3.3250 Rf_findFun
19995 3.1526 findVarLocInFrame
14871 2.3447 Rf_evalList
13794 2.1749 R_Newhashpjw
13522 2.1320 R_gc_internal
...

Chapter 3: Tidying and profiling R code 56

Shutting down the profiler and clearing the records needs to be done as root. You
can use opannotate to annotate the source code with the times spent in each section, if
the appropriate source code was compiled with debugging support, and opreport -c to
generate a callgraph (if collection was enabled and the platform supports this).

3.4.2 Solaris

On 64-bit (only) Solaris, the standard profiling tool gprof collects information from shared
libraries compiled with ‘-pg’.

3.4.3 MacOS X

Developers have recommended sample (or Sampler.app, which is a GUI version) and
Shark (see http://developer.apple.com/tools/sharkoptimize.html and http://
developer.apple.com/tools/shark_optimize.html).

http://developer.apple.com/tools/sharkoptimize.html
http://penalty z@ developer.penalty z@ apple.com/tools/shark_optimize.html
http://penalty z@ developer.penalty z@ apple.com/tools/shark_optimize.html

Chapter 4: Debugging 57

4 Debugging

This chapter covers the debugging of R extensions, starting with the ways to get use-
ful error information and moving on to how to deal with errors that crash R. For those
who prefer other styles there are contributed packages such as debug on CRAN (described
in an article in R-News 3/3). (There are notes from 2002 provided by Roger Peng at
http://www.biostat.jhsph.edu/~rpeng/docs/R-debug-tools.pdf which provide com-
plementary examples to those given here.)

4.1 Browsing

Most of the R-level debugging facilities are based around the built-in browser. This can
be used directly by inserting a call to browser() into the code of a function (for example,
using fix(my_function)). When code execution reaches that point in the function, control
returns to the R console with a special prompt. For example

> fix(summary.data.frame) ## insert browser() call after for() loop
> summary(women)
Called from: summary.data.frame(women)
Browse[1]> ls()
[1] "digits" "i" "lbs" "lw" "maxsum" "nm" "nr" "nv"
[9] "object" "sms" "z"
Browse[1]> maxsum
[1] 7
Browse[1]>

height weight
Min. :58.0 Min. :115.0
1st Qu.:61.5 1st Qu.:124.5
Median :65.0 Median :135.0
Mean :65.0 Mean :136.7
3rd Qu.:68.5 3rd Qu.:148.0
Max. :72.0 Max. :164.0
> rm(summary.data.frame)

At the browser prompt one can enter any R expression, so for example ls() lists the objects
in the current frame, and entering the name of an object will1 print it. The following
commands are also accepted

• n

Enter ‘step-through’ mode. In this mode, hitting return executes the next line of code
(more precisely one line and any continuation lines). Typing c will continue to the end
of the current context, e.g. to the end of the current loop or function.

• c

In normal mode, this quits the browser and continues execution, and just return works
in the same way. cont is a synonym.

1 With the exceptions of the commands listed below: an object of such a name can be printed via an
explicit call to print.

http://cran.r-project.org/doc/Rnews/Rnews_2003-3.pdf
http://www.biostat.jhsph.edu/~rpeng/docs/R-debug-tools.pdf

Chapter 4: Debugging 58

• where

This prints the call stack. For example

> summary(women)
Called from: summary.data.frame(women)
Browse[1]> where
where 1: summary.data.frame(women)
where 2: summary(women)

Browse[1]>

• Q

Quit both the browser and the current expression, and return to the top-level prompt.

Errors in code executed at the browser prompt will normally return control to the browser
prompt. Objects can be altered by assignment, and will keep their changed values when
the browser is exited. If really necessary, objects can be assigned to the workspace from the
browser prompt (by using <<- if the name is not already in scope).

4.2 Debugging R code

Suppose your R program gives an error message. The first thing to find out is what R was
doing at the time of the error, and the most useful tool is traceback(). We suggest that
this is run whenever the cause of the error is not immediately obvious. Daily, errors are
reported to the R mailing lists as being in some package when traceback() would show
that the error was being reported by some other package or base R. Here is an example
from the regression suite.

> success <- c(13,12,11,14,14,11,13,11,12)

> failure <- c(0,0,0,0,0,0,0,2,2)

> resp <- cbind(success, failure)

> predictor <- c(0, 5^(0:7))

> glm(resp ~ 0+predictor, family = binomial(link="log"))

Error: no valid set of coefficients has been found: please supply starting values

> traceback()

3: stop("no valid set of coefficients has been found: please supply

starting values", call. = FALSE)

2: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart,

mustart = mustart, offset = offset, family = family, control = control,

intercept = attr(mt, "intercept") > 0)

1: glm(resp ~ 0 + predictor, family = binomial(link ="log"))

The calls to the active frames are given in reverse order (starting with the innermost).
So we see the error message comes from an explicit check in glm.fit. (traceback()
shows you all the lines of the function calls, which can be limited by setting option
‘"deparse.max.lines"’.)

Sometimes the traceback will indicate that the error was detected inside compiled code,
for example (from ?nls)

Error in nls(y ~ a + b * x, start = list(a = 0.12345, b = 0.54321), trace = TRUE) :

step factor 0.000488281 reduced below ’minFactor’ of 0.000976563

> traceback()

2: .Call(R_nls_iter, m, ctrl, trace)

1: nls(y ~ a + b * x, start = list(a = 0.12345, b = 0.54321), trace = TRUE)

Chapter 4: Debugging 59

This will be the case if the innermost call is to .C, .Fortran, .Call, .External or
.Internal, but as it is also possible for such code to evaluate R expressions, this need
not be the innermost call, as in

> traceback()

9: gm(a, b, x)

8: .Call(R_numeric_deriv, expr, theta, rho, dir)

7: numericDeriv(form[[3]], names(ind), env)

6: getRHS()

5: assign("rhs", getRHS(), envir = thisEnv)

4: assign("resid", .swts * (lhs - assign("rhs", getRHS(), envir = thisEnv)),

envir = thisEnv)

3: function (newPars)

{

setPars(newPars)

assign("resid", .swts * (lhs - assign("rhs", getRHS(), envir = thisEnv)),

envir = thisEnv)

assign("dev", sum(resid^2), envir = thisEnv)

assign("QR", qr(.swts * attr(rhs, "gradient")), envir = thisEnv)

return(QR$rank < min(dim(QR$qr)))

}(c(-0.00760232418963883, 1.00119632515036))

2: .Call(R_nls_iter, m, ctrl, trace)

1: nls(yeps ~ gm(a, b, x), start = list(a = 0.12345, b = 0.54321))

Occasionally traceback() does not help, and this can be the case if S4 method dispatch
is involved. Consider the following example

> xyd <- new("xyloc", x=runif(20), y=runif(20))
Error in as.environment(pkg) : no item called "package:S4nswv"
on the search list
Error in initialize(value, ...) : S language method selection got
an error when called from internal dispatch for function ’initialize’
> traceback()
2: initialize(value, ...)
1: new("xyloc", x = runif(20), y = runif(20))

which does not help much, as there is no call to as.environment in initialize (and the
note “called from internal dispatch” tells us so). In this case we searched the R sources for
the quoted call, which occurred in only one place, methods:::.asEnvironmentPackage. So
now we knew where the error was occurring. (This was an unusually opaque example.)

The error message
evaluation nested too deeply: infinite recursion / options(expressions=)?

can be hard to handle with the default value (5000). Unless you know that there actually
is deep recursion going on, it can help to set something like

options(expressions=500)

and re-run the example showing the error.
Sometimes there is warning that clearly is the precursor to some later error, but it is not

obvious where it is coming from. Setting options(warn = 2) (which turns warnings into
errors) can help here.

Once we have located the error, we have some choices. One way to proceed is to find
out more about what was happening at the time of the crash by looking a post-mortem
dump. To do so, set options(error=dump.frames) and run the code again. Then invoke
debugger() and explore the dump. Continuing our example:

Chapter 4: Debugging 60

> options(error = dump.frames)

> glm(resp ~ 0 + predictor, family = binomial(link ="log"))

Error: no valid set of coefficients has been found: please supply starting values

which is the same as before, but an object called last.dump has appeared in the workspace.
(Such objects can be large, so remove it when it is no longer needed.) We can examine this
at a later time by calling the function debugger.

> debugger()

Message: Error: no valid set of coefficients has been found: please supply starting values

Available environments had calls:

1: glm(resp ~ 0 + predictor, family = binomial(link = "log"))

2: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart, mus

3: stop("no valid set of coefficients has been found: please supply starting values

Enter an environment number, or 0 to exit Selection:

which gives the same sequence of calls as traceback, but in outer-first order and with only
the first line of the call, truncated to the current width. However, we can now examine in
more detail what was happening at the time of the error. Selecting an environment opens
the browser in that frame. So we select the function call which spawned the error message,
and explore some of the variables (and execute two function calls).

Enter an environment number, or 0 to exit Selection: 2

Browsing in the environment with call:

glm.fit(x = X, y = Y, weights = weights, start = start, etas

Called from: debugger.look(ind)

Browse[1]> ls()

[1] "aic" "boundary" "coefold" "control" "conv"

[6] "dev" "dev.resids" "devold" "EMPTY" "eta"

[11] "etastart" "family" "fit" "good" "intercept"

[16] "iter" "linkinv" "mu" "mu.eta" "mu.eta.val"

[21] "mustart" "n" "ngoodobs" "nobs" "nvars"

[26] "offset" "start" "valideta" "validmu" "variance"

[31] "varmu" "w" "weights" "x" "xnames"

[36] "y" "ynames" "z"

Browse[1]> eta

1 2 3 4 5

0.000000e+00 -2.235357e-06 -1.117679e-05 -5.588393e-05 -2.794197e-04

6 7 8 9

-1.397098e-03 -6.985492e-03 -3.492746e-02 -1.746373e-01

Browse[1]> valideta(eta)

[1] TRUE

Browse[1]> mu

1 2 3 4 5 6 7 8

1.0000000 0.9999978 0.9999888 0.9999441 0.9997206 0.9986039 0.9930389 0.9656755

9

0.8397616

Browse[1]> validmu(mu)

[1] FALSE

Browse[1]> c

Available environments had calls:

1: glm(resp ~ 0 + predictor, family = binomial(link = "log"))

2: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart

3: stop("no valid set of coefficients has been found: please supply starting v

Enter an environment number, or 0 to exit Selection: 0

> rm(last.dump)

Because last.dump can be looked at later or even in another R session, post-mortem
debugging is possible even for batch usage of R. We do need to arrange for the dump to be

Chapter 4: Debugging 61

saved: this can be done either using the command-line flag ‘--save’ to save the workspace
at the end of the run, or via a setting such as

> options(error = quote({dump.frames(to.file=TRUE); q()}))

See the help on dump.frames for further options and a worked example.

An alternative error action is to use the function recover():
> options(error = recover)

> glm(resp ~ 0 + predictor, family = binomial(link = "log"))

Error: no valid set of coefficients has been found: please supply starting values

Enter a frame number, or 0 to exit

1: glm(resp ~ 0 + predictor, family = binomial(link = "log"))

2: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart

Selection:

which is very similar to dump.frames. However, we can examine the state of the program
directly, without dumping and re-loading the dump. As its help page says, recover can
be routinely used as the error action in place of dump.calls and dump.frames, since it
behaves like dump.frames in non-interactive use.

Post-mortem debugging is good for finding out exactly what went wrong, but not nec-
essarily why. An alternative approach is to take a closer look at what was happening just
before the error, and a good way to do that is to use debug. This inserts a call to the
browser at the beginning of the function, starting in step-through mode. So in our example
we could use

> debug(glm.fit)

> glm(resp ~ 0 + predictor, family = binomial(link ="log"))

debugging in: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart,

mustart = mustart, offset = offset, family = family, control = control,

intercept = attr(mt, "intercept") > 0)

debug: {

lists the whole function

Browse[1]>

debug: x <- as.matrix(x)

...

Browse[1]> start

[1] -2.235357e-06

debug: eta <- drop(x %*% start)

Browse[1]> eta

1 2 3 4 5

0.000000e+00 -2.235357e-06 -1.117679e-05 -5.588393e-05 -2.794197e-04

6 7 8 9

-1.397098e-03 -6.985492e-03 -3.492746e-02 -1.746373e-01

Browse[1]>

debug: mu <- linkinv(eta <- eta + offset)

Browse[1]> mu

1 2 3 4 5 6 7 8

1.0000000 0.9999978 0.9999888 0.9999441 0.9997206 0.9986039 0.9930389 0.9656755

9

0.8397616

(The prompt Browse[1]> indicates that this is the first level of browsing: it is possible to
step into another function that is itself being debugged or contains a call to browser().)

Chapter 4: Debugging 62

debug can be used for hidden functions and S3 methods by e.g. debug(stats:::predict.Arima).
(It cannot be used for S4 methods, but an alternative is given on the help page for debug.)
Sometimes you want to debug a function defined inside another function, e.g. the function
arimafn defined inside arima. To do so, set debug on the outer function (here arima) and
step through it until the inner function has been defined. Then call debug on the inner
function (and use c to get out of step-through mode in the outer function).

To remove debugging of a function, call undebug with the argument previously given to
debug; debugging otherwise lasts for the rest of the R session (or until the function is edited
or otherwise replaced).

trace can be used to temporarily insert debugging code into a function, for example
to insert a call to browser() just before the point of the error. To return to our running
example

first get a numbered listing of the expressions of the function
> page(as.list(body(glm.fit)), method="print")
> trace(glm.fit, browser, at=22)
Tracing function "glm.fit" in package "stats"
[1] "glm.fit"
> glm(resp ~ 0 + predictor, family = binomial(link ="log"))
Tracing glm.fit(x = X, y = Y, weights = weights, start = start,

etastart = etastart, step 22
Called from: eval(expr, envir, enclos)
Browse[1]> n
and single-step from here.
> untrace(glm.fit)

For your own functions, it may be as easy to use fix to insert temporary code, but trace
can help with functions in a name space (as can fixInNamespace). Alternatively, use
trace(,edit=TRUE) to insert code visually.

4.3 Using gctorture and valgrind

Errors in memory allocation and reading/writing outside arrays are very common causes of
crashes (e.g., segfaults) on some machines. Often the crash appears long after the invalid
memory access: in particular damage to the structures which R itself has allocated may
only become apparent at the next garbage collection (or even at later garbage collections
after objects have been deleted).

4.3.1 Using gctorture

We can help to detect memory problems earlier by running garbage collection as often as
possible. This is achieved by gctorture(TRUE), which as described on its help page

Provokes garbage collection on (nearly) every memory allocation. Intended to
ferret out memory protection bugs. Also makes R run very slowly, unfortu-
nately.

The reference to ‘memory protection’ is to missing C-level calls to PROTECT/UNPROTECT (see
Section 5.9.1 [Garbage Collection], page 81) which if missing allow R objects to be garbage-
collected when they are still in use. But it can also help with other memory-related errors.

Chapter 4: Debugging 63

Normally running under gctorture(TRUE) will just produce a crash earlier in the R
program, hopefully close to the actual cause. See the next section for how to decipher such
crashes.

It is possible to run all the examples, tests and vignettes covered by R CMD check under
gctorture(TRUE) by using the option ‘--use-gct’.

4.3.2 Using valgrind

If you have access to Linux on an ‘ix86’, ‘x86_64’ or ‘ppc32’ platform you can use valgrind
(http://www.valgrind.org/, pronounced to rhyme with ‘tinned’) to check for possible
problems. To run some examples under valgrind use something like

R -d valgrind --vanilla < mypkg-Ex.R
R -d "valgrind --tool=memcheck --leak-check=full" --vanilla < mypkg-Ex.R

where ‘mypkg-Ex.R’ is a set of examples, e.g. the file created in ‘mypkg.Rcheck’ by R CMD
check. Occasionally this reports memory reads of ‘uninitialised values’ that are the result of
compiler optimization, so can be worth checking under an unoptimized compile. We know
there will be some small memory leaks from readline and R itself — these are memory
areas that are in use right up to the end of the R session. Expect this to run around 20x
slower than without valgrind, and in some cases even slower than that. Current versions2

of valgrind are not happy with many optimized BLASes that use cpu-specific instructions
(3D now, SSE, SSE2, SSE3 and similar) so you may need to build a version of R specifically
to use with valgrind.

On platforms supported by valgrind you can build a version of R with extra instrumen-
tation to help valgrind detect errors in the use of memory allocated from the R heap. The
configure option is ‘--with-valgrind-instrumentation=level ’, where level is 0, 1, or 2.
Level 0 is the default and does not add any anything. Level 1 will detect use of uninitialised
memory and has little impact on speed. Level 2 will detect many other memory use bugs
but makes R much slower when running under valgrind. Using this in conjuction with
gctorture can be even more effective (and even slower).

An example of valgrind output is
==12539== Invalid read of size 4

==12539== at 0x1CDF6CBE: csc_compTr (Mutils.c:273)

==12539== by 0x1CE07E1E: tsc_transpose (dtCMatrix.c:25)

==12539== by 0x80A67A7: do_dotcall (dotcode.c:858)

==12539== by 0x80CACE2: Rf_eval (eval.c:400)

==12539== by 0x80CB5AF: R_execClosure (eval.c:658)

==12539== by 0x80CB98E: R_execMethod (eval.c:760)

==12539== by 0x1B93DEFA: R_standardGeneric (methods_list_dispatch.c:624)

==12539== by 0x810262E: do_standardGeneric (objects.c:1012)

==12539== by 0x80CAD23: Rf_eval (eval.c:403)

==12539== by 0x80CB2F0: Rf_applyClosure (eval.c:573)

==12539== by 0x80CADCC: Rf_eval (eval.c:414)

==12539== by 0x80CAA03: Rf_eval (eval.c:362)

==12539== Address 0x1C0D2EA8 is 280 bytes inside a block of size 1996 alloc’d

==12539== at 0x1B9008D1: malloc (vg_replace_malloc.c:149)

==12539== by 0x80F1B34: GetNewPage (memory.c:610)

==12539== by 0x80F7515: Rf_allocVector (memory.c:1915)

...

2 Although this is supposed to have been improved, valgrind 3.2.0 still aborts using optimized BLASes
on an Opteron.

http://www.valgrind.org/

Chapter 4: Debugging 64

This example is from an instrumented version of R, while tracking down a bug in the Matrix
package in January, 2006. The first line indicates that R has tried to read 4 bytes from
a memory address that it does not have access to. This is followed by a C stack trace
showing where the error occurred. Next is a description of the memory that was accessed.
It is inside a block allocated by malloc, called from GetNewPage, that is, in the internal R
heap. Since this memory all belongs to R, valgrind would not (and did not) detect the
problem in an uninstrumented build of R. In this example the stack trace was enough to
isolate and fix the bug, which was in tsc_transpose, and in this example running under
gctorture() did not provide any additional information. When the stack trace is not
sufficiently informative the option ‘--db-attach=yes’ to valgrind may be helpful. This
starts a post-mortem debugger (by default gdb) so that variables in the C code can be
inspected (see Section 4.4.2 [Inspecting R objects], page 66).

It is possible to run all the examples, tests and vignettes covered by R CMD check under
valgrind by using the option ‘--use-valgrind’. If you do this you will need to select the
valgrind options some other way, for example by having a ‘~/.valgrindrc’ file containing

--tool=memcheck
--memcheck:leak-check=full

or setting the environment variable VALGRIND_OPTS.

4.4 Debugging compiled code

Sooner or later programmers will be faced with the need to debug compiled code loaded
into R. This section is geared to platforms using gdb with code compiled by gcc, but similar
things are possible with front-ends to gdb such as ddd and insight, and other debuggers
such as Sun’s dbx.

Consider first ‘crashes’, that is when R terminated unexpectedly with an illegal memory
access (a ‘segfault’ or ‘bus error’), illegal instruction or similar. Unix-alike versions of R use
a signal handler which aims to give some basic information. For example

*** caught segfault ***
address 0x20000028, cause ’memory not mapped’

Traceback:
1: .identC(class1[[1]], class2)
2: possibleExtends(class(sloti), classi, ClassDef2 = getClassDef(classi,
where = where))
3: validObject(t(cu))
4: stopifnot(validObject(cu <- as(tu, "dtCMatrix")), validObject(t(cu)),
validObject(t(tu)))

Possible actions:
1: abort (with core dump)
2: normal R exit
3: exit R without saving workspace
4: exit R saving workspace
Selection: 3

Since the R process may be damaged, the only really safe option is the first.

Chapter 4: Debugging 65

Another cause of a ‘crash’ is to overrun the C stack. R tries to track that in its own
code, but it may happen in third-party compiled code. For modern POSIX-compliant OSes
we can safely catch that and return to the top-level prompt.

> .C("aaa")
Error: segfault from C stack overflow
>

However, C stack overflows are fatal under Windows and normally defeat attempts at
debugging on that platform.

If you have a crash which gives a core dump you can use something like
gdb /path/to/R/bin/exec/R core.12345

to examine the core dump. If core dumps are disabled or to catch errors that do not generate
a dump one can run R directly under a debugger by for example

$ R -d gdb --vanilla
...
gdb> run

at which point R will run normally, and hopefully the debugger will catch the error and
return to its prompt. This can also be used to catch infinite loops or interrupt very long-
running code. For a simple example

> for(i in 1:1e7) x <- rnorm(100)
[hit Ctrl-C]
Program received signal SIGINT, Interrupt.
0x00397682 in _int_free () from /lib/tls/libc.so.6
(gdb) where
#0 0x00397682 in _int_free () from /lib/tls/libc.so.6
#1 0x00397eba in free () from /lib/tls/libc.so.6
#2 0xb7cf2551 in R_gc_internal (size_needed=313)

at /users/ripley/R/svn/R-devel/src/main/memory.c:743
#3 0xb7cf3617 in Rf_allocVector (type=13, length=626)

at /users/ripley/R/svn/R-devel/src/main/memory.c:1906
#4 0xb7c3f6d3 in PutRNGstate ()

at /users/ripley/R/svn/R-devel/src/main/RNG.c:351
#5 0xb7d6c0a5 in do_random2 (call=0x94bf7d4, op=0x92580e8, args=0x9698f98,

rho=0x9698f28) at /users/ripley/R/svn/R-devel/src/main/random.c:183
...

Some “tricks” are worth knowing.

4.4.1 Finding entry points in dynamically loaded code

Under most compilation environments, compiled code dynamically loaded into R cannot
have breakpoints set within it until it is loaded. To use a symbolic debugger on such
dynamically loaded code under Unix-alikes use
• Call the debugger on the R executable, for example by R -d gdb.
• Start R.
• At the R prompt, use dyn.load or library to load your shared object.
• Send an interrupt signal. This will put you back to the debugger prompt.

Chapter 4: Debugging 66

• Set the breakpoints in your code.

• Continue execution of R by typing signal 0〈RET〉.

Under Windows signals may not be able to be used, and if so the procedure is more
complicated. See the rw-FAQ and www.stats.uwo.ca/faculty/murdoch/software/
debuggingR/gdb.shtml.

4.4.2 Inspecting R objects when debugging

The key to inspecting R objects from compiled code is the function PrintValue(SEXP s)
which uses the normal R printing mechanisms to print the R object pointed to by s, or the
safer version R_PV(SEXP s) which will only print ‘objects’.

One way to make use of PrintValue is to insert suitable calls into the code to be
debugged.

Another way is to call R_PV from the symbolic debugger. (PrintValue is hidden as
Rf_PrintValue.) For example, from gdb we can use

(gdb) p R_PV(ab)

using the object ab from the convolution example, if we have placed a suitable breakpoint
in the convolution C code.

To examine an arbitrary R object we need to work a little harder. For example, let

R> DF <- data.frame(a = 1:3, b = 4:6)

By setting a breakpoint at do_get and typing get("DF") at the R prompt, one can find
out the address in memory of DF, for example

Value returned is $1 = (SEXPREC *) 0x40583e1c
(gdb) p *$1
$2 = {
sxpinfo = {type = 19, obj = 1, named = 1, gp = 0,
mark = 0, debug = 0, trace = 0, = 0},

attrib = 0x40583e80,
u = {
vecsxp = {

length = 2,
type = {c = 0x40634700 "0>X@D>X@0>X@", i = 0x40634700,
f = 0x40634700, z = 0x40634700, s = 0x40634700},

truelength = 1075851272,
},
primsxp = {offset = 2},
symsxp = {pname = 0x2, value = 0x40634700, internal = 0x40203008},
listsxp = {carval = 0x2, cdrval = 0x40634700, tagval = 0x40203008},
envsxp = {frame = 0x2, enclos = 0x40634700},
closxp = {formals = 0x2, body = 0x40634700, env = 0x40203008},
promsxp = {value = 0x2, expr = 0x40634700, env = 0x40203008}

}
}

(Debugger output reformatted for better legibility).

http://www.stats.uwo.ca/faculty/murdoch/software/debuggingR/gdb.shtml
http://www.stats.uwo.ca/faculty/murdoch/software/debuggingR/gdb.shtml

Chapter 4: Debugging 67

Using R_PV() one can “inspect” the values of the various elements of the SEXP, for
example,

(gdb) p R_PV($1->attrib)
$names
[1] "a" "b"

$row.names
[1] "1" "2" "3"

$class
[1] "data.frame"

$3 = void

To find out where exactly the corresponding information is stored, one needs to go
“deeper”:

(gdb) set $a = $1->attrib
(gdb) p $a->u.listsxp.tagval->u.symsxp.pname->u.vecsxp.type.c
$4 = 0x405d40e8 "names"
(gdb) p $a->u.listsxp.carval->u.vecsxp.type.s[1]->u.vecsxp.type.c
$5 = 0x40634378 "b"
(gdb) p $1->u.vecsxp.type.s[0]->u.vecsxp.type.i[0]
$6 = 1
(gdb) p $1->u.vecsxp.type.s[1]->u.vecsxp.type.i[1]
$7 = 5

Chapter 5: System and foreign language interfaces 68

5 System and foreign language interfaces

5.1 Operating system access

Access to operating system functions is via the R function system. The details will differ
by platform (see the on-line help), and about all that can safely be assumed is that the first
argument will be a string command that will be passed for execution (not necessarily by a
shell) and the second argument will be internal which if true will collect the output of the
command into an R character vector.

The function system.time is available for timing (although the information available
may be limited on non-Unix-like platforms: these days only on the obsolete Windows
9x/ME).

5.2 Interface functions .C and .Fortran

These two functions provide a standard interface to compiled code that has been linked
into R, either at build time or via dyn.load (see Section 5.3 [dyn.load and dyn.unload],
page 70). They are primarily intended for compiled C and FORTRAN 77 code respectively,
but the .C function can be used with other languages which can generate C interfaces, for
example C++ (see Section 5.6 [Interfacing C++ code], page 76).

The first argument to each function is a character string given the symbol name as known
to C or FORTRAN, that is the function or subroutine name. (That the symbol is loaded
can be tested by, for example, is.loaded("cg"): it is no longer necessary nor correct to
use symbol.For, which is defunct as from R 2.5.0.) (Note that the underscore is not a
valid character in a FORTRAN 77 subprogram name, and on versions of R prior to 2.4.0
.Fortran may not correctly translate names containing underscores.)

There can be up to 65 further arguments giving R objects to be passed to compiled code.
Normally these are copied before being passed in, and copied again to an R list object when
the compiled code returns. If the arguments are given names, these are used as names for
the components in the returned list object (but not passed to the compiled code).

The following table gives the mapping between the modes of R vectors and the types of
arguments to a C function or FORTRAN subroutine.

R storage mode C type FORTRAN type
logical int * INTEGER
integer int * INTEGER
double double * DOUBLE PRECISION
complex Rcomplex * DOUBLE COMPLEX
character char ** CHARACTER*255
raw unsigned char * none

Do please note the first two. On the 64-bit Unix/Linux platforms, long is 64-bit whereas
int and INTEGER are 32-bit. Code ported from S-PLUS (which uses long * for logical
and integer) will not work on all 64-bit platforms (although it may appear to work on
some). Note also that if your compiled code is a mixture of C functions and FORTRAN
subprograms the argument types must match as given in the table above.

Chapter 5: System and foreign language interfaces 69

C type Rcomplex is a structure with double members r and i defined in the header file
‘R_ext/Complex.h’ included by ‘R.h’. (On most platforms which have it, this is compatible
withe C99 double complex type.) Only a single character string can be passed to or from
FORTRAN, and the success of this is compiler-dependent. Other R objects can be passed to
.C, but it is better to use one of the other interfaces. An exception is passing an R function
for use with call_R, when the object can be handled as void * en route to call_R, but
even there .Call is to be preferred. Similarly, passing an R list as an argument to a C
routine should be done using the .Call interface. If one does use the .C function to pass a
list as an argument, it is visible to the routine as an array in C of SEXP types (i.e., SEXP *).
The elements of the array correspond directly to the elements of the R list. However, this
array must be treated as read-only and one must not assign values to its elements within
the C routine — doing so bypasses R’s memory management facilities and will corrupt the
object and the R session.

It is possible to pass numeric vectors of storage mode double to C as float * or to
FORTRAN as REAL by setting the attribute Csingle, most conveniently by using the R
functions as.single, single or mode. This is intended only to be used to aid interfacing
to existing C or FORTRAN code.

Unless formal argument NAOK is true, all the other arguments are checked for missing
values NA and for the IEEE special values NaN, Inf and -Inf, and the presence of any of
these generates an error. If it is true, these values are passed unchecked.

Argument DUP can be used to suppress copying. It is dangerous: see the on-line help for
arguments against its use. It is not possible to pass numeric vectors as float * or REAL if
DUP=FALSE, and character vectors cannot be used.

Argument PACKAGE confines the search for the symbol name to a specific shared object
(or use "base" for code compiled into R). Its use is highly desirable, as there is no way
to avoid two package writers using the same symbol name, and such name clashes are
normally sufficient to cause R to crash. (If it is not present and the call is from the body
of a function defined in a package with a name space, the shared object loaded by the first
(if any) useDynLib directive will be used.)

For .C only you can specify an ENCODING argument: this requests that (unless DUP
= FALSE) character vectors be re-encoded to the requested encoding before being passed
in, and re-encoded from the requested encoding when passed back. Note that encoding
names are not standardized, and not all R builds support re-encoding. (The argument is
ignored with a warning if re-encoding is not supported at all: R code can test for this via
capabilities("iconv").) But this can be useful to allow code to work in a UTF-8 locale
by specifying ENCODING = "latin1".

Note that the compiled code should not return anything except through its arguments:
C functions should be of type void and FORTRAN subprograms should be subroutines.

To fix ideas, let us consider a very simple example which convolves two finite sequences.
(This is hard to do fast in interpreted R code, but easy in C code.) We could do this using
.C by

Chapter 5: System and foreign language interfaces 70

void convolve(double *a, int *na, double *b, int *nb, double *ab)
{
int i, j, nab = *na + *nb - 1;

for(i = 0; i < nab; i++)
ab[i] = 0.0;

for(i = 0; i < *na; i++)
for(j = 0; j < *nb; j++)

ab[i + j] += a[i] * b[j];
}

called from R by

conv <- function(a, b)
.C("convolve",

as.double(a),
as.integer(length(a)),
as.double(b),
as.integer(length(b)),
ab = double(length(a) + length(b) - 1))$ab

Note that we take care to coerce all the arguments to the correct R storage mode before
calling .C; mistakes in matching the types can lead to wrong results or hard-to-catch errors.

Special care is needed in handling character vector arguments in C (or C++). Since only
DUP = TRUE is allowed, on entry the contents of the elements are duplicated and assigned to
the elements of a char ** array, and on exit the elements of the C array are copied to create
new elements of a character vector. This means that the contents of the character strings
of the char ** array can be changed, including to \0 to shorten the string, but the strings
cannot be lengthened. It is possible to allocate a new string via R_alloc and replace an
entry in the char ** array by the new string. However, when character vectors are used
other than in a read-only way, the .Call interface is much to be preferred.

Passing character strings to FORTRAN code needs even more care, and should be
avoided where possible. Only the first element of the character vector is passed in, as
a fixed-length (255) character array. Up to 255 characters are passed back to a length-one
character vector. How well this works (or even if it works at all) depends on the C and
FORTRAN compilers on each platform.

5.3 dyn.load and dyn.unload

Compiled code to be used with R is loaded as a shared object (Unix and MacOS X, see
Section 5.5 [Creating shared objects], page 74 for more information) or DLL (Windows).

The shared object/DLL is loaded by dyn.load and unloaded by dyn.unload. Unloading
is not normally necessary, but it is needed to allow the DLL to be re-built on some platforms,
including Windows.

The first argument to both functions is a character string giving the path to the object.
Programmers should not assume a specific file extension for the object/DLL (such as ‘.so’)
but use a construction like

file.path(path1, path2, paste("mylib", .Platform$dynlib.ext, sep=""))

Chapter 5: System and foreign language interfaces 71

for platform independence. On Unix-alike systems the path supplied to dyn.load can be
an absolute path, one relative to the current directory or, if it starts with ‘~’, relative to
the user’s home directory.

Loading is most often done via a call to library.dynam in the .First.lib function of
a package. This has the form

library.dynam("libname", package, lib.loc)

where libname is the object/DLL name with the extension omitted. Note that the first
argument, chname, should not be package since this will not work if the package is installed
under another name (as it will be with a versioned install).

Under some Unix-alike systems there is a choice of how the symbols are resolved when
the object is loaded, governed by the arguments local and now. Only use these if really nec-
essary: in particular using now=FALSE and then calling an unresolved symbol will terminate
R unceremoniously.

R provides a way of executing some code automatically when a object/DLL is either
loaded or unloaded. This can be used, for example, to register native routines with R’s
dynamic symbol mechanism, initialize some data in the native code, or initialize a third
party library. On loading a DLL, R will look for a routine within that DLL named R_init_
lib where lib is the name of the DLL file with the extension removed. For example, in the
command

library.dynam("mylib", package, lib.loc)

R looks for the symbol named R_init_mylib. Similarly, when unloading the object, R looks
for a routine named R_unload_lib , e.g., R_unload_mylib. In either case, if the routine is
present, R will invoke it and pass it a single argument describing the DLL. This is a value
of type DllInfo which is defined in the ‘Rdynload.h’ file in the ‘R_ext’ directory.

The following example shows templates for the initialization and unload routines for the
mylib DLL.� �

#include <R.h>
#include <Rinternals.h>
#include <R_ext/Rdynload.h>

void
R_init_mylib(DllInfo *info)
{
/* Register routines, allocate resources. */

}

void
R_unload_mylib(DllInfo *info)
{
/* Release resources. */

}
 	
If a shared object/DLL is loaded more than once the most recent version is used. More

generally, if the same symbol name appears in several libraries, the most recently loaded

Chapter 5: System and foreign language interfaces 72

occurrence is used. The PACKAGE argument and registration (see the next section) provide
good ways to avoid any ambiguity in which occurrence is meant.

On Unix-alikes the paths used to resolve dynamically linked dependent libraries are
fixed (for security reasons) when the process is launched, so dyn.load will only look for
such libraries in the locations set by the ‘R’ shell script (via ‘etc/ldpaths’) and in the
OS-specific defaults.

Windows allows more control (and less security) over where dependent DLLs are looked
for. On all versions this includes the PATH environment variable, but with lowest priority:
note that it does not include the directory from which the DLL was loaded. On XP and
later it is possible1 to add a single path with quite high priority via the DLLpath argument
to dyn.load. This is (by default) used by library.dynam to include the package’s ‘libs’
directory in the DLL search path.

5.4 Registering native routines

By ‘native’ routine, we mean an entry point in compiled code.
In calls to .C, .Call, .Fortran and .External, R must locate the specified native rou-

tine by looking in the appropriate shared object/DLL. By default, R uses the operating
system-specific dynamic loader to lookup the symbol. Alternatively, the author of the DLL
can explicitly register routines with R and use a single, platform-independent mechanism
for finding the routines in the DLL. One can use this registration mechanism to provide ad-
ditional information about a routine, including the number and type of the arguments, and
also make it available to R programmers under a different name. In the future, registration
may be used to implement a form of “secure” or limited native access.

To register routines with R, one calls the C routine R_registerRoutines. This is
typically done when the DLL is first loaded within the initialization routine R_init_dll
name described in Section 5.3 [dyn.load and dyn.unload], page 70. R_registerRoutines
takes 5 arguments. The first is the DllInfo object passed by R to the initialization routine.
This is where R stores the information about the methods. The remaining 4 arguments are
arrays describing the routines for each of the 4 different interfaces: .C, .Call, .Fortran
and .External. Each argument is a NULL-terminated array of the element types given in
the following table:

.C R_CMethodDef

.Call R_CallMethodDef

.Fortran R_FortranMethodDef

.External R_ExternalMethodDef

Currently, the R_ExternalMethodDef is the same as R_CallMethodDef type and contains
fields for the name of the routine by which it can be accessed in R, a pointer to the actual
native symbol (i.e., the routine itself), and the number of arguments the routine expects.
For routines with a variable number of arguments invoked via the .External interface, one
specifies -1 for the number of arguments which tells R not to check the actual number
passed. For example, if we had a routine named myCall defined as

SEXP myCall(SEXP a, SEXP b, SEXP c);

we would describe this as

1 and we provide an emulation on Windows 2000): see ‘?dyn.oad’.

Chapter 5: System and foreign language interfaces 73

R_CallMethodDef callMethods[] = {
{"myCall", &myCall, 3},
{NULL, NULL, 0}

};

along with any other routines for the .Call interface.

Routines for use with the .C and .Fortran interfaces are described with similar data
structures, but which have two additional fields for describing the type and “style” of each
argument. Each of these can be omitted. However, if specified, each should be an array with
the same number of elements as the number of parameters for the routine. The types array
should contain the SEXP types describing the expected type of the argument. (Technically,
the elements of the types array are of type R_NativePrimitiveArgType which is just an
unsigned integer.) The R types and corresponding type identifiers are provided in the
following table:

numeric REALSXP
integer INTSXP
logical LGLSXP
single SINGLESXP
character STRSXP
list VECSXP

Consider a C routine, myC, declared as

void myC(double *x, int *n, char **names, int *status);

We would register it as

R_CMethodDef cMethods[] = {
{"myC", &myC, 4, {REALSXP, INTSXP, STRSXP, LGLSXP}},
{NULL, NULL, 0}

};

One can also specify whether each argument is used simply as input, or as output, or
as both input and output. The style field in the description of a method is used for this.
The purpose is to allow R to transfer values more efficiently across the R-C/FORTRAN
interface by avoiding copying values when it is not necessary. Typically, one omits this
information in the registration data.

Having created the arrays describing each routine, the last step is to actually register
them with R. We do this by calling R_registerRoutines. For example, if we have the
descriptions above for the routines accessed by the .C and .Call we would use the following
code:

void
R_init_myLib(DllInfo *info)
{

R_registerRoutines(info, cMethods, callMethods, NULL, NULL);
}

This routine will be invoked when R loads the shared object/DLL named myLib. The
last two arguments in the call to R_registerRoutines are for the routines accessed by
.Fortran and .External interfaces. In our example, these are given as NULL since we have
no routines of these types.

Chapter 5: System and foreign language interfaces 74

When R unloads a shared object/DLL, any registered routines are automatically re-
moved. There is no (direct) facility for unregistering a symbol.

Examples of registering routines can be found in the different packages in the R source
tree (e.g., stats). Also, there is a brief, high-level introduction in R News (volume 1/3,
September 2001, pages 20-23).

In addition to registering C routines to be called by R, it can at times be useful for one
package to make some of its C routines available to be called by C code in another package.
An interface to support this has been provided since R 2.4.0. The interface consists of two
routines declared as

void R_RegisterCCallable(const char *package, const char *name,
DL_FUNC fptr);

DL_FUNC R_GetCCallable(const char *package, const char *name);

A package packA that wants to make a C routine myCfun available to C code in other
packages would include the call

R_RegisterCCallable("packA", "myCfun", myCfun);

in its initialization function R_init_packA. A package packB that wants to use this
routine would retrieve the function pointer with a call of the form

p_myCfun = R_GetCCallable("packA", "myCfun");

The author of packB is responsible for ensuring that p_myCfun has an appropriate dec-
laration. In the future R may provide some automated tools to simplify exporting larger
numbers of routines.

A package that wishes to make use of header files in other packages needs to declare them
as a comma-separated list in the field LinkingTo in the ‘DESCRIPTION’ file. For example

Depends: link2, link3
LinkingTo: link2, link3

It should also ‘Depend’ on those packages for they have to be installed prior to this one,
and loaded prior to this one (so the path to their compiled code can be found).

This then arranges that the ‘include’ directories in the installed linked-to packages are
added to the include paths for C and C++ code.

A CRAN example of the use of this mechanism is package lme4, which links to Matrix.

5.5 Creating shared objects

Shared objects for loading into R can be created using R CMD SHLIB. This accepts as argu-
ments a list of files which must be object files (with extension ‘.o’) or sources for C, C++,
FORTRAN 77, Fortran 9x, Objective C or Objective C++ (with extensions ‘.c’, ‘.cc’ or
‘.cpp’ or ‘.C’, ‘.f’, ‘.f90’ or ‘.f95’, ‘.m’, and ‘.mm’ or ‘.M’, respectively), or commands
to be passed to the linker. See R CMD SHLIB --help (or the R help for SHLIB) for usage
information.

If compiling the source files does not work “out of the box”, you can specify additional
flags by setting some of the variables PKG_CPPFLAGS (for the C preprocessor, typically ‘-I’
flags), PKG_CFLAGS, PKG_CXXFLAGS, PKG_FFLAGS, PKG_FCFLAGS, and PKG_OBJCFLAGS (for
the C, C++, FORTRAN 77, Fortran 9x, and Objective C compilers, respectively) in the file
‘Makevars’ in the compilation directory (or, of course, create the object files directly from

Chapter 5: System and foreign language interfaces 75

the command line). Similarly, variable PKG_LIBS in ‘Makevars’ can be used for additional
‘-l’ and ‘-L’ flags to be passed to the linker when building the shared object. (Supplying
linker commands as arguments to R CMD SHLIB will override PKG_LIBS in ‘Makevars’.)

It is possible to arrange to include compiled code from other languages by setting the
macro ‘OBJECTS’ in file ‘Makevars’, together with suitable rules to make the objects.

Flags which are already set (for example in file ‘etcR_ARCH/Makeconf’ on Unix-alikes)
can be overridden by the environment variable MAKEFLAGS (at least for systems using a
POSIX-compliant make), as in (Bourne shell syntax)

MAKEFLAGS="CFLAGS=-O3" R CMD SHLIB *.c

It is also possible to set such variables in personal ‘Makevars’ files, which are read after
the local ‘Makevars’ and the system makefiles. See 〈undefined〉 [R-admin], page 〈undefined〉,
and also 〈undefined〉 [R-admin], page 〈undefined〉.

Note that as R CMD SHLIB uses Make, it will not remake a shared object just because the
flags have changed, and if ‘test.c’ and ‘test.f’ both exist in the current directory

R CMD SHLIB test.f

will compile ‘test.c’!

If the ‘src’ subdirectory of an add-on package contains source code with one of the
extensions listed above or a file ‘Makevars’ but not a file Makefile, R CMD INSTALL creates
a shared object (for loading into R in the .First.lib or .onLoad function of the package)
using the R CMD SHLIB mechanism. If file ‘Makevars’ exists it is read first, then the system
makefile and then any personal ‘Makevars’ files.

If the ‘src’ subdirectory of package contains a file ‘Makefile’, this is used in place of the
R CMD SHLIB mechanism. make is called with makefiles ‘R_HOME/etcR_ARCH/Makeconf’2,
‘src/Makefile’ and any personal ‘Makevars’ files (in that order). The first target found in
‘src/Makefile’ is used.

It is better to make use of a Makevars file rather than a Makefile: the latter should be
needed only exceptionally.

Note that whereas R CMD INSTALL makes use of a ‘Makefile’, R CMD SHLIB does not. The
file must be named ‘Makefile’, not for example ‘makefile’ nor ‘GNUmakefile’.

Under Windows3 the same commands work, but ‘Makevars.win’ will be used in pref-
erence to ‘Makevars’, and only ‘src/Makefile.win’ will be used by R CMD INSTALL with
‘src/Makefile’ being ignored. For details of building DLLs with a variety of compilers,
see file ‘README.packages’ and http://www.stats.uwo.ca/faculty/murdoch/software/
compilingDLLs/ .

Under Windows you can supply an exports file called ‘dllname-win.def’: otherwise all
entry points in objects (but not libraries) supplied to R CMD SHLIB will be exported from
the DLL. An example is ‘stats-win.def’ for the stats package.

2 or the version specific to a sub-architecture
3 The files in the R binary Windows distribution for installing source packages need to be installed.

http://penalty z@ www.stats.uwo.ca/penalty z@ faculty/penalty z@ murdoch/penalty z@ software/penalty z@ compilingDLLs/
http://penalty z@ www.stats.uwo.ca/penalty z@ faculty/penalty z@ murdoch/penalty z@ software/penalty z@ compilingDLLs/

Chapter 5: System and foreign language interfaces 76

5.6 Interfacing C++ code

Suppose we have the following hypothetical C++ library, consisting of the two files ‘X.hh’
and ‘X.cc’, and implementing the two classes X and Y which we want to use in R.� �

// X.hh

class X {
public: X (); ~X ();
};

class Y {
public: Y (); ~Y ();
};
 	� �
// X.cc

#include <iostream>
#include "X.hh"

static Y y;

X::X() { std::cout << "constructor X" << std::endl; }
X::~X() { std::cout << "destructor X" << std::endl; }
Y::Y() { std::cout << "constructor Y" << std::endl; }
Y::~Y() { std::cout << "destructor Y" << std::endl; }
 	

To use with R, the only thing we have to do is writing a wrapper function and ensuring
that the function is enclosed in

extern "C" {

}

For example,

Chapter 5: System and foreign language interfaces 77

� �
// X_main.cc:

#include "X.hh"

extern "C" {

void X_main () {
X x;

}

} // extern "C"
 	
Compiling and linking should be done with the C++ compiler-linker (rather than the C

compiler-linker or the linker itself); otherwise, the C++ initialization code (and hence the
constructor of the static variable Y) are not called. On a properly configured system, one
can simply use

R CMD SHLIB X.cc X_main.cc

to create the shared object, typically ‘X.so’ (the file name extension may be different on
your platform). Now starting R yields

R : Copyright 2000, The R Development Core Team
Version 1.1.0 Under development (unstable) (April 14, 2000)
...
Type "q()" to quit R.

R> dyn.load(paste("X", .Platform$dynlib.ext, sep = ""))
constructor Y
R> .C("X_main")
constructor X
destructor X
list()
R> q()
Save workspace image? [y/n/c]: y
destructor Y

The R for Windows FAQ (‘rw-FAQ’) contains details of how to compile this example
under various Windows compilers.

Using C++ iostreams, as in this example, is best avoided. There is no guarantee that the
output will appear in the R console, and indeed it will not on the R for Windows console.
Use R code or the C entry points (see Section 6.5 [Printing], page 108) for all I/O if at all
possible.

Most R header files can be included within C++ programs, and they should not be
included within an extern "C" block (as they include C++ system headers). It may not
be possible to include some R headers as they in turn include C header files that may
cause conflicts—if this happens, define ‘NO_C_HEADERS’ before including the R headers, and
include the appropriate headers yourself.

Chapter 5: System and foreign language interfaces 78

5.7 Fortran I/O

We have already warned against the use of C++ iostreams not least because output is not
guaranteed to appear on the R console, and this warning applies equally to Fortran (77 or
9x) output to units * and 6. See Section 6.5.1 [Printing from FORTRAN], page 108, which
describes workarounds.

In the past most Fortran compilers implemented I/O on top of the C I/O system and so
the two interworked successfully. This was true of g77, but it is less true of gfortran as used
in gcc 4.y.z. In particular, any package that makes use of Fortran I/O will when compiled
on Windows interfere with C I/O: when the Fortran I/O is initialized (typically when the
package is loaded) the C stdout and stderr are switched to LF line endings. (Function
La_Init in file ‘src/main/lapack.c’ shows how to mitigate this.) Even worse, prior to R
2.6.2 using Fortran output when running under the Windows GUI console (Rgui) would
hang the R session. This is now avoided by ensuring that the Fortran output is written to
a file (‘fort.6’ in the working directory).

5.8 Linking to other packages

It is not in general possible to link a DLL in package packA to a DLL provided by package
packB (for the security reasons mentioned in Section 5.3 [dyn.load and dyn.unload], page 70,
and also because some platforms distinguish between shared and dynamic libraries), but it
is on Windows.

Note that there can be tricky versioning issues here, as package packB could be re-
installed after package packA — it is desirable that the API provided by package packB
remains backwards-compatible.

5.8.1 Unix-alikes

It is possible to link a shared object in package packA to a library provided by package
packB under limited circumstances on a Unix-alke OS. There are severe portability issues,
so this is not recommended for a distributed package.

This is easiest if packB provides a static library ‘packB/libs/libpackB.a’. (This will
need to be comiled with PIC flags on platforms where it matters.) Then as the code from
package packB is incorporated when package packA is installed, we only need to find the
static library at install time for package packB. The only issue is to find package packB,
and for that we can ask R by something like

PKGB_PATH=‘echo ’library(packB); cat(system.file("libs", package="packB"))’ \
| R --vanilla --slave‘
PKG_LIBS=$(PKGB_PATH)/libpackB.a

(If ‘libpackB.a’ itself depends on other libraries these will need to be included in PKG_
LIBS.)

For a dynamic library ‘packB/libs/libpackB.so’ (‘packB/libs/libpackB.dylib’ on
Mac OS X) we could use

PKGB_PATH=‘echo ’library(packB); cat(system.file("libs", package="packB"))’ \
| R --vanilla --slave‘
PKG_LIBS=-L"$(PKGB_PATH)" -lpackB

Chapter 5: System and foreign language interfaces 79

This will work for installation, but very likely not when package packB is loaded, as the
path to package packB’s ‘libs’ directory is not in the ld.so4 search path. You can arrange
to put it there before R is launched by setting (on some platforms) LD_RUN_PATH or LD_
LIBRARY_PATH or adding to the ld.so cache (see ldconfig). On platforms that support
it, the path to the dynamic library can be hardcoded at install time (which assumes that
the location of package packB will not be changed). On systems with the GNU linker (e.g.
Linux) and some others (e.g. Mac OS X) this can be done by

PKGB_PATH=‘echo ’library(packB); cat(system.file("libs", package="packB"))’ \
| R --vanilla --slave‘
PKG_LIBS=-L"$(PKGB_PATH)" -rpath "$(PKGB_PATH)" -lpackB

and on some other systems (e.g. Solaris with its native linker) use -R rather than -rpath.
It may be possible to figure out what is required semi-automatically from the result of

R CMD libtool --config (look for ‘hardode’).
Making headers provided by package packB available to the code to be compiled in

package packA can be done by the LinkingTo mechanism (see Section 5.4 [Registering
native routines], page 72).

5.8.2 Windows

Suppose package packA wants to make use of compiled code provided by packB in DLL
‘packB/libs/exB.dll’, possibly the package’s DLL ‘packB/libs/packB.dll’. (This can
be extended to linking to more than one package in a similar way.) There are three issues
to be addressed:
• Making headers provided by package packB available to the code to be compiled in

package packA.
This is done by the LinkingTo mechanism (see Section 5.4 [Registering native routines],
page 72).

• preparing packA.dll to link to ‘packB/libs/exB.dll’.
This needs an entry in ‘Makevars.win’ of the form

PKG_LIBS= -L<something> -lexB

and one possibility is that <something> is the path to the installed ‘pkgB/libs’ direc-
tory. To find that we need to ask R where it is by something like

PKGB_PATH=‘echo ’library(packB); cat(system.file("libs", package="packB"))’ \
| rterm --vanilla --slave‘
PKG_LIBS= -L"$(PKGB_PATH)" -lexB

Another possibility is to use an import library, shipping with package packA an exports
file ‘exB.def’. Then ‘Makevars.win’ could contain

PKG_LIBS= -L. -lexB

before: libexB.dll.a
libexB.dll.a: exB.def

and then installing package packA will make and use the import library for ‘exB.dll’.
(One way to prepare the exports file is to use ‘pexports.exe’.

4 dyld on Mac OS X, and DYLD_LIBRARY_PATHS below.

Chapter 5: System and foreign language interfaces 80

• loading ‘packA.dll’ which depends on ‘exB.dll’.
If exB.dll was used by package packB (because it is in fact ‘packB.dll’ or ‘packB.dll’
depends on it) and packB has been loaded before packA, then nothing more needs to
be done as ‘exB.dll’ will already be loaded into the R executable. (This is the most
common scenario).
More generally, we can use the DLLpath argument to library.dynam to ensure that
exB.dll is found, for example by setting

library.dynam("packA", pkg, lib,
DLLpath = system.file("libs", package="packB"))

Note that DLLpath can only set one path, and so for linking to two or more packages
you would need to resort to setting PATH.

5.9 Handling R objects in C

Using C code to speed up the execution of an R function is often very fruitful. Traditionally
this has been done via the .C function in R. One restriction of this interface is that the R
objects can not be handled directly in C. This becomes more troublesome when one wishes
to call R functions from within the C code. There is a C function provided called call_R
(also known as call_S for compatibility with S) that can do that, but it is cumbersome
to use, and the mechanisms documented here are usually simpler to use, as well as more
powerful.

If a user really wants to write C code using internal R data structures, then that can
be done using the .Call and .External function. The syntax for the calling function in
R in each case is similar to that of .C, but the two functions have different C interfaces.
Generally the .Call interface (which is modelled on the interface of the same name in S
version 4) is a little simpler to use, but .External is a little more general.

A call to .Call is very similar to .C, for example

.Call("convolve2", a, b)

The first argument should be a character string giving a C symbol name of code that has
already been loaded into R. Up to 65 R objects can passed as arguments. The C side of the
interface is

#include <R.h>
#include <Rinternals.h>

SEXP convolve2(SEXP a, SEXP b)
...

A call to .External is almost identical

.External("convolveE", a, b)

but the C side of the interface is different, having only one argument

#include <R.h>
#include <Rinternals.h>

SEXP convolveE(SEXP args)
...

Chapter 5: System and foreign language interfaces 81

Here args is a LISTSXP, a Lisp-style pairlist from which the arguments can be extracted.

In each case the R objects are available for manipulation via a set of functions and
macros defined in the header file ‘Rinternals.h’ or some S4-compatibility macros defined
in ‘Rdefines.h’. See Section 5.10 [Interface functions .Call and .External], page 91 for
details on .Call and .External.

Before you decide to use .Call or .External, you should look at other alternatives.
First, consider working in interpreted R code; if this is fast enough, this is normally the
best option. You should also see if using .C is enough. If the task to be performed in C is
simple enough requiring no call to R, .C suffices. The new interfaces are relatively recent
additions to S and R, and a great deal of useful code has been written using just .C before
they were available. The .Call and .External interfaces allow much more control, but
they also impose much greater responsibilities so need to be used with care. Neither .Call
nor .External copy their arguments. You should treat arguments you receive through
these interfaces as read-only.

There are two approaches that can be taken to handling R objects from within C code.
The first (historically) is to use the macros and functions that have been used to implement
the core parts of R through .Internal calls. A public5 subset of these is defined in the
header file ‘Rinternals.h’ in the directory ‘R_INCLUDE_DIR ’ (default ‘R_HOME/include’)
that should be available on any R installation.

Another approach is to use R versions of the macros and functions defined for the S
version 4 interface .Call, which are defined in the header file ‘Rdefines.h’. This is a
somewhat simpler approach, and is to be preferred if the code is intended to be shared with
S. However, it is less well documented and even less tested. Note too that some idiomatic
S4 constructions with these macros (such as assigning elements of character vectors or lists)
are invalid in R.

A substantial amount of R is implemented using the functions and macros described
here, so the R source code provides a rich source of examples and “how to do it”: indeed
many of the examples here were developed by examining closely R system functions for
similar tasks. Do make use of the source code for inspirational examples.

It is necessary to know something about how R objects are handled in C code. All the
R objects you will deal with will be handled with the type SEXP6, which is a pointer to a
structure with typedef SEXPREC. Think of this structure as a variant type that can handle
all the usual types of R objects, that is vectors of various modes, functions, environments,
language objects and so on. The details are given later in this section and in section “R
Internal Structures” in R Internals, but for most purposes the programmer does not need to
know them. Think rather of a model such as that used by Visual Basic, in which R objects
are handed around in C code (as they are in interpreted R code) as the variant type, and
the appropriate part is extracted for, for example, numerical calculations, only when it is
needed. As in interpreted R code, much use is made of coercion to force the variant object
to the right type.

5 see Chapter 6 [The R API], page 105: note that these are not all part of the API.
6 SEXP is an acronym for S imple EXPression, common in LISP-like language syntaxes.

Chapter 5: System and foreign language interfaces 82

5.9.1 Handling the effects of garbage collection

We need to know a little about the way R handles memory allocation. The memory allocated
for R objects is not freed by the user; instead, the memory is from time to time garbage
collected. That is, some or all of the allocated memory not being used is freed.

The R object types are represented by a C structure defined by a typedef SEXPREC in
‘Rinternals.h’. It contains several things among which are pointers to data blocks and to
other SEXPRECs. A SEXP is simply a pointer to a SEXPREC.

If you create an R object in your C code, you must tell R that you are using the object
by using the PROTECT macro on a pointer to the object. This tells R that the object is in
use so it is not destroyed during garbage collection. Notice that it is the object which is
protected, not the pointer variable. It is a common mistake to believe that if you invoked
PROTECT(p) at some point then p is protected from then on, but that is not true once a
new object is assigned to p.

Protecting an R object automatically protects all the R objects pointed to in the corre-
sponding SEXPREC, for example all elements of a protected list are automatically protected.

The programmer is solely responsible for housekeeping the calls to PROTECT. There is
a corresponding macro UNPROTECT that takes as argument an int giving the number of
objects to unprotect when they are no longer needed. The protection mechanism is stack-
based, so UNPROTECT(n) unprotects the last n objects which were protected. The calls to
PROTECT and UNPROTECT must balance when the user’s code returns. R will warn about
"stack imbalance in .Call" (or .External) if the housekeeping is wrong.

Here is a small example of creating an R numeric vector in C code. First we use the
macros in ‘Rinternals.h’:

#include <R.h>
#include <Rinternals.h>

SEXP ab;
....

PROTECT(ab = allocVector(REALSXP, 2));
REAL(ab)[0] = 123.45;
REAL(ab)[1] = 67.89;
UNPROTECT(1);

and then those in ‘Rdefines.h’:

#include <R.h>
#include <Rdefines.h>

SEXP ab;
....

PROTECT(ab = NEW_NUMERIC(2));
NUMERIC_POINTER(ab)[0] = 123.45;
NUMERIC_POINTER(ab)[1] = 67.89;
UNPROTECT(1);

Now, the reader may ask how the R object could possibly get removed during those
manipulations, as it is just our C code that is running. As it happens, we can do without

Chapter 5: System and foreign language interfaces 83

the protection in this example, but in general we do not know (nor want to know) what is
hiding behind the R macros and functions we use, and any of them might cause memory to
be allocated, hence garbage collection and hence our object ab to be removed. It is usually
wise to err on the side of caution and assume that any of the R macros and functions might
remove the object.

In some cases it is necessary to keep better track of whether protection is really needed.
Be particularly aware of situations where a large number of objects are generated. The
pointer protection stack has a fixed size (default 10,000) and can become full. It is not a
good idea then to just PROTECT everything in sight and UNPROTECT several thousand objects
at the end. It will almost invariably be possible to either assign the objects as part of
another object (which automatically protects them) or unprotect them immediately after
use.

Protection is not needed for objects which R already knows are in use. In particular,
this applies to function arguments.

There is a less-used macro UNPROTECT_PTR(s) that unprotects the object pointed to by
the SEXP s, even if it is not the top item on the pointer protection stack. This is rarely
needed outside the parser (the R sources have one example, in ‘src/main/plot3d.c’).

Sometimes an object is changed (for example duplicated, coerced or grown) yet the
current value needs to be protected. For these cases PROTECT_WITH_INDEX saves an index
of the protection location that can be used to replace the protected value using REPROTECT.
For example (from the internal code for optim)

PROTECT_INDEX ipx;

....
PROTECT_WITH_INDEX(s = eval(OS->R_fcall, OS->R_env), &ipx);
REPROTECT(s = coerceVector(s, REALSXP), ipx);

5.9.2 Allocating storage

For many purposes it is sufficient to allocate R objects and manipulate those. There are
quite a few allocXxx functions defined in ‘Rinternals.h’—you may want to explore them.
These allocate R objects of various types, and for the standard vector types there are
equivalent NEW_XXX macros defined in ‘Rdefines.h’.

If storage is required for C objects during the calculations this is best allocating by calling
R_alloc; see Section 6.1 [Memory allocation], page 105. All of these memory allocation
routines do their own error-checking, so the programmer may assume that they will raise
an error and not return if the memory cannot be allocated.

5.9.3 Details of R types

Users of the ‘Rinternals.h’ macros will need to know how the R types are known internally:
if the ‘Rdefines.h’ macros are used then S4-compatible names are used.

The different R data types are represented in C by SEXPTYPE. Some of these are
familiar from R and some are internal data types. The usual R object modes are given in
the table.

SEXPTYPE R equivalent

Chapter 5: System and foreign language interfaces 84

REALSXP numeric with storage mode double
INTSXP integer
CPLXSXP complex
LGLSXP logical
STRSXP character
VECSXP list (generic vector)
LISTSXP “dotted-pair” list
DOTSXP a ‘...’ object
NILSXP NULL
SYMSXP name/symbol
CLOSXP function or function closure
ENVSXP environment

Among the important internal SEXPTYPEs are LANGSXP, CHARSXP, PROMSXP, etc. (Note:
although it is possible to return objects of internal types, it is unsafe to do so as assumptions
are made about how they are handled which may be violated at user-level evaluation.) More
details are given in section “R Internal Structures” in R Internals.

Unless you are very sure about the type of the arguments, the code should check the
data types. Sometimes it may also be necessary to check data types of objects created by
evaluating an R expression in the C code. You can use functions like isReal, isInteger
and isString to do type checking. See the header file ‘Rinternals.h’ for definitions of
other such functions. All of these take a SEXP as argument and return 1 or 0 to indicate
TRUE or FALSE. Once again there are two ways to do this, and ‘Rdefines.h’ has macros
such as IS_NUMERIC.

What happens if the SEXP is not of the correct type? Sometimes you have no other option
except to generate an error. You can use the function error for this. It is usually better to
coerce the object to the correct type. For example, if you find that an SEXP is of the type
INTEGER, but you need a REAL object, you can change the type by using, equivalently,

PROTECT(newSexp = coerceVector(oldSexp, REALSXP));

or

PROTECT(newSexp = AS_NUMERIC(oldSexp));

Protection is needed as a new object is created; the object formerly pointed to by the SEXP
is still protected but now unused.

All the coercion functions do their own error-checking, and generate NAs with a warning
or stop with an error as appropriate.

Note that these coercion functions are not the same as calling as.numeric (and so on)
in R code, as they do not dispatch on the class of the object. Thus it is normally preferable
to do the coercion in the calling R code.

So far we have only seen how to create and coerce R objects from C code, and how to
extract the numeric data from numeric R vectors. These can suffice to take us a long way
in interfacing R objects to numerical algorithms, but we may need to know a little more to
create useful return objects.

Chapter 5: System and foreign language interfaces 85

5.9.4 Attributes

Many R objects have attributes: some of the most useful are classes and the dim and
dimnames that mark objects as matrices or arrays. It can also be helpful to work with the
names attribute of vectors.

To illustrate this, let us write code to take the outer product of two vectors (which outer
and %o% already do). As usual the R code is simple

out <- function(x, y)
{

storage.mode(x) <- storage.mode(y) <- "double"
.Call("out", x, y)

}

where we expect x and y to be numeric vectors (possibly integer), possibly with names.
This time we do the coercion in the calling R code.

C code to do the computations is

#include <R.h>
#include <Rinternals.h>

SEXP out(SEXP x, SEXP y)
{
int i, j, nx, ny;
double tmp, *rx = REAL(x), *ry = REAL(y), *rans;
SEXP ans;

nx = length(x); ny = length(y);
PROTECT(ans = allocMatrix(REALSXP, nx, ny));
rans = REAL(ans);
for(i = 0; i < nx; i++) {
tmp = rx[i];
for(j = 0; j < ny; j++)

rans[i + nx*j] = tmp * ry[j];
}
UNPROTECT(1);
return(ans);

}

Note the way REAL is used: as it is a function call it can be considerably faster to store the
result and index that.

However, we would like to set the dimnames of the result. Although allocMatrix pro-
vides a short cut, we will show how to set the dim attribute directly.

#include <R.h>
#include <Rinternals.h>

Chapter 5: System and foreign language interfaces 86

SEXP out(SEXP x, SEXP y)
{
R_len_t i, j, nx, ny;
double tmp, *rx = REAL(x), *ry = REAL(y), *rans;
SEXP ans, dim, dimnames;

nx = length(x); ny = length(y);
PROTECT(ans = allocVector(REALSXP, nx*ny));
rans = REAL(ans);
for(i = 0; i < nx; i++) {
tmp = rx[i];
for(j = 0; j < ny; j++)

rans[i + nx*j] = tmp * ry[j];
}

PROTECT(dim = allocVector(INTSXP, 2));
INTEGER(dim)[0] = nx; INTEGER(dim)[1] = ny;
setAttrib(ans, R_DimSymbol, dim);

PROTECT(dimnames = allocVector(VECSXP, 2));
SET_VECTOR_ELT(dimnames, 0, getAttrib(x, R_NamesSymbol));
SET_VECTOR_ELT(dimnames, 1, getAttrib(y, R_NamesSymbol));
setAttrib(ans, R_DimNamesSymbol, dimnames);

UNPROTECT(3);
return(ans);

}

This example introduces several new features. The getAttrib and setAttrib functions
get and set individual attributes. Their second argument is a SEXP defining the name in
the symbol table of the attribute we want; these and many such symbols are defined in the
header file ‘Rinternals.h’.

There are shortcuts here too: the functions namesgets, dimgets and dimnamesgets are
the internal versions of the default methods of names<-, dim<- and dimnames<- (for vectors
and arrays), and there are functions such as GetMatrixDimnames and GetArrayDimnames.

What happens if we want to add an attribute that is not pre-defined? We need to add a
symbol for it via a call to install. Suppose for illustration we wanted to add an attribute
"version" with value 3.0. We could use

SEXP version;
PROTECT(version = allocVector(REALSXP, 1));
REAL(version)[0] = 3.0;
setAttrib(ans, install("version"), version);
UNPROTECT(1);

Using install when it is not needed is harmless and provides a simple way to retrieve
the symbol from the symbol table if it is already installed.

Chapter 5: System and foreign language interfaces 87

5.9.5 Classes

In R the (S3) class is just the attribute named "class" so it can be handled as such, but
there is a shortcut classgets. Suppose we want to give the return value in our example
the class "mat". We can use

#include <R.h>
#include <Rdefines.h>

....
SEXP ans, dim, dimnames, class;
....

PROTECT(class = allocVector(STRSXP, 1));
SET_STRING_ELT(class, 0, mkChar("mat"));
classgets(ans, class);
UNPROTECT(4);
return(ans);

}

As the value is a character vector, we have to know how to create that from a C character
array, which we do using the function mkChar.

5.9.6 Handling lists

Some care is needed with lists, as R moved early on from using LISP-like lists (now called
“pairlists”) to S-like generic vectors. As a result, the appropriate test for an object of mode
list is isNewList, and we need allocVector(VECSXP, n) and not allocList(n).

List elements can be retrieved or set by direct access to the elements of the generic
vector. Suppose we have a list object

a <- list(f=1, g=2, h=3)

Then we can access a$g as a[[2]] by
double g;
....

g = REAL(VECTOR_ELT(a, 1))[0];

This can rapidly become tedious, and the following function (based on one in package
stats) is very useful:

/* get the list element named str, or return NULL */

SEXP getListElement(SEXP list, const char *str)
{
SEXP elmt = R_NilValue, names = getAttrib(list, R_NamesSymbol);
int i;

for (i = 0; i < length(list); i++)
if(strcmp(CHAR(STRING_ELT(names, i)), str) == 0) {

elmt = VECTOR_ELT(list, i);
break;

}
return elmt;

}

Chapter 5: System and foreign language interfaces 88

and enables us to say

double g;
g = REAL(getListElement(a, "g"))[0];

5.9.7 Handling character data

R character vectors are stored as STRSXPs, a vector type like VECSXP where every element
is of type CHARSXP. The CHARSXP elements of STRSXPs are accessed using STRING_ELT and
SET_STRING_ELT.

As of R 2.6.0, CHARSXPs are read-only objects and must never be modified. In particular,
the C-style string contained in a CHARSXP should be treated as read-only and for this reason
the CHAR function used to access the character data of a CHARSXP returns (const char
*) (this also allows compilers to issue warnings about improper use). Since CHARSXPs are
immutable, the same CHARSXP can be shared by any STRSXP needing an element representing
the same string. As of R 2.6.0, R maintains a global cache of CHARSXPs so that there is only
ever one CHARSXP representing a given string in memory.

You can obtain a CHARSXP by calling mkChar and providing a nul-terminated C-style
string. This function will return a pre-existing CHARSXP if one with a matching string
already exists, otherwise it will create a new one and add it to the cache before returning it
to you. The variant mkCharLen can be used to create a CHARSXP from part of a buffer and
will ensure null-termination.

Currently, it is still possible to create CHARSXPs using allocVector; CHARSXPs created
in this way will not be captured by the global CHARSXP cache and this should be avoided.
In the future, all CHARSXPs will be captured by the cache and this will allow further op-
timizations, for example, replacing calls to strcmp with pointer comparisons. A helper
macro, CallocCharBuf, can be used to obtain a temporary character buffer for in-place
string manipulation: this memory must be released using Free.

5.9.8 Finding and setting variables

It will be usual that all the R objects needed in our C computations are passed as arguments
to .Call or .External, but it is possible to find the values of R objects from within the C
given their names. The following code is the equivalent of get(name, envir = rho).

SEXP getvar(SEXP name, SEXP rho)
{
SEXP ans;

if(!isString(name) || length(name) != 1)
error("name is not a single string");

if(!isEnvironment(rho))
error("rho should be an environment");

ans = findVar(install(CHAR(STRING_ELT(name, 0))), rho);
printf("first value is %f\n", REAL(ans)[0]);
return(R_NilValue);

}

The main work is done by findVar, but to use it we need to install name as a name in
the symbol table. As we wanted the value for internal use, we return NULL.

Chapter 5: System and foreign language interfaces 89

Similar functions with syntax
void defineVar(SEXP symbol, SEXP value, SEXP rho)
void setVar(SEXP symbol, SEXP value, SEXP rho)

can be used to assign values to R variables. defineVar creates a new binding or changes
the value of an existing binding in the specified environment frame; it is the analogue of
assign(symbol, value, envir = rho, inherits = FALSE), but unlike assign, defineVar
does not make a copy of the object value.7 setVar searches for an existing binding for
symbol in rho or its enclosing environments. If a binding is found, its value is changed to
value. Otherwise, a new binding with the specified value is created in the global environ-
ment. This corresponds to assign(symbol, value, envir = rho, inherits = TRUE).

5.9.9 Some convenience functions

Some operations are done so frequently that there are convenience functions to handle them.
Suppose we wanted to pass a single logical argument ignore_quotes: we could use

int ign;

ign = asLogical(ignore_quotes);
if(ign == NA_LOGICAL) error("’ignore_quotes’ must be TRUE or FALSE");

which will do any coercion needed (at least from a vector argument), and return NA_LOGICAL
if the value passed was NA or coercion failed. There are also asInteger, asReal and
asComplex. The function asChar returns a CHARSXP. All of these functions ignore any
elements of an input vector after the first.

To return a length-one real vector we can use
double x;

...
return ScalarReal(x);

and there are versions of this for all the atomic vector types (those for a length-one character
vector being ScalarString with argument a CHARSXP and mkString with argument const
char *).

Some of the isXXXX functions differ from their apparent R-level counterparts: for ex-
ample isVector is true for any atomic vector type (isVectorAtomic) and for lists and
expressions (isVectorList) (with no check on attributes). isMatrix is a test of a length-2
"dim" attribute.

There are a series of small macros/functions to help construct pairlists and language
objects (whose internal structures just differ by SEXPTYPE. Function CONS(u, v) is the
basic building block: is constructs a pairlist from u followed by v (which is a pairlist or R_
NilValue). LCONS is a variant that constructs a language object. Functions list1 to list4
construct a pairlist from one to four items, and lang1 to lang4 do the same for a language
object (a function to call plus zero to three arguments). Function elt and lastElt find
the ith element and the last element of a pairlist, and nthcdr returns a pointer to the nth
position in the pairlist (whose CAR is the nth item).

7 You can assign a copy of the object in the environment frame rho using defineVar(symbol,

duplicate(value), rho)).

Chapter 5: System and foreign language interfaces 90

Functions str2type and type2str map R length-one character strings to and from
SEXPTYPE numbers, and type2char maps numbers to C character strings.

5.9.10 Named objects and copying

When assignments are done in R such as

x <- 1:10
y <- x

the named object is not necessarily copied, so after those two assignments y and x are bound
to the same SEXPREC (the structure a SEXP points to). This means that any code which
alters one of them has to make a copy before modifying the copy if the usual R semantics
are to apply. Note that whereas .C and .Fortran do copy their arguments (unless the
dangerous dup = FALSE is used), .Call and .External do not. So duplicate is commonly
called on arguments to .Call before modifying them.

However, at least some of this copying is unneeded. In the first assignment shown, x <-
1:10, R first creates an object with value 1:10 and then assigns it to x but if x is modified
no copy is necessary as the temporary object with value 1:10 cannot be referred to again.
R distinguishes between named and unnamed objects via a field in a SEXPREC that can be
accessed via the macros NAMED and SET_NAMED. This can take values

0 The object is not bound to any symbol

1 The object has been bound to exactly one symbol

2 The object has potentially been bound to two or more symbols, and one should
act as if another variable is currently bound to this value.

Note the past tenses: R does not do full reference counting and there may currently be
fewer bindings.

It is safe to modify the value of any SEXP for which NAMED(foo) is zero, and if NAMED(foo)
is two, the value should be duplicated (via a call to duplicate) before any modification.
Note that it is the responsibility of the author of the code making the modification to do
the duplication, even if it is x whose value is being modified after y <- x.

The case NAMED(foo) == 1 allows some optimization, but it can be ignored (and dupli-
cation done whenever NAMED(foo) > 0). (This optimization is not currently usable in user
code.) It is intended for use within assignment functions. Suppose we used

x <- 1:10
foo(x) <- 3

which is computed as

x <- 1:10
x <- "foo<-"(x, 3)

Then inside "foo<-" the object pointing to the current value of x will have NAMED(foo) as
one, and it would be safe to modify it as the only symbol bound to it is x and that will be
rebound immediately. (Provided the remaining code in "foo<-" make no reference to x,
and no one is going to attempt a direct call such as y <- "foo<-"(x).)

Currently all arguments to a .Call call will have NAMED set to 2, and so users must
assume that they need to be duplicated before alteration.

Chapter 5: System and foreign language interfaces 91

5.10 Interface functions .Call and .External

In this section we consider the details of the R/C interfaces.

These two interfaces have almost the same functionality. .Call is based on the interface
of the same name in S version 4, and .External is based on .Internal. .External is more
complex but allows a variable number of arguments.

5.10.1 Calling .Call

Let us convert our finite convolution example to use .Call, first using the ‘Rdefines.h’
macros. The calling function in R is

conv <- function(a, b) .Call("convolve2", a, b)

which could hardly be simpler, but as we shall see all the type checking must be transferred
to the C code, which is

#include <R.h>
#include <Rdefines.h>

SEXP convolve2(SEXP a, SEXP b)
{
int i, j, na, nb, nab;
double *xa, *xb, *xab;
SEXP ab;

PROTECT(a = AS_NUMERIC(a));
PROTECT(b = AS_NUMERIC(b));
na = LENGTH(a); nb = LENGTH(b); nab = na + nb - 1;
PROTECT(ab = NEW_NUMERIC(nab));
xa = NUMERIC_POINTER(a); xb = NUMERIC_POINTER(b);
xab = NUMERIC_POINTER(ab);
for(i = 0; i < nab; i++) xab[i] = 0.0;
for(i = 0; i < na; i++)
for(j = 0; j < nb; j++) xab[i + j] += xa[i] * xb[j];

UNPROTECT(3);
return(ab);

}

Note that unlike the macros in S version 4, the R versions of these macros do check that
coercion can be done and raise an error if it fails. They will raise warnings if missing values
are introduced by coercion. Although we illustrate doing the coercion in the C code here,
it often is simpler to do the necessary coercions in the R code.

Now for the version in R-internal style. Only the C code changes.

Chapter 5: System and foreign language interfaces 92

#include <R.h>
#include <Rinternals.h>

SEXP convolve2(SEXP a, SEXP b)
{
R_len_t i, j, na, nb, nab;
double *xa, *xb, *xab;
SEXP ab;

PROTECT(a = coerceVector(a, REALSXP));
PROTECT(b = coerceVector(b, REALSXP));
na = length(a); nb = length(b); nab = na + nb - 1;
PROTECT(ab = allocVector(REALSXP, nab));
xa = REAL(a); xb = REAL(b);
xab = REAL(ab);
for(i = 0; i < nab; i++) xab[i] = 0.0;
for(i = 0; i < na; i++)
for(j = 0; j < nb; j++) xab[i + j] += xa[i] * xb[j];

UNPROTECT(3);
return(ab);

}

This is called in exactly the same way.

5.10.2 Calling .External

We can use the same example to illustrate .External. The R code changes only by replacing
.Call by .External

conv <- function(a, b) .External("convolveE", a, b)

but the main change is how the arguments are passed to the C code, this time as a single
SEXP. The only change to the C code is how we handle the arguments.

#include <R.h>
#include <Rinternals.h>

SEXP convolveE(SEXP args)
{
int i, j, na, nb, nab;
double *xa, *xb, *xab;
SEXP a, b, ab;

PROTECT(a = coerceVector(CADR(args), REALSXP));
PROTECT(b = coerceVector(CADDR(args), REALSXP));
...

}

Once again we do not need to protect the arguments, as in the R side of the interface they
are objects that are already in use. The macros

Chapter 5: System and foreign language interfaces 93

first = CADR(args);
second = CADDR(args);
third = CADDDR(args);
fourth = CAD4R(args);

provide convenient ways to access the first four arguments. More generally we can use the
CDR and CAR macros as in

args = CDR(args); a = CAR(args);
args = CDR(args); b = CAR(args);

which clearly allows us to extract an unlimited number of arguments (whereas .Call has a
limit, albeit at 65 not a small one).

More usefully, the .External interface provides an easy way to handle calls with a
variable number of arguments, as length(args) will give the number of arguments supplied
(of which the first is ignored). We may need to know the names (‘tags’) given to the actual
arguments, which we can by using the TAG macro and using something like the following
example, that prints the names and the first value of its arguments if they are vector types.

#include <R_ext/PrtUtil.h>

SEXP showArgs(SEXP args)
{
int i, nargs;
Rcomplex cpl;
const char *name;
SEXP el;

args = CDR(args); /* skip ’name’ */
for(i = 0; args != R_NilValue; i++, args = CDR(args)) {
args = CDR(args);
name = CHAR(PRINTNAME(TAG(args)));
switch(TYPEOF(CAR(args))) {
case REALSXP:

Rprintf("[%d] ’%s’ %f\n", i+1, name, REAL(CAR(args))[0]);
break;

case LGLSXP:
case INTSXP:

Rprintf("[%d] ’%s’ %d\n", i+1, name, INTEGER(CAR(args))[0]);
break;

case CPLXSXP:
cpl = COMPLEX(CAR(args))[0];
Rprintf("[%d] ’%s’ %f + %fi\n", i+1, name, cpl.r, cpl.i);
break;

case STRSXP:
Rprintf("[%d] ’%s’ %s\n", i+1, name,

CHAR(STRING_ELT(CAR(args), 0)));
break;

Chapter 5: System and foreign language interfaces 94

default:
Rprintf("[%d] ’%s’ R type\n", i+1, name);

}
}
return(R_NilValue);

}

This can be called by the wrapper function

showArgs <- function(...) .External("showArgs", ...)

Note that this style of programming is convenient but not necessary, as an alternative style
is

showArgs1 <- function(...) .Call("showArgs1", list(...))

The (very similar) C code is in the scripts.

5.10.3 Missing and special values

One piece of error-checking the .C call does (unless NAOK is true) is to check for missing
(NA) and IEEE special values (Inf, -Inf and NaN) and give an error if any are found. With
the .Call interface these will be passed to our code. In this example the special values are
no problem, as IEEE arithmetic will handle them correctly. In the current implementation
this is also true of NA as it is a type of NaN, but it is unwise to rely on such details. Thus
we will re-write the code to handle NAs using macros defined in ‘R_exts/Arith.h’ included
by ‘R.h’.

The code changes are the same in any of the versions of convolve2 or convolveE:

...
for(i = 0; i < na; i++)
for(j = 0; j < nb; j++)

if(ISNA(xa[i]) || ISNA(xb[j]) || ISNA(xab[i + j]))
xab[i + j] = NA_REAL;

else
xab[i + j] += xa[i] * xb[j];

...

Note that the ISNA macro, and the similar macros ISNAN (which checks for NaN or NA)
and R_FINITE (which is false for NA and all the special values), only apply to numeric values
of type double. Missingness of integers, logicals and character strings can be tested by
equality to the constants NA_INTEGER, NA_LOGICAL and NA_STRING. These and NA_REAL
can be used to set elements of R vectors to NA.

The constants R_NaN, R_PosInf, R_NegInf and R_NaReal can be used to set doubles to
the special values.

5.11 Evaluating R expressions from C

We noted that the call_R interface could be used to evaluate R expressions from C code,
but the current interfaces are much more convenient to use. The main function we will use
is

SEXP eval(SEXP expr, SEXP rho);

Chapter 5: System and foreign language interfaces 95

the equivalent of the interpreted R code eval(expr, envir = rho), although we can also
make use of findVar, defineVar and findFun (which restricts the search to functions).

To see how this might be applied, here is a simplified internal version of lapply for
expressions, used as

a <- list(a = 1:5, b = rnorm(10), test = runif(100))
.Call("lapply", a, quote(sum(x)), new.env())

with C code

SEXP lapply(SEXP list, SEXP expr, SEXP rho)
{
R_len_t i, n = length(list);
SEXP ans;

if(!isNewList(list)) error("’list’ must be a list");
if(!isEnvironment(rho)) error("’rho’ should be an environment");
PROTECT(ans = allocVector(VECSXP, n));
for(i = 0; i < n; i++) {
defineVar(install("x"), VECTOR_ELT(list, i), rho);
SET_VECTOR_ELT(ans, i, eval(expr, rho));

}
setAttrib(ans, R_NamesSymbol, getAttrib(list, R_NamesSymbol));
UNPROTECT(1);
return(ans);

}

It would be closer to lapply if we could pass in a function rather than an expression. One
way to do this is via interpreted R code as in the next example, but it is possible (if somewhat
obscure) to do this in C code. The following is based on the code in ‘src/main/optimize.c’.

SEXP lapply2(SEXP list, SEXP fn, SEXP rho)
{
R_len_t i, n = length(list);
SEXP R_fcall, ans;

if(!isNewList(list)) error("’list’ must be a list");
if(!isFunction(fn)) error("’fn’ must be a function");
if(!isEnvironment(rho)) error("’rho’ should be an environment");
PROTECT(R_fcall = lang2(fn, R_NilValue));
PROTECT(ans = allocVector(VECSXP, n));
for(i = 0; i < n; i++) {
SETCADR(R_fcall, VECTOR_ELT(list, i));
SET_VECTOR_ELT(ans, i, eval(R_fcall, rho));

}
setAttrib(ans, R_NamesSymbol, getAttrib(list, R_NamesSymbol));
UNPROTECT(2);
return(ans);

}

used by

Chapter 5: System and foreign language interfaces 96

.Call("lapply2", a, sum, new.env())

Function lang2 creates an executable pairlist of two elements, but this will only be clear to
those with a knowledge of a LISP-like language.

As a more comprehensive example of constructing an R call in C code and evaluating,
consider the following fragment of printAttributes in ‘src/main/print.c’.

/* Need to construct a call to
print(CAR(a), digits=digits)
based on the R_print structure, then eval(call, env).
See do_docall for the template for this sort of thing.

*/
SEXP s, t;
PROTECT(t = s = allocList(3));
SET_TYPEOF(s, LANGSXP);
SETCAR(t, install("print")); t = CDR(t);
SETCAR(t, CAR(a)); t = CDR(t);
SETCAR(t, ScalarInteger(digits));
SET_TAG(t, install("digits"));
eval(s, env);
UNPROTECT(1);

At this point CAR(a) is the R object to be printed, the current attribute. There are three
steps: the call is constructed as a pairlist of length 3, the list is filled in, and the expression
represented by the pairlist is evaluated.

A pairlist is quite distinct from a generic vector list, the only user-visible form of list in
R. A pairlist is a linked list (with CDR(t) computing the next entry), with items (accessed
by CAR(t)) and names or tags (set by SET_TAG). In this call there are to be three items, a
symbol (pointing to the function to be called) and two argument values, the first unnamed
and the second named. Setting the type to LANGSXP makes this a call which can be evaluated.

5.11.1 Zero-finding

In this section we re-work the example of call_S in Becker, Chambers & Wilks (1988) on
finding a zero of a univariate function, The R code and an example are

zero <- function(f, guesses, tol = 1e-7) {
f.check <- function(x) {
x <- f(x)
if(!is.numeric(x)) stop("Need a numeric result")
as.double(x)

}
.Call("zero", body(f.check), as.double(guesses), as.double(tol),

new.env())
}

cube1 <- function(x) (x^2 + 1) * (x - 1.5)
zero(cube1, c(0, 5))

where this time we do the coercion and error-checking in the R code. The C code is

Chapter 5: System and foreign language interfaces 97

SEXP mkans(double x)
{

SEXP ans;
PROTECT(ans = allocVector(REALSXP, 1));
REAL(ans)[0] = x;
UNPROTECT(1);
return ans;

}

double feval(double x, SEXP f, SEXP rho)
{

defineVar(install("x"), mkans(x), rho);
return(REAL(eval(f, rho))[0]);

}

SEXP zero(SEXP f, SEXP guesses, SEXP stol, SEXP rho)
{

double x0 = REAL(guesses)[0], x1 = REAL(guesses)[1],
tol = REAL(stol)[0];

double f0, f1, fc, xc;

if(tol <= 0.0) error("non-positive tol value");
f0 = feval(x0, f, rho); f1 = feval(x1, f, rho);
if(f0 == 0.0) return mkans(x0);
if(f1 == 0.0) return mkans(x1);
if(f0*f1 > 0.0) error("x[0] and x[1] have the same sign");

for(;;) {
xc = 0.5*(x0+x1);
if(fabs(x0-x1) < tol) return mkans(xc);
fc = feval(xc, f, rho);
if(fc == 0) return mkans(xc);
if(f0*fc > 0.0) {

x0 = xc; f0 = fc;
} else {

x1 = xc; f1 = fc;
}

}
}

The C code is essentially unchanged from the call_R version, just using a couple of functions
to convert from double to SEXP and to evaluate f.check.

5.11.2 Calculating numerical derivatives

We will use a longer example (by Saikat DebRoy) to illustrate the use of evaluation and
.External. This calculates numerical derivatives, something that could be done as effec-
tively in interpreted R code but may be needed as part of a larger C calculation.

Chapter 5: System and foreign language interfaces 98

An interpreted R version and an example are

numeric.deriv <- function(expr, theta, rho=sys.frame(sys.parent()))
{
eps <- sqrt(.Machine$double.eps)
ans <- eval(substitute(expr), rho)
grad <- matrix(,length(ans), length(theta),

dimnames=list(NULL, theta))
for (i in seq(along=theta)) {
old <- get(theta[i], envir=rho)
delta <- eps * min(1, abs(old))
assign(theta[i], old+delta, envir=rho)
ans1 <- eval(substitute(expr), rho)
assign(theta[i], old, envir=rho)
grad[, i] <- (ans1 - ans)/delta

}
attr(ans, "gradient") <- grad
ans

}
omega <- 1:5; x <- 1; y <- 2
numeric.deriv(sin(omega*x*y), c("x", "y"))

where expr is an expression, theta a character vector of variable names and rho the envi-
ronment to be used.

For the compiled version the call from R will be

.External("numeric_deriv", expr, theta, rho)

with example usage

.External("numeric_deriv", quote(sin(omega*x*y)),
c("x", "y"), .GlobalEnv)

Note the need to quote the expression to stop it being evaluated.

Here is the complete C code which we will explain section by section.

#include <R.h> /* for DOUBLE_EPS */
#include <Rinternals.h>

SEXP numeric_deriv(SEXP args)
{
SEXP theta, expr, rho, ans, ans1, gradient, par, dimnames;
double tt, xx, delta, eps = sqrt(DOUBLE_EPS), *rgr, *rans;
int start, i, j;

expr = CADR(args);
if(!isString(theta = CADDR(args)))
error("theta should be of type character");

if(!isEnvironment(rho = CADDDR(args)))
error("rho should be an environment");

Chapter 5: System and foreign language interfaces 99

PROTECT(ans = coerceVector(eval(expr, rho), REALSXP));
PROTECT(gradient = allocMatrix(REALSXP, LENGTH(ans), LENGTH(theta)));
rgr = REAL(gradient); rans = REAL(ans);

for(i = 0, start = 0; i < LENGTH(theta); i++, start += LENGTH(ans)) {
PROTECT(par = findVar(install(CHAR(STRING_ELT(theta, i))), rho));
tt = REAL(par)[0];
xx = fabs(tt);
delta = (xx < 1) ? eps : xx*eps;
REAL(par)[0] += delta;
PROTECT(ans1 = coerceVector(eval(expr, rho), REALSXP));
for(j = 0; j < LENGTH(ans); j++)

rgr[j + start] = (REAL(ans1)[j] - rans[j])/delta;
REAL(par)[0] = tt;
UNPROTECT(2); /* par, ans1 */

}

PROTECT(dimnames = allocVector(VECSXP, 2));
SET_VECTOR_ELT(dimnames, 1, theta);
dimnamesgets(gradient, dimnames);
setAttrib(ans, install("gradient"), gradient);
UNPROTECT(3); /* ans gradient dimnames */
return ans;

}

The code to handle the arguments is
expr = CADR(args);
if(!isString(theta = CADDR(args)))
error("theta should be of type character");

if(!isEnvironment(rho = CADDDR(args)))
error("rho should be an environment");

Note that we check for correct types of theta and rho but do not check the type of expr.
That is because eval can handle many types of R objects other than EXPRSXP. There is no
useful coercion we can do, so we stop with an error message if the arguments are not of the
correct mode.

The first step in the code is to evaluate the expression in the environment rho, by
PROTECT(ans = coerceVector(eval(expr, rho), REALSXP));

We then allocate space for the calculated derivative by
PROTECT(gradient = allocMatrix(REALSXP, LENGTH(ans), LENGTH(theta)));

The first argument to allocMatrix gives the SEXPTYPE of the matrix: here we want it to
be REALSXP. The other two arguments are the numbers of rows and columns.

for(i = 0, start = 0; i < LENGTH(theta); i++, start += LENGTH(ans)) {
PROTECT(par = findVar(install(CHAR(STRING_ELT(theta, i))), rho));

Here, we are entering a for loop. We loop through each of the variables. In the for loop, we
first create a symbol corresponding to the i’th element of the STRSXP theta. Here, STRING_
ELT(theta, i) accesses the i’th element of the STRSXP theta. Macro CHAR() extracts the

Chapter 5: System and foreign language interfaces 100

actual character representation8 of it: it returns a pointer. We then install the name and
use findVar to find its value.

tt = REAL(par)[0];
xx = fabs(tt);
delta = (xx < 1) ? eps : xx*eps;
REAL(par)[0] += delta;
PROTECT(ans1 = coerceVector(eval(expr, rho), REALSXP));

We first extract the real value of the parameter, then calculate delta, the increment to be
used for approximating the numerical derivative. Then we change the value stored in par
(in environment rho) by delta and evaluate expr in environment rho again. Because we
are directly dealing with original R memory locations here, R does the evaluation for the
changed parameter value.

for(j = 0; j < LENGTH(ans); j++)
rgr[j + start] = (REAL(ans1)[j] - rans[j])/delta;

REAL(par)[0] = tt;
UNPROTECT(2);

}

Now, we compute the i’th column of the gradient matrix. Note how it is accessed: R stores
matrices by column (like FORTRAN).

PROTECT(dimnames = allocVector(VECSXP, 2));
SET_VECTOR_ELT(dimnames, 1, theta);
dimnamesgets(gradient, dimnames);
setAttrib(ans, install("gradient"), gradient);
UNPROTECT(3);
return ans;

}

First we add column names to the gradient matrix. This is done by allocating a list (a
VECSXP) whose first element, the row names, is NULL (the default) and the second element,
the column names, is set as theta. This list is then assigned as the attribute having the
symbol R_DimNamesSymbol. Finally we set the gradient matrix as the gradient attribute of
ans, unprotect the remaining protected locations and return the answer ans.

5.12 Parsing R code from C

Suppose an R extension want to accept an R expression from the user and evaluate it.
The previous section covered evaluation, but the expression will be entered as text and
needs to be parsed first. A small part of R’s parse interface is declared in header file
‘R_ext/Parse.h’9.

An example of the usage can be found in the (example) Windows package windlgs
included in the R source tree. The essential part is

8 see Section 5.15 [Character encoding issues], page 103 for why this might not be what is required.
9 This is only guaranteed to show the current interface: it is liable to change.

Chapter 5: System and foreign language interfaces 101

#include <R.h>
#include <Rinternals.h>
#include <R_ext/Parse.h>

SEXP menu_ttest3()
{

char cmd[256];
SEXP cmdSexp, cmdexpr, ans = R_NilValue;
int i;
ParseStatus status;
...
if(done == 1) {

PROTECT(cmdSexp = allocVector(STRSXP, 1));
SET_STRING_ELT(cmdSexp, 0, mkChar(cmd));
cmdexpr = PROTECT(R_ParseVector(cmdSexp, -1, &status, R_NilValue));
if (status != PARSE_OK) {

UNPROTECT(2);
error("invalid call %s", cmd);

}
/* Loop is needed here as EXPSEXP will be of length > 1 */
for(i = 0; i < length(cmdexpr); i++)

ans = eval(VECTOR_ELT(cmdexpr, i), R_GlobalEnv);
UNPROTECT(2);

}
return ans;

}

Note that a single line of text may give rise to more than one R expression.
R_ParseVector is essentially the code used to implement parse(text=) at R level. The

first argument is a character vector (corresponding to text) and the second the maximal
number of expressions to parse (corresponding to n). The third argument is a pointer to a
variable of an enumeration type, and it is normal (as parse does) to regard all values other
than PARSE_OK as an error. Other values which might be returned are PARSE_INCOMPLETE
(an incomplete expression was found) and PARSE_ERROR (a syntax error), in both cases the
value returned being R_NilValue. The fourth argument is a srcfile object or the R NULL
object (as in the example above). In the former case a srcref attribute would be attached
to the result, containing a list of srcref objects of the same length as the expression, to
allow it to be echoed with its original formatting.

5.13 External pointers and weak references

The SEXPTYPEs EXTPTRSXP and WEAKREFSXP can be encountered at R level, but are created
in C code.

External pointer SEXPs are intended to handle references to C structures such as ‘han-
dles’, and are used for this purpose in package RODBC for example. They are unusual in
their copying semantics in that when an R object is copied, the external pointer object is
not duplicated. (For this reason external pointers should only be used as part of an object
with normal semantics, for example an attribute or an element of a list.)

Chapter 5: System and foreign language interfaces 102

An external pointer is created by
SEXP R_MakeExternalPtr(void *p, SEXP tag, SEXP prot);

where p is the pointer (and hence this cannot portably be a function pointer), and tag and
prot are references to ordinary R objects which will remain in existence (be protected from
garbage collection) for the lifetime of the external pointer object. A useful convention is to
use the tag field for some form of type identification and the prot field for protecting the
memory that the external pointer represents, if that memory is allocated from the R heap.
Both tag and prot can be R_NilValue, and often are.

The elements of an external pointer can be accessed and set via
void *R_ExternalPtrAddr(SEXP s);
SEXP R_ExternalPtrTag(SEXP s);
SEXP R_ExternalPtrProtected(SEXP s);
void R_ClearExternalPtr(SEXP s);
void R_SetExternalPtrAddr(SEXP s, void *p);
void R_SetExternalPtrTag(SEXP s, SEXP tag);
void R_SetExternalPtrProtected(SEXP s, SEXP p);

Clearing a pointer sets its value to the C NULL pointer.
An external pointer object can have a finalizer, a piece of code to be run when the object

is garbage collected. This can be R code or C code, and the various interfaces are
void R_RegisterFinalizer(SEXP s, SEXP fun);
void R_RegisterFinalizerEx(SEXP s, SEXP fun, Rboolean onexit);

typedef void (*R_CFinalizer_t)(SEXP);
void R_RegisterCFinalizer(SEXP s, R_CFinalizer_t fun);
void R_RegisterCFinalizerEx(SEXP s, R_CFinalizer_t fun, Rboolean onexit);

The R function indicated by fun should be a function of a single argument, the object to
be finalized. R does not perform a garbage collection when shutting down, and the onexit
argument of the extended forms can be used to ask that the finalizer be run during a normal
shutdown of the R session. It is suggested that it is good practice to clear the pointer on
finalization.

The only R level function for interacting with external pointers is reg.finalizer which
can be used to set a finalizer.

It is probably not a good idea to allow an external pointer to be saved and then reloaded,
but if this happens the pointer will be set to the C NULL pointer.

Weak references are used to allow the programmer to maintain information on entities
without preventing the garbage collection of the entities once they become unreachable.

A weak reference contains a key and a value. The value is reachable is if it either
reachable directly or via weak references with reachable keys. Once a value is determined
to be unreachable during garbage collection, the key and value are set to R_NilValue and
the finalizer will be run later in the garbage collection.

Weak reference objects are created by one of
SEXP R_MakeWeakRef(SEXP key, SEXP val, SEXP fin, Rboolean onexit);
SEXP R_MakeWeakRefC(SEXP key, SEXP val, R_CFinalizer_t fin,

Rboolean onexit);

Chapter 5: System and foreign language interfaces 103

where the R or C finalizer are specified in exactly the same way as for an external pointer
object (whose finalization interface is implemented via weak references).

The parts can be accessed via
SEXP R_WeakRefKey(SEXP w);
SEXP R_WeakRefValue(SEXP w);
void R_RunWeakRefFinalizer(SEXP w);

A toy example of the use of weak references can be found at www.stat.uiowa.edu/
~luke/R/references/weakfinex.html, but that is used to add finalizers to external point-
ers which can now be done more directly.

5.14 Vector accessor functions

The vector accessors like REAL and INTEGER and VECTOR_ELT are functions when used in
R extensions. (For efficiency they are macros when used in the R source code, apart from
SET_STRING_ELT and SET_VECTOR_ELT which are always functions.)

The accessor functions check that they are being used on an appropriate type of SEXP.
By default a certain amount of misuse is allowed where the internal representation is the
same: for example LOGICAL can be used on a INTSXP and SET_VECTOR_ELT on a STRSXP.
Strict checking can be enabled by compiling R (specifically ‘src/main/memory.c’) with
‘USE_TYPE_CHECKING_STRICT’ defined (e.g. in as the configure variable ‘DEFS’ on a Unix-
alike).

If efficiency is essential, the macro versions of the accessors can be obtained by defining
‘USE_RINTERNALS’ before including ‘Rinternals.h’. If you find it necessary to do so, please
do test that your code compiled without ‘USE_RINTERNALS’ defined, as this provides a
stricter test that the accessors have been used correctly.

5.15 Character encoding issues

As from R 2.5.0 CHARSXPs can be marked as coming from a known encoding (Latin-1 or
UTF-8). This is mainly intended for human-readable output, and most packages can just
treat such CHARSXPs as a whole. However, if they need to be interpreted as characters or
output at C level then it would normally be correct to ensure that they are converted to
the encoding of the current locale: this can be done by accessing the data in the CHARSXP
by translateChar rather than by CHAR. If re-encoding is needed this allocates memory
with R_alloc which thus persists to the end of the .Call/.External call unless vmaxset
is used.

As from R 2.7.0 there is a similar function translateCharUTF8 which converts to UTF-
8: this has the advantage that a faithful translation is almost always possible (whereas
only a few languages can be represented in the encoding of the current locale unless that is
UTF-8).

R can be built without iconv (although this is very much discouraged) in which case
these functions exist but do no translation: such a build of R is in any case not suitable for
handling non-ASCII data.

As from R 2.7.0 there is a public interface to the encoding marked on CHARXSXPs via
typedef enum {CE_NATIVE, CE_UTF8, CE_LATIN1, CE_SYMBOL, CE_ANY} cetype_t;
cetype_t getCharCE(SEXP);

http://www.stat.uiowa.edu/~luke/R/references/weakfinex.html
http://www.stat.uiowa.edu/~luke/R/references/weakfinex.html

Chapter 5: System and foreign language interfaces 104

SEXP mkCharCE(const char *, cetype_t);

Only the CE_UTF8 and CE_LATIN1 are marked on CHARSXPs (and so Rf_getCharCE will only
return one of the first three), and these should only be used on non-ASCII strings. Value
CE_SYMBOL is used internally to indicate Adobe Symbol encoding. Value CE_ANY is used to
indicate a character string that will not need re-encoding – this is used for character strings
known to be in ASCII, and can also be used as an input parameter where the intention is
that the string is treated as a series of bytes.

Function
const char *reEnc(const char *x, cetype_t ce_in, cetype_t ce_out,

int subst);

can be used to re-encode character strings: like translateChar it returns a string allocated
by R_alloc. This can translate from CE_SYMBOL to CE_UTF8, but not conversely. Argument
subst controls what to do with untranslatable characters or invalid input: this is done
byte-by-byte with 1 indicates to output hex of the form <a0>, and 2 to replace by ., with
any other value causing the byte to produce no output.

R 2.8.0 added
SEXP mkCharLenCE(const char *, int, cetype_t);

to create marked character strings of a given length.

Chapter 6: The R API: entry points for C code 105

6 The R API: entry points for C code

There are a large number of entry points in the R executable/DLL that can be called from
C code (and some that can be called from FORTRAN code). Only those documented here
are stable enough that they will only be changed with considerable notice.

The recommended procedure to use these is to include the header file ‘R.h’ in your C
code by

#include <R.h>

This will include several other header files from the directory ‘R_INCLUDE_DIR/R_ext’, and
there are other header files there that can be included too, but many of the features they
contain should be regarded as undocumented and unstable.

An alternative is to include the header file ‘S.h’, which may be useful when porting code
from S. This includes rather less than ‘R.h’, and has extra some compatibility definitions
(for example the S_complex type from S).

The defines used for compatibility with S sometimes causes conflicts (notably with Win-
dows headers), and the known problematic defines can be removed by defining STRICT_R_
HEADERS.

Most of these header files, including all those included by ‘R.h’, can be used from C++
code. Some others need to be included within an extern "C" declaration, and for clarity
this is advisable for all R header files.

Note: Because R re-maps many of its external names to avoid clashes with user
code, it is essential to include the appropriate header files when using these
entry points.

This remapping can cause problems1, and can be eliminated by defining R_NO_REMAP and
prepending ‘Rf_’ to all the function names used from ‘Rinternals.h’ and ‘R_ext/Error.h’.

We can classify the entry points as

API Entry points which are documented in this manual and declared in an installed
header file. These can be used in distributed packages and will only be changed
after deprecation.

public Entry points declared in an installed header file that are exported on all R
platforms but are not documented and subject to change without notice.

private Entry points that are used when building R and exported on all R platforms
but are not declared in the installed header files. Do not use these in distributed
code.

hidden Entry points that are where possible (Windows and some modern Unix com-
pilers/loaders when using R as a shared library) not exported.

6.1 Memory allocation

There are two types of memory allocation available to the C programmer, one in which R
manages the clean-up and the other in which user has full control (and responsibility).

1 Known problems are redefining error, length, vector and warning

Chapter 6: The R API: entry points for C code 106

6.1.1 Transient storage allocation

Here R will reclaim the memory at the end of the call to .C. Use
char *R_alloc(size_t n, int size)

which allocates n units of size bytes each. A typical usage (from package stats) is
x = (int *) R_alloc(nrows(merge)+2, sizeof(int));

(size_t is defined in ‘stddef.h’ which the header defining R_alloc includes.)
There is a similar call, S_alloc (for compatibility with older versions of S) which zeroes

the memory allocated,
char *S_alloc(long n, int size)

and
char *S_realloc(char *p, long new, long old, int size)

which changes the allocation size from old to new units, and zeroes the additional units.
For compatibility with current versions of S, header ‘S.h’ (only) defines wrapper macros

equivalent to
type* Salloc(long n, int type)
type* Srealloc(char *p, long new, long old, int type)

This memory is taken from the heap, and released at the end of the .C, .Call or
.External call. Users can also manage it, by noting the current position with a call to
vmaxget and clearing memory allocated subsequently by a call to vmaxset. This is only
recommended for experts.

Note that this memory will be freed on error or user interrupt (if allowed: see Section 6.12
[Allowing interrupts], page 118).

Note that although n is long, there are limits imposed by R’s internal allocation mech-
anism. These will only come into play on 64-bit systems, where the current limit for n is
just under 16Gb.

6.1.2 User-controlled memory

The other form of memory allocation is an interface to malloc, the interface providing R
error handling. This memory lasts until freed by the user and is additional to the memory
allocated for the R workspace.

The interface functions are
type* Calloc(size_t n, type)
type* Realloc(any *p, size_t n, type)
void Free(any *p)

providing analogues of calloc, realloc and free. If there is an error during allocation it
is handled by R, so if these routines return the memory has been successfully allocated or
freed. Free will set the pointer p to NULL. (Some but not all versions of S do so.)

Users should arrange to Free this memory when no longer needed, including on error or
user interrupt. This can often be done most conveniently from an on.exit action in the
calling R function – see pwilcox for an example.

Do not assume that memory allocated by Calloc/Realloc comes from the same pool
as used by malloc: in particular do not use free or strdup with it.

These entry points need to be prefixed by R_ if STRICT_R_HEADERS has been defined.

Chapter 6: The R API: entry points for C code 107

6.2 Error handling

The basic error handling routines are the equivalents of stop and warning in R code, and
use the same interface.

void error(const char * format, ...);
void warning(const char * format, ...);

These have the same call sequences as calls to printf, but in the simplest case can be
called with a single character string argument giving the error message. (Don’t do this if
the string contains ‘%’ or might otherwise be interpreted as a format.)

If STRICT_R_HEADERS is not defined there is also an S-compatibility interface which uses
calls of the form

PROBLEM ERROR
MESSAGE WARN
PROBLEM RECOVER(NULL_ENTRY)
MESSAGE WARNING(NULL_ENTRY)

the last two being the forms available in all S versions. Here ‘......’ is a set of arguments to
printf, so can be a string or a format string followed by arguments separated by commas.

6.2.1 Error handling from FORTRAN

There are two interface function provided to call error and warning from FORTRAN code,
in each case with a simple character string argument. They are defined as

subroutine rexit(message)
subroutine rwarn(message)

Messages of more than 255 characters are truncated, with a warning.

6.3 Random number generation

The interface to R’s internal random number generation routines is
double unif_rand();
double norm_rand();
double exp_rand();

giving one uniform, normal or exponential pseudo-random variate. However, before these
are used, the user must call

GetRNGstate();

and after all the required variates have been generated, call
PutRNGstate();

These essentially read in (or create) .Random.seed and write it out after use.
File ‘S.h’ defines seed_in and seed_out for S-compatibility rather than GetRNGstate

and PutRNGstate. These take a long * argument which is ignored.
The random number generator is private to R; there is no way to select the kind of RNG

or set the seed except by evaluating calls to the R functions.
The C code behind R’s rxxx functions can be accessed by including the header file

‘Rmath.h’; See Section 6.7.1 [Distribution functions], page 110. Those calls generate a
single variate and should also be enclosed in calls to GetRNGstate and PutRNGstate.

Chapter 6: The R API: entry points for C code 108

In addition, there is an interface (defined in header ‘R_ext/Applic.h’) to the gener-
ation of random 2-dimensional tables with given row and column totals using Patefield’s
algorithm.

[Function]void rcont2 (int* nrow, int* ncol, int* nrowt, int* ncolt, int*
ntotal, double* fact, int* jwork, int* matrix)

Here, nrow and ncol give the numbers nr and nc of rows and columns and nrowt and
ncolt the corresponding row and column totals, respectively, ntotal gives the sum of
the row (or columns) totals, jwork is a workspace of length nc, and on output matrix
a contains the nr ∗ nc generated random counts in the usual column-major order.

6.4 Missing and IEEE special values

A set of functions is provided to test for NA, Inf, -Inf and NaN. These functions are accessed
via macros:

ISNA(x) True for R’s NA only
ISNAN(x) True for R’s NA and IEEE NaN
R_FINITE(x) False for Inf, -Inf, NA, NaN

and via function R_IsNaN which is true for NaN but not NA.
Do use R_FINITE rather than isfinite or finite; the latter is often mendacious and

isfinite is only available on a few platforms, on which R_FINITE is a macro expanding to
isfinite.

Currently in C code ISNAN is a macro calling isnan. (Since this gives problems on some
C++ systems, if the R headers is called from C++ code a function call is used.)

You can check for Inf or -Inf by testing equality to R_PosInf or R_NegInf, and set
(but not test) an NA as NA_REAL.

All of the above apply to double variables only. For integer variables there is a variable
accessed by the macro NA_INTEGER which can used to set or test for missingness.

6.5 Printing

The most useful function for printing from a C routine compiled into R is Rprintf. This is
used in exactly the same way as printf, but is guaranteed to write to R’s output (which
might be a GUI console rather than a file). It is wise to write complete lines (including the
"\n") before returning to R.

The function REprintf is similar but writes on the error stream (stderr) which may or
may not be different from the standard output stream. Functions Rvprintf and REvprintf
are analogues using the vprintf interface.

6.5.1 Printing from FORTRAN

On many systems FORTRAN write and print statements can be used, but the output
may not interleave well with that of C, and will be invisible on GUI interfaces. They are
not portable and best avoided.

Three subroutines are provided to ease the output of information from FORTRAN code.
subroutine dblepr(label, nchar, data, ndata)
subroutine realpr(label, nchar, data, ndata)
subroutine intpr (label, nchar, data, ndata)

Chapter 6: The R API: entry points for C code 109

Here label is a character label of up to 255 characters, nchar is its length (which can be -1 if
the whole label is to be used), and data is an array of length at least ndata of the appropriate
type (double precision, real and integer respectively). These routines print the label
on one line and then print data as if it were an R vector on subsequent line(s). They work
with zero ndata, and so can be used to print a label alone.

6.6 Calling C from FORTRAN and vice versa

Naming conventions for symbols generated by FORTRAN differ by platform: it is not safe
to assume that FORTRAN names appear to C with a trailing underscore. To help cover
up the platform-specific differences there is a set of macros that should be used.

F77_SUB(name)
to define a function in C to be called from FORTRAN

F77_NAME(name)
to declare a FORTRAN routine in C before use

F77_CALL(name)
to call a FORTRAN routine from C

F77_COMDECL(name)
to declare a FORTRAN common block in C

F77_COM(name)
to access a FORTRAN common block from C

On most current platforms these are all the same, but it is unwise to rely on this. Note
that names with underscores are not legal in FORTRAN 77, and are not portably handled
by the above macros. (Also, all FORTRAN names for use by R are lower case, but this is
not enforced by the macros.)

For example, suppose we want to call R’s normal random numbers from FORTRAN. We
need a C wrapper along the lines of

#include <R.h>

void F77_SUB(rndstart)(void) { GetRNGstate(); }
void F77_SUB(rndend)(void) { PutRNGstate(); }
double F77_SUB(normrnd)(void) { return norm_rand(); }

to be called from FORTRAN as in
subroutine testit()
double precision normrnd, x
call rndstart()
x = normrnd()
call dblepr("X was", 5, x, 1)
call rndend()
end

Note that this is not guaranteed to be portable, for the return conventions might not be
compatible between the C and FORTRAN compilers used. (Passing values via arguments
is safer.)

The standard packages, for example stats, are a rich source of further examples.

Chapter 6: The R API: entry points for C code 110

6.7 Numerical analysis subroutines

R contains a large number of mathematical functions for its own use, for example numerical
linear algebra computations and special functions.

The header files ‘R_ext/BLAS.h’, ‘R_ext/Lapack.h’ and ‘R_ext/Linpack.h’ contains
declarations of the BLAS, LAPACK and LINPACK/EISPACK linear algebra functions
included in R. These are expressed as calls to FORTRAN subroutines, and they will also
be usable from users’ FORTRAN code. Although not part of the official API, this set of
subroutines is unlikely to change (but might be supplemented).

The header file ‘Rmath.h’ lists many other functions that are available and documented
in the following subsections. Many of these are C interfaces to the code behind R functions,
so the R function documentation may give further details.

6.7.1 Distribution functions

The routines used to calculate densities, cumulative distribution functions and quantile
functions for the standard statistical distributions are available as entry points.

The arguments for the entry points follow the pattern of those for the normal distribution:
double dnorm(double x, double mu, double sigma, int give_log);
double pnorm(double x, double mu, double sigma, int lower_tail,

int give_log);
double qnorm(double p, double mu, double sigma, int lower_tail,

int log_p);
double rnorm(double mu, double sigma);

That is, the first argument gives the position for the density and CDF and probability
for the quantile function, followed by the distribution’s parameters. Argument lower tail
should be TRUE (or 1) for normal use, but can be FALSE (or 0) if the probability of the upper
tail is desired or specified.

Finally, give log should be non-zero if the result is required on log scale, and log p should
be non-zero if p has been specified on log scale.

Note that you directly get the cumulative (or “integrated”) hazard function, H(t) =
− log(1− F (t)), by using

- pdist(t, ..., /*lower_tail = */ FALSE, /* give_log = */ TRUE)

or shorter (and more cryptic) - pdist(t, ..., 0, 1).
The random-variate generation routine rnorm returns one normal variate. See Section 6.3

[Random numbers], page 107, for the protocol in using the random-variate routines.
Note that these argument sequences are (apart from the names and that rnorm has no n)

mainly the same as the corresponding R functions of the same name, so the documentation
of the R functions can be used. Note that the exponential and gamma distributions are
parametrized by scale rather than rate.

For reference, the following table gives the basic name (to be prefixed by ‘d’, ‘p’, ‘q’ or
‘r’ apart from the exceptions noted) and distribution-specific arguments for the complete
set of distributions.

beta beta a, b
non-central beta nbeta a, b, ncp

Chapter 6: The R API: entry points for C code 111

binomial binom n, p
Cauchy cauchy location, scale
chi-squared chisq df
non-central chi-squared nchisq df, ncp
exponential exp scale (and not rate)
F f n1, n2
non-central F nf n1, n2, ncp
gamma gamma shape, scale
geometric geom p
hypergeometric hyper NR, NB, n
logistic logis location, scale
lognormal lnorm logmean, logsd
negative binomial nbinom size, prob
normal norm mu, sigma
Poisson pois lambda
Student’s t t n
non-central t nt df, delta
Studentized range tukey (*) rr, cc, df
uniform unif a, b
Weibull weibull shape, scale
Wilcoxon rank sum wilcox m, n
Wilcoxon signed rank signrank n

Entries marked with an asterisk only have ‘p’ and ‘q’ functions available, and none of the
non-central distributions have ‘r’ functions. After a call to dwilcox, pwilcox or qwilcox
the function wilcox_free() should be called, and similarly for the signed rank functions.

6.7.2 Mathematical functions

[Function]double gammafn (double x)
[Function]double lgammafn (double x)
[Function]double digamma (double x)
[Function]double trigamma (double x)
[Function]double tetragamma (double x)
[Function]double pentagamma (double x)
[Function]double psigamma (double x, double deriv)

The Gamma function, the natural logarithm of its absolute value and first four deriva-
tives and the n-th derivative of Psi, the digamma function.

[Function]double beta (double a, double b)
[Function]double lbeta (double a, double b)

The (complete) Beta function and its natural logarithm.

[Function]double choose (double n, double k)
[Function]double lchoose (double n, double k)

The number of combinations of k items chosen from from n and its natural logarithm.
k is rounded to the nearest integer (with a warning if needed).

[Function]double bessel_i (double x, double nu, double expo)

Chapter 6: The R API: entry points for C code 112

[Function]double bessel_j (double x, double nu)
[Function]double bessel_k (double x, double nu, double expo)
[Function]double bessel_y (double x, double nu)

Bessel functions of types I, J, K and Y with index nu. For bessel_i and bessel_k
there is the option to return exp(-x) I(x; nu) or exp(x) K(x; nu) if expo is 2. (Use
expo == 1 for unscaled values.)

6.7.3 Numerical Utilities

There are a few other numerical utility functions available as entry points.

[Function]double R_pow (double x, double y)
[Function]double R_pow_di (double x, int i)

R_pow(x, y) and R_pow_di(x, i) compute x^y and x^i , respectively using R_
FINITE checks and returning the proper result (the same as R) for the cases where x,
y or i are 0 or missing or infinite or NaN.

[Function]double pythag (double a, double b)
pythag(a, b) computes sqrt(a^2 + b^2) without overflow or destructive underflow:
for example it still works when both a and b are between 1e200 and 1e300 (in IEEE
double precision).

[Function]double log1p (double x)
Computes log(1 + x) (log 1 plus x), accurately even for small x, i.e., |x| � 1.
This may be provided by your platform, in which case it is not included in ‘Rmath.h’,
but is (probably) in ‘math.h’ which ‘Rmath.h’ includes. For backwards compatibility
with R versions prior to 1.5.0, the entry point Rf_log1p is still provided.

[Function]double log1pmx (double x)
Computes log(1 + x) - x (log 1 plus x minus x), accurately even for small x, i.e.,
|x| � 1.

[Function]double expm1 (double x)
Computes exp(x) - 1 (exp x minus 1), accurately even for small x, i.e., |x| � 1.
This may be provided by your platform, in which case it is not included in ‘Rmath.h’,
but is (probably) in ‘math.h’ which ‘Rmath.h’ includes.

[Function]double lgamma1p (double x)
Computes log(gamma(x + 1)) (log(gamma(1 plus x))), accurately even for small x,
i.e., 0 < x < 0.5.

[Function]double logspace_add (double logx, double logy)
[Function]double logspace_sub (double logx, double logy)

Compute the log of a sum or difference from logs of terms, i.e., “x + y” as log
(exp(logx) + exp(logy)) and “x - y” as log (exp(logx) - exp(logy)), without
causing overflows or throwing away too much accuracy.

[Function]int imax2 (int x, int y)
[Function]int imin2 (int x, int y)
[Function]double fmax2 (double x, double y)

Chapter 6: The R API: entry points for C code 113

[Function]double fmin2 (double x, double y)
Return the larger (max) or smaller (min) of two integer or double numbers, respec-
tively.

[Function]double sign (double x)
Compute the signum function, where sign(x) is 1, 0, or −1, when x is positive, 0, or
negative, respectively.

[Function]double fsign (double x, double y)
Performs “transfer of sign” and is defined as |x| ∗ sign(y).

[Function]double fprec (double x, double digits)
Returns the value of x rounded to digits decimal digits (after the decimal point).
This is the function used by R’s round().

[Function]double fround (double x, double digits)
Returns the value of x rounded to digits significant decimal digits.
This is the function used by R’s signif().

[Function]double ftrunc (double x)
Returns the value of x truncated (to an integer value) towards zero.

6.7.4 Mathematical constants

R has a set of commonly used mathematical constants encompassing constants usually found
‘math.h’ and contains further ones that are used in statistical computations. All these are
defined to (at least) 30 digits accuracy in ‘Rmath.h’. The following definitions use ln(x)
for the natural logarithm (log(x) in R).

Name Definition (ln = log) round(value, 7)
M_E e 2.7182818
M_LOG2E log2(e) 1.4426950
M_LOG10E log10(e) 0.4342945
M_LN2 ln(2) 0.6931472
M_LN10 ln(10) 2.3025851
M_PI π 3.1415927
M_PI_2 π/2 1.5707963
M_PI_4 π/4 0.7853982
M_1_PI 1/π 0.3183099
M_2_PI 2/π 0.6366198
M_2_SQRTPI 2/sqrt(π) 1.1283792
M_SQRT2 sqrt(2) 1.4142136
M_SQRT1_2 1/sqrt(2) 0.7071068
M_SQRT_3 sqrt(3) 1.7320508
M_SQRT_32 sqrt(32) 5.6568542
M_LOG10_2 log10(2) 0.3010300
M_2PI 2π 6.2831853
M_SQRT_PI sqrt(π) 1.7724539
M_1_SQRT_2PI 1/sqrt(2π) 0.3989423

Chapter 6: The R API: entry points for C code 114

M_SQRT_2dPI sqrt(2/π) 0.7978846
M_LN_SQRT_PI ln(sqrt(π)) 0.5723649
M_LN_SQRT_2PI ln(sqrt(2π)) 0.9189385
M_LN_SQRT_PId2 ln(sqrt(π/2)) 0.2257914

There are a set of constants (PI, DOUBLE_EPS) (and so on) defined (unless STRICT_R_
HEADERS is defined) in the included header ‘R_ext/Constants.h’, mainly for compatibility
with S.

Further, the included header ‘R_ext/Boolean.h’ has constants TRUE and FALSE = 0 of
type Rboolean in order to provide a way of using “logical” variables in C consistently.

6.8 Optimization

The C code underlying optim can be accessed directly. The user needs to supply a function
to compute the function to be minimized, of the type

typedef double optimfn(int n, double *par, void *ex);

where the first argument is the number of parameters in the second argument. The third
argument is a pointer passed down from the calling routine, normally used to carry auxiliary
information.

Some of the methods also require a gradient function
typedef void optimgr(int n, double *par, double *gr, void *ex);

which passes back the gradient in the gr argument. No function is provided for finite-
differencing, nor for approximating the Hessian at the result.

The interfaces (defined in header ‘R_ext/Applic.h’) are
• Nelder Mead:

void nmmin(int n, double *xin, double *x, double *Fmin, optimfn fn,
int *fail, double abstol, double intol, void *ex,
double alpha, double beta, double gamma, int trace,
int *fncount, int maxit);

• BFGS:
void vmmin(int n, double *x, double *Fmin,

optimfn fn, optimgr gr, int maxit, int trace,
int *mask, double abstol, double reltol, int nREPORT,
void *ex, int *fncount, int *grcount, int *fail);

• Conjugate gradients:
void cgmin(int n, double *xin, double *x, double *Fmin,

optimfn fn, optimgr gr, int *fail, double abstol,
double intol, void *ex, int type, int trace,
int *fncount, int *grcount, int maxit);

• Limited-memory BFGS with bounds:
void lbfgsb(int n, int lmm, double *x, double *lower,

double *upper, int *nbd, double *Fmin, optimfn fn,
optimgr gr, int *fail, void *ex, double factr,
double pgtol, int *fncount, int *grcount,
int maxit, char *msg, int trace, int nREPORT);

Chapter 6: The R API: entry points for C code 115

• Simulated annealing:
void samin(int n, double *x, double *Fmin, optimfn fn, int maxit,

int tmax, double temp, int trace, void *ex);

Many of the arguments are common to the various methods. n is the number of parameters,
x or xin is the starting parameters on entry and x the final parameters on exit, with final
value returned in Fmin. Most of the other parameters can be found from the help page
for optim: see the source code ‘src/appl/lbfgsb.c’ for the values of nbd, which specifies
which bounds are to be used.

6.9 Integration

The C code underlying integrate can be accessed directly. The user needs to supply a
vectorizing C function to compute the function to be integrated, of the type

typedef void integr_fn(double *x, int n, void *ex);

where x[] is both input and output and has length n, i.e., a C function, say fn, of type
integr_fn must basically do for(i in 1:n) x[i] := f(x[i], ex). The vectorization re-
quirement can be used to speed up the integrand instead of calling it n times. Note that
in the current implementation built on QUADPACK, n will be either 15 or 21. The ex ar-
gument is a pointer passed down from the calling routine, normally used to carry auxiliary
information.

There are interfaces (defined in header ‘R_ext/Applic.h’) for definite and for indefinite
integrals. ‘Indefinite’ means that at least one of the integration boundaries is not finite.
• Finite:

void Rdqags(integr_fn f, void *ex, double *a, double *b,
double *epsabs, double *epsrel,
double *result, double *abserr, int *neval, int *ier,
int *limit, int *lenw, int *last,
int *iwork, double *work);

• Indefinite:
void Rdqagi(integr_fn f, void *ex, double *bound, int *inf,

double *epsabs, double *epsrel,
double *result, double *abserr, int *neval, int *ier,
int *limit, int *lenw, int *last,
int *iwork, double *work);

Only the 3rd and 4th argument differ for the two integrators; for the definite integral, using
Rdqags, a and b are the integration interval bounds, whereas for an indefinite integral, using
Rdqagi, bound is the finite bound of the integration (if the integral is not doubly-infinite)
and inf is a code indicating the kind of integration range,

inf = 1 corresponds to (bound, +Inf),

inf = -1 corresponds to (-Inf, bound),

inf = 2 corresponds to (-Inf, +Inf),

f and ex define the integrand function, see above; epsabs and epsrel specify the ab-
solute and relative accuracy requested, result, abserr and last are the output com-
ponents value, abs.err and subdivisions of the R function integrate, where neval

Chapter 6: The R API: entry points for C code 116

gives the number of integrand function evaluations, and the error code ier is translated
to R’s integrate() $ message, look at that function definition. limit corresponds to
integrate(..., subdivisions = *). It seems you should always define the two work ar-
rays and the length of the second one as

lenw = 4 * limit;
iwork = (int *) R_alloc(limit, sizeof(int));
work = (double *) R_alloc(lenw, sizeof(double));

The comments in the source code in ‘src/appl/integrate.c’ give more details, partic-
ularly about reasons for failure (ier >= 1).

6.10 Utility functions

R has a fairly comprehensive set of sort routines which are made available to users’ C
code. These are declared in header file ‘R_ext/Utils.h’ (included by ‘R.h’) and include
the following.

[Function]void R_isort (int* x, int n)
[Function]void R_rsort (double* x, int n)
[Function]void R_csort (Rcomplex* x, int n)
[Function]void rsort_with_index (double* x, int* index, int n)

The first three sort integer, real (double) and complex data respectively. (Complex
numbers are sorted by the real part first then the imaginary part.) NAs are sorted
last.

rsort_with_index sorts on x, and applies the same permutation to index. NAs are
sorted last.

[Function]void revsort (double* x, int* index, int n)
Is similar to rsort_with_index but sorts into decreasing order, and NAs are not
handled.

[Function]void iPsort (int* x, int n, int k)
[Function]void rPsort (double* x, int n, int k)
[Function]void cPsort (Rcomplex* x, int n, int k)

These all provide (very) partial sorting: they permute x so that x[k] is in the correct
place with smaller values to the left, larger ones to the right.

[Function]void R_qsort (double *v, int i, int j)
[Function]void R_qsort_I (double *v, int *I, int i, int j)
[Function]void R_qsort_int (int *iv, int i, int j)
[Function]void R_qsort_int_I (int *iv, int *I, int i, int j)

These routines sort v[i:j] or iv[i:j] (using 1-indexing, i.e., v[1] is the first
element) calling the quicksort algorithm as used by R’s sort(v, method = "quick")
and documented on the help page for the R function sort. The ..._I() versions
also return the sort.index() vector in I. Note that the ordering is not stable, so
tied values may be permuted.

Note that NAs are not handled (explicitly) and you should use different sorting func-
tions if NAs can be present.

Chapter 6: The R API: entry points for C code 117

[Function]subroutine qsort4 (double precision v, integer indx, integer ii, integer
jj)

[Function]subroutine qsort3 (double precision v, integer ii, integer jj)
The FORTRAN interface routines for sorting double precision vectors are qsort3 and
qsort4, equivalent to R_qsort and R_qsort_I, respectively.

[Function]void R_max_col (double* matrix, int* nr, int* nc, int* maxes, int*
ties_meth)

Given the nr by nc matrix matrix in column-major (“FORTRAN”) order, R_max_
col() returns in maxes[i-1] the column number of the maximal element in the i-th
row (the same as R’s max.col() function). In the case of ties (multiple maxima),
*ties_meth is an integer code in 1:3 determining the method: 1 = “random”, 2 =
“first” and 3 = “last”. See R’s help page ?max.col.

[Function]int findInterval (double* xt, int n, double x, Rboolean
rightmost_closed, Rboolean all_inside, int ilo, int* mflag)

Given the ordered vector xt of length n, return the interval or index of x in xt[],
typically max(i; 1 ≤ i ≤ n & xt[i] ≤ x) where we use 1-indexing as in R and
FORTRAN (but not C). If rightmost closed is true, also returns n − 1 if x equals
xt[n]. If all inside is not 0, the result is coerced to lie in 1:(n-1) even when x is
outside the xt[] range. On return, *mflag equals −1 if x < xt[1], +1 if x >= xt[n],
and 0 otherwise.

The algorithm is particularly fast when ilo is set to the last result of findInterval()
and x is a value of a sequence which is increasing or decreasing for subsequent calls.

There is also an F77_CALL(interv)() version of findInterval() with the same
arguments, but all pointers.

The following two functions do numerical colorspace conversion from HSV to RGB and
back. Note that all colours must be in [0,1].

[Function]void hsv2rgb (double h, double s, double v, double *r, double *g,
double *b)

[Function]void rgb2hsv (double r, double g, double b, double *h, double *s,
double *v)

A system-independent interface to produce the name of a temporary file is provided as

[Function]char * R_tmpnam (const char *prefix)
Return a pathname for a temporary file with name beginning with prefix. A NULL
prefix is replaced by "".

There is also the internal function used to expand file names in several R functions, and
called directly by path.expand.

[Function]const char * R_ExpandFileName (const char *fn)
Expand a path name fn by replacing a leading tilde by the user’s home directory (if
defined). The precise meaning is platform-specific; it will usually be taken from the
environment variable HOME if this is defined.

Chapter 6: The R API: entry points for C code 118

6.11 Re-encoding

R has its own C-level interface to the encoding conversion capabilities provided by iconv,
for the following reasons

• These wrapper routines do error-handling when no usable implementation of iconv
was available at configure time.

• Under Windows they arrange to load the ‘iconv.dll’ at first use.

• There are incompatibilities between the declarations in different implementations of
iconv.

These are declared in header file ‘R_ext/Riconv.h’.

[Function]void *Riconv_open (const char *to, const char *from)
Set up a pointer to an encoding object to be used to convert between two encodings: ""

indicates the current locale.

[Function]size_t Riconv (void *cd, const char **inbuf, size t *inbytesleft,
char **outbuf, size t *outbytesleft)

Convert as much as possible of inbuf to outbuf. Initially the int variables indicate
the number of bytes available in the buffers, and they are updated (and the char pointers
are updated to point to the next free byte in the buffer). The return value is the number
of characters converted, or (size_t)-1 (beware: size_t is usually an unsigned type). It
should be safe to assume that an error condition sets errno to one of E2BIG (the output
buffer is full), EILSEQ (the input cannot be converted, and might be invalid in the encoding
specified) or EINVAL (the input does not end with a complete multi-byte character).

[Function]int Riconv_close (void * cd)
Free the resources of an encoding object.

6.12 Allowing interrupts

No port of R can be interrupted whilst running long computations in compiled code, so
programmers should make provision for the code to be interrupted at suitable points by
calling from C

#include <R_ext/Utils.h>

void R_CheckUserInterrupt(void);

and from FORTRAN

subroutine rchkusr()

These check if the user has requested an interrupt, and if so branch to R’s error handling
functions.

Note that it is possible that the code behind one of the entry points defined here if
called from your C or FORTRAN code could be interruptible or generate an error and so
not return to your code.

Chapter 6: The R API: entry points for C code 119

6.13 Platform and version information

The header files define USING_R, which can be used to test if the code is indeed being used
with R.

Header file ‘Rconfig.h’ (included by ‘R.h’) is used to define platform-specific macros
that are mainly for use in other header files. The macro WORDS_BIGENDIAN is defined on
big-endian systems (e.g. sparc-sun-solaris2.6) and not on little-endian systems (such as
i686 under Linux or Windows). It can be useful when manipulating binary files.

Header file ‘Rversion.h’ (not included by ‘R.h’) defines a macro R_VERSION giving the
version number encoded as an integer, plus a macro R_Version to do the encoding. This
can be used to test if the version of R is late enough, or to include back-compatibility
features. For protection against very old versions of R which did not have this macro, use
a construction such as

#if defined(R_VERSION) && R_VERSION >= R_Version(1, 9, 0)
...

#endif

More detailed information is available in the macros R_MAJOR, R_MINOR, R_YEAR, R_MONTH
and R_DAY: see the header file ‘Rversion.h’ for their format. Note that the minor version
includes the patchlevel (as in ‘9.0’).

6.14 Inlining C functions

The C99 keyword inline is recognized by some compilers used to build R whereas others
need __inline__ or do not support inlining. Portable code can be written using the macro
R_INLINE (defined in file ‘Rconfig.h’ included by ‘R.h’), as for example from package
cluster

#include <R.h>

static R_INLINE int ind_2(int l, int j)
{
...
}

Be aware that using inlining with functions in more than one compilation unit is almost
impossible to do portably: see http://www.greenend.org.uk/rjk/2003/03/inline.html.
All the R configure code has checked is that R_INLINE can be used in a single C file with the
compiler used to build R. We recommend that packages making extensive use of inlining
include their own configure code.

6.15 Controlling visibility

Header ‘R_ext/Visibility’ has some definitions for controlling the visibility of entry
points. These are only effective when ‘HAVE_VISIBILITY_ATTRIBUTE’ is defined – this
is checked when R is configured and recorded in header ‘Rconfig.h’ (included by
‘R_ext/Visibility.h’). It is generally defined on modern Unix-alikes with a recent
compiler (e.g. gcc4), but not supported on Windows. Minimizing the visibility of symbols
in a shared library will both speed up its loading (unlikely to be significant) and reduce
the possibility of linking to the wrong entry points of the same name.

http://www.greenend.org.uk/rjk/2003/03/inline.html

Chapter 6: The R API: entry points for C code 120

C/C++ entry points prefixed by attribute_hidden will not be visible in the shared
object. There is no comparable mechanism for FORTRAN entry points, but there is a
more comprehensive scheme used by, for example package stats. Most compilers which
allow control of visibility will allow control of visibility for all symbols via a flag, and where
known the flag is encapsulated in the macros ‘C_VISIBILITY’ and F77_VISIBILITY for C
and FORTRAN compilers. These are defined in ‘etc/Makeconf’ and so available for normal
compilation of package code. For example, ‘src/Makevars’ could include

PKG_CFLAGS=$(C_VISIBILITY)
PKG_FFLAGS=$(F77_VISIBILITY)

This would end up with no visible entry points, which would be pointless. However, the
effect of the flags can be overridden by using the attribute_visible prefix. A shared object
which registers its entry points needs only for have one visible entry point, its initializer, so
for example package stats has

void attribute_visible R_init_stats(DllInfo *dll)
{

R_registerRoutines(dll, CEntries, CallEntries, FortEntries, NULL);
R_useDynamicSymbols(dll, FALSE);

...
}

The visibility mechanism is not available on Windows, but there is an equally
effective way to control which entry points are visible, by supplying a definitions file
‘pkgnme/src/pkgname-win.def’: only entry points listed in that file will be visible. Again
using stats as an example, it has

LIBRARY stats.dll
EXPORTS
R_init_stats

6.16 Using these functions in your own C code

It is possible to build Mathlib, the R set of mathematical functions documented in
‘Rmath.h’, as a standalone library ‘libRmath’ under both Unix and Windows. (This
includes the functions documented in Section 6.7 [Numerical analysis subroutines],
page 110 as from that header file.)

The library is not built automatically when R is installed, but can be built in the
directory ‘src/nmath/standalone’ in the R sources: see the file ‘README’ there. To use the
code in your own C program include

#define MATHLIB_STANDALONE
#include <Rmath.h>

and link against ‘-lRmath’ (and perhaps ‘-lm’. There is an example file ‘test.c’.

A little care is needed to use the random-number routines. You will need to supply the
uniform random number generator

double unif_rand(void)

or use the one supplied (and with a dynamic library or DLL you will have to use the one
supplied, which is the Marsaglia-multicarry with an entry points

Chapter 6: The R API: entry points for C code 121

set_seed(unsigned int, unsigned int)

to set its seeds and
get_seed(unsigned int *, unsigned int *)

to read the seeds).

6.17 Organization of header files

The header files which R installs are in directory ‘R_INCLUDE_DIR ’ (default
‘R_HOME/include’). This currently includes

‘R.h’ includes many other files
‘S.h’ different version for code ported from S
‘Rinternals.h’ definitions for using R’s internal structures
‘Rdefines.h’ macros for an S-like interface to the above
‘Rmath.h’ standalone math library
‘Rversion.h’ R version information
‘Rinterface.h’ for add-on front-ends (Unix-alikes only)
‘Rembedded.h’ for add-on front-ends
‘R_ext/Applic.h’ optimization and integration
‘R_ext/BLAS.h’ C definitions for BLAS routines
‘R_ext/Callbacks.h’ C (and R function) top-level task handlers
‘R_ext/GetX11Image.h’ X11Image interface used by package trkplot
‘R_ext/Lapack.h’ C definitions for some LAPACK routines
‘R_ext/Linpack.h’ C definitions for some LINPACK routines, not

all of which are included in R
‘R_ext/Parse.h’ a small part of R’s parse interface
‘R_ext/RConvertors.h’
‘R_ext/Rdynload.h’ needed to register compiled code in packages
‘R_ext/R-ftp-http.h’ interface to internal method of download.file
‘R_ext/Riconv.h’ interface to iconv
‘R_ext/RStartup.h’ for add-on front-ends
‘R_ext/Visibility.h’ definitions controlling visibility
‘R_ext/eventloop.h’ for add-on front-ends and for packages that need

to share in the R event loops (on all platforms)
The following headers are included by ‘R.h’:

‘Rconfig.h’ configuration info that is made available
‘R_ext/Arith.h’ handling for NAs, NaNs, Inf/-Inf
‘R_ext/Boolean.h’ TRUE/FALSE type
‘R_ext/Complex.h’ C typedefs for R’s complex
‘R_ext/Constants.h’ constants
‘R_ext/Error.h’ error handling
‘R_ext/Memory.h’ memory allocation
‘R_ext/Print.h’ Rprintf and variations.
‘R_ext/Random.h’ random number generation
‘R_ext/RS.h’ definitions common to ‘R.h’ and ‘S.h’, including

F77_CALL etc.
‘R_ext/Utils.h’ sorting and other utilities

Chapter 6: The R API: entry points for C code 122

‘R_ext/libextern.h’ definitions for exports from ‘R.dll’ on
Windows.

The graphics systems are exposed in headers ‘R_ext/GraphicsEngine.h’,
‘R_ext/GraphicsDevice.h’ (which it includes) and ‘R_ext/QuartzDevice.h’. Some entry
points from the stats package are in ‘R_ext/stats_package.h’ (currently related to the
internals of nls and nlminb).

Chapter 7: Generic functions and methods 123

7 Generic functions and methods

R programmers will often want to add methods for existing generic functions, and may
want to add new generic functions or make existing functions generic. In this chapter we
give guidelines for doing so, with examples of the problems caused by not adhering to them.

This chapter only covers the ‘informal’ class system copied from S3, and not with the
S4 (formal) methods of package methods.

The key function for methods is NextMethod, which dispatches the next method. It is
quite typical for a method function to make a few changes to its arguments, dispatch to the
next method, receive the results and modify them a little. An example is

t.data.frame <- function(x)
{

x <- as.matrix(x)
NextMethod("t")

}

Also consider predict.glm: it happens that in R for historical reasons it calls predict.lm
directly, but in principle (and in S originally and currently) it could use NextMethod.
(NextMethod seems under-used in the R sources. Do be aware that there are S/R dif-
ferences in this area, and the example above works because there is a next method, the
default method, not that a new method is selected when the class is changed.)

Any method a programmer writes may be invoked from another method by NextMethod,
with the arguments appropriate to the previous method. Further, the programmer cannot
predict which method NextMethod will pick (it might be one not yet dreamt of), and the
end user calling the generic needs to be able to pass arguments to the next method. For
this to work

A method must have all the arguments of the generic, including ... if the
generic does.

It is a grave misunderstanding to think that a method needs only to accept the arguments
it needs. The original S version of predict.lm did not have a ... argument, although
predict did. It soon became clear that predict.glm needed an argument dispersion
to handle over-dispersion. As predict.lm had neither a dispersion nor a ... argument,
NextMethod could no longer be used. (The legacy, two direct calls to predict.lm, lives
on in predict.glm in R, which is based on the workaround for S3 written by Venables &
Ripley.)

Further, the user is entitled to use positional matching when calling the generic, and the
arguments to a method called by UseMethod are those of the call to the generic. Thus

A method must have arguments in exactly the same order as the generic.

To see the scale of this problem, consider the generic function scale, defined as

scale <- function (x, center = TRUE, scale = TRUE)
UseMethod("scale")

Suppose an unthinking package writer created methods such as

scale.foo <- function(x, scale = FALSE, ...) { }

Then for x of class "foo" the calls

Chapter 7: Generic functions and methods 124

scale(x, , TRUE)
scale(x, scale = TRUE)

would do most likely do different things, to the justifiable consternation of the end user.
To add a further twist, which default is used when a user calls scale(x) in our example?

What if
scale.bar <- function(x, center, scale = TRUE) NextMethod("scale")

and x has class c("bar", "foo")? It is the default specified in the method that is used,
but the default specified in the generic may be the one the user sees. This leads to the
recommendation:

If the generic specifies defaults, all methods should use the same defaults.
An easy way to follow these recommendations is to always keep generics simple, e.g.

scale <- function(x, ...) UseMethod("scale")

Only add parameters and defaults to the generic if they make sense in all possible
methods implementing it.

7.1 Adding new generics

When creating a new generic function, bear in mind that its argument list will be the
maximal set of arguments for methods, including those written elsewhere years later. So
choosing a good set of arguments may well be an important design issue, and there need to
be good arguments not to include a ... argument.

If a ... argument is supplied, some thought should be given to its position in the
argument sequence. Arguments which follow ... must be named in calls to the function, and
they must be named in full (partial matching is suppressed after ...). Formal arguments
before ... can be partially matched, and so may ‘swallow’ actual arguments intended for
.... Although it is commonplace to make the ... argument the last one, that is not always
the right choice.

Sometimes package writers want to make generic a function in the base package, and
request a change in R. This may be justifiable, but making a function generic with the old
definition as the default method does have a small performance cost. It is never necessary,
as a package can take over a function in the base package and make it generic by

foo <- function(object, ...) UseMethod("foo")
foo.default <- base::foo

(If the thus defined default method needs a ‘...’ added to its argument list, one can e.g.
use formals(foo.default) <- c(formals(foo.default), alist(... =)).)

The same idea can be applied for functions in other packages with name spaces.

Chapter 8: Linking GUIs and other front-ends to R 125

8 Linking GUIs and other front-ends to R

There are a number of ways to build front-ends to R: we take this to mean a GUI or other
application that has the ability to submit commands to R and perhaps to receive results
back (not necessarily in a text format). There are other routes besides those described here,
for example the package Rserve (from CRAN, see also http://www.rforge.net/Rserve/)
and connections to Java in ‘SJava’ (see http://www.omegahat.org/RSJava/ and ‘JRI’,
part of the rJava package on CRAN).

8.1 Embedding R under Unix-alikes

R can be built as a shared library1 if configured with ‘--enable-R-shlib’. This shared
library can be used to run R from alternative front-end programs. We will assume this has
been done for the rest of this section. In addition, from R 2.7.0 it can be built as a static
library if configured with ‘--enable-R-static-lib’, and this can be used in a very similar
way.

The command-line R front-end, ‘R_HOME/bin/exec/R’ is one such example, and the
unbundled GNOME (see package gnomeGUI on CRAN) and MacOS X consoles are others.
The source for ‘R_HOME/bin/exec/R’ is in file ‘src/main/Rmain.c’ and is very simple

int Rf_initialize_R(int ac, char **av); /* in ../unix/system.c */
void Rf_mainloop(); /* in main.c */

extern int R_running_as_main_program; /* in ../unix/system.c */

int main(int ac, char **av)
{

R_running_as_main_program = 1;
Rf_initialize_R(ac, av);
Rf_mainloop(); /* does not return */
return 0;

}

indeed, misleadingly simple. Remember that ‘R_HOME/bin/exec/R’ is run from a shell
script ‘R_HOME/bin/R’ which sets up the environment for the executable, and this is used
for

• Setting R_HOME and checking it is valid, as well as the path R_SHARE_DIR and R_DOC_DIR
to the installed ‘share’ and ‘doc’ directory trees. Also setting R_ARCH if needed.

• Setting LD_LIBRARY_PATH to include the directories used in linking R. This
is recorded as the default setting of R_LD_LIBRARY_PATH in the shell script
‘R_HOME/etcR_ARCH/ldpaths’.

• Processing some of the arguments, for example to run R under a debugger and to
launch alternative front-ends to provide GUIs.

The first two of these can be achieved for your front-end by running it via R CMD. So, for
example

1 In the parlance of MacOS X this is a dynamic library, and is the normal way to build R on that platform.

http://www.rforge.net/Rserve/
http://www.omegahat.org/RSJava/

Chapter 8: Linking GUIs and other front-ends to R 126

R CMD /usr/local/lib/R/bin/exec/R
R CMD exec/R

will both work in a standard R installation. (R CMD looks first for executables in
‘R_HOME/bin’.) If you do not want to run your front-end in this way, you need to ensure
that R_HOME is set and LD_LIBRARY_PATH is suitable. (The latter might well be, but modern
Unix/Linux systems do not normally include ‘/usr/local/lib’ (‘/usr/local/lib64’ on
some architectures), and R does look there for system components.)

The other senses in which this example is too simple are that all the internal defaults
are used and that control is handed over to the R main loop. There are a number of small
examples2 in the ‘tests/Embedding’ directory. These make use of Rf_initEmbeddedR in
‘src/main/Rembedded.c’, and essentially use

#include <Rembedded.h>

int main(int ac, char **av)
{

/* do some setup */
Rf_initEmbeddedR(argc, argv);
/* do some more setup */

/* submit some code to R, which is done interactively via
run_Rmainloop();

A possible substitute for a pseudo-console is

R_ReplDLLinit();
while(R_ReplDLLdo1() > 0) {
/* add user actions here if desired */
}

*/
Rf_endEmbeddedR(0);
/* final tidying up after R is shutdown */
return 0;

}

If you don’t want to pass R arguments, you can fake an argv array, for example by

char *argv[]= {"REmbeddedPostgres", "--silent"};
Rf_initEmbeddedR(sizeof(argv)/sizeof(argv[0]), argv);

However, to make a GUI we usually do want to run run_Rmainloop after setting up
various parts of R to talk to our GUI, and arranging for our GUI callbacks to be called
during the R mainloop.

One issue to watch is that on some platforms Rf_initEmbeddedR and Rf_endEmbeddedR
change the settings of the FPU (e.g. to allow errors to be trapped and to set extended
precision registers).

2 but these are not part of the automated test procedures and so little tested.

Chapter 8: Linking GUIs and other front-ends to R 127

The standard code sets up a session temporary directory in the usual way, unless R_
TempDir is set to a non-NULL value before Rf_initEmbeddedR is called. In that case the
value is assumed to contain an existing writable directory (no check is done), and it is not
cleaned up when R is shut down.

Rf_initEmbeddedR sets R to be in interactive mode: you can set R_Interactive (defined
in ‘Rinterface.h’) subsequently to change this.

Note that R expects to be run with the locale category ‘LC_NUMERIC’ set to its default
value of C, and so should not be embedded into an application which changes that.

8.1.1 Compiling against the R library

Suitable flags to compile and link against the R (shared or static) library can be found by

R CMD config --cppflags
R CMD config --ldflags

If R is installed, pkg-config is available and sub-architectures have not been used,
alternatives for a shared R library are

pkg-config --cflags libR
pkg-config --libs libR

and for a static R library

pkg-config --cflags libR
pkg-config --libs --static libR

8.1.2 Setting R callbacks

For Unix-alkes there is a public header file ‘Rinterface.h’ that makes it possible to change
the standard callbacks used by R in a documented way. This defines pointers (if R_
INTERFACE_PTRS is defined)

extern void (*ptr_R_Suicide)(const char *);
extern void (*ptr_R_ShowMessage)(const char *);
extern int (*ptr_R_ReadConsole)(const char *, unsigned char *, int, int);
extern void (*ptr_R_WriteConsole)(const char *, int);
extern void (*ptr_R_WriteConsoleEx)(const char *, int, int);
extern void (*ptr_R_ResetConsole)();
extern void (*ptr_R_FlushConsole)();
extern void (*ptr_R_ClearerrConsole)();
extern void (*ptr_R_Busy)(int);
extern void (*ptr_R_CleanUp)(SA_TYPE, int, int);
extern int (*ptr_R_ShowFiles)(int, const char **, const char **,

const char *, Rboolean, const char *);
extern int (*ptr_R_ChooseFile)(int, char *, int);
extern int (*ptr_R_EditFile)(const char *);
extern void (*ptr_R_loadhistory)(SEXP, SEXP, SEXP, SEXP);
extern void (*ptr_R_savehistory)(SEXP, SEXP, SEXP, SEXP);
extern void (*ptr_R_addhistory)(SEXP, SEXP, SEXP, SEXP);

which allow standard R callbacks to be redirected to your GUI. What these do is generally
documented in the file ‘src/unix/system.txt’.

Chapter 8: Linking GUIs and other front-ends to R 128

[Function]void R_ShowMessage (char *message)
This should display the message, which may have multiple lines: it should be brought
to the user’s attention immediately.

[Function]void R_Busy (int which)
This function invokes actions (such as change of cursor) when R embarks on an
extended computation (which=1) and when such a state terminates (which=0).

[Function]int R_ReadConsole (const char *prompt, unsigned char *buf, int
buflen, int hist)

[Function]void R_WriteConsole (const char *buf, int buflen)
[Function]void R_WriteConsoleEx (const char *buf, int buflen, int otype)
[Function]void R_ResetConsole ()
[Function]void R_FlushConsole ()
[Function]void R_ClearErrConsole ()

These functions interact with a console.
R_ReadConsole prints the given prompt at the console and then does a gets(3)–like
operation, transferring up to buflen characters into the buffer buf. The last two bytes
should be set to ‘"\n\0"’ to preserve sanity. If hist is non-zero, then the line should
be added to any command history which is being maintained. The return value is 0
is no input is available and >0 otherwise.
R_WriteConsoleEx writes the given buffer to the console, otype specifies the output
type (regular output or warning/error). Call to R_WriteConsole(buf, buflen) is
equivalent to R_WriteConsoleEx(buf, buflen, 0). To ensure backward compatibil-
ity of the callbacks, ptr_R_WriteConsoleEx is used only if ptr_R_WriteConsole is
set to NULL. To ensure that stdout() and stderr() connections point to the console,
set the corresponding files to NULL via

R_Outputfile = NULL;
R_Consolefile = NULL;

R_ResetConsole is called when the system is reset after an error. R_FlushConsole is
called to flush any pending output to the system console. R_ClearerrConsole clears
any errors associated with reading from the console.

[Function]int R_ShowFiles (int nfile, const char **file, const char **headers,
const char *wtitle, Rboolean del, const char *pager)

This function is used to display the contents of files.

[Function]int R_ChooseFile (int new, char *buf, int len)
Choose a file and return its name in buf of length len. Return value is 0 for success,
> 0 otherwise.

[Function]int R_EditFile (const char *buf)
Send a file to an editor window.

[Function]SEXP R_loadhistory (SEXP, SEXP, SEXP, SEXP);
[Function]SEXP R_savehistory (SEXP, SEXP, SEXP, SEXP);
[Function]SEXP R_addhistory (SEXP, SEXP, SEXP, SEXP);

.Internal functions for loadhistory, savehistory and timestamp: these are called
after checking the number of arguments.

Chapter 8: Linking GUIs and other front-ends to R 129

If the console has no history mechanism these can be as simple as
SEXP R_loadhistory (SEXP call, SEXP op, SEXP args, SEXP env)
{

errorcall(call, "loadhistory is not implemented");
return R_NilValue;

}
SEXP R_savehistory (SEXP call, SEXP op , SEXP args, SEXP env)
{

errorcall(call, "savehistory is not implemented");
return R_NilValue;

}
SEXP R_addhistory (SEXP call, SEXP op , SEXP args, SEXP env)
{

return R_NilValue;
}

The R_addhistory function should return silently if no history mechanism is present,
as a user may be calling timestamp purely to write the time stamp to the console.

[Function]void R_Suicide (const char *message)
This should abort R as rapidly as possible, displaying the message. A possible imple-
mentation is

void R_Suicide (const char *message)
{

char pp[1024];
snprintf(pp, 1024, "Fatal error: %s\n", s);
R_ShowMessage(pp);
R_CleanUp(SA_SUICIDE, 2, 0);

}

[Function]void R_CleanUp (SA TYPE saveact, int status, int RunLast)
This function invokes any actions which occur at system termination. It needs to be
quite complex:

#include <Rinterface.h>
#include <Rembedded.h> /* for Rf_KillAllDevices */

void R_CleanUp (SA_TYPE saveact, int status, int RunLast)
{

if(saveact == SA_DEFAULT) saveact = SaveAction;
if(saveact == SA_SAVEASK) {

/* ask what to do and set saveact */
}
switch (saveact) {
case SA_SAVE:

if(runLast) R_dot_Last();
if(R_DirtyImage) R_SaveGlobalEnv();
/* save the console history in R_HistoryFile */
break;

Chapter 8: Linking GUIs and other front-ends to R 130

case SA_NOSAVE:
if(runLast) R_dot_Last();
break;

case SA_SUICIDE:
default:

break;
}

R_RunExitFinalizers();
/* clean up after the editor e.g. CleanEd() */

R_CleanTempDir();

/* close all the graphics devices */
if(saveact != SA_SUICIDE) Rf_KillAllDevices();
fpu_setup(FALSE);

exit(status);
}

8.1.3 Registering symbols

An application embedding R needs a different way of registering symbols because it is not
a dynamic library loaded by R as would be the case with a package. Therefore R reserves
a special DllInfo entry for the embedding application such that it can register symbols to
be used with .C, .Call etc. This entry can be obtained by calling getEmbeddingDllInfo,
so a typical use is

DllInfo *info = R_getEmbeddingDllInfo();
R_registerRoutines(info, cMethods, callMethods, NULL, NULL);

The native routines defined by cMethod and callMethods should be present in the
embedding application. See Section 5.4 [Registering native routines], page 72 for details on
registering symbols in general.

8.1.4 Meshing event loops

One of the most difficult issues in interfacing R to a front-end is the handling of event loops,
at least if a single thread is used. R uses events and timers for
• Running X11 windows such as the graphics device and data editor, and interacting

with them (e.g., using locator()).
• Supporting Tcl/Tk events for the tcltk package (for at least the X11 version of Tk).
• Preparing input.
• Timing operations, for example for profiling R code and Sys.sleep().
• Interrupts, where permitted.

Specifically, the Unix command-line version of R runs separate event loops for
• Preparing input at the console command-line, in file ‘src/unix/sys-unix.c’.
• Waiting for a response from a socket in the internal functions underlying FTP and

HTTP transfers in download.file() and for direct socket access, in files ‘src/

Chapter 8: Linking GUIs and other front-ends to R 131

modules/internet/nanoftp.c’, ‘src/modules/internet/nanohttp.c’ and ‘src/
modules/internet/Rsock.c’

• Mouse and window events when displaying the X11-based dataentry window, in file
‘src/modules/X11/dataentry.c’. This is regarded as modal, and no other events are
serviced whilst it is active.

There is a protocol for adding event handlers to the first two types of event loops, using
types and functions declared in the header ‘R_ext/eventloop.h’ and described in comments
in file ‘src/unix/sys-std.c’. It is possible to add (or remove) an input handler for events
on a particular file descriptor, or to set a polling interval (via R_wait_usec) and a function
to be called periodically via R_PolledEvents: the polling mechanism is used by the tcltk
package.

An alternative front-end needs both to make provision for other R events whilst waiting
for input, and to ensure that it is not frozen out during events of the second type. This
is not handled very well in the existing examples. The GNOME front-end can run a own
handler for polled events by setting

extern int (*R_timeout_handler)();
extern long R_timeout_val;

if (R_timeout_handler && R_timeout_val)
gtk_timeout_add(R_timeout_val, R_timeout_handler, NULL);

gtk_main ();

whilst it is waiting for console input. This obviously handles events for Gtk windows (such
as the graphics device in the gtkDevice package), but not X11 events (such as the X11()
device) or for other event handlers that might have been registered with R. It does not
attempt to keep itself alive whilst R is waiting on sockets. The ability to add a polled
handler as R_timeout_handler is used by the tcltk package.

8.1.5 Threading issues

Embedded R is designed to be run in the main thread, and all the testing is done in that
context. There is a potential issue with the stack-checking mechanism where threads are
involved. This uses two variables declared in ‘Rinterface.h’ (if CSTACK_DEFNS is defined)
as

extern uintptr_t R_CStackLimit; /* C stack limit */
extern uintptr_t R_CStackStart; /* Initial stack address */

Note that uintptr_t is a C99 type for which a substitute is defined in R, so your code
needs to define HAVE_UINTPTR_T appropriately.

These will be set3 when Rf_initialize_R is called, to values appropriate to the main
thread. Stack-checking can be disabled by seting R_CStackLimit = (uintptr_t)-1, but it
is better to if possible set appropriate values. (What these are and how to determine them
are OS-specific, and the stack size limit may differ for secondary threads. If you have a
choice of stack size, at least 8Mb is recommended.)

3 at least on platforms where the values are available, that is having getrlimit and on Linux or having
sysctl supporting KERN_USRSTACK, including FreeBSD and MacOS X.

Chapter 8: Linking GUIs and other front-ends to R 132

You may also want to consider how signals are handled: R sets signal handlers for several
signals, including SIGINT, SIGSEGV, SIGPIPE, SIGUSR1 and SIGUSR2, but these can all be
suppressed by setting the variable R_SignalHandlers (declared in ‘Rinterface.h’) to 0.

8.2 Embedding R under Windows

All Windows interfaces to R call entry points in the DLL ‘R.dll’, directly or indirectly.
Simpler applications may find it easier to use the indirect route via (D)COM.

8.2.1 Using (D)COM

(D)COM is a standard Windows mechanism used for communication between Windows
applications. One application (here R) is run as COM server which offers services to clients,
here the front-end calling application. The services are described in a ‘Type Library’ and
are (more or less) language-independent, so the calling application can be written in C or
C++ or Visual Basic or Perl or Python and so on. The ‘D’ in (D)COM refers to ‘distributed’,
as the client and server can be running on different machines.

The basic R distribution is not a (D)COM server, but two addons are currently available
that interface directly with R and provide a (D)COM server:
• There is a (D)COM server called StatConnector written by Thomas Baier available

on CRAN (http://cran.r-project.org/other-software.html) which works with
‘Rproxy.dll’ (in the R distribution) and ‘R.dll’ to support transfer of data to and
from R and remote execution of R commands, as well as embedding of an R graphics
window. The rcom package on CRAN provides a (D)COM server in a running R
session.

• Another (D)COM server, RDCOMServer, is available from http://www.omegahat.org/.
Its philosophy is discussed in http://www.omegahat.org/RDCOMServer/Docs/Paradigm.html
and is very different from the purpose of this section.

8.2.2 Calling R.dll directly

The R DLL is mainly written in C and has _cdecl entry points. Calling it directly will be
tricky except from C code (or C++ with a little care).

There is a version of the Unix interface callng
int Rf_initEmbeddedR(int ac, char **av);
void Rf_endEmbeddedR(int fatal);

which is an entry point in ‘R.dll’. Examples of its use (and a suitable ‘Makefile.win’)
can be found in the ‘tests/Embedding’ directory of the sources. You may need to ensure
that ‘R_HOME/bin’ is in your PATH so the R DLLs are found.

Examples of calling ‘R.dll’ directly are provided in the directory ‘src/gnuwin32/
front-ends’, including a simple command-line front end ‘rtest.c’ whose code is

#define Win32

#include <windows.h>

#include <stdio.h>

#include <Rversion.h>

#define LibExtern __declspec(dllimport) extern

#include <Rembedded.h>

#include <R_ext/RStartup.h>

/* for askok and askyesnocancel */

http://penalty z@ cran.r-project.org/penalty z@ other-software.html
http://www.omegahat.org/
http://www.omegahat.org/RDCOMServer/Docs/Paradigm.html

Chapter 8: Linking GUIs and other front-ends to R 133

#include <graphapp.h>

/* for signal-handling code */

#include <psignal.h>

/* simple input, simple output */

/* This version blocks all events: a real one needs to call ProcessEvents

frequently. See rterm.c and ../system.c for one approach using

a separate thread for input.

*/

int myReadConsole(const char *prompt, char *buf, int len, int addtohistory)

{

fputs(prompt, stdout);

fflush(stdout);

if(fgets(buf, len, stdin)) return 1; else return 0;

}

void myWriteConsole(const char *buf, int len)

{

printf("%s", buf);

}

void myCallBack(void)

{

/* called during i/o, eval, graphics in ProcessEvents */

}

void myBusy(int which)

{

/* set a busy cursor ... if which = 1, unset if which = 0 */

}

static void my_onintr(int sig) { UserBreak = 1; }

int main (int argc, char **argv)

{

structRstart rp;

Rstart Rp = &rp;

char Rversion[25], *RHome;

sprintf(Rversion, "%s.%s", R_MAJOR, R_MINOR);

if(strcmp(getDLLVersion(), Rversion) != 0) {

fprintf(stderr, "Error: R.DLL version does not match\n");

exit(1);

}

R_setStartTime();

R_DefParams(Rp);

if((RHome = get_R_HOME()) == NULL) {

fprintf(stderr, "R_HOME must be set in the environment or Registry\n");

exit(1);

}

Rp->rhome = RHome;

Rp->home = getRUser();

Rp->CharacterMode = LinkDLL;

Rp->ReadConsole = myReadConsole;

Rp->WriteConsole = myWriteConsole;

Chapter 8: Linking GUIs and other front-ends to R 134

Rp->CallBack = myCallBack;

Rp->ShowMessage = askok;

Rp->YesNoCancel = askyesnocancel;

Rp->Busy = myBusy;

Rp->R_Quiet = TRUE; /* Default is FALSE */

Rp->R_Interactive = FALSE; /* Default is TRUE */

Rp->RestoreAction = SA_RESTORE;

Rp->SaveAction = SA_NOSAVE;

R_SetParams(Rp);

R_set_command_line_arguments(argc, argv);

FlushConsoleInputBuffer(GetStdHandle(STD_INPUT_HANDLE));

signal(SIGBREAK, my_onintr);

GA_initapp(0, 0);

readconsolecfg();

setup_Rmainloop();

#ifdef SIMPLE_CASE

run_Rmainloop();

#else

R_ReplDLLinit();

while(R_ReplDLLdo1() > 0) {

/* add user actions here if desired */

}

/* only get here on EOF (not q()) */

#endif

Rf_endEmbeddedR(0);

return 0;

}

The ideas are
• Check that the front-end and the linked ‘R.dll’ match – other front-ends may allow a

looser match.
• Find and set the R home directory and the user’s home directory. The former

may be available from the Windows Registry: it will normally be in HKEY_LOCAL_
MACHINE\Software\R-core\R\InstallPath and can be set there by running the
program ‘R_HOME\bin\RSetReg.exe’.

• Define startup conditions and callbacks via the Rstart structure. R_DefParams sets
the defaults, and R_SetParams sets updated values.

• Record the command-line arguments used by R_set_command_line_arguments for use
by the R function commandArgs().

• Set up the signal handler and the basic user interface.
• Run the main R loop, possibly with our actions intermeshed.
• Arrange to clean up.

An underlying theme is the need to keep the GUI ‘alive’, and this has not been done
in this example. The R callback R_ProcessEvents needs to be called frequently to ensure
that Windows events in R windows are handled expeditiously. Conversely, R needs to allow
the GUI code (which is running in the same process) to update itself as needed – two ways
are provided to allow this:
• R_ProcessEvents calls the callback registered by Rp->callback. A version of this is

used to run package Tcl/Tk for tcltk under Windows, for the code is

Chapter 8: Linking GUIs and other front-ends to R 135

void R_ProcessEvents(void)
{

while (peekevent()) doevent(); /* Windows events for GraphApp */
if (UserBreak) { UserBreak = FALSE; onintr(); }
R_CallBackHook();
if(R_tcldo) R_tcldo();

}

• The mainloop can be split up to allow the calling application to take some action
after each line of input has been dealt with: see the alternative code below #ifdef
SIMPLE_CASE.

It may be that no R GraphApp windows need to be considered, although these include
pagers, the windows() graphics device, the R data and script editors and various popups
such as choose.file() and select.list(). It would be possible to replace all of these,
but it seems easier to allow GraphApp to handle most of them.

It is possible to run R in a GUI in a single thread (as ‘RGui.exe’ shows) but it will
normally be easier4 to use multiple threads.

Note that R’s own front ends use a stack size of 10Mb, whereas MinGW executables
default to 2Mb, and Visual C++ ones to 1Mb. The latter stack sizes are too small for a
number of R applications, so general-purpose front-ends should use a larger stack size.

4 An attempt to use only threads in the late 1990s failed to work correctly under Windows 95, the
predominant version of Windows at that time.

Function and variable index 136

Function and variable index

*
*Riconv_open . 118

.

.C . 68

.Call . 80, 91

.External . 80, 92

.First.lib . 7

.Fortran . 68

.Last.lib . 7, 24

.onAttach . 24

.onLoad . 24

.onUnload . 24

.Random.seed . 107

\
\acronym . 44
\alias . 37
\arguments . 39
\author . 39
\bold . 43
\cite . 44
\code . 43
\command . 44
\concept . 47
\cr . 42
\deqn . 45
\describe . 44
\description . 37
\details . 39
\dfn . 44
\dontrun . 40
\dontshow . 40
\dots . 46
\dQuote . 43
\email . 43
\emph . 43
\enc . 47
\enumerate . 44
\env . 44
\eqn . 45
\examples . 40
\file . 43
\format . 41
\itemize . 44
\kbd . 43
\keyword . 40
\ldots . 46
\link . 45
\method . 38
\name . 37
\note . 39

\option . 44
\pkg . 43
\preformatted . 43
\R . 46
\references . 39
\samp . 43
\section . 42
\seealso . 39
\source . 41
\sQuote . 43
\strong . 43
\tabular . 44
\title . 37
\url . 44
\usage . 37
\value . 39
\var . 44

B
bessel_i . 111
bessel_j . 111
bessel_k . 111, 112
bessel_y . 111, 112
beta . 111
BLAS_LIBS . 13
browser . 57

C
Calloc . 106
CAR . 93
CDR . 93
cgmin . 114
choose . 111
CITATION . 9, 33
cPsort . 116

D
debug . 61
debugger . 60
defineVar . 89
digamma . 111
dump.frames . 59
duplicate . 90
dyn.load . 70
dyn.unload . 70

E
exp_rand . 107
expm1 . 112
export . 23

Function and variable index 137

exportClasses . 28
exportMethods . 28
exportPattern . 23

F
FALSE . 114
findInterval . 117
findVar . 88
FLIBS . 13
fmax2 . 112
fmin2 . 112
fprec . 113
Free . 106
fround . 113
fsign . 113
ftrunc . 113

G
gammafn . 111
gctorture . 62
getAttrib . 86
getCharCE . 103
GetRNGstate . 107

H
hsv2rgb . 117

I
imax2 . 112
imin2 . 112
import . 23
importClassesFrom . 28
importFrom . 24
importMethodsFrom . 28
install . 86
iPsort . 116
ISNA . 94, 108
ISNAN . 94, 108

L
LAPACK_LIBS . 13
lbeta . 111
lbfgsb . 114
lchoose . 111
lgamma1p . 112
lgammafn . 111
library.dynam . 7, 71
log1p . 112
log1pmx . 112
logspace_add . 112
logspace_sub . 112

M
M_E . 113
M_PI . 113
mkChar . 88
mkCharCE . 103
mkCharLen . 88
mkCharLenCE . 104

N
NA_REAL . 108
nmmin . 114
norm_rand . 107

O
OBJECTS . 13, 75

P
pentagamma . 111
PKG_CFLAGS . 74
PKG_CPPFLAGS . 74
PKG_CXXFLAGS . 74
PKG_FCFLAGS . 74
PKG_FFLAGS . 74
PKG_LIBS . 75
PKG_OBJCFLAGS . 74
prompt . 40
PROTECT . 82
PROTECT_WITH_INDEX . 83
psigamma . 111
PutRNGstate . 107
pythag . 112

Q
qsort3 . 117
qsort4 . 117

R
R CMD build . 19
R CMD check . 17
R CMD config . 11
R CMD Rd2dvi . 48
R CMD Rd2txt . 48
R CMD Rdconv . 48
R CMD Sd2Rd . 49
R CMD SHLIB . 74
R CMD Stangle . 49
R CMD Sweave . 49
R_addhistory . 128
R_alloc . 106
R_Busy . 128
R_ChooseFile . 128
R_CleanUp . 129

Function and variable index 138

R_ClearErrConsole . 128
R_csort . 116
R_EditFile . 128
R_ExpandFileName . 117
R_FINITE . 108
R_FlushConsole . 128
R_GetCCallable . 74
R_INLINE . 119
R_IsNaN . 108
R_isort . 116
R_LIBRARY_DIR . 12
R_loadhistory . 128
R_max_col . 117
R_NegInf . 108
R_PACKAGE_DIR . 12
R_ParseVector . 101
R_PosInf . 108
R_pow . 112
R_pow_di . 112
R_qsort . 116
R_qsort_I . 116
R_qsort_int . 116
R_qsort_int_I . 116
R_ReadConsole . 128
R_RegisterCCallable . 74
R_registerRoutines . 72
R_ResetConsole . 128
R_rsort . 116
R_savehistory . 128
R_ShowFiles . 128
R_ShowMessage . 128
R_Suicide . 129
R_tmpnam . 117
R_Version . 119
R_WriteConsole . 128
R_WriteConsoleEx . 128
rcont2 . 108
Rdqagi . 115
Rdqags . 115
Realloc . 106
recover . 61
reEnc . 104
REprintf . 108
REPROTECT . 83
REvprintf . 108
revsort . 116
rgb2hsv . 117
Riconv . 118
Riconv_close . 118

Rprintf . 108
Rprof . 50, 53
Rprofmem . 53
rPsort . 116
rsort_with_index . 116
Rvprintf . 108

S
S_alloc . 106
S_realloc . 106
S3method . 24
SAFE_FFLAGS . 13
samin . 115
seed_in . 107
seed_out . 107
setAttrib . 86
setVar . 89
sign . 113
summaryRprof . 53
system . 68
system.time . 68

T
tetragamma . 111
trace . 62
traceback . 58
tracemem . 53
translateChar . 103
translateCharUTF8 . 103
trigamma . 111
TRUE . 114

U
undebug . 62
unif_rand . 107
UNPROTECT . 82
UNPROTECT_PTR . 83
untracemem . 53
useDynLib . 25

V
vmaxget . 106
vmaxset . 106
vmmin . 114

Concept index 139

Concept index

\
\linkS4class . 45

A
Allocating storage . 83
Attributes . 85

B
Bessel functions . 111
Beta function. 111
Building packages . 19

C
C++ code, interfacing . 76
Calling C from FORTRAN and vice versa 109
Checking packages . 17
citation . 9, 33
Classes . 87
cleanup file . 2
configure file . 2
COPYING file . 2
Copying objects . 90
CRAN . 22
CRAN submission . 22
Creating packages . 2
Creating shared objects . 74
Cross-references in documentation 45
cumulative hazard . 110

D
Debugging . 64
DESCRIPTION file . 3
Details of R types . 83
Distribution functions from C. 110
Documentation, writing . 36
Dynamic loading. 70

E
encoding . 48
Error handling from C . 107
Error handling from FORTRAN 107
Evaluating R expressions from C 94
external pointer . 101

F
finalizer . 102
Finding variables . 88

G
Gamma function . 111
Garbage collection . 82
Generic functions . 123

H
handling character data . 88
Handling lists . 87
Handling R objects in C . 80

I
IEEE special values . 94, 108
INDEX file . 6
Indices . 47
Inspecting R objects when debugging. 66
integration . 115
Interfaces to compiled code 68, 91
Interfacing C++ code . 76
Interrupts . 118

L
LICENCE file . 2
LICENSE file . 2
Lists and tables in documentation 44

M
Marking text in documentation 43
Mathematics in documentation 45
Memory allocation from C 105
Memory use . 52
Method functions . 123
Missing values . 94, 108

N
name spaces . 23
Numerical analysis subroutines from C 110
Numerical derivatives . 97

O
Operating system access . 68
optimization . 114

P
Package builder . 19
Package bundles . 9
Package structure . 2

Concept index 140

Package subdirectories . 7
Packages . 2
Parsing R code from C . 100
Platform-specific documentation 47
Printing from C . 108
Printing from FORTRAN 108
Processing Rd format . 48
Profiling . 50, 52, 54

R
Random numbers in C 107, 110
Random numbers in FORTRAN 109
Registering native routines 72

S
Setting variables . 88
Sort functions from C . 116
Submitting to CRAN . 22

Sweave . 21

T
Tidying R code . 50

V
Version information from C 119
vignettes . 21
Visibility . 119

W
weak reference . 102

Z
Zero-finding . 96

	Acknowledgements
	Creating R packages
	Package structure
	The DESCRIPTION file
	The INDEX file
	Package subdirectories
	Package bundles

	Configure and cleanup
	Using Makevars
	Configure example
	Using F95 code

	Checking and building packages
	Checking packages
	Building packages
	Customizing checking and building

	Writing package vignettes
	Submitting a package to CRAN
	Package name spaces
	Specifying imports and exports
	Registering S3 methods
	Load hooks
	An example
	Summary -- converting an existing package
	Name spaces with formal classes and methods

	Writing portable packages
	Encoding issues

	Diagnostic messages
	Internationalization
	C-level messages
	R messages

	CITATION files
	Package types
	Frontend
	Translation

	Services

	Writing R documentation files
	Rd format
	Documenting functions
	Documenting data sets
	Documenting S4 classes and methods
	Documenting packages

	Sectioning
	Marking text
	Lists and tables
	Cross-references
	Mathematics
	Insertions
	Indices
	Platform-specific documentation
	Encoding
	Processing Rd format
	Back-compatibility issues

	Tidying and profiling R code
	Tidying R code
	Profiling R code for speed
	Profiling R code for memory use
	Memory statistics from Rprof
	Tracking memory allocations
	Tracing copies of an object

	Profiling compiled code
	Linux
	sprof
	oprofile

	Solaris
	MacOS X

	Debugging
	Browsing
	Debugging R code
	Using gctorture and valgrind
	Using gctorture
	Using valgrind

	Debugging compiled code
	Finding entry points in dynamically loaded code
	Inspecting R objects when debugging

	System and foreign language interfaces
	Operating system access
	Interface functions .C and .Fortran
	dyn.load and dyn.unload
	Registering native routines
	Creating shared objects
	Interfacing C++ code
	Fortran I/O
	Linking to other packages
	Unix-alikes
	Windows

	Handling R objects in C
	Handling the effects of garbage collection
	Allocating storage
	Details of R types
	Attributes
	Classes
	Handling lists
	Handling character data
	Finding and setting variables
	Some convenience functions
	Named objects and copying

	Interface functions .Call and .External
	Calling .Call
	Calling .External
	Missing and special values

	Evaluating R expressions from C
	Zero-finding
	Calculating numerical derivatives

	Parsing R code from C
	External pointers and weak references
	Vector accessor functions
	Character encoding issues

	The R API: entry points for C code
	Memory allocation
	Transient storage allocation
	User-controlled memory

	Error handling
	Error handling from FORTRAN

	Random number generation
	Missing and IEEE special values
	Printing
	Printing from FORTRAN

	Calling C from FORTRAN and vice versa
	Numerical analysis subroutines
	Distribution functions
	Mathematical functions
	Numerical Utilities
	Mathematical constants

	Optimization
	Integration
	Utility functions
	Re-encoding
	Allowing interrupts
	Platform and version information
	Inlining C functions
	Controlling visibility
	Using these functions in your own C code
	Organization of header files

	Generic functions and methods
	Adding new generics

	Linking GUIs and other front-ends to R
	Embedding R under Unix-alikes
	Compiling against the R library
	Setting R callbacks
	Registering symbols
	Meshing event loops
	Threading issues

	Embedding R under Windows
	Using (D)COM
	Calling R.dll directly

	Function and variable index
	Concept index

