libkpgp

kpgpbaseG.cpp

00001 /*
00002     kpgpbaseG.cpp
00003 
00004     Copyright (C) 2001,2002 the KPGP authors
00005     See file AUTHORS.kpgp for details
00006 
00007     This file is part of KPGP, the KDE PGP/GnuPG support library.
00008 
00009     KPGP is free software; you can redistribute it and/or modify
00010     it under the terms of the GNU General Public License as published by
00011     the Free Software Foundation; either version 2 of the License, or
00012     (at your option) any later version.
00013 
00014     You should have received a copy of the GNU General Public License
00015     along with this program; if not, write to the Free Software Foundation,
00016     Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
00017  */
00018 
00019 #ifdef HAVE_CONFIG_H
00020 #include <config.h>
00021 #endif
00022 
00023 #include "kpgpbase.h"
00024 #include "kpgp.h"
00025 
00026 #include <klocale.h>
00027 #include <kprocess.h>
00028 #include <kdebug.h>
00029 
00030 #include <qtextcodec.h>
00031 
00032 #include <string.h> /* strncmp */
00033 
00034 namespace Kpgp {
00035 
00036 BaseG::BaseG()
00037   : Base()
00038 {
00039   // determine the version of gpg (the method is equivalent to gpgme's method)
00040   runGpg( "--version", 0 );
00041   int eol = output.find( '\n' );
00042   if( eol > 0 ) {
00043     int pos = output.findRev( ' ', eol - 1 );
00044     if( pos != -1 ) {
00045       mVersion = output.mid( pos + 1, eol - pos - 1 );
00046       kdDebug(5100) << "found GnuPG " << mVersion << endl;
00047     }
00048   }
00049 }
00050 
00051 
00052 BaseG::~BaseG()
00053 {
00054 }
00055 
00056 
00057 int
00058 BaseG::encrypt( Block& block, const KeyIDList& recipients )
00059 {
00060   return encsign( block, recipients, 0 );
00061 }
00062 
00063 
00064 int
00065 BaseG::clearsign( Block& block, const char *passphrase )
00066 {
00067   return encsign( block, KeyIDList(), passphrase );
00068 }
00069 
00070 
00071 int
00072 BaseG::encsign( Block& block, const KeyIDList& recipients,
00073                 const char *passphrase )
00074 {
00075   QCString cmd;
00076   int exitStatus = 0;
00077 
00078   if(!recipients.isEmpty() && passphrase != 0)
00079     cmd = "--batch --armor --sign --encrypt --textmode";
00080   else if(!recipients.isEmpty())
00081     cmd = "--batch --armor --encrypt --textmode";
00082   else if(passphrase != 0)
00083     cmd = "--batch --escape-from --clearsign";
00084   else
00085   {
00086     kdDebug(5100) << "kpgpbase: Neither recipients nor passphrase specified." << endl;
00087     return OK;
00088   }
00089 
00090   if(passphrase != 0)
00091     cmd += addUserId();
00092 
00093   if(!recipients.isEmpty())
00094   {
00095     cmd += " --set-filename stdin";
00096 
00097     QCString pgpUser = Module::getKpgp()->user();
00098     if(Module::getKpgp()->encryptToSelf() && !pgpUser.isEmpty()) {
00099       cmd += " -r 0x";
00100       cmd += pgpUser;
00101     }
00102 
00103     for( KeyIDList::ConstIterator it = recipients.begin();
00104          it != recipients.end(); ++it ) {
00105       cmd += " -r 0x";
00106       cmd += (*it);
00107     }
00108   }
00109 
00110   clear();
00111   input = block.text();
00112   exitStatus = runGpg(cmd.data(), passphrase);
00113   if( !output.isEmpty() )
00114     block.setProcessedText( output );
00115   block.setError( error );
00116 
00117   if( exitStatus != 0 )
00118   {
00119     // this error message is later hopefully overwritten
00120     errMsg = i18n( "Unknown error." );
00121     status = ERROR;
00122   }
00123 
00124 #if 0
00125   // #### FIXME: As we check the keys ourselves the following problems
00126   //             shouldn't occur. Therefore I don't handle them for now.
00127   //             IK 01/2002
00128   if(!recipients.isEmpty())
00129   {
00130     int index = 0;
00131     bool bad = FALSE;
00132     unsigned int num = 0;
00133     QCString badkeys = "";
00134     // Examples:
00135     // gpg: 0x12345678: skipped: public key not found
00136     // gpg: 0x12345678: skipped: public key is disabled
00137     // gpg: 0x12345678: skipped: unusable public key
00138     // (expired or revoked key)
00139     // gpg: 23456789: no info to calculate a trust probability
00140     // (untrusted key, 23456789 is the key Id of the encryption sub key)
00141     while((index = error.find("skipped: ",index)) != -1)
00142     {
00143       bad = TRUE;
00144       index = error.find('\'',index);
00145       int index2 = error.find('\'',index+1);
00146       badkeys += error.mid(index, index2-index+1) + ", ";
00147       num++;
00148     }
00149     if(bad)
00150     {
00151       badkeys.stripWhiteSpace();
00152       if(num == recipients.count())
00153         errMsg = i18n("Could not find public keys matching the userid(s)\n"
00154                       "%1;\n"
00155                       "the message is not encrypted.")
00156                      .arg( badkeys.data() );
00157       else
00158         errMsg = i18n("Could not find public keys matching the userid(s)\n"
00159                       "%1;\n"
00160                       "these persons will not be able to read the message.")
00161                      .arg( badkeys.data() );
00162       status |= MISSINGKEY;
00163       status |= ERROR;
00164     }
00165   }
00166 #endif
00167   if( passphrase != 0 )
00168   {
00169     // Example 1 (bad passphrase, clearsign only):
00170     // gpg: skipped `0x12345678': bad passphrase
00171     // gpg: [stdin]: clearsign failed: bad passphrase
00172     // Example 2 (bad passphrase, sign & encrypt):
00173     // gpg: skipped `0x12345678': bad passphrase
00174     // gpg: [stdin]: sign+encrypt failed: bad passphrase
00175     // Example 3 (unusable secret key, clearsign only):
00176     // gpg: skipped `0x12345678': unusable secret key
00177     // gpg: [stdin]: clearsign failed: unusable secret key
00178     // Example 4 (unusable secret key, sign & encrypt):
00179     // gpg: skipped `0xAC0EB35D': unusable secret key
00180     // gpg: [stdin]: sign+encrypt failed: unusable secret key
00181     if( error.find("bad passphrase") != -1 )
00182     {
00183       errMsg = i18n("Signing failed because the passphrase is wrong.");
00184       status |= BADPHRASE;
00185       status |= ERR_SIGNING;
00186       status |= ERROR;
00187     }
00188     else if( error.find("unusable secret key") != -1 )
00189     {
00190       errMsg = i18n("Signing failed because your secret key is unusable.");
00191       status |= ERR_SIGNING;
00192       status |= ERROR;
00193     }
00194     else if( !( status & ERROR ) )
00195     {
00196       //kdDebug(5100) << "Base: Good Passphrase!" << endl;
00197       status |= SIGNED;
00198     }
00199   }
00200 
00201   //kdDebug(5100) << "status = " << status << endl;
00202   block.setStatus( status );
00203   return status;
00204 }
00205 
00206 
00207 int
00208 BaseG::decrypt( Block& block, const char *passphrase )
00209 {
00210   int index, index2;
00211   int exitStatus = 0;
00212 
00213   clear();
00214   input = block.text();
00215   exitStatus = runGpg("--batch --decrypt", passphrase);
00216   if( !output.isEmpty() && ( error.find( "gpg: quoted printable" ) == -1 ) )
00217     block.setProcessedText( output );
00218   block.setError( error );
00219 
00220   if(exitStatus == -1) {
00221     errMsg = i18n("Error running gpg");
00222     status = RUN_ERR;
00223     block.setStatus( status );
00224     return status;
00225   }
00226 
00227   // Example 1 (good passphrase, decryption successful):
00228   // gpg: encrypted with 2048-bit ELG-E key, ID 12345678, created 2000-11-11
00229   //       "Foo Bar <foo@bar.xyz>"
00230   //
00231   // Example 2 (bad passphrase):
00232   // gpg: encrypted with 1024-bit RSA key, ID 12345678, created 1991-01-01
00233   //       "Foo Bar <foo@bar.xyz>"
00234   // gpg: public key decryption failed: bad passphrase
00235   // gpg: decryption failed: secret key not available
00236   //
00237   // Example 3 (no secret key available):
00238   // gpg: encrypted with RSA key, ID 12345678
00239   // gpg: decryption failed: secret key not available
00240   //
00241   // Example 4 (good passphrase for second key, decryption successful):
00242   // gpg: encrypted with 2048-bit ELG-E key, ID 12345678, created 2000-01-01
00243   //       "Foo Bar (work) <foo@bar.xyz>"
00244   // gpg: public key decryption failed: bad passphrase
00245   // gpg: encrypted with 2048-bit ELG-E key, ID 23456789, created 2000-02-02
00246   //       "Foo Bar (home) <foo@bar.xyz>"
00247   if( error.find( "gpg: encrypted with" ) != -1 )
00248   {
00249     //kdDebug(5100) << "kpgpbase: message is encrypted" << endl;
00250     status |= ENCRYPTED;
00251     if( error.find( "\ngpg: decryption failed" ) != -1 )
00252     {
00253       if( ( index = error.find( "bad passphrase" ) ) != -1 )
00254       {
00255         if( passphrase != 0 )
00256         {
00257           errMsg = i18n( "Bad passphrase; could not decrypt." );
00258           kdDebug(5100) << "Base: passphrase is bad" << endl;
00259           status |= BADPHRASE;
00260           status |= ERROR;
00261         }
00262         else
00263         {
00264           // Search backwards the user ID of the needed key
00265           index2 = error.findRev('"', index) - 1;
00266           index = error.findRev("      \"", index2) + 7;
00267           // The conversion from UTF8 is necessary because gpg stores and
00268           // prints user IDs in UTF8
00269           block.setRequiredUserId( QString::fromUtf8( error.mid( index, index2 - index + 1 ) ) );
00270           kdDebug(5100) << "Base: key needed is \"" << block.requiredUserId() << "\"!" << endl;
00271         }
00272       }
00273       else if( error.find( "secret key not available" ) != -1 )
00274       {
00275         // no secret key fitting this message
00276         status |= NO_SEC_KEY;
00277         status |= ERROR;
00278         errMsg = i18n("You do not have the secret key needed to decrypt this message.");
00279         kdDebug(5100) << "Base: no secret key for this message" << endl;
00280       }
00281     }
00282     // check for persons
00283 #if 0
00284     // ##### FIXME: This information is anyway currently not used
00285     //       I'll change it to always determine the recipients.
00286     index = error.find("can only be read by:");
00287     if(index != -1)
00288     {
00289       index = error.find('\n',index);
00290       int end = error.find("\n\n",index);
00291 
00292       mRecipients.clear();
00293       while( (index2 = error.find('\n',index+1)) <= end )
00294       {
00295     QCString item = error.mid(index+1,index2-index-1);
00296     item.stripWhiteSpace();
00297     mRecipients.append(item);
00298     index = index2;
00299       }
00300     }
00301 #endif
00302   }
00303 
00304   // Example 1 (unknown signature key):
00305   // gpg: Signature made Wed 02 Jan 2002 11:26:33 AM CET using DSA key ID 2E250C64
00306   // gpg: Can't check signature: public key not found
00307   if((index = error.find("Signature made")) != -1)
00308   {
00309     //kdDebug(5100) << "Base: message is signed" << endl;
00310     status |= SIGNED;
00311     // get signature date and signature key ID
00312     // Example: Signature made Sun 06 May 2001 03:49:27 PM CEST using DSA key ID 12345678
00313     index2 = error.find("using", index+15);
00314     block.setSignatureDate( error.mid(index+15, index2-(index+15)-1) );
00315     kdDebug(5100) << "Message was signed on '" << block.signatureDate() << "'\n";
00316     index2 = error.find("key ID ", index2) + 7;
00317     block.setSignatureKeyId( error.mid(index2,8) );
00318     kdDebug(5100) << "Message was signed with key '" << block.signatureKeyId() << "'\n";
00319     // move index to start of next line
00320     index = error.find('\n', index2)+1;
00321 
00322     if ((error.find("Key matching expected", index) != -1)
00323         || (error.find("Can't check signature", index) != -1))
00324     {
00325       status |= UNKNOWN_SIG;
00326       status |= GOODSIG;
00327       block.setSignatureUserId( QString::null );
00328     }
00329     else if( error.find("Good signature", index) != -1 )
00330     {
00331       status |= GOODSIG;
00332       // get the primary user ID of the signer
00333       index = error.find('"',index);
00334       index2 = error.find('\n',index+1);
00335       index2 = error.findRev('"', index2-1);
00336       block.setSignatureUserId( error.mid( index+1, index2-index-1 ) );
00337     }
00338     else if( error.find("BAD signature", index) != -1 )
00339     {
00340       //kdDebug(5100) << "BAD signature" << endl;
00341       status |= ERROR;
00342       // get the primary user ID of the signer
00343       index = error.find('"',index);
00344       index2 = error.find('\n',index+1);
00345       index2 = error.findRev('"', index2-1);
00346       block.setSignatureUserId( error.mid( index+1, index2-index-1 ) );
00347     }
00348     else if( error.find("Can't find the right public key", index) != -1 )
00349     {
00350       // #### fix this hack
00351       // I think this can't happen anymore because if the pubring is missing
00352       // the current GnuPG creates a new empty one.
00353       status |= UNKNOWN_SIG;
00354       status |= GOODSIG; // this is a hack...
00355       block.setSignatureUserId( i18n("??? (file ~/.gnupg/pubring.gpg not found)") );
00356     }
00357     else
00358     {
00359       status |= ERROR;
00360       block.setSignatureUserId( QString::null );
00361     }
00362   }
00363   //kdDebug(5100) << "status = " << status << endl;
00364   block.setStatus( status );
00365   return status;
00366 }
00367 
00368 
00369 Key*
00370 BaseG::readPublicKey( const KeyID& keyID,
00371                       const bool readTrust /* = false */,
00372                       Key* key /* = 0 */ )
00373 {
00374   int exitStatus = 0;
00375 
00376   status = 0;
00377   if( readTrust )
00378     exitStatus = runGpg( "--batch --list-public-keys --with-fingerprint --with-colons --fixed-list-mode 0x" + keyID, 0, true );
00379   else
00380     exitStatus = runGpg( "--batch --list-public-keys --with-fingerprint --with-colons --fixed-list-mode --no-expensive-trust-checks 0x" + keyID, 0, true );
00381 
00382   if(exitStatus != 0) {
00383     status = ERROR;
00384     return 0;
00385   }
00386 
00387   int offset;
00388   // search start of key data
00389   if( !strncmp( output.data(), "pub:", 4 ) )
00390     offset = 0;
00391   else {
00392     offset = output.find( "\npub:" );
00393     if( offset == -1 )
00394       return 0;
00395     else
00396       offset++;
00397   }
00398 
00399   key = parseKeyData( output, offset, key );
00400 
00401   return key;
00402 }
00403 
00404 
00405 KeyList
00406 BaseG::publicKeys( const QStringList & patterns )
00407 {
00408   int exitStatus = 0;
00409 
00410   // the option --with-colons should be used for interprocess communication
00411   // with gpg (according to Werner Koch)
00412   QCString cmd = "--batch --list-public-keys --with-fingerprint --with-colons "
00413                  "--fixed-list-mode --no-expensive-trust-checks";
00414   for ( QStringList::ConstIterator it = patterns.begin();
00415         it != patterns.end(); ++it ) {
00416     cmd += " ";
00417     cmd += KProcess::quote( *it ).local8Bit();
00418   }
00419   status = 0;
00420   exitStatus = runGpg( cmd, 0, true );
00421 
00422   if(exitStatus != 0) {
00423     status = ERROR;
00424     return KeyList();
00425   }
00426 
00427   // now we need to parse the output for public keys
00428   KeyList publicKeys = parseKeyList(output, false);
00429 
00430   // sort the list of public keys
00431   publicKeys.sort();
00432 
00433   return publicKeys;
00434 }
00435 
00436 
00437 KeyList
00438 BaseG::secretKeys( const QStringList & patterns )
00439 {
00440   int exitStatus = 0;
00441 
00442   // the option --with-colons should be used for interprocess communication
00443   // with gpg (according to Werner Koch)
00444   QCString cmd = "--batch --list-secret-keys --with-fingerprint --with-colons "
00445                  "--fixed-list-mode";
00446   for ( QStringList::ConstIterator it = patterns.begin();
00447         it != patterns.end(); ++it ) {
00448     cmd += " ";
00449     cmd += KProcess::quote( *it ).local8Bit();
00450   }
00451   status = 0;
00452   exitStatus = runGpg( cmd, 0, true );
00453 
00454   if(exitStatus != 0) {
00455     status = ERROR;
00456     return KeyList();
00457   }
00458 
00459   // now we need to parse the output for secret keys
00460   KeyList secretKeys = parseKeyList(output, true);
00461 
00462   // sort the list of secret keys
00463   secretKeys.sort();
00464 
00465   return secretKeys;
00466 }
00467 
00468 
00469 int
00470 BaseG::signKey(const KeyID& keyID, const char *passphrase)
00471 {
00472   QCString cmd;
00473   int exitStatus = 0;
00474 
00475   cmd = "--batch";
00476   cmd += addUserId();
00477   cmd += " --sign-key 0x";
00478   cmd += keyID;
00479 
00480   status = 0;
00481   exitStatus = runGpg(cmd.data(), passphrase);
00482 
00483   if (exitStatus != 0)
00484     status = ERROR;
00485 
00486   return status;
00487 }
00488 
00489 
00490 QCString
00491 BaseG::getAsciiPublicKey(const KeyID& keyID)
00492 {
00493   int exitStatus = 0;
00494 
00495   if (keyID.isEmpty())
00496     return QCString();
00497 
00498   status = 0;
00499   exitStatus = runGpg("--batch --armor --export 0x" + keyID, 0, true);
00500 
00501   if(exitStatus != 0) {
00502     status = ERROR;
00503     return QCString();
00504   }
00505 
00506   return output;
00507 }
00508 
00509 
00510 Key*
00511 BaseG::parseKeyData( const QCString& output, int& offset, Key* key /* = 0 */ )
00512 // This function parses the data for a single key which is output by GnuPG
00513 // with the following command line arguments:
00514 //   --batch --list-public-keys --with-fingerprint --with-colons
00515 //   --fixed-list-mode [--no-expensive-trust-checks]
00516 // It expects the key data to start at offset and returns the start of
00517 // the next key's data in offset.
00518 // Subkeys are currently ignored.
00519 {
00520   int index = offset;
00521 
00522   if(    ( strncmp( output.data() + offset, "pub:", 4 ) != 0 )
00523       && ( strncmp( output.data() + offset, "sec:", 4 ) != 0 ) ) {
00524     return 0;
00525   }
00526 
00527   if( key == 0 )
00528     key = new Key();
00529   else
00530     key->clear();
00531 
00532   QCString keyID;
00533   bool firstKey = true;
00534 
00535   while( true )
00536   {
00537     int eol;
00538     // search the end of the current line
00539     if( ( eol = output.find( '\n', index ) ) == -1 )
00540       break;
00541 
00542     bool bIsPublicKey = false;
00543     if( ( bIsPublicKey = !strncmp( output.data() + index, "pub:", 4 ) )
00544         || !strncmp( output.data() + index, "sec:", 4 ) )
00545     { // line contains primary key data
00546       // Example: pub:f:1024:17:63CB691DFAEBD5FC:860451781::379:-:::scESC:
00547 
00548       // abort parsing if we found the start of the next key
00549       if( !firstKey )
00550         break;
00551       firstKey = false;
00552 
00553       key->setSecret( !bIsPublicKey );
00554 
00555       Subkey *subkey = new Subkey( QCString(), !bIsPublicKey );
00556 
00557       int pos = index + 4; // begin of 2nd field
00558       int pos2 = output.find( ':', pos );
00559       for( int field = 2; field <= 12; field++ )
00560       {
00561         switch( field )
00562         {
00563         case 2: // the calculated trust
00564           if( pos2 > pos )
00565           {
00566             switch( output[pos] )
00567             {
00568             case 'o': // unknown (this key is new to the system)
00569               break;
00570             case 'i': // the key is invalid, e.g. missing self-signature
00571               subkey->setInvalid( true );
00572               key->setInvalid( true );
00573               break;
00574             case 'd': // the key has been disabled
00575               subkey->setDisabled( true );
00576               key->setDisabled( true );
00577               break;
00578             case 'r': // the key has been revoked
00579               subkey->setRevoked( true );
00580               key->setRevoked( true );
00581               break;
00582             case 'e': // the key has expired
00583               subkey->setExpired( true );
00584               key->setExpired( true );
00585               break;
00586             case '-': // undefined (no path leads to the key)
00587             case 'q': // undefined (no trusted path leads to the key)
00588             case 'n': // don't trust this key at all
00589             case 'm': // the key is marginally trusted
00590             case 'f': // the key is fully trusted
00591             case 'u': // the key is ultimately trusted (secret key available)
00592               // These values are ignored since we determine the key trust
00593               // from the trust values of the user ids.
00594               break;
00595             default:
00596               kdDebug(5100) << "Unknown trust value\n";
00597             }
00598           }
00599           break;
00600         case 3: // length of key in bits
00601           if( pos2 > pos )
00602             subkey->setKeyLength( output.mid( pos, pos2-pos ).toUInt() );
00603           break;
00604         case 4: //  the key algorithm
00605           if( pos2 > pos )
00606             subkey->setKeyAlgorithm( output.mid( pos, pos2-pos ).toUInt() );
00607           break;
00608         case 5: // the long key id
00609           keyID = output.mid( pos, pos2-pos );
00610           subkey->setKeyID( keyID );
00611           break;
00612         case 6: // the creation date (in seconds since 1970-01-01 00:00:00)
00613           if( pos2 > pos )
00614             subkey->setCreationDate( output.mid( pos, pos2-pos ).toLong() );
00615           break;
00616         case 7: // the expiration date (in seconds since 1970-01-01 00:00:00)
00617           if( pos2 > pos )
00618             subkey->setExpirationDate( output.mid( pos, pos2-pos ).toLong() );
00619           else
00620             subkey->setExpirationDate( -1 ); // key expires never
00621           break;
00622         case 8: // local ID (ignored)
00623         case 9: // Ownertrust (ignored for now)
00624         case 10: // User-ID (always empty in --fixed-list-mode)
00625         case 11: // signature class (always empty except for key signatures)
00626           break;
00627         case 12: // key capabilities
00628           for( int i=pos; i<pos2; i++ )
00629             switch( output[i] )
00630             {
00631             case 'e':
00632               subkey->setCanEncrypt( true );
00633               break;
00634             case 's':
00635               subkey->setCanSign( true );
00636               break;
00637             case 'c':
00638               subkey->setCanCertify( true );
00639               break;
00640             case 'E':
00641               key->setCanEncrypt( true );
00642               break;
00643             case 'S':
00644               key->setCanSign( true );
00645               break;
00646             case 'C':
00647               key->setCanCertify( true );
00648               break;
00649             default:
00650               kdDebug(5100) << "Unknown key capability\n";
00651             }
00652           break;
00653         }
00654         pos = pos2 + 1;
00655         pos2 = output.find( ':', pos );
00656       }
00657       key->addSubkey( subkey );
00658     }
00659     else if( !strncmp( output.data() + index, "uid:", 4 ) )
00660     { // line contains a user id
00661       // Example: uid:f::::::::Philip R. Zimmermann <prz@pgp.com>:
00662 
00663       UserID *userID = new UserID( "" );
00664 
00665       int pos = index + 4; // begin of 2nd field
00666       int pos2 = output.find( ':', pos );
00667       for( int field=2; field <= 10; field++ )
00668       {
00669         switch( field )
00670         {
00671         case 2: // the calculated trust
00672           if( pos2 > pos )
00673           {
00674             switch( output[pos] )
00675             {
00676             case 'i': // the user id is invalid, e.g. missing self-signature
00677               userID->setInvalid( true );
00678               break;
00679             case 'r': // the user id has been revoked
00680               userID->setRevoked( true );
00681               break;
00682             case '-': // undefined (no path leads to the key)
00683             case 'q': // undefined (no trusted path leads to the key)
00684               userID->setValidity( KPGP_VALIDITY_UNDEFINED );
00685               break;
00686             case 'n': // don't trust this key at all
00687               userID->setValidity( KPGP_VALIDITY_NEVER );
00688               break;
00689             case 'm': // the key is marginally trusted
00690               userID->setValidity( KPGP_VALIDITY_MARGINAL );
00691               break;
00692             case 'f': // the key is fully trusted
00693               userID->setValidity( KPGP_VALIDITY_FULL );
00694               break;
00695             case 'u': // the key is ultimately trusted (secret key available)
00696               userID->setValidity( KPGP_VALIDITY_ULTIMATE );
00697               break;
00698             default:
00699               kdDebug(5100) << "Unknown trust value\n";
00700             }
00701           }
00702           break;
00703         case 3: // these fields are empty
00704         case 4:
00705         case 5:
00706         case 6:
00707         case 7:
00708         case 8:
00709         case 9:
00710           break;
00711         case 10: // User-ID
00712           QCString uid = output.mid( pos, pos2-pos );
00713           // replace "\xXX" with the corresponding character;
00714           // other escaped characters, i.e. \n, \r etc., are ignored
00715           // because they shouldn't appear in user IDs
00716           for ( int idx = 0 ; (idx = uid.find( "\\x", idx )) >= 0 ; ++idx ) {
00717             char str[2] = "x";
00718             str[0] = (char) QString( uid.mid( idx + 2, 2 ) ).toShort( 0, 16 );
00719             uid.replace( idx, 4, str );
00720           }
00721           QString uidString = QString::fromUtf8( uid.data() );
00722           // check whether uid was utf-8 encoded
00723           bool isUtf8 = true;
00724           for ( unsigned int i = 0; i + 1 < uidString.length(); ++i ) {
00725             if ( uidString[i].unicode() == 0xdbff &&
00726                  uidString[i+1].row() == 0xde ) {
00727               // we found a non-Unicode character (see QString::fromUtf8())
00728               isUtf8 = false;
00729               break;
00730             }
00731           }
00732           if( !isUtf8 ) {
00733             // The user id isn't utf-8 encoded. It was most likely
00734             // created with PGP which either used latin1 or koi8-r.
00735             kdDebug(5100) << "User Id '" << uid
00736                           << "' doesn't seem to be utf-8 encoded." << endl;
00737 
00738             // We determine the ratio between non-ASCII and ASCII chars.
00739             // A koi8-r user id should have lots of non-ASCII chars.
00740             int nonAsciiCount = 0, asciiCount = 0;
00741 
00742             // We only look at the first part of the user id (i. e. everything
00743             // before the email address resp. before a comment)
00744             for( signed char* ch = (signed char*)uid.data();
00745                  *ch && ( *ch != '(' ) && ( *ch != '<' );
00746                  ++ch ) {
00747               if( ( ( *ch >= 'A' ) && ( *ch <= 'Z' ) )
00748                   || ( ( *ch >= 'a' ) && ( *ch <= 'z' ) ) )
00749                 ++asciiCount;
00750               else if( *ch < 0 )
00751                 ++nonAsciiCount;
00752             }
00753             kdDebug(5100) << "ascii-nonAscii ratio : " << asciiCount
00754                           << ":" << nonAsciiCount << endl;
00755             if( nonAsciiCount > asciiCount ) {
00756               // assume koi8-r encoding
00757               kdDebug(5100) << "Assume koi8-r encoding." << endl;
00758               QTextCodec *codec = QTextCodec::codecForName("KOI8-R");
00759               uidString = codec->toUnicode( uid.data() );
00760               // check the case of the first two characters to find out
00761               // whether the user id is probably CP1251 encoded (for some
00762               // reason in CP1251 the lower case characters have smaller
00763               // codes than the upper case characters, so if the first char
00764               // of the koi8-r decoded user id is lower case and the second
00765               // char is upper case then it's likely that the user id is
00766               // CP1251 encoded)
00767               if( ( uidString.length() >= 2 )
00768                   && ( uidString[0].lower() == uidString[0] )
00769                   && ( uidString[1].upper() == uidString[1] ) ) {
00770                 // koi8-r decoded user id has inverted case, so assume
00771                 // CP1251 encoding
00772                 kdDebug(5100) << "No, it doesn't seem to be koi8-r. "
00773                                  "Use CP 1251 instead." << endl;
00774                 QTextCodec *codec = QTextCodec::codecForName("CP1251");
00775                 uidString = codec->toUnicode( uid.data() );
00776               }
00777             }
00778             else {
00779               // assume latin1 encoding
00780               kdDebug(5100) << "Assume latin1 encoding." << endl;
00781               uidString = QString::fromLatin1( uid.data() );
00782             }
00783           }
00784           userID->setText( uidString );
00785           break;
00786         }
00787         pos = pos2 + 1;
00788         pos2 = output.find( ':', pos );
00789       }
00790 
00791       // user IDs are printed in UTF-8 by gpg (if one uses --with-colons)
00792       key->addUserID( userID );
00793     }
00794     else if( !strncmp( output.data() + index, "fpr:", 4 ) )
00795     { // line contains a fingerprint
00796       // Example: fpr:::::::::17AFBAAF21064E513F037E6E63CB691DFAEBD5FC:
00797 
00798       if (key == 0) // invalid key data
00799     break;
00800 
00801       // search the fingerprint (it's in the 10th field)
00802       int pos = index + 4;
00803       for( int i = 0; i < 8; i++ )
00804         pos = output.find( ':', pos ) + 1;
00805       int pos2 = output.find( ':', pos );
00806 
00807       key->setFingerprint( keyID, output.mid( pos, pos2-pos ) );
00808     }
00809     index = eol + 1;
00810   }
00811 
00812   //kdDebug(5100) << "finished parsing key data\n";
00813 
00814   offset = index;
00815 
00816   return key;
00817 }
00818 
00819 
00820 KeyList
00821 BaseG::parseKeyList( const QCString& output, bool secretKeys )
00822 {
00823   KeyList keys;
00824   Key *key = 0;
00825   int offset;
00826 
00827   // search start of key data
00828   if(    !strncmp( output.data(), "pub:", 4 )
00829       || !strncmp( output.data(), "sec:", 4 ) )
00830     offset = 0;
00831   else {
00832     if( secretKeys )
00833       offset = output.find( "\nsec:" );
00834     else
00835       offset = output.find( "\npub:" );
00836     if( offset == -1 )
00837       return keys;
00838     else
00839       offset++;
00840   }
00841 
00842   do {
00843     key = parseKeyData( output, offset );
00844     if( key != 0 )
00845       keys.append( key );
00846   }
00847   while( key != 0 );
00848 
00849   //kdDebug(5100) << "finished parsing keys" << endl;
00850 
00851   return keys;
00852 }
00853 
00854 
00855 } // namespace Kpgp
KDE Home | KDE Accessibility Home | Description of Access Keys