PQLY
MASS

GNU polyxmass
User Manual

(Version 0.9.0)

This User Manual is distributed
in HTML and PDF forms at http://www.polyxmass.org

Filippo Ruscont, PhD
Chargé de recherches au CNRS

CENTRE NATIONAL DE
LA RECHERCHE SCIENTIFIQUE

UMR CNRS 5153 - UR INSERM 565 - USM MNHN 0503
Muséum national d’Histoire naturelle
43, rue Cuvier
F-75231 Paris CEDEX 05
France

http://www.polyxmass.org/polyxmass-common-data-doc/userman/html
http://www.polyxmass.org/polyxmass-common-data-doc/userman/pdf/polyxmass.pdf
http://www.polyxmass.org

ii

GNU polyxmass User Manual
Copyright (C) 2001, 2002, 2003, 2004, 2005 by Filippo RUSCONI

http://www.polyxmass.org

This documentation and all its accompanying files are part of the GNU polyxmass project. They
are software and are an integral part of the software they document.

The GNU polyxmass project is an official GNU project package (see www.gnu.org) released
—in its entirety— under the GNU General Public License and was started at the Centre National
de la Recherche Scientifique (FRANCE), that granted me the formal authorization to publish it
under this Free Software License.

This software is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

A copy of the license is included in the appendix entitled “GNU General Public License”.

This software is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this software;
if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-
1301, USA.

For more details see the file COPYING in the GNU polyxmass distribution files.

Revision History
% june 2006: addition of a section about importing a sequence from a raw text file.

% april 2006: addition of a fragmentation specification example for the “dna” polymer
chemistry definition that clearly illustrates the benefits of using the fragmentation rules
(“a-B” fragmentation specification).

* december 2005: minor corrections and addition of the Find/Replace section in the
polyxedit chapter.

% october 2005: update the address of the Free Software Foundation wherever needed.

% august-september 2005: many changes in the doc package so that the LaTeX source
can be almost automagically translated to HI'ML using the tex4ht package.

% july 2005: updated the polyxedit chapter about how invalid characters in clipboard-
imported sequences can be “purified-out”. Also switched the licence from the GFDL
to the GPL.

% june 2005: update of the manual to document the window management features and
the exporting of results reports. Also made adjustments to the Debian installation part
due to GNU polyxmass being now part of Debian GNU/Linux.

* 120 of february, 2005: update the Fink installation paragraph according to a document
that was communicated by D* Mark Tracy.

* 24" of january, 2005: updated the documentation to reflect the addition of the m/z
ratio calculations feature. Two chapters were affected: the one for polyxcalc and the
one for polyxedit.

iii

* 7' of december, 2004: updated the documentation to reflect additions in the soft-
ware. Namely, the calculations of net electrical charges beared by polymers, and the
isoelectric point calculations.

% october the 23" 2004, updated the documentation with details about the way to
produce atom/polymer chemistry definition packages and customization, as the scripts
initially set up in the GNU polyxmass software package were removed.

% october 2004, updated the documentation with the new contents of the sounds.dic
file and the renaming of monomer-modif.dic in monicons.dic. Also added a section
about self-speaking polymer sequences in the polyxedit chapter.

* september 2004, changed the whole documentation due to a big refactoring of the whole
GNU polyxmass software suite.

* february 2004, added a section on the debian package use. Mentioned the fact that
the configuration schema changed, for the configuration files of the different modules
go now in /usr/share/polyxmass.d.

* november 2003, added a number of descriptions and made substantial modifications to
the polyxedit chapter, in particular pertaining to the annotation system (improved
heavily recently) and to the user feedback that is given in the polymer sequence editor
when the user points monomers with the mouse cursor.

* october 2003, additions to the polyxedit chapter to describe the annotation system.
Also added a small section on the creation of brand new polymer sequences, as this
was not described before.

* august 2003, corrections here and there; modified the polyxcalc chapter to reflect the
changes in the graphical user interface and the chemical pad’s layout configuration file.
Corrected a doc bug about Andreas Fink leading the Fink project (which is false);

* july 2003, big work on the polyxmassdata chapter that describes the GNU polyxmass
file-system hierarchy. Also added some notes on the GNU polyxmass installation
on the Mac OS X system (thanks Mark Tracy for these notes);

% july 2003, continued working on the polyxedit module’s chapter. Removed any propri-
etary font embedding. Chapter and Section titles now are typeset using freely available
fonts (Palatino).

% june 2003, started a major overhaul of the document as the GNU polyxmass software
program was entirely rewritten during the last numerous months. The organization of
the document will be modified so that the document reflects better the new modularity
of the GNU polyxmass software suite.

* july 2002, added the section on the molecular calculator (polyxcalc).

* july 2002, changed author’s address from “University of Bordeaux” to “Present address:
Muséum national d’Histoire naturelle” in Paris as I have now moved to the Laboratoire
de biophysique.

% july 2002, back to the Computer Modern set of fonts in the text of the manual. pdflatex
still best way to get to a nice pdf file.

* july 2002, added a description of the find/replace procedures.

*

july 2002, made all the big pictures again better managing their size. The overall size
of the document has fallen to 2.2 Mb, while it was of more than 5 Mb.

* april 2002, added a description of how to set some values to customize the program in
the resources.tex file. New screen dumps allow to describe the process easily.

% april 2002, moved general-options.tex to resources.tex.
% april 2002, changes related to the fact that the packages are no more relocatable.

% april 2002, changes related to the fact that the directory into which the GNU polyxmass
program is installed is from now on polyxmass and not polyxmass. So some macros
were edited in order to produce the correct typographical results. The pxm-macros.tex
file is not dynamically regenerated from a pxm-macros.tex.in file upon autotools pro-
cessing. That allows a very close correlation between the version of the software package
and the version elements’ rendering throughout all the text.

% april 2002, updated the chapter on the GNU polyxmass’ file-system standard to
reflect the changes in the program workings (the fact that the ressource files are now
in a hidden directory in the user’s home directory).

% april 2002, added a detailed description, in the options’ configuration chapter, of each
option available.

% april 2002, added a new chapter on the configuration of the options: file general-
options.tex.

% end of march 2002, added a section on the chemical bridge support.

* march 2002, moved file name “config-data.tex” to “file-system-config.tex” and corre-
sponding chapter title to reflect the real configuration issue that is dealt with in this
chapter and to differentiate this configuration issue with the polymer chemistry “con-
figuration” or “definition”.

* march 2002, added the description of the graphical configuration of the GNU polyxmass
file-system. Updated relevant parts after the monomer.dic file was removed from the
configuration files, and its contents are moved to polymer.dic.

* february 2002, added a section on mass searching, as I have coded it these last days.

* february 2002, chopped polyxmass.tex into chapter parts. This is to allow easily pro-
ducing chapters one apart from the other.

% february 2002, added the PDF thumbnail support with the wonderful package from
Heiko Oberdiek (thumbpdf).

* february 2002, changed the organization of the GNU polyxmass-specific chapters
into one single chapter, with as many sections as needed to describe all aspects of
GNU polyxmass’ operation;

% january 2002, added the “GNU polyxmass’ Sequence Editor” chapter;

* january 2002, added the “Installing From The rpm Source Package” section for the sake
of completeness;

* january 2002, started writing the little (but tough) chapter on the GNU polyxmass’
configuration data hierarchy scheme;

% january 2002, a wealth of corrections after careful reading of the last version while in
Christmas holidays in Viterbo (near Rome);

* december 2001, added section on UNIX history. .. from document by David A. Wheeler:
Secure Programming for GNU/Linuz and UNIX HOWTO;

* november 2001, switched from DocBook SGML format to INTEX format

% october 2001, initial writing, DocBook SGML format

vi

vii

To MARIA CECILIA,

To all the admirable people acting in the “Free Software Movement”
for a better and cleaner computing world,

To all the readers who helped me with this manual. . .

viii

Contents

1 Preface
UNIX and GNU/Linux Histories
Typographical conventions 0L Lo
Program Availability, Technicalities
Organization Of This Manual
GNU polyxmass’ Licensing Philosophy
Contacting The Author

2 Installation Overview
Installing From The tar.gz Sources
Installing From The deb Binary Package
Installing From The rpm Binary Package
Installation On A Mac OS X System With Fink
SUummary e e e e e

3 Basics in Polymer Chemistry
Polymers? Where? Everywhere!
Various Biopolymer Structures
ToSum Up
Polymer Chain Disrupting Chemistry

4 Basics in Mass Spectrometry
Ton Production: The Source

5 GNU polyxmass Generalities

General GNU polyxmass Concepts
On Formulae And Chemical Reactions
The GNU polyxmass Framework Data Format
Editing the Data in GNU polyxmass Files
General Polymer Element Naming Policy
Graphical Interface Design L o o
Feedback From GNU polyxmass To The User: The Console Window

Window Management L oo

6 polyxdef
Editing an atom definition oo oo oL
Editing a polymer chemistry definition
Various Identification And Singular Data

ix

SO T N

15
15
16
21
23

33
34
34
35

39
39
41
41
43
43
45
45
47

Various Plural Data
Saving A Polymer Chemistry Definition

7 polyxcalc

polyxcalc Invocation,
polyxcalc Operation: An Easy Task
polyxcalc Contains A m/z Ratio Calculator
polyxcalc Is A Programmable Calculator
polyxcalc Is LogBook-Friendly

8 polyxedit

polyxedit Invocation
polyxedit Operation: In Medias Res
polyxedit The Polymer Sequence Menu
Editing Polymer Sequences
Clipboard-Importing Of Sequences
Importing Of Sequences As Raw Text Files
Sequence Selections: The Various X Mechanisms
Visual Feedback In The Editor
Sequence Annotation: The Various Mechanisms
Chemically Modifying Polymer Sequences
Finding and Replacing Sequence Motifs
Cleavage Of Polymer Sequences
Fragmentation Of Polymer Sequences
Finding Masses In The Results
Searching Masses In The Polymer Sequence
The acido-basic calculations: pH, pl and charges
The m/z Ratio Calculator
The Self-Read Feature Of Polymer Sequences
Results Reporting Lo oo

9 GNU polyxmass-common

Overview Of The Files Installed
Detailed Explanations About Installed Files
Example Of A New Atom Definition
Conclusion e

10 GNU polyxmass Customization

Getting The Substrate Of Our Experiment
Creating A New Polymer Chemistry Definition
Creating A New Atom Definition

The Polymer Chemistry Definition—Atom Definition Dictionary

Enjoying The New Polymer Chemistry Definition

11 Appendices

The “basic” Atom Definition File
The Protein Chemistry Definition File
The acidobasic.xml File
GNU General Public License

CONTENTS

List of Figures

3.1 Peptidic bond formation oL oo
3.2 A protein is a capped residue chain L.
3.3 Phosphodiester bond formation,
3.4 A nucleic acid is a capped nucleotide chain
3.5 Osidic bond formation L oL o
3.6 A saccharidic polymer is a capped osidic residue chain
3.7 Protein cleavage by water and cyanogen bromide
3.8 Protein fragmentation oL oL oo
3.9 DNA fragmentation

5.1 Graphical and text editing of a polymer chemistry definition.
5.2 Identity of polymer sequences Lo
5.3 The console window
5.4 The window management facility

6.1 polyxdef atom definition menu oo
6.2 polyxdef atom definition choosing window
6.3 polyxdef atom definition window
6.4 polyxdef atom syntax-checking window
6.5 polyxdef polymer chemistry definition menu
6.6 polyxdef polymer chemistry definition choosing window
6.7 polyxdef polymer chemistry definition window
6.8 polyxdef chemical modifications definition
6.9 polyxdef cleavages definition Lo oo
6.10 polyxdef fragmentations definition

7.1 Selecting a polymer chemistry definition for use with polyxcalc
7.2 Interface of the polyxcalc module
7.3 The m/z ratio calculator Lo Lo
7.4 Interface of the chemical pad
7.5 The polyxcalc recorder window

8.1 Initializing a new polymer sequence in polyxedit
8.2 An empty polyxedit window Lo
8.3 The window displaying the masses
8.4 Configuring the mass calculation engine
8.5 Multi-character code sequence editing in polyxedit
8.6 Bad code character in polyxedit sequence editor
8.7 Clipboard-imported sequence error-checking

xi

xii

8.8

8.9

8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23
8.24
8.25
8.26
8.27
8.28
8.29
8.30

10.1
10.2
10.3

LIST OF FIGURES

Visual feedback in the polyxedit sequence editor 89
Annotating polymer sequences e e 91
The menu governing actions on note items 92
Annotating monomers in single-modeo 93
Annotating monomers in range-mode 94
Modification of a monomer in a polymer sequence 97
Modification of the left end of a polymer sequence 99
Find/Replace options window Lo Lo 101
Cleavage options window 103
Cleavage-generated oligomers window 104
Cleavage-generated oligomers’ data 105
Cleavage specification data o 105
Fragmentation options window L oL 106
Cleavage-generated oligomers window 107
Finding masses in a set of oligomers 108
Tolerances available in finding masses 109
Finding masses in a set of oligomers 109
Searching masses in a a polymer sequence 110
Results window after searching masses in a a polymer sequence 111
Different pKa values for a number of amino-acids’ chemical groups 113
Acido-basic computations: pKa, pH, pl 118
Polymer Sequence Self-Read Options 120
The reporting options configuration 122
The new polymer chemistry definition 146
Loading the newly installed polymer chemistry definition 148

Loading a “saccharidic” polymer sequence 149

List of Tables

3.1 Comparison of three common biopolymers 22

xiii

xiv LIST OF TABLES

Preface

This manual is about the GNU polyxmass mass spectrometric software suite, a computing
framework that aims at predicting/analyzing mass spectrometric data on (bio)polymers. As
such, this manual is intended for people willing to learn how to install and use this multi-
modular software suite.

Mass spectrometry has gained popularity across the past five years or so. Indeed, devel-
opments in polymer mass spectrometry have made this technique appropriate to accurately
measure masses of polymers as heavy as many hundreds of kDa.

There are a number of utilities —sold by mass spectrometer constructors with their ma-
chines, usually as a marketing “plus”— that allow predicting/analyzing mass spectrometric
data of polymers. These programs are usually different from a constructor to another. Also,
there are as many mass spectrometric data prediction/analysis computer programs as there
are different polymer types. You will get a program for oligonucleotides, another one for pro-
teins, maybe there is one program for saccharides, and so on. Thus, the biochemist/massist,
for example, who happens to work on different biopolymer types will have to learn the use
of a number of different software packages. Also, if the software user does not own a mass
spectrometer, chances are he will need to buy all these software packages.

The GNU polyxmass mass spectrometric computing framework is designed to provide
free solutions to all these problems. And it does this by:

* Allowing ex nihilo polymer chemistry definitions (in the polyxdef module that sits in
the GNU polyxmass program);

* Allowing simple yet powerful mass computations to be made in a mass desktop calcu-
lator that is both polymer chemistry definition-aware and fully programmable (that’s
the polyxcalc module also sitting in the GNU polyxmass program);

* Allowing highly sophisticated editing of polymer sequences on a polymer chemistry
definition-specific basis, along with chemical reaction simulations, finely configured
mass spectrometric computations. .. (all taking place in the polyxedit module that is
the main module of the GNU polyxmass program);

2 CHAPTER 1. PREFACE

% Allowing customization of the way each monomer will show up graphically during the
program operation (in the polyxedit module);

% Allowing polymer sequence editing with immediate visualization of the mass changes
elicited by the editing activity (in the polyxedit module);

* Unlimited number of polymer sequences opened at any given time and of any given
polymer chemistry definition type (in the polyxedit module).

This manual will progressively introduce all these functionalities in a timely and clear
fashion.

UNIX and GNU/Linux Histories

Thanks to the GNU Free Documentation License, I borrowed (and cosmetically modified
it) the material in this section from a remarkable document by David A. Wheeler: Secure
Programming for GNU/Linux and UNIX HOWTO. ! 1 think that it is important to provide
some background to the choice of a development platform when the time comes to document
the software that one has taken so much time to code. ..

UNIX

In 1969-1970, Kenneth Thompson, Dennis Ritchie, and others at AT&T Bell Labs began
developing a small operating system on a little-used PDP-7. The operating system was soon
christened UNIX, a pun on an earlier operating system project called MULTICS. In 1972-
1973 the system was rewritten in the programming language C, an unusual step that was
visionary: due to this decision, UNIX was the first widely-used operating system that could
switch from and outlive its original hardware. Other innovations were added to UNIX as
well, in part due to synergies between Bell Labs and the academic community. In 1979, the
“seventh edition” (V7) version of UNIX was released, the grandfather of all extant UNIX
systems.

After this point, the history of UNIX becomes somewhat convoluted. The academic
community, led by Berkeley, developed a variant called the Berkeley Software Distribution
(BSD), while AT&T continued developing UNIX under the names “System III” and later
“System V7. In the late 1980’s through early 1990’s the “wars” between these two major
strains raged. After many years each variant adopted many of the key features of the other.
Commercially, System V won the “standards wars” (getting most of its interfaces into the
formal standards), and most hardware vendors switched to AT&T’s System V. However,
System V ended up incorporating many BSD innovations, so the resulting system was more
a merger of the two branches. The BSD branch did not die, but instead became widely used
for research, for PC hardware, and for single-purpose servers (e.g., many web sites use a BSD
derivative).

The result was many different versions of UNIX, all based on the original seventh edition.
Most versions of UNIX were proprietary and maintained by their respective hardware vendor,
for example, Sun Solaris is a variant of System V. Three versions of the BSD branch of
UNIX ended up as open source: FreeBSD (concentrating on ease-of-installation for PC-type
hardware), NetBSD (concentrating on many different CPU architectures), and a variant

LGet this paper and others at http://www.dwheeler.com

http://www.dwheeler.com

of NetBSD, OpenBSD (concentrating on security). More general information about UNIX
history can be found at http://www.levenez.com/unix/.

Free Software Foundation

In 1984 Richard Stallman’s Free Software Foundation (FSF) began the GNU project,
a project to create a free version of the UNIX operating system. By free, Stallman meant
software that could be freely used, read, modified, and redistributed. The FSF successfully
built a vast number of useful components, including the GNU compiler collection (gcc),
an impressive text editor (GNU Emacs), and a host of fundamental tools. However, in the
1990’s the FSF was having trouble developing the operating system kernel; without a kernel
the rest of their software would not work.

GNU/Linux

In 1991 Linus Torvalds began developing an operating system kernel, which he named
“Linux”. This kernel could be combined with the FSF material and other components
(in particular some of the BSD components and Massachusetts Institute of Technology’s
(MIT) X Window software) to produce a freely-modifiable and very useful operating sys-
tem. This book will term the kernel itself the “Linux” kernel and an entire combination as
“GNU/Linux”.

In the GNU/Linux community, different organizations have combined the available com-
ponents differently. Each combination is called a “distribution”, and the organizations that
develop distributions are called “distributors”. Common distributions include Red Hat,
Mandrake, SuSE and Debian. There are differences between the various distributions,
but all distributions are based on the same foundation: the Linux kernel and the GNU
glibc libraries. Since both are covered by “copyleft” style licenses, changes to these foun-
dations generally must be made available to all, a unifying force between the GNU/Linux
distributions at their foundation that does not exist between the BSD and AT&T-derived
UNIX systems.

Open Source vs Free Software

Increased interest in software that is freely shared has made it increasingly necessary to define
and explain it. A widely used term is “open source software”. Eric Raymond wrote several
seminal articles examining its various development processes. Another widely-used term is
“free software”, where the “free” is short for “freedom”: the usual explanation is “free speech,
not free beer”. Neither phrase is perfect. The term “free software” is often confused with
programs whose executables are given away at no charge, but whose source code cannot be
viewed, modified, or redistributed. Conversely, the term “open source” is sometimes (ab)used
to mean software whose source code is visible, but for which there are limitations on use,
modification, or redistribution. This book uses the term “open source” for its usual meaning,
that is, software which has its source code freely available for use, viewing, modification,
and redistribution; a more detailed definition is contained in the Open Source Definition.
Information on the definition of free software, and the motivations behind it, can be found
at http://wuw.fsf.org.

Those interested in reading advocacy pieces for open source software and free software
should see http://www.opensource.org and http://www.fsf.org. There are other doc-

http://www.levenez.com/unix/
http://www.fsf.org
http://www.opensource.org
http://www.fsf.org

4 CHAPTER 1. PREFACE

uments in the internet which examine such software, for example, authors have found that
the open source software were noticeably more reliable than proprietary software (using their
measurement technique, which measured resistance to crashing due to random input).

Typographical conventions

Throughout the book the following typographical conventions are used:
* emphasized text is used each time a new term or concept is introduced
% shell-prompt $ shows the prompt at which a command should be entered as non-root
% shell-prompt # shows the prompt at which a command should be entered as root

% this typography applies to commands that the user enters at the shell prompt along with eventual

options
% <P symbolizes pressing the Fnter key.
% this typography applies to an output resulting from entering a command at the shell prompt
% emacs or 1ibglib names of a program or of a library
% GNOME, The Gimp is the name of a generic software (not a specific executable file)
% /usr/local/share, /usr/bin/polyxmass are names of a directory or of a file

% http://www.gnu.org is a URL (Uniform Resource Locator)

Program Availability, Technicalities

GNU polyxmass has been initially developed on a GNU/Linux system (RedHat dis-
tribution versions successively 6.0, 7.0, 7.2, 7.3, 8.0, 9.0) using software from the Free
Software Foundation (FSF?). Since mid-2002, the development is performed on a Debian
GNU/Linux system (http://www.debian.org) which I find the ultimate highly-configurable
easy-to-use distribution on earth.

Developing for GNU/Linux has been utterly exciting and extremely efficient. My warm
thanks do go to all the persons who have engaged themselves (energy and time) in Free Soft-
ware/true Open Source by coding, documenting, reviewing. .. software. The development
was mainly centered around the following programs and utilities:

* GNU software is central to my developing system:

+ GNU Emacs, a text editor that is an environment per se

+ Autotools, an integrated set of programs to make software development easy and
portable. Includes Autoconf, Automake and others. ..
(http://www.gnu.org, home of the Free Software Movement);

+ GDK/GTK+, two libraries for windowing in the X Window graphic environment
(http://wwu.gtk.org);

2For an in-depth coverage of the philosophy behind the FSF, specifically creating a free operating system,
you might desire to visit http://www.gnu.org

http://www.gnu.org
http://www.debian.org
http://www.gnu.org
http://www.gtk.org
http://www.gnu.org

+ The Gimp, a wonderful program for doing graphical illustrations in pixel mode
(raster images). Think of it as an excellent free replacement for the Photoshop
program. The “icons” representing each single monomer in the sequence editor
were made using The Gimp. It saves in xpm, png, jpg and many other graphic
formats
(http://www.gimp.org);

+ GNOME, a graphical environment for the GNU/Linux desktop. I used the GNOME
canvas widget to tailor the sequence editor
(http://www.gnome.org);

% Thomas Esser has made a TEX/IATEX environment of exceptional quality. T used
it everyday, and typeset this manual using it. Of course, Prof. Donald Knuth is the
grand-daddy of all this, having invented TEX and Leslie Lamport is the father of IATEX!
(http://www.tug.org; search for teTeX);

% Glade is a wonderful graphical interface builder (by Damon Chaplin) that I used to de-
sign the graphical interface of the program. I used it in conjunction with the libglade
library (by James Henstridge)

(http://glade.gnome.org and
http://www.daa.com.au/~ james/software/libglade);

* RedHat is undoubtedly committed to the success of the Free Software Movement and
happens to be the maker of a popular (my) GNU/Linux distribution
(http://www.redhat.com);

% Bernhard Herzog has written a vector drawing package that I used for some illustrations
in the GNU polyxmass package. It is called Sketch
(http://sketch.sourceforge.net);

% Lauris Kaplinski and co-workers have crafted a very powerful program to create and
handle scalar vector graphics. This program is called Sodipodi
(http://sodipodi.sourceforge.net);

* Owen Taylor has written a memory profiling tool that I used —during the Red-
Hat GNU/Linux-based development— to detect memory leaks. It is called memprof
(otaylor{@}redhat.com, remove the curly brackets);

* Of course I do forget many software packages that I used for this work. Thanks to
their authors and to their maintainers: without their hard work my GNU/Linux box
would not exist!

Organization Of This Manual

After having rapidly explained the general pattern about installing each of the modules that
make the GINU polyxmass software suite, this manual aims at providing the required
concept toolset for understanding what to expect from a computer program project like
GNU polyxmass. Thus, the general organization of this book is:

% Installation of the GNU polyxmass modules;

% The basics of polymer chemistry;

http://www.gimp.org
http://www.gnome.org
http://www.tug.org
http://glade.gnome.org
http://www.daa.com.au/~james/software/libglade
http://www.redhat.com
http://sketch.sourceforge.net
http://sodipodi.sourceforge.net
otaylor{@}redhat.com

6 CHAPTER 1. PREFACE

% The basics of mass spectrometry;

* Generalities about the GNU polyxmass software;

% The polyxdef chapter (definition of atoms and of new polymer chemistries);

* The polyxcalc chapter (polymer chemistry-aware programmable calculator);

* The polyxedit chapter (sequence editor, biochemical /mass spectrometric simulations);

* The GNU polyxmass-common chapter describing the fundamental configuration/data
files that are required to run the GNU polyxmass software;

* The GNU polyxmass-data chapter describing the GINU polyxmass’ complex chem-
ical configuration hierarchy;

%* Appendices.

GNU polyxmass’ Licensing Philosophy

The front matter of this manual contains a Copyright statement. I wish to retain the copy-
right to GNU polyxmass and all related writings (source and configuration files, program-
mer’s documentation, user manual...) However, I do not deny others the right to make
copies of the work, to redistribute it freely, to modify it according to the GNU General
Public License for the GNU polyxmass computer program, and according to the GNU
Free Documentation License.

The aim of this licensing is to favor spread of knowledge to the widest public possible.
Also, it encourages interested hackers® to change the code, to improve it and to send patches
to the author so that their improvements get in the program to the benefit of the widest
public possible. For an in-depth study of the free software philosphy I kindly urge the reader
to visit http://www.gnu.org/philosophy.

Contacting The Author

GNU polyxmass program is the fruit of months of work on my part. While I've put a
lot of energy into making this program as stable and reliable a piece of software as possible,
GNU polyxmass comes with no warranty of any kind. I hope that GNU polyxmass
will help numerous researchers with their mass spectrometric data prediction/analysis work,
which will hopefully ease the creation of scientific knowledge.

The general policy for directing questions, comments, feature requests, GNU polyxmass
program and/or GNU polyxmass documentation bug reports should be self-explanatory
by looking at the addresses below:

polyxmass-webmaster@polyxmass.org
polyxmass-maintainer@polyxmass.org
polyxmass-bugs@polyxmass.org
polyxmass-request@polyxmass.org

3 Hacker is a specialized term to design the programmer who codes programs; this term should not be
mistaken with cracker who is a person who uses computer science knowledge to break information systems’
security barriers.

http://www.gnu.org/philosophy

To direct any comment(s) to the author through snail mail, use the following address:

Dr Filippo Ruscont

Chargé de recherches au CNRS
CENTRE NATIONAL DE
LA RECHERCHE SCIENTIFIQUE

UMR CNRS 5153 - UR INSERM 565 - USM MNHN 0503
Muséum national d’Histoire naturelle
43, rue Cuvier
F-75231 Paris CEDEX 05
France

CHAPTER 1. PREFACE

Installation
Overview

As of release 0.9.6 of the polyxmass-bin package, no libpolyxmass package is needed anymore.

The GNU polyxmass software suite is a multi-modular software framework. It is made
of a number of modular packages that depend on each other. The installation of the GNU
polyxmass software suite can be achieved with no pain by following the instructions in this
chapter.

The dependencies between the modules of the GNU polyxmass software framework are
“ordered”, which means that they require that the modules of the framework be installed on
the same system in an ordered manner.

Modules from the GNU polyxmass software suite might be modified independently,
which means that it is not required that they have the same package version number. For
example, a modification in the polyxmass program of the GNU polyxmass software suite
might not necessarily involve changes in the polyxmass-data package —that is also part
of the GNU polyxmass software suite. Thus, the GNU polyxmass program will have an
incremented version number, while the data package itself remains with a constant version
number. The dependencies are dealt with at install time, so the best way to make a fresh
install of the GNU polyxmass software suite is to take all the most recent packages from
http://www.polyxmass.org. If there are no errors (errare humanum est) in the dependency
mechanics, all the packages should be installed easily.

Prior to analyzing the installation procedure as a whole, it is necessary to describe the
packaging systems that are available for the user to install, manage and remove software
packages from the system.

http://www.polyxmass.org

10

CHAPTER 2. INSTALLATION OVERVIEW

Making packages for distributions comes at the price of big efforts from the packager.
The program is always first distributed as a tar.gz “tarball” where all the sources
required to compile the software are located. This “tarball” packaging is the most
natural one for the developer, as it is very near to what she has used to develop
the software. Packagers use these “tarball” packages to prepare binary packages
so that non-geek users can easily install precompiled software onto their machine.
Preparing binary packages from source is a big work, and packagers do not always
have the time required to do it in a short delay after new releases of the program.
Please, be patient and wait for the packages to be prepared. If you find that the
packages come too slowly after software release, learn how to package software and
prepare the packages yourself. I’ll be happy to offer packages that you prepared on
my server http://www.polyxmass.org.

Delivering software to the users can be performed using a number of file formats:

* Uncompiled source package file formats:

+ tar.gz files which need to be compiled using the GNU make program (these are
the “tarball” archives mentioned earlier);

+ dsc plus tar. gz files which need to be compiled into a binary installable package
using the Debian GNU/Linux packaging system;

+ src.rpm files which need to be compiled into a binary installable package using
the rpm tool;

* Binary ready-to-install package file formats:

+ _1386.deb files that are dependent on the computing platform architecture (must
be installed using the apt-get or the dpkg tools in the Debian GNU/Linux dis-
tribution);

+ 1386.rpm files that are dependent on the computing platform architecture (must
be installed using the rpm tool);

+ _all.deb files that are non-dependent on the computing platform architecture
(must be installed using the apt-get or the dpkg tools in the Debian GNU/Linux
distribution);

+ noarch.rpn files that are non-dependent on the computing platform architecture
(must be installed using the rpm tool).

Installing From The tar.gz Sources

Installing a package from the source is as easy as issuing the following commands in the
correct order:

shell-prompt $ cp polyxmass-0.9.6.tar.gz /tmp <P copy the package file into a safe place
shell-prompt $ cd /tmp «P
shell-prompt $ tar xvzf polyxmass-0.9.6.tar.gz <P this unpacks the sources into a source

tree in the polyxmass-0.9.6 directory
shell-prompt $ cd polyxmass-0.9.6 <P
shell-prompt $./configure --prefix=/usr --sysconfdir=/etc <P these are the two con-

ventional options used with the ./configure command

http://www.polyxmass.org

11

shell-prompt $ make <P perform the actual compilation of the software
shell-prompt $ su <P become root if it is possible
shell-prompt # make install <P finally ask that the successfully compiled software be installed to

the destination system directories, as required using the options to the ./configure command

As seen in the commands shown above, there are two options that the user might try
when running the configure script before building the software:

% ——prefix=/usr: this option governs the file-system tree where the software is to be
installed. Binary packages always install new software in the file-system rooted at
location /usr. Source packages, like the ones being described right now, usually install
software in the file-system rooted at location /usr/local, as it is assumed that such
software is only for use by the local machine, and does not enter in the composition
of the default machine setup. It is possible to force source packages to install into the
/usr file-system tree by using the option --prefix=/usr;

% —-sysconfdir=/etc: this options governs the installation of the most critical config-
uration files of the whole GNU polyxmass software suite. Binary packages set this
option to /etc, which means that all the critical configuration files are located in the
/etc/polyxmass directory. The default location for source packages, like the ones
described here, is also /etc.

The only reason why the user (who is installing software and not merely using it) will want
to use/modify the options above, is to install software without having system administrator
priviledges (i.e. without being root). In this case, it is essential that both options be
passed identically to the configure script of each package of the GNU polyxmass software
suite. This is because each package of the suite is relying on the knowledge that all the
other packages have been installed in a determinate file-system tree (/usr, /tmp, /opt or
/home/rusconi, for example). This is crucial, otherwise all the software suite’s modules
cannot speak one to each other.

As one example, this is what I tried to make sure the software is —in fact— a priori
installation directory-agnostic:

% I installed the GNU polyxmass-common package by issuing the following configu-
ration/installation commands:

+ ./configure —-prefix=/tmp --sysconfdir=/tmp/etc;
+ make install

At this time the fundamental configuration/data files are located in a number of
locations all rooted in /tmp: /tmp/etc/polyxmass, /tmp/share, /tmp/sbin.

% Next, I installed the other packages using always the same . /configure —-prefix=/tmp
--sysconfdir=/tmp/etc command line.

When the operations above were performed successfully I could launch the polyxmass
program from /tmp/bin. Since that directory is not in the PATH, it is necessary to first
change the working directory to this directory, using cd /tmp/bin. Next it is necessary to
execute polyxmass by telling the shell that the executable is to be found in the current
working directory: ./polyxmass . The program should launch successfully.

12 CHAPTER 2. INSTALLATION OVERVIEW

Installing From The deb Binary Package

On the Debian GNU/Linux distribution, the packaging system makes the installation of
software incredibly easy. The apt-get package manager is particularly clever in determining
the dependencies between packages in an inter-related array of two or more packages. The
apt-get package manager needs to connect to some place over the network and download
a file from that place (which is called a software repository) that will tell what packages
are available at that specific place and how they inter-relate. Since the adoption of GNU
polyxmass as an official Debian GNU/Linux distribution package, installing the software
is a easy as issuing the following command lines as root:

shell-prompt # apt-get update «P

shell-prompt # apt-get install polyxmass «f

and something like the following will be output to your terminal:

Reading Package Lists... Done
Building Dependency Tree... Done
The following extra packages will be installed:
polyxmass-bin polyxmass-bin-common polyxmass—common polyxmass—data
The following NEW packages will be installed:
polyxmass-bin polyxmass-bin-common polyxmass-common polyxmass polyxmass-data
0 upgraded, 3 newly installed, O to remove and 9 not upgraded.
Need to get 5020kB of archives.
After unpacking 8577kB of additional disk space will be used.
Do you want to continue? [Y/n]

All this output to install one package? —“What is it going on?,” you may ask. Well, that’s the
power of the system: apt-get has detected that in order to install the polyxmass package, it
is necessary to first install packages onto which polyxmass actually depends. These packages
are listed:

The following extra packages will be installed:
polyxmass-bin polyxmass-bin-common polyxmass—common polyxmass—data

Which means that, in total, with the initially requested package,

The following NEW packages will be installed:
polyxmass-bin polyxmass-bin-common polyxmass—common polyxmass-data polyxmass
0 upgraded, 5 newly installed, O to remove and 9 not upgraded.

If you accept to continue (key-in «p), this is what you get: all the packages get auto-
matically downloaded, installed and configured. That’s the Debian GNU/Linux packaging
system magic: there is no higher standard for such package managing tasks nowadays.

To see all the files that are provided by a given Debian GNU/Linux package file, issue
the following command:

shell-prompt $ dpkg -c polyxmass-bin0.9.6-1.i386.deb «P

The output of this command is a list of all the files —along with their destination
directories— that would be installed if the package were installed as above.

13

Installing From The rpm Binary Package

1

Installing any rpm package using the rpm program” is as easy as entering the following com-

mands, as root:

shell-prompt # rpm -ivh polyxmass-common-0.8.7-1.1386.rpm «f
shell-prompt # optionally rpm -ivh polyxmass-data-0.8.7-1.i386.rpm «P
shell-prompt # rpm -ivh polyxmass-bin-0.9.6-1.i386.rpm «P

What these commands do is to read the contents in each of the packages (these package files
do contain a number of files packed in them) and copy them to their destination directories.
The rpm file format lets the packager define where each of the files contained in a package
has to be installed. To see all the files that are provided by a given rpm-based package file,
issue the following command:

shell-prompt $ rpm -qpl polyxmass-bin-0.9.6-1.1386.rpm «P

The output of this command is a list of all the files —along with their destination
directories— that would be installed if the package were installed as above.

Installation On A Mac OS X System With Fink

The Mac OS-X operating system can run GNU software when the Fink porting system
is installed (please, visit http://fink.sourceforge.net for details on this project). The
notes below were kindly provided to me by D" Mark Tracy. If you find errors, they are mine,
and I am the only one to be blamed for badly transcribing these notes.

GNU polyxmass was successfully installed on the Mac OS-X/Fink platform. For exam-
ple, version 0.8.6 of the modules of the GNU polyxmass software suite could be installed
using the info files maintained by D" Mark Tracy. These Fink info files are scripts much
like the rpm spec files. Using the scripts, Fink will download the source tarballs, apply any
patches, install dependent packages, compile the code and install the finished files. The Fink
packaging system relies on the usual tar.gz source files, which may be used without mod-
ification. However, the case may arise that the Mac OS-X/Fink platform requires that the
package maintainer changes the code of the source tree for one or more packages in the GNU
polyxmass suite. In this case, the patch files would be distributed along with the source
tarball files and the info files. The info script will automatically apply the patches, and
complain should you forget them. Providing patch files for the software to build correctly on
any given platform is the task of the packager. Once you have downloaded all the required
files (info, patch), the installation process is as easy as doing the following: If you obtained
the scripts from the Fink server, Fink will automatically install them in the right place and
you skip the copying step. The Fink service tends to lag behind the latest version due to
their diligent review process. If you obtained the scripts from http://www.polyxmass.org,
you need to copy them to the right place:

1For an in-depth manual on the rpm packet manager, you might want to read Mazimum RPM, a book by
Ed Bailey, available from http://wuw.rpm.org.

http://fink.sourceforge.net
http://www.polyxmass.org
http://www.rpm.org

14 CHAPTER 2. INSTALLATION OVERVIEW

shell-prompt $ sudo cp *.info /sw/fink/10.3/local/main/finkinfo«p
shell-prompt $ sudo cp *.patch /sw/fink/10.3/local/main/finkinfo«P

Sudo will want your password. Now comes the time to install the packages by issuing
the following commands:
shell-prompt $ fink install polyxmass«P
shell-prompt $ fink install polyxmass-common«P (optional)
shell-prompt $ fink install polyxmass-doc«<P (optional)
shell-prompt $ fink install polyxmass-examples<P (optional)

At the behest of the Fink team, the packages are named somewhat differently under Fink.
If the software packager did everything right, Fink will calculate the dependencies, and ask
you if you want to install the dependent packages (say yes).? Fink will begin downloading
the source tarballs. Note that GNU polyxmass is dependent on several libraries found in
the unstable branch of the 10.3 package tree, therefore Fink must be so configured (sorry,
10.2 is no longer supported). When all is finished, open a new X-terminal window to run
the software (yes, it has to be new and it has to be X).

Summary

We have reviewed a number of ways the GNU polyxmass software suite might be installed
on a variety of platforms. The next chapters will deal with each module separately.

As a final reminder, before the user picks the best installation method and does that
installation, I would tell that the software packages in the GNU polyxmass software suite
should be installed in the following order:

1. polyxmass-common

2. polyxmass-bin-common (or no such package, depending on the distribution)
3. polyxmass-bin (or polyxmass, depending on the distribution)
4. optionally polyxmass-data

(@1

. optionally polyxmass-doc

The following chapters will describe the software suite with all the details that are re-
quired so that the user gets an intimate knowledge of the way the whole integrated GNU
polyxmass mass spectrometric software suite works.

2If this is your first time installing, there will be a startling number of dependent files.

Basics in
Polymer
Chemistry

This chapter will introduce the basics of polymer chemistry. The way this topic is going to be
covered is admittedly biased towards mass spectrometry and biological polymers. Moreover,
the aim of this chapter is to provide the reader with the specialized words that will later be
used to describe and explain the (inner) workings of the GNU polyxmass program. This
manual is not a “crash course” in biochemistry!

Polymers? Where? Everywhere!

Indeed, polymers are everywhere. If you ask somebody to show you something polymeric,
he/she will point you at the first plastic object in the vicinity. Right, plastic materials are
made of hydrocarbon polymers. But we have many different polymers in our body. Proteins
are polymers, complex sugars are polymers, DNA (the so-called “molecule of heredity” is a
huge polymer. There are polymers in wine, in wood... Where? Everywhere!

The Oxford Advanced Learner’s Dictionary of Current English gives for polymer the
following definition: mnatural or artificial compound made up of large molecules
which are themselves made from combinations of small simple molecules.

15

16 CHAPTER 3. BASICS IN POLYMER CHEMISTRY

A polymer is indeed made by covalently linking small simple molecules together. These
small simple molecules are called monomers, and it is immediate that a polymer is made of
a number of monomers. A general term to describe the process that leads to the formation
of a polymer is polymerization. It should be noted that there are many ways to polymerize
monomers together. For example, a polymer might be either linear or branched. A polymer
is linear if the monomers that are polymerized can be joined at most two times. The first
junction links the monomer to an elongating polymer (thus making it the new end of the
elongating polymer which, by the way, is longer than before by one unit) and the second
junction links the new elongating polymer’s end to another monomer. This process goes on
until the reaction is stopped, the point at which the polymer reaches its finished state. A
branched polymer is a polymer in which at least one monomer is able to contract more than
two bonds. It is thus clear that a single monomer linked three times to other monomers will
yield a “T-structure”, which is nothing but a branched structure.

In the following sections we’ll describe a number of different kinds of polymers. Each time,
they will be described by initially detailing the structure of their constitutive monomers;
next the formation of the polymer is described. At each step we shall try to set forth each
polymer characteristics in such a manner as to introduce the way GNU polyxmass’ “thinks
polymers” and to introduce specialized terminologies.

Once the basic chemistries (of the different polymers) have all been described, we will
enter a more complex subject that is of enormous importance to the mass spectrometry
specialist: polymer chain disrupting chemistry. We shall see that this terminology actually
involves two kinds of chemistries: cleavage on the one hand and fragmentation on the other
hand.

While GNU polyxmass is basically oriented to linear single stranded polymer chemistries,
it also can be used to simulate highly complex polymer chemistries. Biological polymers are
the main focus of this manual, however all the concepts described here may be applied with
no modification (or so slight) to synthetic polymer chemistries.

Well, time has come to make a “biochemical polymers” tour. The reader who feels at
home with biopolymers may skip joyfully the next sections. However, the section pertaining
to polymer lysis and fragmentation should be of interest even to the expert because they are
the opportunity to introduce a “funny” terminology that is not encountered anywhere else
(have you ever heard of “leftrighrules” or of “fragrules™!).

Various Biopolymer Structures

Biopolymers are amongst the most sophisticated and complex polymers on earth and it cer-
tainly is not a mistake to take them as examples of how monomers (be these complex or not)
can assemble covalently into life-enabling polymers. In this section we will visit three differ-
ent polymers encountered in the living world: proteins, nucleic acids and polysaccharides.
We shall be concerned with 1) the monomers’ structure, 2) the polymerization reaction and
3) the final capping reaction responsible for putting the polymer in its finished state.

Proteins

These biopolymers are made of amino acids. There are twenty major amino acids in nature,
and each protein is made of a number of these amino acids. The combinations are infinite,
providing enormous diversity of proteins to the living world.

17

/_\
2HN—CIH—CN—CIH—COOH
Rj Ry

2HN—CIJH—CO —>HN—(IZH—COOH
R + R2

Figure 3.1: Peptidic bond formation by condensation. The left end monomer R; is
condensed to the right end monomer Ry to yield a peptidic bond. A water molecule is lost
during the process.

A protein is a polar polymer: it has a left end and a right end. This means that the
polymerization process is something ordered, from left to right.

The Figure 3.1 shows that the chemical reaction at the basis of protein synthesis is a
condensation. A protein is the result of the condensation of amino acids with each other in
an orderly polar fashion. A protein has a left end (called N terminus; amino terminal end)
and a right end (called C terminus; carbozyl terminal end). The left end is an amino group
(2HN-) corresponding to the amino group of the non-reacted amino acid. Upon condensation
of a new amino acid onto the first one, the carboxyl group of the first amino acid reacts with
the amino group of the second amino acid. A water molecule is released, and the formation
of a bond between the two amino acids yields a dipeptide. The right end of the dipeptide
(and of a polypeptide —i.e. of a protein— also, of course) is a carboxyl group (~COOH)
corresponding to the un-reacted carboxyl group of the last amino acid to have “polymerized
in”.

The bond formed by condensation of two amino acids is an amide bond, also called —in
protein chemistry— a peptidic bond. The elongation of the protein is a simple repetition of the
condensation reaction shown in Figure 3.1, granted that the elongation always proceeds in
the described direction (a new monomer arrives to the right end of the elongating polymer,
and elongation is done from left to right).

Now we should point at a protein chemistry-specific terminology issue: we have seen
that a protein is a polymer made of a number of monomers, called amino acids. In protein
chemistry, there is a subtlety: once a monomer is polymerized into a protein it is no more
called a monomer, it is called a residue. We could say that a residue is an amino acid less a
water molecule.

From what we have seen until now, we could define a protein this way: —“A protein
is a chain of residues linked together in an orderly polar fashion, with the residues being
numbered starting from 1 and ending at n, from the first residue on the left end to the last
one on the right end”. This definition is still partly inexact, however. Indeed, from what is
shown in Figure 3.2, there is still a problem with the extremities of the polymer chain: what
about the amino group on the left end of a protein (the amino group sits right onto the first
amino acid of the protein), and what about the carboxyl group of the right end of a protein
(the carboxyl group sits right onto the last amino acid of the protein)? These two groups are
un-reacted, in fact. If we followed the new “residue-based” definition of a protein polymer,
we would say that there is a proton in excess on the left end and a hydroxyl in excess on

18 CHAPTER 3. BASICS IN POLYMER CHEMISTRY

H —CH-CO-- HN—CH—CO
I I OH

R1 Rp

Figure 3.2: End capping chemistry of the protein polymer. A protein is made of a
chain of residues and of two caps. The left cap is the N-terminal proton and the right cap is
the C-terminal hydroxyl. Altogether, the residual chain (enclosed here in the blue polygon)
and both red-colored caps (H and OH) do form a complete protein polymer.

the right end. However, these two chemical groups are not actually in excess, they are called
(in GNU polyxmass) the cappings or caps of the polymer (this terminology is also used
in polymer science). They ensure that the polymer is in a finished state, which means that
it cannot be elongated anymore, on whichever end. The proton is the left cap of the protein
polymer and the hydroxyl is the right cap of the protein polymer.

Now comes the question of unambiguously defining the structure of a protein. It is
commonly accepted that the simple ordered sequence of each residue code in the protein,
from left to right, constitutes an unambiguous description of the protein’s primary structure.
Of course, proteins have three-dimensional structures, but this is of no interest to a program
like GNU polyxmass, which is aimed at calculating masses of polymers. To enunciate
unambiguously the sequence of a protein, you would use a symbology like this:
using the 3-letter code of the amino acids:

Ala Gly Trp Tyr Glu Gly Lys

or, using the 1l-letter code of the amino acids:

AGWYEGK

Alanine is thus the residue 1 and Lysine is the last residue (n = 7).

This primer in protein chemistry should be sufficient for the moment. Let us now go to
see how nucleic acids differ from the proteins (and they do no little).

Nucleic Acids

These biopolymers are more complex than the proteins are. This is mainly due to the fact
that nucleic acids are composed of monomers that have three different parts, and because
those parts differ in DNA and RNA. Nucleic acids are made of nucleotides. A nucleotide
is the nucleic acid’s brick: a nucleotide consists of a nitrogenous base combined with a ri-
bose/deoxyribose sugar and with a phosphate group. There are two different kinds of nucleic
acids: deoxyribonucleic acid, also known as DNA (the sugar is a deoxyribose) and ribonucleic
acid, also known as RNA (the sugar is a ribose). DNA is most often found in its double
stranded form, while RNA is most often found in single strand form. There are four nitroge-
nous bases for each: Adenine, Thymine, Guanine, Cytosine for DNA; in RNA only one of
these bases changes: Thymine is replaced by Uracile.

A nucleic acid is a polar polymer: it has a left end and a right end (same as for proteins,
remember?). This means that the polymerization process is something ordered, from left to
right (sometimes left is up and right is down in certain vertical representations found mainly
in textbooks).

This manual is not to teach biochemistry, which is why I am not going to describe the
structure of the monomers in atomic detail. However, since it is important to understand how

19

Figure 3.3: Phosphodiester bond formation by esterification. The arriving monomer
(on the right) has its triphosphate on the 5’ carbon of the sugar esterified by nucleophilic
attack of the first phosphorus by the alcohol function beared by the 3’ carbon of the (de-
oxy)ribose sugar ring of the left monomer. The bond that is formed is a phosphodiester
bond, with release of a pyrophosphate group (P;). Note that the sugar and nitrogenous
bases are schematically represented in this figure.

the polymerization occurs, I drew the Figure 3.3 which shows the polymerization reaction
mechanism between a nucleotide and another one, to yield a dinucleotide.

The Figure 3.3 shows that the chemical reaction that is at the basis of nucleic acid
synthesis is an esterification. A nucleic acid has a left end (called 5’ end; often this end is
phosphorylated) and a right end (called 3’ end; hydrozyl end). The reaction is the attack
of the phosphorus of the new (deoxy)nucleotide triphosphate by the 3’OH of the right end
of the elongating nucleotidic chain. Upon esterification, an inorganic pyrophosphate (PP;)
is released, and the formation of a phosphodiester bond between the two nucleotides yields
a dinucleotide. The elongation of the nucleic acid polymer is a simple repetition of this
esterification reaction so that the chain growth is always in the 5’=-3" direction. This is
achieved in the living cells by what is called the 5= 3’ polymerase enzymatic activity.

The conventional representation of a nucleic acid involves showing the 5’ end on the left,
and the 3’ end on the right, horizontally. Sometimes, to clearly indicate that the left end is
phosphorylated, while the right end is not, the ends are indicated as “5’P” and “3’OH”.

Figure 3.4 shows a simple way to formalize what a nucleic acid polymer is. The molecule
represented on the left is the representation of the “monomer” in the sense that the polymer
is made of a number of these monomers (if you put in the presented formula the proper
nitrogenous base and the proper sugar —ribose or deoxyribose—, you will get the nucleotide
of your choice). We have seen previously that, in the specific case of the protein polymer
chemistry, the monomer is called residue once it is polymerized into the polymer chain. In
the case of the nucleic acids, there is no such specific term, we just call the monomeric unit a
nucleotide. The formula represented on the left of the Figure 3.4 shows the repetitive element
in a nucleic acid polymer, exactly the same way as we had shown the residue formula in the
protein polymer chemistry section. Indeed, as we had explained earlier with proteins, the
formula shown on the right of the Figure 3.4 illustrates that the nucleic acid polymer needs
to be set to a finished state. The atoms shown in red (outside the boxed repetitive elements)
are the nucleic acid caps. Thus, we see clearly that in the case of the nucleic acid polymers,
the left cap is a hydroxyl and the right cap is a proton. This anecdotically happens to be
the exact converse of what we described earlier for proteins.

Now comes the question of unambiguously defining the structure of a nucleic acid. It is
commonly accepted that the simple ordered sequence of the named nitrogenous bases in the
nucleic acid, from left (5’ end) to right (3’ end), constitutes an unambiguous description of

20 CHAPTER 3. BASICS IN POLYMER CHEMISTRY

Figure 3.4: End capping chemistry of the nucleic acid polymer. A nucleic acid is made
of a chain of nucleotides (left formula) and of two caps. The left cap is the hydroxyl group
that belongs to the terminal phosphate of the 5’ carbon of the sugar. The right cap is the
proton that belongs to the hydroxyl group of the 3’ carbon of the sugar ring (right formula).
Altogether, a finished nucleic acid polymer is made of the nucleotidic chain (enclosed here in
the blue polygon), made of the repetitive elements (one of which is shown on the left), and
of the two caps (red-colored OH and H, out of the box on the right).

the nucleic acid sequence. To enunciate the sequence of a gene, you would use a symbology
like this:

for a DNA, using the 1-letter code of the nitrogenous bases: A T GCA G T C

for an RNA, using the 1-letter code of the nitrogenous bases: A U G C A G U C

Adenine is thus the base 1 and Cytosine is the last base (n = 8).

Polysaccharides

These biopolymers are almost certainly amongst the more complex in the living world. This
is mainly due to the fact that saccharides are usually heavily modified in living cells. There
are a huge variety of chemical modifications occurring on these biopolymers. Furthermore,
the ramifications in the polymer structure are more often the normal situation than not.
Interestingly these molecules are first thought of as the “fuel” for the cell, which is certainly
far from being total non-sense, but it is clear that their structural role is extremely important.
Their ability to form complex structures has been exploited in living systems for identification
processes. There are a number of complex sugars on the cell walls. ..

Nonetheless, the general picture is not that complex, if we only think of the way monomers
are polymerized together. As far as we are concerned, in fact, the polymerization mechanism
is a simple condensation. In this respect, everything looks much like with proteins; some
people do use the same terminology: a monomer sugar becomes a residue once polymerized
in the saccharidic chain.

There are two main different kinds of sugars: pentoses (in Cs) and hezoses (in Cg); it
should be noted, however, that there is a variety of other common molecules, like sialic acids,
heptose. . .

A saccharidic polymer is polar: it has a left end and a right end (same as for proteins and
nucleic acid, should you remember!). This means that the polymerization process is some-
thing ordered, from left to right. The terminology regarding the ends of a saccharidic polymer
is rather unexpected at first sight: the left end is said to be the non-reducing end while the

21

OH OH OH OH
H o H H o H H o H H o H
OH H + OH H OH H OH H
HO [OH _______Ho OH \ HO o OH
H OH H OH H OH H OH

glucose maltose

Figure 3.5: Osidic bond formation by condensation. The two monomers are subject
to condensation with loss of one molecule of water.

right end is said to be the reducing end. Historically this was observed with monosaccharides
(also called monoses), which reduced cupric (Cu?") ions, thus getting oxydized themselves
on the carbonyl (when in the open ring aldehydic form).

Figure 3.5 shows the polymerization reaction between a sugar and another one (2 glucose
monomers, actually), to yield a maltose disaccharide. The polymerization mechanism is a
simple condensation. The elongation of the polysaccharidic polymer is a simple repetition of
this condensation reaction so that the chain growth is always in the same orientation, from
non-reducing end to reducing end.

The conventional representation of a polysaccharide involves showing the non-reducing
end on the left, and the reducing end on the right, horizontally.

Figure 3.6 shows a simple way to formalize what a saccharidic polymer is. The top formula
is the representation of the “monomer” in the sense that the polymer is made of a number
of these monomers. The bottom formula represents a polysaccharide, with the repetitive
elements boxed (there are n monomers polymerized). The atoms shown in red (outside the
boxed repetitive elements) are the saccharidic polymer caps. Thus, we see clearly that in
the case of polysaccharides, the left cap is a proton and the right cap is a hydroxyl. This
anecdotically happens to be identical to the protein case and the exact converse of what we
described previously for nucleic acids.

Now comes the question of unambiguously defining the structure of a saccharidic polymer.
It is commonly accepted that the simple ordered sequence of the named monoses in the
saccharidic polymer, from left (non-reducing end) to right (reducing end), constitutes an
unambiguous description of the glycan sequence. To enunciate the sequence of a glycan, you
would use a symbology like this:
using a 3-letter code:

Ara Gal Xyl Glc Hep Man Fru
Arabinose is thus the monose 1 and Fructose is the last monose (n = 7).

Incidentally, this is where the ability of GNU polyxmass to handle monomer codes of

non-limited length comes in handy!

To Sum Up

rapidly made an overview of the three major polymers in the living world. A great many
other polymers exist around us.

Table 3.1 on page 22 tries to sum up all the informations gathered so far. Note that the
formulae given for the monomers are the “residual” ones. For example, the formula of the
glycyl residue corresponds to the formula of the Glycine monomer less one molecule of water.

22 CHAPTER 3. BASICS IN POLYMER CHEMISTRY

OH

Figure 3.6: End capping chemistry of the polysaccharidic polymer. A polysaccharide
is made of a chain of osidic residues (blue-boxed formula) and of two caps (red-colored atoms).
The left cap is the proton group that belongs to the non-reducing end of the polymer. The
right cap is the hydroxyl group that belongs to the reducing end of the polymer.

polymer name code formula left cap right cap
protein H OH
Glycine G CQH301 Ny
Alanine A C3H501N;
Tyrosine T CoHgO2N;
nucleic acid OH H
Adenine A C10H1205N5P;
Cytosine C CyH1206N3P1
saccharide H OH
Arabinose Ara C5H804
Heptose Hep C7H120s8

Note: LC=left cap; RC= right cap

Table 3.1: Quick comparison of three biopolymers with examples of monomers

23

Many synthetic polymers are much simpler than the ones we have rapidly reviewed, and it
should be clear that, if GNU polyxmass can deal with the complex biopolymers described
so far, it certainly will be very proficient with less complex synthetic polymers. Describing
the formation of polymers is one thing, but we also have to describe how to disrupt polymers.
This is what we shall do in the next section.

Polymer Chain Disrupting Chemistry

As we initially spoke of “polymer chain disrupting chemistry” earlier, we said that this was a
complex subject, and that it was of enormous importance to the mass spectrometrist. This
is why we will treat this subject in a pretty thorough manner.

First of all we should insist on the fact that chemically modifying a polymer does not
necessarily mean that the chain structure of the polymer is perturbed. Here, however,
we are concerned specifically with the chemical modifications that yield a polymer chain
perturbation; cleavage and fragmentation:

% A CLEAVACE IS A CHEMICAL PROCESS by which a molecule will act directly on the
polymer making it fall into at least two separated pieces (the oligomers). As a result
of the cleavage reaction, groups originating in the cleaving molecule remain attached
to the polymer at the precise cleavage location;

% A FRAGMENTATION IS A CHEMICAL PROCESS by which the polymer structure is dis-
rupted into separated pieces (the fragments) mainly because of energy-dependent elec-
tron doublet rearrangements leading to bond breakage.

Here are the details pertaining to each one of these two very different processes:

Polymer Cleavage

We said above that, upon cleavage of a polymer, the cleaving molecule reacts with it, and
by doing so directly or indirectly “dissolves” an inter-monomer bond. A polymer cleavage
always occurs in such a way as to generate a set of true polymers (smaller in size than the
parent polymer, evidently, which is why they are called oligomers). Indeed, let us take the
example shown in Figure 3.7, where a tripeptide (a very little protein, containing a methionyl
residue at position 2) is submitted either to a water-mediated cleavage (hydrolysis, upper
panel) or to a cyanogen bromide-mediated cleavage (lower panel). The two cases presented
in this figure are similar in some respects but different in other respects:

% in both cases the bond that is cleaved is the inter-monomer bond (in protein chemistry
this is a peptidic bond);

% in both cases the Oligomer 2 has the same structure;

% in the first case the molecule that is responsible for the cleavage is water, while in the
second case it is cyanogen bromide;

% the structures of the Oligomer 1 species differ when produced using water or cyanogen
bromide as the cleaving molecule.

24 CHAPTER 3. BASICS IN POLYMER CHEMISTRY

CH3 _
| H -0 -H
? hydrolysis
CH,
I
R1 CH, R3

I
HoN -CH -CO - NH - CH - CO - NH -CH - COOH

CH,—CH,—S—CH

i T P
H,N -CH -CO - NH -CH -C OH + H>N-CH - COOH
Oligomer 1 Oligomer 2

N=C-Br .
CHs L/, cyanogen bromide cleavage

R1 CH» R3

I |
HoN -CH -CO - NH - CH - CO — NH -CH - COOH
A
I

R3 :
: AN | Oligomer 2
|~ HpN-CH-COOH
CH CH,—CH
R1 2 R1 2 2
[/ CHy I |
H,N -CH —CO - NH - CH | HoyN —CH —CO - NH - CH H
\ H-O-H
¢ ’ C—OH
0 0

Homoserine lactone unit Homoserine unit

Oligomer 1

Figure 3.7: Protein cleavage by water and cyanogen bromide. A tripeptide (pretty
small protein) is cleaved at position 1 either by hydrolysis (top) or by cyanogen bromide
(bottom). Cyanogen bromide cleaves specifically on the right of a methionine monomer.

25

The difference between hydrolysis and cyanogen bromide cleavage is the Oligomer 1
species: the cyanogen bromide cleavage has a side effect of generating a homoserine as
the right end monomer of Oligomer 1, while hydrolysis generates a genuine methionine
monomer. This is because water reverses in a very symmetrical manner what polymerization
did (hydrolysis is the converse of condensation), while cyanogen bromide did some chemical
modification onto the generated Oligomer 1 species.

Nonetheless, the reader might have noted that —interestingly— all the four oligomers do
effectively have their left cap (a proton) and their right cap (the hydroxyl). This means
that in both water and cyanogen bromide-mediated cleavage, all the generated oligomers are
indeed true polymers in the sense that: 1) they are a chain of monomers (modified or not)
and 2) they are correctly capped (i.e. they are polymers in their finished state). This is
important because it is the basis on which we shall make the difference between a cleavage
process and a fragmentation process.

Thus, the GNU polyxmass definition of an oligomer might be: an oligomer is a polymer
(of at least one monomer) in its finished state that was generated upon cleavage of a longer
polymer.

When the polymer cleavage reaction precisely reverses the reaction that was performed
for the same polymer’s synthesis, there is no special difficulty. But when the cleavage reaction
modifies the substrate, then this should be carefully modelled. How? To answer this question
we might start by comparing the two different Oligomer 1 species that were yielded upon
the water-mediated and the cyanogen bromide-mediated cleavage reactions: “the hydrolysis-
generated Oligomer 1 is equal to the cyanogen bromide-generated Oligomer 1 +S1 +C1 +H2
-017; this is a big difference! The observations we did so far might be worded this way:

Whenever a protein undergoes a cyanogen bromide-mediated cleavage, the

“C1H251+01”

chemical reaction should be applied to the resulting oligomers if and only if they have a me-
thionine monomer at their right end. This logical condition is called, in GNU polyxmass’
jargon, a leftrightrule, and will be described later (see page 60).

Well, this sounds reasonable. But what about the “normal” case, when the cleavage is
done using water? Nothing special: the mass of the oligomer is calculated by summing the
mass of each monomer in the oligomer (since the monomers are not modified this is easily
done) and the masses corresponding to both the left and right caps (these are defined in the
polymer chemistry definition; in our present case it would be a proton on the left end, and
a hydroxyl on the right end). In this way, the oligomer complies with its definition, which
states that it is a faithful polymer made of monomers and that it is in its finished state.

Yes, but then how will GNU polyxmass manage to calculate the mass of the modified
oligomer, like our Oligomer 1 in the case of the cyanogen bromide-mediated cleavage? Simple
enough, in a first step it does exactly the same way as for the unmodified oligomer. Next,
each oligomer is checked for presence or absence of a methionine residue on its right end. If
a methionine is found, the mass corresponding to the “~-C1H2S14+01” chemical reaction is
applied. And that’s it!

In the previous cyanogen bromide example, the logical condition was involving the iden-
tity of the oligomers’ right end monomer, but other examples can involve not the right end
monomer, but the left end monomer, if some chemical modification was to occur to the
monomer sitting right of the cleavage location. In this case the user would have to analyse
the situation and provide GNU polyxmass with the proper chemical reaction by stating
something analog to: if and only if they have a Xyz monomer at their left end (note the
partial analogy with the case described above).

26 CHAPTER 3. BASICS IN POLYMER CHEMISTRY

For the moment this is enough polymer cleavage abstraction, as the rest of the description
pertaining to the cleavage specification definition is thoroughly detailed at page 60.

Polymer Fragmentation

In a fragmentation process, the bond that is broken is not necessarily the inter-monomer
bond. Indeed, fragmentations are oft-times high energy chemical processes that can affect
bonds that belong to the monomers’ internal structure. This is one of the reasons why
fragmentations do differ from cleavages: they are specific of the polymer type in which
they occur. Hydrolyzing a protein and an oligosaccharide is just the same process, from a
chemical point of view. But fragmenting a protein or an oligosaccharide are truly different
processes because the way that the fragmentation happens in the polymer sequence is so
much dependent on the nature of each monomer that makes it.

Another peculiarity of the fragmentations, compared with the cleavages that were de-
scribed above, is the fact that there is no cleaving molecule starting the process. Instead, a
fragmentation process is often initiated by an intra molecular electron doublet rearragement
that propagates more or less in the polymer structure to eventually break it. Fragmentations
are mainly a gas phase process, not some reaction that happens in solution as a result of
putting in contact the polymer and some reagent. It is precisely because no cleaving molecule
is involved in the fragmentation process that the fragments are not necessarily capped like a
normal polymer should be; and this is another really important difference between cleavage
and fragmentation.

Let us illustrate these concepts through two examples: proteins and nucleic acids.

Protein Fragmentation

There is a pretty important number of different kinds of fragments that can be generated
upon fragmentation of peptides. We are going to detail the most common ones; the user
is invited to use the GNU polyxmass’ fragmentation-specification grammar to add less
frequent (or newly discovered) fragmentation types.

As can be seen from Figure 3.8, the fragmentations do generate fragments of three cat-
egories: the ones that include the left end of the precursor polymer (a, b, c), the ones that
include the right end of the precursor polymer (x, y, z), and finally the special case in which
the fragment is an internal fragment, like the immonium ions. When looking at the fragmen-
tations described in the figure it becomes immediately clear why a fragmentation cannot be
mistaken for a cleavage: the ionization of the fragment is not necessarily due to the captation
of a proton by the fragment. Furthermore, we can also see that a fragmentation is not a
cleavage because the fragment that is generated is absolutely not necessarily what we call a
polymer, in the sense that the fragment might not be capped the same way as the precursor
polymer is (in its finished state).

The two observations above should make clear to the reader that calculating masses
for fragments is a more difficult process than what was described above for the oligomers.
Indeed, while it was simple to calculate the mass of an oligomer (by simply adding the masses
of its constitutive monomer units, plus the left and right caps, plus ionization), here there
is no chemical formalism generally applicable to all the fragment types. This is why the
specification of the fragmentation is left to the user’s responsibility.

By looking at Figure 3.8, the reader should have noticed that the fragment naming
scheme takes into consideration the fact that the fragment bears the left or the right end
of the precursor polymer (or none, also). Indeed, the numbering of fragments holding the

27

x5 x1
y5 yl
z5 z1
R1 1?2 R3 R4 R5 R6
|]]] |
HoN-CH{CO 1 NH + CH - CO — NH-CH - CO- NH-CH - CO - NH-CH 1 CO{ NH{ CH - COOH

al a5
b1 b5
cl c5

R1
n
al HoN=CH
R1
+
bl HyN-CH-c=0
R1
| +
¢l HyN-CH-CO-NH;g

m (al) = m (monomer 1) - C101 + left cap (H1)
m (b1) = m (monomer 1) + left cap (H1)
m (c1) = m (monomer 1) + N1H3 + left cap (H1)

RG

I
+CH-COOH z1
R6

F |
JHN-CH-COOH Y1

R6
+ |
0=C-NH-CH-COOH X1

%% m (z1) = m (monomer 6) -N1H1 + right cap (O1H1) (variant: +H1)
m (y1) = m (monomer 6) + H2 + right cap (O1H1)
m (x1) = m (monomer 6) + C101 + right cap (O1H1)

<% Note how a z fragment is identical to a [y -NH3] fragment.
In some cases (high CID energy) the z fragment is often seen as a species of mass z+1

R + R
) HoN=C
NH-CH - CO N
canonical monomer immonium ions

Figure 3.8: Protein fragmentation patterns most widely encountered. An hexapep-
tide is fragmented in the seven most widely encountered manners, such as to generate a, b,
¢, X, v, z and immonium fragment ions. The figure illustrates the position of the cleavage for
each kind of fragment (exemplified using the case of the smallest fragment possible) and the
mass calculation method is described for each fragment kind; consider that each fragment
bears only one positive charge.

28 CHAPTER 3. BASICS IN POLYMER CHEMISTRY

left end of the precursor polymer sequence begins at the left end, and for fragments that
hold the right end at the right end. Thus the third fragment of series a —a8— would involve
monomers [1—3]; and the third fragment of series y —y5— would involve monomers [6—4]
(in the figure these left-to-right and right-to-left directions are symbolized using arrows).
Therefore, it should appear to the reader how important —when specifying a fragmentation—
it is to clearly indicate from which end of the precursor polymer the fragment is generated
(in GNU polyxmass jargon this is “LE” for left end, “RE” for right end and “NE” for no
end). GNU polyxmass knows what action it should take when it encounters one of these
three specifications; for example, if a “LE” specification is found for a given fragmentation
specification, GNU polyxmass adds to the fragment’s mass the mass corresponding to the
left cap of the precursor polymer.

Now that the stage is set we can start rationalizing fragment specifications, and thus
mass calculations.

a fragment series If we take the a fragment series, the Figure 3.8 indicates that the
fragments include the left end and that their last monomer lacks its carbonyl group (see, on
top of Figure 3.8, that the af arrow goes between the CaH and the CO of monomer 17).
So we would say that each fragment of the a series should be challenged with the following
chemical treatments: 1) addition of the mass corresponding to the left cap (proton), 2)
removal of the mass corresponding to the lacking CO group. This way we have the mass of
fragment al. If we were interested in the fragment a4 we would have summed the masses
of monomers 1 to 4, added the mass of the left cap, and finally removed the mass of a CO;
that’s it. The mass calculation is thus mathematically expressed

i
a; = LC+ Y M;—CO
1
b fragment series Similarly, the mass calculation is mathematically expressed
i
bi=LC+Y M,
1
c fragment series The mass calculation is mathematically expressed

¢;=LC+» M;+NH;
1

x fragment series For this series of fragments we do not add the left cap anymore, but
replace it with the right cap, since the fragments hold the right end of the precursor poly-
mer. Note also that the numbering of the monomers using the variable i in the following
mathematical expressions goes from right to left (contrary to what happened for the a, b,
¢ fragment series. All the fragments that hold the precursor polymer right end are num-
bered this way, so this applies to fragments z, y, 2. The mass calculation is mathematically
expressed

z=RC+Y M;+CO
1

29

y fragment series The calculation is mathematically expressed
i
Yi :RC-FZMl—FHQ
1
z fragment series In low energy CID, the z fragments are expressed this way:
i
Zi:RC-i-ZMi—NH
1
which is equivalent to y-IV Hgs; in high energy CID an additional proton is often measured:

i
z=RC+> M;—NH+H
1

immonium fragment series These fragments are internal fragments in the sense that
they do not hold neither of the two precursor polymer’s ends. GINU polyxmass understands
that the user is speaking of this kind of fragment when the “from which end” piece of data
—in the fragmentation specification— states “NE” instead of “LE” or “RE” (see page 62). The
mass calculation for these fragments does not take into account the monomers surrounding
the one for which the calculation is done. The mass for an immonium ion —at position ¢ in
the precursor polymer— will be the mass of the monomer at position i, less the mass of a
CO, plus the mass of a proton. The mass calculation for these special internal fragments is
expressed
imm; = M; + H— CO

Nucleic Acid Fragmentation

The fragmentations that can be obtained with nucleic acid are numerous and it is more
complicated than with proteins to describe them fully. The main reason for this is that there
are a big number of fragmentation combinations because of the loss of nitrogenous bases
from the skeleton. The mechanisms by which this loss happens are fairly complex, and I
am not going to detail any of them. Figure 3.9 shows the most common fragmentations
(without taking into consideration the potential loss of bases). An example of fragment is
given for each fragment series (pretty the same way as we did before for proteins). Note that
the fragment representations are aimed at helping the reader to figure out what the product
ion is, not taking into account where the negative charge lies on the fragment, since this
charge can float around at every de-protonatable group. All the fragments shown bear one
and one only negative charge.

The reader might have noticed —at the bottom of the figure— that a provision is made in the
case the fragmented molecular species are not 5’ end-phosphorylated but 5’ end-hydroxylated.
Indeed, the canonical monomer is such that, upon polymerization and left capping, the 5’
end is phosphorylated. However, oft-times the oligonucleotides are synthesized chemically
without the 5’ end phosphate group, thus ending in hydroxyl. This special case should
be accounted for by applying to all the fragments that bear the left end of the precursor
polymer the following chemical reaction: —H POs. This chemical reaction should be applied
i addition to the chemical reaction that yields the fragment per se.

Exactly as we did for the protein fragments, we are giving below the mathematical ex-
pressions used to calculate the mass of different series of nucleic acid fragments; in these

30 CHAPTER 3. BASICS IN POLYMER CHEMISTRY

All the fragments below bear one negative charge
(not formally represented on the sequence/fragments because it can be floating at any valid place)

a1b1
Taf
B1 B4
I
al 5HO—P—0 T <« lons3 z1
OH _\
0 Bl B4
'"HO—P—0 — | 0 " —» «—"N o}l ou3z yl
bl 5 I —\ —\ 3"y
OH
0 B1 " 0 B4
¢l SHO—P—0— | 0—P " N—» «—\ P—0 L on 3 x1
oo o b\
o B1 0 0 B4
dl 5HO—P—0 —_[0—P—0"— «—"N0—P—0— | ou3 wl
| _\ i | _\
OH OH OH

Canonical monomer Normally, the left end of a nucleic acid, after capping, is:

—_—————

0 R
5 P—o oy _TOH J & Ho+—1|:—o: 03
OH :_ClH__J'

Thus, if 5'0OH is required, subtract :EI?_QI__S:from
left end-bearing fragments (like a, b, ¢, d)

Figure 3.9: DNA fragmentation patterns most widely encountered. A short DNA
sequence is fragmented in the eight most widely encountered manners, such as to generate
a, b, ¢, d, w, X, y, z fragment ions. The figure illustrates the position of the cleavage for
each kind of fragment (exemplified using the case of the smallest fragment possible). and the
mass calculation method is described for each fragment kind; considering that each fragment
is protonated only once (41).

31

calculations we assume that the left end of the precursor polymer is phosphorylated (5’ P)
and the reader should bear in mind that this precise phosphate might itself be expelled by
the fragmentation. The fragment naming scheme consideration that we emitted for protein
fragments above (left-to-right or, conversely, right-to-left) applies here also in an identical
manner.

a fragment series These fragments most often appear with base loss.
i
a; = LC + Z Mi -0
1
b fragment series
bi=LC+ > M,
1
c fragment series
¢i=LC+ Y M; — HPO,
1
d fragment series
di = LC+ Y M;— HPO;
1
w fragment series
w; =RC+ > M;+0
1
x fragment series
i
1
y fragment series
yi=RC+Y M;— HPO,
1
z fragment series
z=RC+Y M;— HPO;
1

There are also a variety of fragments for which a base is lost. But we cannot describe
them all!

32 CHAPTER 3. BASICS IN POLYMER CHEMISTRY

More Complex Patterns Of Fragmentation

Before finishing with fragmentations, it is necessary to describe a powerful feature of the
fragmentation specification grammar available in GNU polyxmass. This feature was re-
quired for the fragmentation of oligosaccharides and also sometimes for proteins. When the
fragmentation (the bond breakage reaction itself) occurs at the level of certain monomers, it
might be necessary to be able to specify some particular chemistry that would arise on the
monomer in question.

We have seen in the cleavage documentation that, upon cleavage of a protein sequence
with cyanogen bromide, for example, a particular chemical reaction had to be applied to the
oligomers that were generated with a methionine monomer as their right end monomer. Well,
in a fragmentation specification it is possible to apply comparable chemical reactions but in
a more thorough manner. Indeed, while in the cleavage it was possible to say something
like “apply a given chemical reaction to the oligomer if the right end monomer is Xyz”,
in the fragmentation the logical condition can be bound not only to the identity of the
currently fragmented monomer, but also (optionally) to the identity of the previous and/or
next monomer in the precursor polymer sequence. For example: —“Apply a given chemical
reaction if fragmentation occurs at the level of “Xyz” monomer only if it is preceded by a
“Yxz” monomer and followed by a “Zyx” monomer”.

These logical conditions are called fragrules. A fragspecif can hold as many fragrules as
necessary. Thus we see that a fragmentation specification is a multi-part specification, with
a fragspecif optionally integrating fragrule objects. .. All of this is described in great detail
at page 62.

To Sum Up

To sum up all what we have seen so far with polymer chain disrupting chemistries:

% A polymer sequence gets cleaved into oligomers when a chemical reaction occurs in it at
the level of one or more inter-monomer bond(s); monomer-specific chemical reactions
can be modelled into the cleavage specification using at most one leftrighrule;

% A polymer sequence gets fragmented into fragments when a bond breakage occurs,
without the help of any exterior molecule, at any level of the polymer structure, with
no limitation to the inter-monomer bond; monomer-specific chemical reactions can be
modelled into the fragmentation specification using any number of fragrules;

* Oligomers are automatically capped —on both ends— using the rules described in the
precursor polymer’s definition;

* Fragments are capped automatically only —on the end they hold, if any— using the rules
described in the precursor polymer’s definition;

* Oligomers are automatically ionized (if required by the user) using the rules described
in the precursor polymer’s definition;

* Fragments are never ionized automatically; ionization (gain/loss of a charged group)
is necessarily integrated in the fragmentation specification.

Basics 1In
Mass
Spectrometry

Mass spectrometry has become a “buzz word” in the field of structural biology. While it has
been used for long to measure the molecular mass of little molecules, its recent developments
have brought it to the center of the analytical arsenal in the field of structural biology (also of
“general” polymer science). It is now current procedure to use mass spectrometry to measure
the mass of polypeptides, oligonucleotides (even complete transfer RNAs!) and saccharides,
amongst other complex biomolecules.

A mass spectrometer is usually described by giving to its three main different “regions”
a name suggestive of their function:

% the source, where production of ionized analytes takes place,
% the analyzer, where the ions are electrically /magnetically “tortured”,

* the detector, where the ions arrive, are detected and counted.

Before letting Mass Spectrometry in, I would like to state once for all: mass spectrometry
s aware of ionized molecular species only. . .

Now, enter Mass Spectrometry

33

34 CHAPTER 4. BASICS IN MASS SPECTROMETRY

lon Production: The Source

Indeed, mass spectrometry cannot do anything as long as the molecule to analyze (analyte)
is not in a charged state. The process of creating an ion from an un-charged analyte is
called ionization. Well, most of the times the ionization is favored by adapting the sam-
ple’s pH to a value higher/lower than the isoelectric pH of the analyte, which will elicit
the appearance of (a) charge(s) onto it. In cases where the analyte cannot be charged by
simple pH variations (small molecule that does not bear any ionizable chemical group), the
ionization step might require —on the massist’s part— use of starker ionization techniques,
like electronic impact ionization or chemical ionization. In biopolymer mass spectrometry,
the pH strategy is usually considered the right way to proceed. The ionization process might
involve complex charge transfer mechanisms (not fully understood yet, at least for certain
ionization/desorption methods) which tend to ionize the analyte in a way not predictable by
looking at the analyte’s chemical structure.

Ton production should not be uncoupled from one important feature of mass spectrom-
etry: solvent evaporation —in case of liquid sample delivery to the mass spectrometer— and
sample desorption —in case of solid state sample introduction. The general idea is that mass
spectrometry works on gas phase ions. This is because it is of crucial importance, for a
correct mass measurement to take place, that the analyte be totally freed of its chemical im-
mediate environment. That is, it should be “naked” in the gas phase. Equally important is
the fact that ions must be capable of travelling long distances without ever encountering any
other molecule in their way. This is achieved by pumping very hard in the two regions called
“analyzer” and “detector”. In this respect, the source is a special region because, depending
on the design of the mass spectrometer, it might be partially at the atmospheric pressure
during mass spectrometer operation. It is not the aim of this manual to provide insights into
mass spectrometer design topics (I just would not be able to enter into the physics details!),
but the general principle is that mass spectrometry involves working on gas phase ions. This
is why a mass spectrometer is usually built on extremely reliable pumping technology aimed
at maintaining for long periods of time (with no sudden interruption, otherwise the detec-
tor might suffer seriously) a good vacuum in the conduit in which ions must flow during
operation.

The Analyzer

Once an ion has been generated in the gas phase, its mass should be measured. This is a
complex physical process. Depending on the mass spectrometer design, the mass measure-
ment is based on more or less complex physical events. Magnetic mass spectrometers are
usually thought of as pretty complex devices; this is also the case for the Fourier transform
ion cyclotronic resonance devices. An analyzer like the time of flight analyzer is much more
simple. I will refrain from trying to explain the physics of the mass measurement, just limit
myself saying that —at some stage of the mass measurement process— forces are exerted on
the ions by electric/magnetic fields (incidentally, this explains why it is so important that an
analyte be ionized, otherwise it would not be subject to these fields). The ionized analytes
submitted to these forces have their trajectory modified in such a way that the detector
should be able to quantify this modification. Roughly, this is the measurement process.

35

What Is Really Measured?

Prior to entering into some detail, it seems necessary to make a few definitions!:

* unified mass scale (u): IUPAC & TUPAP (1959-1960) agreed upon scale with 1 u equal
to 1/12 the mass of the most abundant form of carbon; the dalton is taken as identical
to u (but not accepted as standard nomenclature by TIUPAC or IUPAP), it is abbreviaed
in Da.

* a former unit was “a.m.u.” (i.e. “atomic mass unit”). It should be considered obsolete,
since based on an old 1/16 of 150 standard;

* the mass of a molecule (also “molecular mass”) is expressed in daltons. The symbol
commonly used is “M” (not “m”), as in “M+H” or “M+Na”... Symbol “m” is already
employed for ion mass (as in “m/z”);

% the mass-to-charge ratio (“m/z”) of an ion is the ion’s mass (in daltons) divided by
the number (z) of elementary charges. Hence “m/z” is “mass per charge” and units of
“m/z” are “daltons per charge”;

% nominal mass: the integral sum of the nucleons in an atom (it is also the atomic mass
number);

* exact (also known as accurate) mass: the sum of the masses of the protons and neutrons
plus the nuclear binding energy;

In the previous sections I used to say that a mass spectrometer’s task is to measure
masses. Well, this is not 100 % exact. A mass spectrometer actually allows to measure
something else: it measures the m to z ratio of the analyte, which is denoted m/z. What
is this “m to z ratio” all about? Well, we said above that a mass spectrometer has to exert
forces on the ions in order to determine their m/z. Now, let us say that we have an electric
field of constant value, E. We also have two ions of identical masses, one bearing one charge
(¢) and the other one bearing two charges (2¢) —positive or negative, no matter in this
discussion. These two ions, when put in the same electric field E, will “feel” two different
forces exerted on them: F; and Fy. It is possible to calculate these forces (F; = ¢gFE and
F, = 2¢F). Evidently, the ion that bears two charges is submitted to a force that is twice
as intense as the one exerted on the singly charged ion.

What does this mean? It means simply that the numeric result provided by the mass
spectrometer is not going to be the same for both ions, since the physics of the mass spec-
trometer takes into account the charge level on each different analyte. Our two ions weigh
exactly the same, but the mass spectrometer simply can not know that; all it knows is how
a given ion reacts to the electric field it is put in. And our two ions, evidently, will react
differently.

When we say that a mass spectrometer measures a m/z ratio, the z of this ratio represents
the sum of all the charges (this is a net charge!) that sit onto the analyte. But what does
the m stand for? The molecular mass? No! The m stands for the mass of the whole analyte
ion, which is —in a word— the measured mass. This is not the molecular mass (which would
be M), it is the molecular mass plus/less the mass of the chemical entity that brings the
charge to the analyte. When ionizing a molecule, what happens is that something brings (or
removes) a charge. In biopolymer chemistry, for example, often the ionization is a simple

Mnteresting posting signed by Ken I. Mitchelhill in the ABRF mailing list at http://www.abrf.org/
archives, and a document published by the California Institute of Technology.

http://www.abrf.org/archives
http://www.abrf.org/archives

36 CHAPTER 4. BASICS IN MASS SPECTROMETRY

protonation/deprotonation. If it is a protonation, that means that an electronic doublet (on
some basic group of the analyte) captures a proton. This brings the mass of a proton to the
biopolymer (~ 1 Da). Conversely, if it is a deprotonation (loss of a proton by some acidic
group, say a carboxylic that becomes a carboxylate) the polymer looses the mass of a proton.
Of course, if the ionization involves a single electron transfer the mass difference is going to
be so feeble as to be un-measurable on a variety of mass spectrometers.

Let us try to formalize this in a less verbose manner by using a sweet amino acid as an
example:

* the un-ionized analyte (Glycine) has the following formula: CoHsO5Ny;
the molecular mass is thus M = 75.033 Da;

* the analyte gets protonated in the mass spectrometer:
CoH505N; + H — CyHgO9N;

the measured mass of the ion is thus m = 75.033 4+ 1.00782 Da and the charge beared
by the ion is thus z = +1.

% the peak value read on the mass spectrum for this analyte will thus be:

M + 1.00782
value = % - %0078 — 76.04

with z = +1

We see here that the label on the mass spectrum does not correspond to the nominal
molecular mass of the analyte: the ionizing proton is “weighed” with the Glycine molecule.

Imagine now that, by some magic, this same Glycine molecule just gets protonated a
second time. Let’s do exactly the same type of calculation as above, and try to predict what
value will be printed onto the mass spectrum:

* the un-ionized analyte (Glycine) has the following formula: CoHsO3Ny;
the molecular mass is thus M = 75.033 Da;

% the analyte gets protonated in the mass spectrometer two times:
CoH505N; +2H — CoH,0O5N;y

the molecular mass of the ion is thus M = 75.033 4+ 2.01564 Da and the charge beared
by the ion is thus z = 42.

% the peak value read on the mass spectrum for this analyte will thus be:

m M +2.01564
value = — = ———
z z

= 38.52
with z = +2

Oh! yes!, this time it is absolutely clear that a m/z is not a molecular mass! By the way,
if the Glycine happened to be ionized negatively the calculation would have been analogous
to the one above, but instead of adding the mass of the proton(s) we would have removed
it. It is that simple.

Summing up all this in a few words: an ionization involves one or more charge transfer(s)
and in most cases (at least in biopolymer mass spectrometry) also involves matter transfer(s).
It is crucial not to forget the matter transfer(s) when ionizing an analyte. This means that
when an ionization process is described, its description ought to be complete, clearly stating
three different pieces of information:

37

% the charge transfer (net charge that is beared by the analyte after the ionization has
completed);

% the matter transfer (optional; usually something like “+H17);

* the ionization level (0 means “no ionization”; usually this would be 1 for a single
ionization, but might be as large as 30 if, for example, you were ionizing myoglobin with
electrospray ionization (protonation). In this case the m/z value would be computed
this way:

= 20 30 = 566.30

m M+30- 1.00782 16959 + 30.2346
value = = =

with z = +30

By now, the reader should have grasped the importance of understanding well the ion-
ization formalisms for accurately predicting/analyzing mass spectrometric datal

In the next chapters of this manual we will describe how GNU polyxmass works and
how the user might take advantage of its powerful capabilities. In a first chapter I will
introduce some general concepts around the way the program behaves. Next, in the remain-
ing part of this manual, a chapter will be dedicated to each important GNU polyxmass
function or characteristic.

38

CHAPTER 4. BASICS IN MASS SPECTROMETRY

GNU

polyxmass
Generalities

In this chapter, I wish to introduce some general concepts around the GNU polyxmass
program.

General GNU polyxmass Concepts

The GNU polyxmass mass spectrometry software suite has been designed to be able to
“work” with every polymer on earth. Well, in a certain way this is true... A more faithful
account of the GNU polyxmass’ capabilities would be: “The GNU polyxmass software
suite works with whatever polymer chemistry the user cares to define; the more accurate the
polymer chemistry definition, the more GNU polyxmass will be accurate”. Sounds like
much of the responsibility for the proper functioning of the GNU polyxmass framework
is in the hands of the user? That is true! However, with GNU polyxmass the user has a
framework at hand to define polymer chemistries so as to suit his needs.

The main concept that drove the design of the entire GNU polyxmass framework is
abstraction. Indeed, for the program to be able to understand a variety of possibly very dif-
ferent polymers, it had to be written using some abstraction layer between the way masses
are computed and the way the polymer is described “in memory”. This abstraction layer

39

40 CHAPTER 5. GNU POLYXMASS GENERALITIES

is implemented by using a “polymer chemistry definition-driven” set of functionalities. The
polymer chemistry definition drives all the mass computations, all the polymer sequence edit-
ing, all the polymer chemistry reactions. .. This is how the GNU polyxmass software suite
makes it possible to handle any polymer type. To implement this abstraction paradigm, the
GNU polyxmass mass spectrometry framework was designed to be modular, as described
below.

The GNU polyxmass mass spectrometry software suite comprises the following pack-
ages (not all of them installing actual binary/executable programs):

1. GNU polyxmass-bin (and GNU polyxmass-bin-common in some distributions,
like Debian) this is the binary package enshrining the polyxmass binary program. This is where
the user will spend most of his time: doing either polymer chemistry definitions (polyxdef menu),
mass calculations (polyxcalc menu) or real polymer sequence chemical simulations along with mass

spectrometry simulations (polyxedit menu);

2. GNU polyxmass-common this is a non-binary package where the essential configuration/data
files are stored, like the scripts that are used to update the catalogues of available polymer chemistry
or atom definitions. This package comes with the basic atom definition file and an example polymer

chemistry definition (“protein”);

3. GNU polyxmass—data this is an optional non-binary package where other example polymer
chemistry definitions are delivered, so that the user might learn how to prepare other packages to
submit to the GNU polyxmass development team for incorporation in the GNU polyxmass

software suite as official packages;

In the rest of this manual we shall call “module” a set of functionalities that are aimed at a
specific task: for example, all the functionalities that are accessible in the polyxmass binary
program with the aim of defining polymer chemistries will be called the “polyxdef module”
and will be triggered by using the menu tree rooted at the “polyxdef” menu item.

The fact that the GNU polyxmass software suite is able to handle any polymer chem-
istry is, as we said above, due to its ability to interface a polymer sequence with a polymer
chemistry definition. To explain this clearly, imagine a protein sequence that would be this
tetrapeptide: “ATGC”, which reads as “AlanineThreonineGlycineCysteine”. Now imagine
the same “ATGC” sequence but as a DNA sequence, which reads as “AdenineThymineGua-
nineCytosine”. The two sequences would be entered in a sequence editor by keying in the
following key sequence: . Of course, while the sequence is identical in both
cases, you'd expect that the masses for the DNA sequence be much higher than the masses
for the protein sequence.

This is where “abstraction” comes in, and modularity also: in order to let the user perform
the required computations as flexibly as possible, she first defines two different polymer
chemistries: the first named “protein” and the second named “dna”. In each of the two
distinct polymer chemistry definitions, the user will enter a formula corresponding to each
monomer (A, T,G,C). Of course, the monomer formula for a Threonine is very different than
the one for a Thymine.

The definition of the polymer chemistry is performed in the polyxdef module that is
accessible in the polyxmass program under the “polyxdef” menu item. Once a polymer
chemistry definition is saved, it may be made available to the system (we’ll see how this is
done). And when a polymer chemistry definition is made available to the system, any new
polymer sequence may be created that abides by this polymer chemistry definition.

41

By defining precisely the chemical behaviour of a polymer type, and making an association
between a given polymer chemistry definition and a polymer sequence, the user makes use of
the abstraction layer that we mentioned above. Once this is well understood, the originality
of the GNU polyxmass software framework is understood. This is precisely what sets
GNU polyxmass apart from the other mass spectrometry-related software offerings.

Since the different functionalities offered by the GNU polyxmass framework are well
confined in three distinct modules, all accessible from the polyxmass binary program, but
sitting in clearly distinct menu trees, we’ll review each of such “modules” in later chapters.

Before going on with the description of the different modules, I would like to introduce
some other more chemistry-oriented concepts that are going to be used throughout the GNU
polyxmass framework.

On Formulae And Chemical Reactions

It is all the more frequent for any user who runs any of the GNU polyxmass’ modules to
make use of formulae or of chemical reactions. These two chemical entities are not identical
in GNU polyxmass. While a formula represents a chemical status (a monomer has a given
formula, and does not change it), a chemical reaction is something much more dynamic, I
should say “active”.

This difference is very important in GNU polyxmass. Let’s take an example: the Lysyl
monomer (we call a protein “residue” a “monomer”) has the following formula: CgH;2N2O.
If T wish to acetylate this Lysyl monomer, the reaction will read this way: “An acetic acid
molecule will condense onto the amine of the Lysyl side chain”. This can also read: —
“An acetyl group enters the Lysyl side chain while a hydrogen atom leaves the Lysyl side
chain; water is lost in the process”. If we wanted to put this into a more chemistry-oriented
representation, we could write this:

R — NH; + CH3COOH = R — NH — CO — CHs + H,O

That is more briefly stated this other way: “—Hy0O + CH3COOH?”. This is exactly what
GNU polyxmass calls an “actionformula” —or, for brevity— an “actform”™ just because
actions are associated with formulae; here the HoO formula is associated with the —, which
indicates that the water molecule leaves the molecules being reacted, while the CH3COOH
formula is associated with the +, which means that the acetic acid molecule enters in to

the target molecule. The net formula is thus, as stated earlier: —“An acetyl group enters
the Lysyl side chain while a hydrogen atom leaves the Lysyl side chain; water is lost in the
process”.

In the GNU polyxmass framework, the formula and actform chemical entities are not
interchangeable.

The GNU polyxmass Framework Data For-
mat

All the data in the GNU polyxmass framework are stored on disk as XML-formatted files.
XML is the eXtensible Markup Language. This “language” allows to describe the structure of
a document. Have you ever opened an HTML file with a text editor? If so, you have certainly
seen some markup like <H1>This is the title</H1>. The browser that loads this file will

42 CHAPTER 5. GNU POLYXMASS GENERALITIES

understand (because it has been programmed to do so) that the title “This is the title” is to
be displayed onto the screen using a bold sans-serif font, for example. Well, let us just say
that the XML file format is an immensely more powerful equivalent of HTML.

There would be a lot. .. a lot to say about XML and Document Type Definitions: I'll refrain
from entering into the details.

The big advantage of using such XML format in GNU polyxmass is that it is a text
format, and not a binary one. This means that any data in the GNU polyxmass package
is human-readable (even if the XML syntax makes it a bit difficult to read data, it is actually
possible). Try to read one polymer chemistry definition . xml file from the GNU polyxmass-
data package (say, the dna-sample.xml file, for example), and you’ll see that this is pure text
(the same applies for the .pxm polymer sequence files in the same package. The advantages
of using text file formats, with respect to binary file formats are:

% if somebody sends you a file and you do not have the program that made it, you still
can extract information from the file, because it is readable with any text editor;

* if a text file (such as your most important polymer sequence XML file) gets corrupted
for some reason (i.e. during backup on a bad support, or whatever) you will still be
able to extract from the corrupted file all the bits of information that surround the
portion that is corrupted, thus minimizing the data loss. This would be impossible
with binary files, as they are just totally useless if a single part of them is corrupted;

* imagine you would like to write down a simple script that would allow you to find —in
a given directory— all the sequence files that contain the “myo” character string in the
polymer’s name field (in XML a field is called element). You can do it easily without
asking anybody for the file format specification —because your sequence files are just
text files.

As an example of how simple it is I’ll just write a bash shell script below that I'll save
into the polname-find.sh file in order to execute it afterwards. That is how the shell script
looks like in the polname-find.sh file:

shell-prompt $ cat polname-find.sh «P

for i in *.pxm
do grep '"<name>.*myo.*</name>" $i ;
if [$7 ==0]
then
echo "in file $i"
fi
done

Now we should make this brand new file executable so we can run it:
shell-prompt $ chmod u+x polname-find.sh «P

Upon execution of this script, the output looks like this:
shell-prompt $./polname-find.sh <P

<name>myoglobin-horse</name>
in file myoglob-h.pxm
<name>myosin-chicken</name>

43

in file myos-chck.pxm
<name>myo-fragment1</name>

in file myofragl.pxm
<name>apomyoglobin-rabbit</name>
in file apomyo-rbt.pxm

The script has gone through all the *.pxm files and for each file has searched a start tag
<name> followed by some string containing “myo” followed by the end tag </name>. If “myo”
is found, the corresponding line is printed to the screen, and the name of the file containing
this pattern is printed also.

With a binary file format this would have been impossible. This little script lets you
screen a big database like a snap. That’s the power of UNIX and UNIX-like operating
systems.

Editing the Data in GNU polyxmass Files

The aim of GNNU polyxmass is to let people use the software the way they like, with no
preconception on the way they interact with it. The XML files (polymer sequence or polymer
chemistry definition files) can be edited using the graphical interface but also using a simple
text editor. Figure 5.1 shows two rather different means to the same end: editing a polymer
chemistry definition file. The Document Type Definition (DTD) is not shown on the right
pane of the figure, since it is at the top of the file being displayed. This DTD will help
the user to determine how to edit the file in a safe way, by telling where each element is
authorized to be, and so on. .. You'll need to learn XML if you wish to understand the DTD
(a sunday afternoon will suffice). Usually, the safer way to do any editing is by using the
graphical interface, not because the GNU polyxmass framework understands the edited
data better this way, but because the graphical interface layout (acting like a data correctness
censor) just prevents the user from writing badly-formed data directly in the XML file.

The example shown in Figure 5.1 can be transposed to the polymer sequence XML files in
a very same way. Of course all the process that leads to “creating” a new polymer chemistry
definition is going to be explained in detail in a later chapter (see chapter 6, page 49).

General Polymer Element Naming Policy

Unless otherwise specified, it is strongly suggested not to insert any non-alphanumeric-non-
ASCII character (space, %, #, $...) in the strings that the user enters to identify polymer
chemistry definition items. This means that, for example, the user must refrain from using
non-alphanumeric-non-ASCII characters for the atom name and symbol, the name, the code
or the formula of the monomers or of the modifications, or of the cleavage specifications, or
of the fragmentation specifications. .. Usually, the accepted delimiting characters are *’ and
‘7. It is important not to cripple these polymer data for two main reasons:

% so that the program performs smoothly (some parsing processes rely on specific char-
acters (like ‘#’ or ‘%’, for example) to isolate sub-strings starting from larger strings);

% so that the results can be easily and clearly displayed when time comes to print all the
data.

44 CHAPTER 5. GNU POLYXMASS GENERALITIES

Polymer definition window: jusr/share/polyxmassdata/prote

<poldefdata>
Polymer Definition Type | protein Unmodified (tgpe)protein
{leftcap>+H
Polymer Endings' Chemistry (Caps) Polymer lonization Rule <l"ightcﬁp>+UH
Left Cap Actform {codelen>1
+H +H {ionizerule>
+
Right Cap Charge <actform>+H
<{charge>1
+0OH 1
<{level>1
Monomers ‘Modiﬁcatmns ‘C\eavages Fragmentations {monomersy
Monomers Available — <mnm>
|Name Code |Fnrmu\a Rad <name>GlQC1ne
Gl G C2H3INO {code>G
cine
Y <formula>C2H3IND
Alanine A C3HS5NO
Valine v C5HINO <mnm>
Leucine L C6HI1INO <name’filanine
Isoleucine 1 CEH11INO <{code>f
Serine S C3HSNO2 <formula>C3H5NO
Threonine T C4H7NO2
Cysteine (= C3H5NOS <mnm>
Methionine M CSHINOS 2"‘5‘";“-‘;3311"6
q =1 code
Arginine R C6H12ZN4O
g <formula>C5HINO
Lysine K CE6H12N20
Aspartate D C4HSNO3 <mnm>
Glutamate E C5H7NO3 <name’Leucine
Asparagine N C4HBEN202 [+] <code>L
Details <{formula>C6H11NO
Maximum Number Of Allowed Characters For A Monomer Code | 1
<mnm>
Actions <name>Isoleucine
<code>l
<formula>C6H11NO
Messages

Figure 5.1: Comparison of a graphical and a text way of editing a polymer chem-
istry definition file. The left pane shows the graphical interface that is exposed to the
user when defining a polymer. The right pane shows the same XML file opened in the Emacs
editor with the XML editing mode switched on.

45

Graphical Interface Design

For those coming to UNIX after having used MS Windows (like me), I would like to state
some general graphical interface design specificities of the UNIX world. The MS Windows
graphical environment was designed in such a way that the user is very strictly restricted
to a narrow path each time she initiates an action. That policy has often led to arbitrary
limitations in the design of software running on the MS Windows systems.

This is not going to be exactly the same with a UNIX graphical environment: you almost
certainly are going to quickly have a great number of windows opened on your desktop; you
are the one who knows when to close a results window, not the program designer. When
a window is opened, it is not going to be systematically required that it be closed before
opening another one. This has a simple reason: imagine that you wanted to compare the
oligomers generated by using two different enzymes on the same polymer sequence; you’ll
need both results windows to be opened at the same time, otherwise how comparison of
oligomers could happen? That reasoning is true for a number of situations, and —yes—
you’ll be responsible for closing the windows you do not need anymore!

This general behaviour is highly desirable, since it indeed allows the user to make com-
parisons between the data from two different experiments right after having generated the
data. But this behaviour introduces a risk: how will it be possible to ascertain that any
given set of peptides does come from the cleavage of the first protein using cleaving-agent-1
and not from the cleavage of the first protein using cleaving-agent-27 In other words: how
are you going to recognize which results window contains the peptides of the first cleavage,
and which results window contains the peptides obtained from the second cleavage? There
is an answer: each time a window is displayed —if there is a risk of ambiguity— it will show
the identity number (ID number) of the polymer to which it is related. This ID number
is nothing else but the unique memory address of the polymer sequence editing context to
which the window is related.

In any situation where an ambiguity exists about the identity of the data generated on
any given polymer sequence, a traceability system is used, as shown in Figure 5.2.

Feedback From GINU polyxmass To The User:
The Console Window

Something very specific to the UNIX and UNIX-like systems (and that I really like) is the
fact that the programs are usually designed to be “verbose” (if the user asks this). The
usual means to giving feedback in other systems is to pop up a “dialog” window in which a
message is displayed, and the user has to acknowledge (typically by clicking onto a button
widget) in order to close the dialog window. GNU polyxmass has been implemented with
the “console” philosophy in mind: every message that it wishes to “hand out” to the user is
sent to the terminal window from which the program was started.

There are two levels of very important messages: the CRITICAL and the ERROR level
messages. The CRITICAL-level messages indicate that time has come to make a quick save
of all the data, because something bad might happen. ERROR-level messages cannot even be
read in the console window, because they elicit an abortion of the program. These abortions
are voluntary on the GNU polyxmass’ part, because the error is so bad that it would crash
anyway soon or later.

Each time a message (of any importance level) is issued to the user, the console window

46 CHAPTER 5. GNU POLYXMASS GENERALITIES

Show/Hide Polymer Sequence Data Define The Cleavage Options
Sequence Name ‘Sample Polymer Sequence Data
1D Number |uxua4aa=u Sequence Name |Sﬂmp\e

28 Modified ID Number | 0x8346ae0

TRV RV T T -

» NN .
|_]ww.m.. L —

‘rﬂ-l.--l.- A/ Name | Pattern ILe&cndeJszta(tfn =
= |> CyanogenBromide Mf EJ
Show/Hide Left And Right Ends' Modifications Trypsin KI RSP
|ﬁ|(=tylation {QEdit ‘Nnne set ‘ =
Editing feedback

| | ‘ A* Cleave

Cleavage Results

Polymer Sequence Data

Sequence Name ‘Sample

ID Number | 0xB346ac0

Cleavage Results

Oligomers Mass Find Results
Part. C\eav.J Number | Coordinates] Monao Mass JMq Mass] Modified =
0 pO-nl [1-10] 1246505030 1247.314345 Cligormerssagtoigracess
0 po-n2 [11--11] 147.113353 147.195823 O Results' Set ID Number | 0x8423d90 ‘
0 po-n3 [12--13] 262.140296 262.283428 O
0 p0-n4 [14--17] 521.308758 521.630857 O Mass And Results
Oligomers
Selected Oligomer Data
147.110000 0.003353 p0-n2 1

147.110000 0.003353 p0-né 2

Sequence Oligomer Data Cleavage uata} m‘

To Fnd Error Mame | Number Mi EJ‘

X Close @ﬂnd X Close

Total number of oligomers: 11

Figure 5.2: Unambiguous identification of polymer sequences and related data.
When a polymer sequence is loaded/created, it is assigned a numeric value that unambigu-
ously identifies it (for the programmer, this is the pointer to the polymer structure). Each time a
window is displayed that contains data pertaining to any given polymer sequence (oligomers
generated by cleavage of a given polymer sequence, for example), it is given a reference to
the polymer whence the data came, and this reference is the polymer’s identity number.
This is clearly visible here: the polymer sequence has a given ID Number and all the related
windows display that same number. Note that the cleavage results data have another 1D
Number that is later used to trace the mass find results data (last bottom window).

47

= GNU polyxmass: console window (aFala)

Q@;glear Hide |f,? Sawve To Fle

Figure 5.3: The console window where any messages to the user are displayed.
Depending on the importance level of the message being issued to the user, the color will be
more or less “reddish”.

is presented to the user (if it was hidden or minimized, this console window is show afresh).
Figure 5.3 shows the console window with a warning.

Window Management

GNU polyxmass is powerful and flexible: any number of polymer sequences can be opened
at any given time, and any number of simulations might be performed on any of these polymer
sequences. This might lead to a huge number of windows opened on the desktop at any given
time. There are two main types of windows:

* windows that do not display results. These window are typically windows where the
user is provided with options to perform some action. For example, one such window
might be the window that allows the user to select an enzyme when an enzymatic
cleavage is required on a polymer sequence;

* windows that are responsible for displaying a polymer sequence, the results of some
simulation or of any computation. For example, a window displaying results (results
window, for short) might be the window that displays all the oligomers obtained upon
cleavage of a polymer sequence using one enzymatic agent; or the window where all
the fragmentation oligomers are displayed after the gas-phase fragmentation of a poly-
mer sequence. Other examples are the windows where the monomeric composition of
the polymer sequence is displayed and where the pH/pKa/pl computation results are
displayed. . .

In order to ease the management of all the results windows opened at any given time,
a window management facility was devised. Its incarnation is shown in Figure 5.4 on the
following page. This window is called by using the main program’s window menu
View — Window List
The window management operations include the following actions, that apply to the
window item currently selected in the Available Windows treeview on the left of the window:

* Show Window: force a hidden/minimized window to show itself;

* Hide Window: force a window to hide itself.

As soon as a window that is listed in the Available Windows treeview is closed, its corre-
sponding item in the treeview is removed.

48 CHAPTER 5. GNU POLYXMASS GENERALITIES

[=] GNU polyxmass: Window Management 0606

Window Management

Available Windows Window Details
Module J\o\rmdow 1D | Seq Name] Window Desc. | Can Repor‘tl Window 1D number 0x83de650
<~ POLYXEDIT O Sequence ID Number 0x82d9dBa
0x82be768 Sample sequence editar window Description cleavage results
0x83def50 Sample cleavage results Comment Cleavage with Trypsin
0x8420298 Sample find mass results 3

Window Life Actions

Show Window Hide Window

Window Report Actions
Clipboard Operations Fle Operations

Owverwrite Report To Fle |

Append Report To Fle |

Report To Clipboard

Choose HIeJ

\ |

Messages

Figure 5.4: The window management facility. Each time a polymer sequence window
—or a window where results are displayed— is opened, it is registered and appears in the
treeview on the left of the depicted window. The user can then select any window of interest
and perform actions about this window.

polyxdet:
Definition Of
Polymer
Chemistries

After having completed this chapter you will be able to accomplish the very first steps needed
to use the GNU polyxmass framework’s features at best. In order to use the program,
indeed, it is required that the polymer chemistry on which you would like to experiment be
defined according to a number of rules that will be detailed in the remaining sections of this

chapter.

The polyxdef module is easily called by pulling down the “polyxdef” menu item from
the GNU polyxmass program’s menu. The user may accomplish two different tasks in the
polyxdef module:

* Edit an atom definition;

% Edit a polymer chemistry definition.

49

50 CHAPTER 6. POLYXDEF

g@ polyxdef | B{: polyxcalc BE polyxedit

- atorn Definition

| = Open Atomn Definition ;
Polymer Definition D New Atom Definition |

Figure 6.1: polyxdef atom definition menu The user might ask that an atom definition
file be opened for editing or that a new atom definition be started empty for ex nihilo editing.

Editing an atom definition

The editing of an atom definition is performed through the user interface that shows up
when the user selects one of the two submenu items shown in Figure 6.1.

When the user asks that an existing atom definition file be found, a “chooser window”
shows up like the one shown on Figure 6.2 on the facing page.

When the atom definition editor shows up, the user sees an interface that allows the
addition/removal of isotopes or atoms. This interface (Figure 6.3 on page 52) makes it
trivial to edit to the highest level of refinement the definitions of the atoms to be used in the
GNU polyxmass software suite.

Using the atom definition window is absolutely easy. The main idea is that an atom
does not exist as something valuable for doing chemistry until it does not have at least one
isotope defined as part of it. This means that to define a new atom, the Add Atom button
should be clicked, which triggers the creation of a new empty item in the treeview shown in
Figure 6.3 on page 52. At this point, the user must first name the new atom and give it a
symbol (to edit a cell, just click onto it, make the required editing and validate by pressing
«P). Next, the user adds an isotope to that atom item. Clicking onto the Add Isotope button
will trigger the creation of an empty isotope. The user fills the Mono Mass monoisotopic
mass field of the newly created empty item. The same has to be done for the Abundance
isotopic abundance field.

Each time a new monoisotopic mass/isotopic abundance pair is either edited, added or
removed from an atom item, the average mass of that atom is recomputed and shown in the
Avg Mass atom average mass cell.

The user may —at any moment— ask that the syntactic validity of the atoms in the
definition be checked. For that, clicking onto the Check Syntax button is enough. If something
goes wrong, a window shows up to describe the error(s) that were encountered. In our
example of Figure 6.4 on page 53, we see that the syntax-checking function has detected
that atom “Carbon” has no isotopic data whatsoever; and that is a real error, as we were
mentioning earlier.

Once the atom definition is completed, the user has to register it to the GNU polyxmass
software suite. This task is described in a later chapter about the configuration/data files
hierarchy of the GNU polyxmass software.

o1

Atomn Definitions f&vailable On The System

Choose One Of The fvailable Definitions
Pal. Def.]Atum. Def.]ﬂn.tum Def Fle

basic fusrisharefpolyxmass/atom-defs/atoms.xml

Choose & Fle...

2 Home = T lHome devel I polyxmass I EEJ
[} Alesystem
(=) Zip Drive Mame J Modified J
(= win2k Fbin Yesterday
ush I devel Friday

() Floppy | Fllabo Friday
7 mailmutt Today

£ | = Plperso 08/22/2004

& cancel 3 0 Select

Figure 6.2: polyxdef atom definition choosing window The user might either select an
atom definition already registered to the GNU polyxmass software suite (upper frame) or
select an atom definition that is not registered (lower frame).

52 CHAPTER 6. POLYXDEF

Figure 6.3: polyxdef atom definition window The atom items must contain isotope
items, otherwise the atom does not have any “raison d’étre”.

53

[Bare B 10.8110282073
Carbon C 0.0000000000

[Mitrogen M
- 0 o]

el . atom atindex '5' has empty monoisotopic mass array

atomn at index '5' has empty monoisotopic abundance array

[Fluarine F
[Mean MNe 20.1800452722 |
[Sodium MNa 22.9897697000

Figure 6.4: polyxdef atom syntax-checking window The atom items must contain
isotope items, otherwise the atom does not have any “raison d’étre”. Here, the syntax-
checking function has found an error, and the message is displayed in the window overlaid
onto the definition window

BM Ale B@ palyxdef | E{: palyxcalc BE polyxedit ¥ About

Atomn Definition

Polymer Definition | = Open Polymer Definition |
D MNew Paolymer Definition

Figure 6.5: polyxdef polymer chemistry definition menu The user might ask that a
polymer chemistry definition file be opened for editing or that a new polymer chemistry
definition be started empty for ex nihilo editing.

Editing a polymer chemistry definition

Editing a polymer chemistry definition is performed using the carefully crafted user interface
that shows up when the user selects one of the two submenu items shown in Figure 6.5.

When the user asks that an existing polymer chemistry definition file be found, a “chooser
window” shows up like the one shown on Figure 6.6 on the facing page.

When the polymer chemistry definition editor shows up, the user sees an interface that
allows the addition/removal of a number of chemical items that define the polymer chemistry
(Figure 6.7 on page 56). For example, the user might define any number of monomers to be
later used in order to create polymer sequences. Equally important is the ability to define any
kind of chemical modification (Figure 6.8 on page 57). Doing chemical or enzymatic cleavages
on polymer sequences is something rather common in experimental laboratories, and the user
can model any kind of chemical/enzymatic cleavage (Figure 6.9 on page 57). Also, it is of
crucial importance that the user be able to define any kind of gas phase fragmentations for
his newly-defined polymer chemistry (Figure 6.10 on page 57). Also, d

Now that we have made a quick overview of what a polymer chemistry definition looks

54 CHAPTER 6. POLYXDEF

Polymer Definitions f&vailable On The System

Choose One Of The fwvailable Definitions. ..

Def Type | Def. Ale | Def. Di

protein fusrisharefpolyxmass/polchem-defs/protein/protein.xml fusris
peptide fusrisharefpolyxmass/polchem-defs/protein/peptide. xml fusris
long-protein jusrfsharefpolyxmassipolchem-defsflong-proteinflong-protein.xml fusr/s
dna fusrisharefpolyxmass/polchem-defs/dnajdna.xml jusris
rna fusrisharefpolyxmass/polchem-defs/rnajrna.xml fusris
saccharide jusr/sharefpolyxmass/ipolchem-defs/saccharidefsaccharide.xml fusr/s

ose fusrisharefpolyxmass/polchem-defs/saccharidefose.xml fusris

Choose & Polymer Chemistry Definition Fle. ..

il Home |DHnm: devel | polyxmass | src
[} Alesystem —
(=) Zip Drive Mame |Mndified |
(=) win2k Fbin Yesterday
(Jush I devel Friday

(=) Floppy
(=) dwd
(=) CD-ROM

Fllabo
7 mailmutt
Pl perso

Friday
Today
08/22/2004

(Z)CD-ROM (2] L] sysmanage 08/15/2004
Fltmp 08/22/2004

] webstuff Yesterday

Figure 6.6: polyxdef polymer chemistry definition choosing window The user might
either select a polymer chemistry definition already registered to the GNU polyxmass
software suite (upper frame) or select a polymer chemistry definition that is not registered
(lower frame).

55

Polyrmer Definition Type | protein Unmodified

Atorm Definition To Use
|basic _J

| fusrisharefpolwmass/atom-defs/atarms xml

*Read Atom Definition I [?= Locate Atom Definitian I
Polymer Endings' Chemistry (Caps) Polymer lonization Rule
Left Cap Actfarm
+H I |+ |
Right Cap Charge
|+oH ‘ |1 I

Munumers‘Mudificatiuns Cleavages Fragmentations

Monomers Available

Mame JCudeJFormuIa] =
Glycine €] C2H3NO
Alanine A C3HSND
Yaline W CSHONO
Leucine L CEH11IMNO
Isaleucine | CEH11MO
Serine 5 C3HSNO2 Foy
Details
Maximum Number Of Allowed Characters For A Monomer Code | 1 : 1]
Actions
+ Add == Remove ‘

Palymer Definition Fle Actions

'@ Check Syntax] E Save] E Save As] ‘

Messages

| |

Figure 6.7: polyxdef polymer chemistry definition window The window lets the user
define with great flexibility the chemical entities that characterize the polymer chemistry
being defined. Here the monomer definition treeview is displayed.

56 CHAPTER 6. POLYXDEF

Figure 6.8: polyxdef chemical modifications definition The user may define any number
of chemical modifications to be later applied to the whole polymer sequence or onto any
individual monomer.

Figure 6.9: polyxdef cleavages definition The user may define any number of chemi-
cal /enzymatic cleavages to be later applied to the polymer sequence.

Figure 6.10: polyxdef fragmentations definition The user may define any number of
gas-phase fragmentation patterns to be later applied to the whole polymer sequence or onto
any polymer selection (oligomer).

57

like, we have to go through some details.

First off, we should immediately explain what the reference to an atom definition file is
for, at the top of Figure 6.7 on page 56 (under the label Atom Definition To Use): GNU
polyxmass is now able to cope with different atom definitions. Each polymer chemistry
definition must unequivocally state what atom definition it has to work with. The combobox
list item that is shown on the figure reads basic. This is where the user should mention what
atom definition file is to be used for using with the polymer chemistry definition that is
being worked on. The combobox list widget lists all the available atom definitions at the
time the window was opened. In the figure it only lists one item: basic, which is the
basic atom definition file that is installed by the GNU polyxmass-common essential GNU
polyxmass package.

Note that the user is given the opportunity to select an atom definition file that is not yet
registered to the GNU polyxmass system. To locate such a file on disk, the user should
just use the Locate Atom Definition button. Once the user chooses a file on disk, its name
will be shown in the text entry widget below the combobox list.

Telling what atom definition file is to be used by any given polymer chemistry definition is
of primary importance, because any mass-related computation will be performed by looking
at the formulae of each chemical entity in the polymer sequence; the transformation of a
chemical formula to a molecular mass is based upon the lookup of what a given atom symbol
should weigh. This lookup step is done by going into the atom definition file looking for the
atom of the proper symbol, and checking what its isotope(s) is(are). Thus, we say that the
resolution of the GNU polyxmass mass spectrometric software suite is isotopic.

It is necessary to let the polyxdef module know the contents of that selected atom
definition file, so that they can be used by the polymer chemistry definition being elaborated
in this session. This is achieved by clicking onto the Read Atom Definition button. Clicking
that button triggers the parsing of the file whose name is displayed in the text entry widget
sitting right above the buttons. If an error occurs while parsing the atom definition file, then
a message is displayed to inform the user.

It is only when the polyxdef module has completed successfully the parsing of the atom
definition window (the result will be displayed in a timeout manner in the messages text
entry widget at the bottom of the window), that the user can start defining the new polymer
chemistry. We will review that process in a detailed manner below.

The atom definition that is associated to the polymer chemistry must be registered to
the GNU polyxmass software suite at the time the polymer chemistry definition is used.
The way this association is performed will be described in a later chapter.

Various Identification And Singular Data

“Identification data” are pieces of information that should be defined in order to describe
the polymer chemistry (these are non-chemical pieces of information). For example, an
identification datum is the polymer chemistry definition type. “Singular data” are pieces
of information that are not present in more than one copy in the polymer definition. An
example of a singular datum is the string that describes how the elongating polymer sequence
should be left- or right-capped so that it gets to its “finished state”, after the polymerization
has terminated.

Looking at Figure 6.7 while reading the following paragraphs will help. This and sub-
sequent figures illustrate the process by which a polymer chemistry definition “protein” is
defined.

58 CHAPTER 6. POLYXDEF

As the reader can see, there are a number of identification and singular data to be entered
at the top of the polymer chemistry definition window; these are described in the list below:

% Polymer Definition Type protein String describing the type of the new polymer chemistry
definition being elaborated;

* Polymer Endings’ Chemistry (Caps) Description of the chemical capping reaction that
should happen either on the left end (Left Cap) or on the right end (Right Cap) of
the polymer sequence, once it is successfully polymerized. As shown, this chemistry is
divided into two pieces of information:

+ Left Cap +H String describing the actform that should be applied to the left end
of the elongating polymer sequence;

+ Right Cap +OH String describing the actform that should be applied to the right
end of the elongating polymer sequence;

* Maximum Number of Allowed Characters For A Monomer Code 1 This integer value
indicates the maximum number of characters that may be used to describe monomer
codes. See below for details about this critical value;

% Polymer lonization Rule This rule describes the manner in which the polymer sequence
should be ionized by default, when the mass is calculated. This rule actually holds two
elements:

+ Actform 4+H String describing what chemical reaction should be applied to the
polymer in order to ionize it. Here we ask that all the polymer sequences of
polymer chemistry definition “protein” be protonated once by default;

+ Charge 1 Signed numerical value indicating what charge the polymer will hold
once the ionization rule’s actform has been applied to it. Here, it is asked that
the proteins bear one positive charge after that the default mono-protonation
mentioned above has taken place.

Now that we have defined the identification and singular data for the polymer, we will
go on with another type of data: “plural data”. Conversely to what said previously about
singular data, plural data are pieces of information that can be present in more than one
copy in the polymer chemistry definition. An example of plural data is the data pertaining
to the monomers.

Various Plural Data

The Monomers

The monomers are the constitutive blocks of the polymer sequence. Their definition should
be done with great care, as all the mass calculations are based on the formulae of the defined
monomers. Remember that in our GNU polyxmass’ jargon, “monomer” stands not for
the molecule that you bought from the chemicals vendor in order to synthesize the polymer;
it stands for this molecule less the chemical group(s) that left it when the polymerization
occurred. If this sounds strange to you, you definitely should read chapter 3 on page 15 for
a detailed explanation of the GNU polyxmass specialized words.

59

The lower part of Figure 6.7 on page 56 shows how easy it is to define a new monomer:
this is as easy as entering three strings in each column of a row (that may be created by
clicking onto the Add button). Note that none of the two Name and Formula strings are
limited in size.

The case of the Code string is a bit more complicated and depends on the value that is
entered in the Maximum Number of Allowed Characters For A Monomer Code field. In our
example, this value is 1, which means that we are allowed to use only one character to
describe a monomer’s code. Thus, we can see in the figure that all the monomers have a
single-character code. It is possible however, to use another value, for example 3. In this
case there is a general rule which is enforced in polyxdef:

“The first character of a monomer code must be uppercase, while the remaining
characters (if any) must be lowercase.” That means that —in our example of 3-
character codes— ‘A’, “Al”, “Ala” would be perfectly fine, while “Alan”, “AL”, ‘a’,
“AlA” would be wrong.

The mechanism here is highly sophisticated, contrary to what may look like, because you
have to imagine what goes on in the different GNU polyxmass modules, in particular in
the polymer sequence editor (polyxedit): how are monomer codes keyed-in if ‘A’ and “Ala”
are valid monomer codes in a polymer chemistry definition? The magic is described in the
chapter about polyxedit. Not conforming to the instructions above will yield unpredictable
results.

The Modifications

Oft-times a polymer will be modified chemically by the user. This is especially true when
the user tries to mimick polymer chemical modifications that arise in biochemical processes,
in particular regulatory modifications, like protein phosphorylations, for example. Indeed, a
biopolymer is modified more often than not. A modification can be a phosphorylation onto
a protein residue (on an alcohol function-bearing residue) like a seryl residue, for example,
or an acetylation onto a amino function-bearing residue, like a lysyl residue. The GNU
polyxmass mass spectrometry framework gives the user the entire freedom to define any
number of modifications. Let us see how; once again, looking at Figure 6.8 on page 57
will help. Indeed, this figure shows, amongst others, how a Phosphorylation modification is
defined. Most evidently, a modification is defined by a Name string (of unlimited length)
and by an Actform string (of unlimited length). The syntax of an actform should by now
be somewhat familiar to the reader. In the Phosphorylation case, it can be read like this:
—“The polymer looses a proton and gains H2PO3”. When the polymer is modified with this
modification, its masses will change by the mass corresponding to this “reaction”. Of course,
the fact that the actform is written in this way is related to the fact that a chemist always
thinks in terms of “leaving” and “entering” groups. However, a user might perfectly write
“+HPO3” instead of ““H+H2PO3”, or even more precisely ““-H+H3P0O4-OH”. Any of these
actforms are exactly identical from a molecular mass point of view (and thus also from the
GNU polyxmass’s perspective).

The Cleavage Specifications

It is common practice —in biopolymer chemistry, at least— to cut a polymer into pieces
using molecular scissors like the following:

60 CHAPTER 6. POLYXDEF

% proteases, for proteins;
% nucleases, for nucleic acids;
* glycosidases, for saccharides. . .

For each different polymer type, the molecular scissors are specific. Indeed, a protease
will not cleave a polysaccharide. The specificity of a cleaving enzyme is thus something
that should be described in each polymer chemistry definition, since this specificity is indeed
polymer chemistry-specific. Here we show the way that the user can define the cleavage
specificity of a molecular scissor. As usual, looking at Figure 6.9 on page 57 might help in
reading the following paragraphs.

By looking at this figure, it should be obvious that defining a cleavage specification gets a
little more involved than what we saw earlier for modifications. This is true only for certain
chemical reagents that modify the substrate they cleave, which is not that frequent. In the
Figure 6.9 on page 57, the first cleavage specification is “CyanogenBromide” (note that there
is no space between Cyanogen and Bromide in the Name column entry).

Let us analyze the data entered by the user in order to fully qualify this cleavage agent
(which, conversely to the other ones listed in the Name column of the treeview shown in the
figure, is not a protease but a chemical reagent):

* Name CyanogenBromide This is merely the name of the cleavage agent;

* Pattern M/ This tells the GNU polyxmass framework where to cleave in the polymer
sequence when a CyanogenBromide cleavage is asked. The syntax of the cleavage
pattern is detailed below;

* Left Code and Left Actform (Empty) This is a special case for those cleavage agents
that not only cut a polymer sequence (usually it is a hydrolysis) but that also modify
the substrate in such a way that must be taken into account by GNU polyxmass
so that it computes correct molecular masses for the resulting oligomers. These rules
are optional. However, if Left Code is filled with something, then it is compulsory that
Left Actform be filled with something valid also, and conversely;

% Right Code and Right Actform M and -CH2S+403, respectively. Same explanation
as above. Here, what we say is that each oligomer resulting from the cleavage of
the polymer sequence at a ‘M’ monomer should be modified using the Right Actform
actform. Since the cleavage occurs right of ‘M’, it is logical that a ‘M’ is found right of
the oligomer that was generated upon a “CyanogenBromide” cleavage. A special case
in which a ‘M’ may be found at the right end of an oligomer, without resulting from a
polymer sequence cleavage, is if the ‘M’ was at the right end of the polymer sequence.
Of course this case is evaluated and if it is found, the the actform is not applied.

In order to best explicate the cleavage specification pattern syntax I shall provide below
some examples:

* Trypsin = K/;R/;-K/P “Trypsin cuts right of a ‘K’ and right of a ‘R’. But it does
not cut right of a ‘K’ if this K is immediately followed by a P”;

* EndoAspN = /D “EndoAspN cuts left of a D%,

* Hypothetical = T/YS; PGT/HYT; /MNOP; -K/MNOP “Hypothetical cuts
after ‘T if it is followed by YS and also cuts after “I" if preceded by PG and followed
by HYT. Also, Hypothetical cuts prior to ‘M’ if ‘M’ is followed by NOP and if ‘M’ is
not preceded by K”.

61

Please, do note that the letters above correspond to monomer codes and not to monomer
names. If, for example, we were defining a “Trypsin” cleavage specification pattern —in a
protein polymer chemistry definition with the standard 3-character monomer codes— we
would have defined it this way: “Trypsin = Lys/;Arg/;-Lys/Pro”.

Now comes the time to explain in more detail what the Left Code and Left Actform (along
with the Right siblings) are for. For this, we shall consider that we have the following polymer
sequence (1-character monomers codes):

THISMWILLMBECUTMANDTHATMALSO

If we cleave this polymer using “CyanogenBromide” and if the cleavage is total,! we shall
get the following oligomers:

THISM WILLM BECUTM ANDTHATM ALSO

But if there is a partial cleavage, we would also get one or more of these oligomers:

THISMWILLM BECUTMANDTHATM ALSO WILLMBECUTM ANDTHATMALSO

and so on. ..

Now, the biochemist knows that when a protein is cleaved with cyanogen bromide, the
cleavage occurs effectively right of monomer ‘M’ (this we also know already) and that the ‘M’
monomer that underwent the cleavage is changed from a methionyl residue to an homoseryl
residue (this chemical change involves this actform: “-CH2S+40"). The following two lines of
oligomers should definitely “undergo the actform”; one time only for each oligomer:

THISM, WILLM, BECUTM, ANDTHATM
and
THISMWILLM, BECUTMANDTHATM, WILLMBECUTM

while the two oligomers shown below should not “undergo the actform” because (even if
one of them does contain a ‘M’ monomer) the cleavage did not occur at a this ‘M’ monomer:

ALSO ANDTHATMALSO

This example should clarify why we clearly indicate —in the cleavage specification for
“CyanogenBromide”— that the oligomers resulting from this cleavage should “undergo the
‘-CH25+0’ actform” only if they have a ‘M’ as their right end monomer code.

This would be of crucial importance, if we had a cleavage agent that would cleave not only
right of ‘M’ but at some other places: we really would need to specify these rules in a careful
way. For example, imagine you had noted —in your many cyanogen bromide experiments—
that more often than rarely cyanogen bromide would cleave right of ‘C’ (cysteine) residues,
but with no chemical modification of the ‘C’ monomer.? In this case, you would be glad that
the possibility is given to you to specify that the generated oligomers should “undergo the ‘-
CH2S5+0’ actform” only if they have a ‘M’ as their right end monomer, so that ‘C’-terminated
oligomers are not chemically modified. You would thus safely define this pattern: “M/;C/”. ..

LCleavage occurs at every possible position, right of each monomer ‘M’.
2This is a purely hypothetical situation that I never observed personally!

62 CHAPTER 6. POLYXDEF

The logical conditions that the user can set forth for a cleavage reaction are called (in an
intuitive manner) cleavage rules.

Now that we got trained to think in an abstract way with these cleavage rules, we can pro-
ceed to yet meatier stuff: the fragmentation specifications. A polymer chemistry definition
can hold as many fragmentation specifications as necessary. A fragmentation specification
holds a number of pieces of information, amongst which there is a compound datum describ-
ing logical conditions similar to, but more complex than cleavage rules: fragmentation rules.
Each fragmentation specification might have zero or more (with no limitation) fragmentation
rules. We review this complex matter in the next section.

The Fragmentation Specifications

As you might have noticed reading page 26, the fragmentation specification is a tricky busi-
ness. Figure 6.10 shows examples of protein fragmentation specifications for fragment types
a, b, ¢, z, y, x, imm.

Let’s concentrate on the fragmentation specification of type a. While the first row of this
fragmentation specification is effectively valid (for a “protein” polymer chemistry definition,
at least), the lower two rows (describing fragmentation rules named a-fgr-1 and a-fgr-2) are
fake, only to show the way fully qualified fragmentation specifications can be created.

Let us analyze the data that the user entered to fully qualify this a fragmentation speci-
fication:

* Name a This is the name of the fragmentation specification. Fragments obtained with
this specification will be named according to the following naming scheme: “a-i”, with
a being the fragmentation name and 7 being the position —in the precursor polymer
ion— of the monomer at which the fragmentation occurred (see page 26);

% End LE This is the end of the precursor polymer that is to be found in the fragment.
Accepted values are “LE” (left end), “RE” (right end) and “NE” (no end). We have
previously seen —for proteins and nucleic acids— that fragments a, b, ¢ include the left
end (“LE”) of the precursor polymer, while “RE” applies to fragmentation specifications
that lead to fragments that contain the right end of the precursor polymer (for example,
fragments z, y, z). Special cases, like proteinaceous immonium ions, do not bear any
end of the precursor polymer, in which case “NE” (for no end) should be written here
instead of “LE”).

This End piece of information is important for two reasons: 1) because it tells the
fragmentation engine from which end it should iterate (in the precursor polymer se-
quence) when making all the fragments of a given fragment ion series and 2) because
it guides GNU polyxmass to apply the conventional naming scheme using ¢ with the
proper value. Therefore, the smallest fragment of the a series is a-1 (note subscript
1), which is the left end monomer of the precursor polymer. The smallest fragment of
the x series is z-1 (note that subscript is also 1). This time, the z-1 fragment, how-
ever, corresponds to the right end monomer of the polymer sequence. This is because
the numbering of the fragments always starts at the precursor polymer’s end that was
specified by the End piece of data from the polymer chemistry definition;

% Actform -C101 Optional. This is the chemical reaction that will actually change a
monomer chain into the proper fragment. Indeed, the mass calculation of the frag-
ment’s mass is performed by summing the mass of the monomers running from the
end of the precursor polymer up to the position where the fragmentation occurs, plus

63

adding the mass of the end’s cap as specified in the polymer chemistry definition. But,
for the a fragments, this is not enough, as it does not lead to a correct mass. It is
required that the actform “-C101” be applied to the monomer chain so that it is of the
correct mass (after having added the mass corresponding to the left cap; see below).
This actform is optional, because for some fragments (for example, fragments b in the
protein polymer chemistry) there is no need for any actform besides adding the masses
of the monomers and adding the mass corresponding to the left cap of the polymer
chemistry definition. As can be seen on the picture, “-HO” is set as an actform for b
fragments. Again, see page 26;

Comment (Empty) Optional. This is simply a comment, if the user wants to set any.
Ad libitum.

A fragmentation specification can include zero or more fragmentation rule(s) that help model
—in a highly detailed manner— complex fragmentation patterns. Let’s see what it takes to
define a fragmentation rule:

*

*

Name a-fgr-1 This is the name of the fragmentation rule. It should be self-explanatory
and should somehow provide a hint to the fact that this fragrule belongs to the a
fragmentation specification;

Prev E Optional. This is one of the logical conditions that can be set to be verified so
that the actform can be applied to the fragment currently generated. In our example,
we are saying that if —in the precursor ion sequence— the monomer preceeding the
one that is currently fragmented is of code ‘E’, then this condition is verified and the
+H200 actform should be applied to the resulting fragment;

This D Optional. This is an analogous condition as the one above, unless the monomer
onto which this condition applies is the monomer being actually fragmented;

Next F Optional. This is similar condition, unless that it applies to the monomer that
is one position forward in the precursor ion sequence, with respect to the presently
fragmented position;

Actform +H200 This is the chemical action with which the fragment will actually be
challenged if the set of logical conditions above is verified. This actform is the raison
d’étre of the fragmentation rule, so it is compulsory;

comment comment here! Optional. Ad libitum.

A fragmentation rule is a set of one or more logical conditions that (if verified) determine
a user-specified chemical actform to be applied to the fragment that was generated in the first
place by fragmenting the precursor polymer using the fragmentation specification to which
the fragrule itself belongs. As can be seen in the example figure, the fragmentation spec-
ification for fragments a (fragmentation specification a) contains two fragmentation rules,
but it could have contained as many of them as necessary to finely describe experimentally
observed fragmentation events. ..

The following paragraph will explain thoroughly how fragmentation rules modify the way
fragments are generated, for a given fragmentation pattern.

We have seen, in our example of a fragmentation specification named a (Figure 6.10),
that it should generate fragments starting from the left end of the precursor polymer. Now
we see that the fragmentation specification includes a fragmentation rule: This is set to ‘D’,

64 CHAPTER 6. POLYXDEF

which means that this fragmentation rule is evaluated further only if the monomer currently
fragmented is indeed a ‘D’. If not, the whole fragmentation rule is skipped. If Prev is set to
something (for us: ‘E’), then the fragmentation rule is evaluated further only if the monomer
at position [current -1] is a ‘E’. If not, the fragmentation rule is skipped. If Next is set to
something (for us: ‘F’), then the fragmentation rule is evaluated further only if the monomer
at position [current +1] is a ‘F’. If not, the fragmentation rule is skipped.

What is called a position [current +1] and a position [current -1] depends on the
kind of fragmentation specification: if the fragmentation specification states that End (seen
earlier) is “LE” (or “NE”), then the position [current +1] refers to the position right of the
currently fragmented monomer (in the standard left-to-right polar horizontal representation
of a polymer); if the fragmentation specification states that End is “RE”, then the position
[current +1] refers to the position left of the currently fragmented monomer. This has to do
with the way the fragmentations are normally described: the fragment numbering scheme
starts at the right end of the precursor polymer for “RE” fragments and at the left end of the
precursor polymer for “LE” fragments. This is also true here: for a fragment of the series a,
the fragmentation rule that we have described would effectively be applied to the following
sequence:

MYNAMEISEDFFIL
only upon generation of the MYNAMEISED fragment.

If we were using the same fragmentation rule for a fragment of the series z (for which End
is “RE”), the fragmentation rule would never have been evaluated. Instead, for the following
sequence:

MYNAMEISFDEFIL
it would have, and thus would have generated the fragment EDFIL.

Now, what about internal fragment specifications, like the immonium ions’ case, where the
End is defined to be “NE” in the polymer chemistry definition? GNU polyxmass evaluates
the conditions from left to right; so the conditions are evaluated like for “LE” cases.

Another important thing to figure out: how are the logical conditions tested? The main
condition (entered as This) is evaluated first, because this is the simplest evaluation: the
value of the This monomer can be compared with the currently fragmented monomer code
without depending on the End value. If the monomer context complies with this condition
(in our example that would mean that we are actually fragmenting at a ‘D’ monomer), other
conditions (if any) are evaluated. Thus, in logic terminology the conditions are ANDed one
with the other: as soon as a condition is stated it must be verified. If any condition is not
verified, no fragment is created and the other fragmentation rules are analysed (if any).

If there are more than one fragmentation rule in a fragmentation specification, each
fragmentation rule is evaluated separately. If the monomeric context (previous/this/next
monomer codes) complies with the logical conditions stated in the evaluated fragmentation
rule, a new fragment is generated. When a fragmentation rule is found not to comply with
the monomer context, then it is simply skipped (no fragment is generated).

It should be noted that the presence of a fragmentation rule in a fragmentation specifica-
tion is not exclusive, in the sense that if the fragmentation rule contains never satisfied logical
condition(s),® a single fragment is indeed generated, which corresponds to the fragmentation
specification without taking into account any framentation rule.

3Such as if “this monomer’s code” is “Y’, “next monomer’s code” is ‘Y’ and “previous monomer’s code” is
‘Y’ and there is no “YYY” sequence element in the polymer, for example.

65

The fact that each fragmentation rule —that has logical conditions which are verified in
the sequence— yields a new fragment implies that the fragmentation rules are not summative:
a fragment is not generated by applying onto it the actform of each validated fragmentation
rule in a fragmentation specification. Fach fragmentation rule, in a given fragmentation
specification, gives rise to a fragment that is a fragment ion resulting from the application of
both the actform specified in the fragmentation specification (if any) and the actform spec-
ified in the fragmentation rule (this one is compulsory). Next, when another fragmentation
rule of the same fragmentation specification is evaluated, a brand new fragment is generated
according to the same process as the one just described.

As an example of how the fragmentation rules might be added to a given fragmentation
specification, let’s take the example of the ‘a’ and “a-B” fragments from the oligonucleotide
chemistry. The ‘a’ fragments might exist per se ; however, it might happen that a further
fragmentation event removes the nucleobase off the nucleotide that undergoes the fragmenta-
tion. The generated fragments are called “a-B”. Let us see how we could model this chemistry:

First look at the conventional ‘a’ fragmentation pattern:

<fragspecs>
<fgs>
<name>a</name>
<end>LE</end>
<actform>-0</actform>
</fgs>

And now look at the “a-B” abasic corresponding fragmentation pattern:

<fgs>

<name>a-B</name>

<end>LE</end>

<actform>-0</actform>

<fgr>
<name>a-B-c</name>
<actform>-C4H4N30</actform>
<this-mnm-code>C</this-mnm-code>
<comment>a-cytosine</comment>

</fgr>

<fgr>
<name>a-B-a</name>
<actform>-C5H4N5</actform>
<this-mnm-code>A</this-mnm-code>
<comment>a-adenine</comment>

</fgr>

<fgr>
<name>a-B-t</name>
<actform>-C5H5N202</actform>
<this-mnm-code>T</this-mnm-code>
<comment>a-thymine</comment>

</fgr>

66 CHAPTER 6. POLYXDEF

<fgr>
<name>a-B-g</name>
<actform>-C5H5N50</actform>
<this-mnm-code>G</this-mnm-code>
<comment>a-guanine</comment>

</fgr>

<comment>abasic a fragment</comment>

</fgs>

For each of the four bases, the model instructs the fragmentation engine to remove the
formula of the base (minus a proton) if the fragmentation occurs precisely at such a base in
the oligonucleotide.

Saving A Polymer Chemistry Definition

Once the polymer chemistry definition is completed, the user can save it to a file. Prior to
actually writing to the file, the program checks the syntax validity of the elements that the
user has entered in the window. This check can be triggered manually by clicking onto the
Check Syntax button. If an error is found in the polymer chemistry definition being worked
on, that error is displayed in a window so that the user may identify the problem and fix it.

When saving a polymer chemistry definition to a file, if no error is detected, the program
proceeds with writing the polymer chemistry definition to an XML file.

The location where the file should be saved, and the manner that it may be made available
to the whole GNU polyxmass framework is to be described in a later chapter.

In that chapter, the user will be instructed on how to insure that the newly-made polymer
chemistry definition uses the proper atom definition.

Indeed, GNU polyxmass is a rather powerful framework, wholly designed to be mod-
ular. But this modularity and power have a cost: complexity. A well configured system is
the key to a powerful program running smoothly. It is thus very important to grasp the
GNU polyxmass framework configuration data hierarchy so that the program knows at
each instant where to find the configuration and data files required to perform properly both
the polymer sequence display and the mass calculations.

But for now go on with the polymer chemistry definition-aware calculator: polyxcalc!

polyxcalc: A
Powerful Mass
Calculator

After having completed this chapter you will be able to perform sophisticated mass compu-
tations in a polymer chemistry-aware manner.

polyxcalc Invocation

The polyxdef module is easily called by pulling down the “polyxcalc” menu item from the
GNU polyxmass program’s menu. The user may accomplish two different tasks in the
polyxcalc module:

% Use the calculator in a polymer chemistry-unaware manner;

% Use the calculator in a polymer chemistry-aware manner.

polyxcalc Operation: An Easy Task

When the user elects to open a polyxcalc module with a polymer chemistry definition, he
is provided a window where to choose an already registered polymer chemistry definition

67

68 CHAPTER 7. POLYXCALC

Palymer Definitions Available On The System

Chaose Gne Of The Available Definitions.

Def Type Def. File Def Di

protein I h o p xml Jusr/s

peptide h p xml lusris

+:
g
long-protein ft hem-defs/long-p protein xml Jusr/s
dna h xml Jusris
+:
g
4

saccharide /i h, idexml Jusr/s

Figure 7.1: Selecting a polymer chemistry definition for use with polyxcalc This
figure shows that the user can only select one already registered polymer chemistry definition
with the polyxcalc module. Choosing a polymer chemistry definition will allow to take
advantage of all the chemical entities defined therein during the mass computations.

out of the list of all the polymer chemistry definitions available to the GNU polyxmass
framework (Figure 7.1).

When the user selects one polymer chemistry definition, the calculator window comes
preloaded with that definition, which allows the user to take advantage of the chemical
entities defined in that definition when performing mass computations.

The way polyxcalc is operated is very easy. This is partly due to the very self-
explanatory graphical user interface of the module, which is illustrated in Figure 7.2. As the
reader can see, there are a number of items that polyxcalc can handle. We are going to
review these one by one:

% Initial Masses This is the place where the mass calculator may be seeded so as to start
computations on pre-existing molecules of which masses are known already. The user
may enter either a Mono Mass or an Avg Mass or both masses. When any of these
masses is set and the Result Masses are empty, they are taken into account (polyxcalc
considers that the system is seeded with them) in the first mass calculation that is
elicited by clicking onto the Apply button. Once the Result Masses are no more empty,
these masses are no more taken into account, and instead will be updated to reflect
the previous mass calculation results. Thus, each time a calculation is performed, the
previous results are stored in the Initial Masses text entry widgets. This way, the user
has the ability to always “undo” the last calculation step;

% Atom This is a drop-down list widget that contains all the atoms available in the
polymer chemistry definition-associated atom definition.! The user may select any of
these atoms and enter any number (positive or negative) in the related Count text
entry widget. Entering a positive value means that the selected chemical entity must
be added to the masses, while a negative value will remove this entity from the masses;

% Formula/Actform This is a text entry widget where the user may enter as complicated
actforms (or a formula) as she wishes. Same as above applies for the Count text entry
widget;

1If no polymer chemistry definition is loaded into the calculator, then the ’basic’ atom definition is used.
That ’basic’ atom defintion is distributed along the GNU polyxmass-common package that is essential
to the proper functioning of the GNU polyxmass mass spectrometry software framework.

69

Figure 7.2: Interface of the polyxcalc module. This figure shows that the polyxcalc
polymer definition-aware module can handle atoms, actforms, monomers, modifications and
even polymer sequence. .. for computing masses.

70 CHAPTER 7. POLYXCALC

* Monomers If a polymer chemistry definition file was loaded when bringing up this
polyxcalc calculator module, this drop-down list widget contains all the monomers
listed in the chosen polymer chemistry definition. For example, if the “protein” polymer
chemistry definition file had been opened in polyxcalc, then this drop-down list widget
would have contained the twenty names of all the naturally-occurring most common
monomers (amino-acids). Same as above applies for the Count text entry widget;

* Modifications This is exactly the same as for the Monomers drop-down list widget,
unless the “chemical elements” listed here are the modifications described in the polymer
chemistry definition file, such as “Acetylation” or “Phosphorylation”; for example. Same
as above applies for the Count text entry widget;

% Polymer Sequence This is a text entry widget were the user may enter a polymer se-
quence complying with the polymer definition currently opened in polyxcalc. A “pro-
tein” sequence may be this “MAMISGMSGRKASPTSPINADK?”, for example, which
is the N-terminal end of the chicken gizzard telokin.? Same as above applies for the
Count text entry widget;

Noteworthy, when polyxcalc is launched without specifying a polymer chemistry defi-
nition, the polymer chemistry definition-specific widgets (monomers, modifications, polymer
sequence; all described above) are made insensitive. This is to make sure that the user cannot
enter data that would not make sense because the chemistry definition is loaded.

Also, interesting from a graphical user interface point of view, the fact that the user might
“collapse” parts of the calculator window widgets. For example, if the user does not make use
of monomers, she might click onto the Monomers checkbutton to have the whole monomers-
related frame collapse. This is true for all the other frames on that window. More radically,
if no polymer chemistry definition was loaded when launching the polyxcalc module, the
whole series of widgets pertaining to the polymer chemistry definition may be collapse in
one step by clicking onto the Polymer Chemistry-Defined Elements checkbutton.

Note also, that a series of buttons, located both in the Initial Masses and Result Masses
frames are made available to the user in order to perform sophisticated combinations of
calculations. .. The reader is invited to experiment with these buttons’-triggered actions.

The mass calculation operation is actually triggered by clicking onto the Apply button.
When this button is pressed, then the program goes through all the valid widgets an applies
all the requirements that are listed in the window. From the Figure 7.2, we can see that the
user asked a number of chemical operations to be performed in one Apply button click:

* Add one Mg atom;

* Add the net mass corresponding to the +H2S04-H action-formula;

* Add one Glycine residue;

* Modifiy the substrate using one Phosphorylation chemical modification entity;
% Add one protein sequence: MAMISGMSGRKAS;

When all these operations are performed, starting from empty Initial Masses, the result
is displayed in the text entry widgets located in the Result Masses frame: 1565.547233 as
the monoisotopic mass, and the 1567.008188 as the average mass.

As a final point, the reader may have noticed that, with this interface, any possibly
imaginable molecule can be constructed since the “granularity” of the polyxcalc module is
atomic.

2If I remember well my PhD experimental work. . .

71

polyxcalc Contains A m/z Ratio Calculator

It very often happens that the massist doing electrospray analyzes is faced with a challenging
task: to compute by mind all the m/z ratios for a given family of charge peaks. To ease that
daunting task, polyxcalc contains a m/z ratio calculator that is called by clicking onto the
m/z Ratio Calculator button. This action pops up a window that is shown in Figure 7.3.

In order to compute the m/z ratios requested by the user, the program needs to have some
seeding data, which have to be entered in the Initial Data frame widget. Of course, initial m/z
values have to be entered (both monoisotopic and average m/z values need to be entered).
The user must inform the calculator about how these m/z values were calculated, that is
what was the ionization status of the analyte when these m/z values were measured (either
virtually or effectively). These ionization data are entered in the lonization Status frame,
which is subdivided into two frames, where the user enters how the ionization is performed
(in our example, the ionization is a protonation, thus bringing one charge per protonation
event (lonization Unitary Charge is 1)) and what’s the level of the ionization, that is how
many times the ionization was performed (in our example, the ionization level is 1, that is
the analyte was mono-protonated). With all these data, the m/z ratio calculator can compute
the molecular mass of the analyte. That mass will be used to perform the requested m/z
ratio calculations (Requested lonization Status frame, which behaves identically to the one
described above). The computed m/z ratios are displayed in a treeview widget.

polyxcalc Is A Programmable Calculator

For the scientists who work on molecules that are often modified in the same usual ways,
polyxcalc features a built-in mechanism by which they can easily program their calcula-
tor. This programming involves the definition of how a chemical pad (or chempad) may be
arranged, exactly the same way as a usual calculator would display its numerical keypad.

An example of such a chemical pad is shown in Figure 7.4, where a “protein” polymer
chemistry definition-associated chempad is featured. As shown, the user has programmed a
number of chemical reactions that may be applied to the masses in the polyxcalc calculator
window by simply clicking on their respective item.

The configuration of the chemical pad is very easy, as shown in the code below (excerpt
taken from file /usr/share/polyxmass/polchem-defs/protein/chempad.conf):

chempad_columns$3

chempadkey=protonatey+H1%adds a proton
chempadkey=hydrate)+H201%adds a water molecule
chempadkey=0H-ylate%+01H1),adds an hydroxyl group
chempadkey=acetylate’-H1+C2H301%adds an acetyl group
chempadkey=phosphorylate)-H+H2P03}%add a phosphate group
chempadkey=sulfide bond’-H2Joxydizes with loss of hydrogen

What this text file says is very simple:

% That the buttons should be arranged in rows of three columns;

* Follows the description of a number of buttons (chempad keys) to be laid out in the
chempad (each line describes one button).

72

[)

myfz Computations

polyxedit: mfz Computations

CHAPTER 7. POLYXCALC

==

Initial Data

Initial mjz Values

Initial Monao m/z Value
140877.94730

lanization Status
lonization Chemistry
lonization Actform
+H

lonization Unitary Charge

Initial &g mjfz Value
14096523228

lonization Lewvel

Requested lonization Status

lonization Chemistry
lonization Actform
+H 1

lonization Unitary Charge
1 10

lonization Lewvel

Starting lonization Level

Ending lonization Level

35 Compute mjz Ratios

Unit. Charge loniz. Level | Mono Mass

1 1

140877.947300
704359477563
46959.987650
35220.242694
28176.395720
23480.497738
20126.284893
17610.625259
15654.001100
14088.701773

L N = = e e
W o 3 W B oW R

=
(=]

Avg Mass
140965.232280
70483.120110
46989.082721
35242.064026
28193.852809
23495.045331
20138.754275
17621.535983
15663.699534
14097.430375

Figure 7.3: The m/z ratio calculator. The m/z ratio calculator is rather straight forward
to use. Given initial m/z values with details on how they were computed, the program
computes m/z ratios as requested.

73

prntunatel hydrate | OH-late |

acetylate | phusphur}-’latel sulfide bundl

. add a phosphate group

Figure 7.4: Interface of the chemical pad. This figure shows that the chemical pad is
very similar to what a numerical calculator would display. Here, the user has programmed
a number of chemical reactions.

Recarder
Recorder: each new operation is recorded in this text view

Accounted atom: 'Mg'; count: '1' === mono: 23.985045 ; avg: 24305055

Accounted actform: '+H2504-H"; count: '1' === mono: 120.944600 ; avg: 121.376701

Accounted monomer: 'Glycine'; count: '1' === mono: 177.966064 ; avg: 178.428143

Accounted modif: 'Phosphorylation'; count: '1' === mono: 257.932397 ; avg: 258 408062
Accounted sequence: 'MAMISGMSGRKAS'; count: '1' === mono: 1565.547233 ; avg: 1567. 008188

Figure 7.5: The polyxcalc recorder window. This figure shows that the recorder window
is a simple textview widget that records all the mass-significant operations in the polyxcalc
calculator. The text in the recorder may be selected and later used in an electronic logbook
or printed.

Each button is defined in a line that begins with the text chempadkey=. Let’s look at
one button definition, the “phosphorylate” button. The phosphorylate text string after
the = character is the label that will decorate the button that is being configured. The
-H+H2P03 text string is the actform that should be applied to the result masses in the
polyxcalc main window when this button is clicked; that’s a chemical reaction, in fact. The
add a phosphate group is a text string that is displayed as a tooltip when the mouse cursor
stays for a number of milliseconds over the button.

From a geometrical layout point of view, the user is allowed to set either a number
of rows (chempad_rows$3, in our example) or a number of columns (chempad_columns$3,
in the example). The program then chooses the best layout corresponding to the user’s
requirement.

polyxcalc Is LogBook-Friendly

Each time an action that is chemically relevant —from a molecular mass perspective— is
performed, the program dumps the calculations to the polyxcalc recorder window.
This recorder window is shown in Figure 7.5. The text in the recorder window is editable

74 CHAPTER 7. POLYXCALC

for the user to customize the polyxcalc output, and selectable so that pasting to text editors
or word processors is easy.

polyxedit: A
Powerful
Simulator

After having completed this chapter you will be able to perform sophisticated polymer chem-
istry simulations on polymer sequences —that can be edited in place— along with automatic
mass recalculations.

polyxedit Invocation

The polyxedit module is easily called by pulling down the “polyxedit” menu item from
the GNU polyxmass program’s menu. The user may start the polyxedit module by:

* Ask that a polymer sequence be loaded from disk;

* Ask that a new polymer sequence be started ex nihilo.

polyxedit Operation: In Medias Res

When starting a new polymer sequence from scratch, the first thing the program does is to
provide the user with a window (Figure 8.1 on the following page) where the user is invited

(0]

76 CHAPTER 8. POLYXEDIT

Polymer Definitions Available On The System

Choose One Of The Available Definitions...

Def. Type | Def. Fle | Def. Dir
protein Jusrishare/polyxmass/polchem-defs/protein/protein. xml fusrfsharefpolyxmass/polchem-defs/p
peptide Jusrishare/polyxmass/polchem-defs/protein/peptide.xml| fusrfsharefpolyxmass/polchem-defs/p

long-protein fusr/share/polyxmass/polchem-defs/long-proteinflong-protein.xml jusr/share/polyxmass/polchem-defs/l

dna fusrfshare/polyxmass/polchem-defs/dnajdna.xml fusrfsharefpolyxmass/polchem-defs/d

rna fusrfshare/polyxmass/polchem-defs/rnafrna.xml fusrfshare/polyxmass/polchem-defs/r I

saccharide fusrfshare/polyxmass/polchem-defs/saccharidefsaccharide.xml jusr/share/polyxmass/polchem-defs/s

MNew Polymer Sequence Initialization

Polymer Sequence Specific Data Choose A New Polymer Sequence Fle. ..
Sequence Name |Example-doc Name: example-file. pxm
Sequence Code |P056913 | Savein folder: E]Home | i

[Browse for other folders

xgancel | ”°£alidate |

Figure 8.1: Initializing a new polymer sequence in polyxedit When starting a new
sequence from scratch, it is necessary to seed the program with a number of data that the
user is invited to give in this window.

to:

* Select the polymer chemistry definition (Def. Type) to be used to interpret the polymer
sequence (compulsory datum);

* Enter a Sequence Name for the polymer sequence (non-compulsory datum);
* Enter a Sequence Code for the polymer sequence (non-compulsory datum);

* Choose a file Name for the polymer sequence file.

Once all the data have been selected/entered, then the user clicks onto the Validate button
and the program open an empty sequence window as shown on Figure 8.2 on the next page.

At this point, when the user starts editing a sequence, the characters entered at the
keyboard, or pasted from the clipboard, will be interpreted using the polymer chemistry
definition that was selected in the initialization window described above.

Now, of course, editing a polymer sequence is not enough for a mass spectrometric-
oriented software suite; what we want is to compute masses! When the GNU polyxmass
software program is started, the window displaying the masses of the sequence being edited is
not displayed. Go to the main menu of the program and select the item polyxedit — View
and activate the checkbutton menu Display Masses Window.

The window that displays the masses for the currently edited polymer sequence is show
in Figure 8.3 on the facing page, where the reader can see that two different types of masses
are displayed:

7

Show/Hide Polymer Sequence Data

Sequence Name |Examp|e-doc

ID Number |0xl!2dcde0

Unmodified

T

Show/Hide Left And Right Ends' Modifications

|None set QEdit |None set ‘

Editing feedback

| | |

Figure 8.2: An empty polyxedit window This figure shows an empty polyxedit window,
waiting for the user to either paste a sequence from the clipboard or edit one from the
keyboard.

Show/Hide Polymer Sequence Data

Sequence Data

Sequence Name |Examp|e-doc

|Examp|e-doc
ID Number |0xl!2dcde0

|0xB2dcdeo

Unmodified

Whole Sequence
|19.01838

|19.02323 I
Selection
|1g_0153g Show/Hide Left And Right Ends' Modifications

|1g_02323 |None set QEdit |None set ‘

Editing feedback

aﬂecalculate | | ‘

Figure 8.3: The window displaying the masses This figure shows the window that
displays masses for the currently edited polymer sequence. As can be seen the identity of
the polymer sequence is shown along with masses computed for the sequence.

78

g

CHAPTER 8. POLYXEDIT

Polymer Sequence Data

Sequence Name |Example-doc
ID Number | 0xB2dcded
Polymer Sequence

Left Capped Right Capped

Account Left End Modif
Account Right End Modif

Monomer

Account Modifs

lonization Rules

Actform |+H

Unitary Charge |1

Level |1

Figure 8.4: Configuring the mass calculation engine This figure shows the detail in
which the mass calculation engine can be configured. See the text for details.

* Whole Sequence These are the monoisotopic and average masses computed for the
whole polymer sequence;

% Selection These are the monoisotopic and average masses computed for the selected
portion of the polymer sequence;

As the user can see, the protein sequence that we did initialize earlier is empty (the only

visible item is the cursor), and the masses displayed correspond to an empty protein. But
if there is no polymer sequence, then how come nihil weighs some 19 mass units? Well
that’s because we still have to show how polymer sequence masses are computed: by adding
the masses of each monomer in the sequence, that’s for sure. But also —depending on the
configuration set by the user— on other parameters. Figure 8.4 shows to what extent the way
masses are computed can be configured. The window that is shown in this figure was shown
as a result of right-clicking in the polymer sequence editor, selecting —from the contextual

menu that pops up— the View—— Calc. Options menu.
We'll review the different items in this window:

% Sequence Name: This entry widget holds the name of the polymer sequence for which
the mass computations are being configured;

* |D Number: Unambiguous identification of the polymer sequence (this is useful in case
the same identical polymer sequence file is loaded twice in polyxedit since this ID
number will differ);

* Left Capped: If checked, the left cap of the polymer definition corresponding to this
polymer sequence will be taken into account when computing masses

* Right Capped: Same as for Left Capped but for the right end of the polymer;

79

% Account Left End Modif: If checked, take into account the modification that might be
set to the left end of the polymer sequence;

* Account Right End Modif: If checked, take into account the modification that might be
set to the right end of the polymer sequence;

* Monomer — Account Modifs: If checked, take into account the chemical modifications
that might be set to monomers in the polymer sequence (or selection portion of it);

% lonization Rules — Actform: What action-formula to apply to the polymer sequence
when ionization is computed;

% lonization Rules — Unitary Charge: What is the charge that is brought by the action-
formula mentioned above;

% lonization Rules — Level: How many times the polymer sequence should be ionized
according to the two data elements above.

The fact that the user can specify ionization rules should make it clear that the masses
that are displayed are actually ' ratios, as long as one ionization occurs... Also, note
that the masses that are displayed in the window shown in Figure 8.3 on page 79, are
updated automatically anytime something “ponderable” happens with the polymer sequence
(Whole Sequence masses) or anytime the cursor is moved in the sequence (this is equivalent
to selecting from the beginning of the sequence up to the cursor point) or a selection is
modified (Selection masses).

For the moment that should be enough. Let’s delve more into the capabilities of the
polyxedit module of the GNU polyxmass mass spectrometric software suite.

polyxedit The Polymer Sequence Menu

There are two menus available to the user in the polymer sequence editor window. The
first menu is a conventional menu sitting on top of the sequence editor window. The second
menu pops up when the user right-clicks onto the sequence-displaying area onto a monomer
icon. The general rule of thumb is rather simple: whenever a menu item allows to perform
an action onto a specific sequence graphical rendering item (I mean a specific sequence as
displayed in a specific canvas), the menu to explore first is the popup menu. Conversely, if
the action to be triggered more about the sequence itself, and less about its actual graphical
rendering, then the menu to explore first is the main window menu.
The sequence editor window main menu comprises the items described below:

* File

+ —Save... Save the polymer sequence;
+ —Save As... Save the polymer sequence with a new name;

+ —Close. .. Close the polymer sequence;
* Edit

+ —Polymer Sequence Properties... Edit the polymer sequence properties, such
as sequence name, sequence code, for example. Note that the annotation process
will let you enter as many notes as required to the polymer sequence;

80

* View

*

CHAPTER 8. POLYXEDIT

—Calc. Options. .. View/Modify the way calculations are performed, be them

mass calculations or elemental composition calculations;

% Chemistry

’

’

’

—Cleave. .. Open a window so that a polymer sequence can be cleaved;
—Fragment... Open a window so that a polymer sequence can be fragmented;
— Compositions

* —FElemental... Open a window so that options can be set for the program
to compute the elemental composition of the polymer sequence or a region of
it;

* —Monomeric. .. Open a window so that options can be set for the program
to compute the monomeric composition of the polymer sequence or a region
of it;

—pKa-pH-pl

* —(Re)Load The Data... Ask that the acidobasic.xml file be read (or re-
read) from disk;

* —— (Calculations. .. Open a window so that options can be set for the program
to compute the charges of the polymer sequence (or its isoelectric point);

—m/z Ratio Calculations. .. Open a window to perform m/z ratio calculations;

—Search Mass(es). .. Open a window so that options can be set for the program
to search arbitrary oligomers in the polymer sequence that have the same mass
as the one(s) searched for.

* Reports

*

’

—Make Reports. .. Open the window management facility to let the user choose
windows to make reports of their contents;

—Report Options. .. Configure the way reports are prepared.

Note that each action undertaken as the response to choosing one menu item is performed
onto the polymer sequence being edited in the polymer sequence editor from which the menu
was selected.

When the user right-clicks onto a monomer icon, an Edit contextual menu pops-up that has
the following menu structure:

* Edit

*
*

—Copy... Copy to the clipboard the currently selected sequence;

—Cut... Copy to the clipboard the currently selected sequence and remove it
from the sequence;

——Paste. .. Paste the sequence from the clipboard to the current location of the
cursor in the polymer sequence editor;

—Find Replace. .. Extremely flexible Find/Replace functionality;

81

+ Annotation

* —Monomer. .. Edit (add/remove/modify) the notes for the monomer lying
below the cursor when the menu was elicited;

* —Polymer... Edit (add/remove/modify) the notes for the polymer being
edited in the polymer sequence editor;

+ —List Completions. .. Show the list of available monomer code completions ac-
cording to what is already typed in the sequence editor and the monomer codes
defined in the polymer chemistry definition;

+ Select All. .. Selects the whole sequence in the polymer sequence editor;
% Chemistry

+ —Monomer Modifications. .. Open a window so that a monomer (or any com-
bination of monomers) can be modified or unmodified;

+ — Polymer Modifications. .. Open a window so that the polymer sequence can
be modified or unmodified either on its left end or on its right end (or both);

* — Self Read Sequence To File... Write to file a configurable list of sound files to play
the sequence aloud;

Editing Polymer Sequences

As we have seen in the polyxdef module, the user may stipulate that a polymer chem-
istry definition allows more than one character in order to define the codes of the different
monomers of this same polymer chemistry (see section 6 on page 59). Remember that it is
not because the number of allowed characters is 3, for example, that all your monomer codes
must be defined using three characters. 3 is the maz number of characters that you may
use. This means that you are perfectly entitled, in this case, to have single-character or bi-
character monomer codes in this polymer chemistry definition. Let’s start by looking at how
the polymer sequence editor window behaves when the user tries to enter multi-character
monomer codes. Next, we’ll see that whatever the length of a monomer code, if its very
first character is unambiguous, the behaviour of the polymer sequence editor is flexible and
powerful.

Multi-Character Monomer Codes

In this section we will describe the editing of a polymer sequence for which monomers can
be described using more than one character.

The Figure 8.5 on the following page shows the case of a polymer sequence that is of a
polymer chemistry definition that allows three characters to define monomer codes. Let’s
now assume that the user wants to edit the sequence by insertion —at the cursor point— of
a new monomer “Aspartate”, of which the user knows only that its code starts with an ‘A’.
The cursor is located between the two “Ala” monomers at positions 15 and 16 (panel 1).

The user keys-in (panel 2). To her dismay, nothing happens in the polymer sequence,
but she sees an ‘A’ character now displayed in the left text widget under the label Editing
Feedback. The reason why we have this behaviour is related to the fact that we are allowed
up to 3 characters to describe a monomer code. If no monomer icon is displayed in the
polymer sequence, that may simply mean that more than one monomer code start with an

82

Sh

/Hide Polymer Sequence Data
Unmadified

Show/Hide Left And Right Ends' Modifications
Editing feedback

|

=

Show/Hide Polymer Sequence Data

|
unmaodified

T TTE b
» W R

24

Show/Hide Left And Right Ends' Modifications

Editing feedback

|

==

Type | long-protein

CHAPTER 8. POLYXEDIT

Moman Caode |Name

Alanine

Ala

Arg Arginine
Aspartate

Asparagine

Double-click on an item (or select it and push
<enter>] to terminate the code and insertthe
corresponding monomer in the sequence editor.

Shaw/Hide Polymer Sequence Data

2

uUnmaodified

Show/Hide Left And Right Ends' Modifications
Editing feedback

Type | long-protein

Monicon J Code |Name

Asp

- Asn Asparagine

Aspartate

Double-click on anitem (or select it and push
<enter=) to terminate the code and insert the
corresponding monomer in the sequence editor.

Sh

Modified

Show/Hide Left And Right Ends' Modifications
Editing feedback

|

B —

Tvpe |Iang-pratein
Monicon | Code |Name

Gly Glycine

A|a Ala Alanine

val valine

Leu Leucine

E lle Isoleucing

- Ser Serine

. Thr Threonine

Cys Cysteine

. Met Methionine

- Arg Arginine

. Lys Lysine

- Asp Aspartate

. Glu Glutamate

- Asn Asparagine

. Gln Glutamine

. Trp Trvptophan

. Phe Phenylalanine

. Tyr Tyrosine

. His Histidine

m Pra Proline

Double—click on an item (or select it and push
<enter=] to terminate the code and insert the
corresponding monomer in the sequence editor.

Figure 8.5: Multi-character code sequence editing in polyxedit. This figure shows
the process by which it is made possible to edit polymer sequences with a code set that
allows more than one character per code.

83

‘A’ character: polyxedit cannot figure out which monomer code the user actually means
when keying-in .

There is a way, called code completion, to know which monomer code(s) —in the current
polymer chemistry definition— do start with the keyed-in character(s) (‘A’ for us, now). The
user can always enter the code completion mode by hitting the tabulation key. This is
what is shown in the panel A. We see that, in the current polymer chemistry definition, four
monomer codes start with an ‘A’ character, and these are “Ala”, “Arg”, “Asp” and “Asn”.
We could be selecting the monomer of choice by double-clicking onto the proper list item,
which would insert the corresponding monomer icon (“monicon”) in the polymer sequence at
the cursor location. But, since this is a manual, we are going through another step.

Let’s continue editing the polymer sequence and key-in a (we did not forget that we
wanted to enter an “Asp” monomer code in the first place, did we?). The result is shown in
panel 3. What we see here is that, this time also, nothing changed in the polymer sequence.
What changed is that there is now a “As” character string in the left text widget under the
label Editing Feedback. Let’s key-in once more the key, and we get the small window
show in panel B. This time, only two items are listed: “Asp” and “Asn”. This is easy to
understand: there are only two monomer codes that start with the two letters ‘A’ and ‘s’
(“As”) that we have keyed-in so far. At this time, we either select one of the items (we wanted
to enter the “Aspartate” monomer, so we’ll double-click onto the first item of the list), or
we just key-in a last character: . At this point, the monomer is effectively inserted in the
polymer sequence, as the “Asp” monomer left of the cursor, as shown in panel 4.

Unambiguous Single-/Multi-Character Monomer Codes

Let’s imagine that we have a polymer chemistry definition that allows up to 3 characters for
the definition of monomer codes, but that we have one monomer code (let’s say the one for
the “Glutamate” monomer) that is ‘E’. This monomer code ‘E’ is the only one of the polymer
chemistry definition that starts (and ends, since it is mono-character) with an ‘E’. In this
case, when we key-in , we’ll observe that the monomer code is immediately validated and
that its corresponding monomer icon is also immediately inserted in the polymer sequence.
This is because, if there is no ambiguity, polyxedit will immediately validate the code being
edited. This means that you are absolutely free to define only single-character monomer codes
in your polymer chemistry definition, so that you are not even conscious that the powerful
multi-character feature exists! Indeed, in this 1-character monomer code configuration, each
time you’ll key-in an uppercase character, you’ll be inserting its corresponding monomer into
the polymer sequence immediately.

Displaying All The Available Monomer Codes

Equally interesting is the fact that if you key-in the key while no monomer code is
being edited (that is: the left text widget under the label Editing Feedback is empty), all the
monomer codes available in the polymer chemistry definition currently in use are displayed,
exactly as shown in the panel C, Figure 8.5 on the preceding page.

84 CHAPTER 8. POLYXEDIT

ShowfHide Polymer Sequence Data

Modified

26 [I I |
AR o | SpTIAE - A ST F
» BRCETET TR

Show/Hide Left And Right Ends' Madifications

Editing feedback

| cannot start a code with lowercase: 'g'

| CE—

Figure 8.6: Bad code character in polyxedit sequence editor. This figure shows the
feedback that the user is provided by the code editing engine, when a bad character code is
keyed-in.

Erroneous Monomer Codes

Let’s see now what happens when the user keys-in bad characters in the polymer sequence
editor window. This is described in the Figure 8.6 on the following page. If the user enters
a lowercase character as the first character of a monomer code, the program immediately
complains in the right text widget under the label Editing Feedback. In this case, the monomer
code is not put into the left text widget, which means it is simply ignored.

If the user starts keying-in valid monomer character codes, like for example we did earlier
with “As”, and that she wants to erase these characters because she changed her mind, she
must not use the key, because this key will erase the monomer left of the
cursor point in the polymer sequence! The way that the user has to remove the characters
currently displayed in the left text widget under the label Editing Feedback, is to key-in the
key once for each character. For example, let’s say I've already keyed-in and .
In this case the left text widget, under label Editing Feedback, displays these two characters:
“As”. Now, I change my mind and do not want to enter the “Asp” monomer code anymore.
I want to enter the “Gly” code. All I have to do is key-in the key once for the ‘s’
character (which disappears) and once more to remove the remaining ‘A’ character which
disappears also. At this point I can start fresh with the “Gly” monomer code by keying-in

sequentially , and finally .

Clipboard-Importing Of Sequences

Very often, the user will make a sequence search on the web and be provided with a polymer
sequence that is crippled with non-code characters. The user typically selects all the text
provided by the remote site, pastes that sequence in the GNU polyxmass polymer sequence
editor window and finally encounters invalid codes in it. It might be uncomfortable to have
to trigger —prior to pasting a correct sequence in polyxedit— a text editor only to “purify”

85

—~ polyxedit: check sequence import A A A
Show/Hide Polymer Sequence Data
Seguence Name Sample
ID Number 0x826b180
Imported Sequence Remowve characters
1ATOPGHEZ;, Digits
Punctuation
Space
Other

Q Remowe All Tagged

ngurify Sequence

@Check Sequence

Actions

X cancel @Rever‘t

Figure 8.7: Clipboard-imported sequence error-checking. If a sequence that is im-
ported through the clipboard to the polyxedit sequence editor contains invalid characters,
the user is provided with a facility to “purify” the sequence. This facility is provided to the
user through the window depicted in this figure.

that sequence. ..

GNU polyxmass provides a convenient way to spot non-valid characters from a poly-
mer sequence and to let the user “purify” the imported sequence. A clipboard-imported
sequence is systematically parsed. When invalid characters are found the window depicted
in Figure 8.7 on the next page is presented to the user for her to make appropriate ad-
justments. The sequence is presented to the user in a textview widget (Imported Sequence)
with the improper characters tagged in red color. The rationale for tagging characters in
red colour is by comparing the imported sequence with the monomer codes available in the
current polymer chemistry definition. As soon as a character does not correspond to any
valid monomer code, it is tagged in red. At that point, if the user clicks onto the Remove All
Tagged button, all the red-tagged characters will be automatically removed.

Also, the user is provided with an automatic “purification” procedure whereby it is possi-
ble to remove one or more classes of characters from the imported sequence (Remove Charac-
ters frame widget). Checking one or more of the Digits or Punctuation or Space checkbuttons,
or even entering other user-specified characters in the Other text entry widget, will elicit their
removal from the imported sequence after the user clicks the Purify Sequence button.

When the user is confident that almost all the erroneous characters have been removed,
she can click the Check Sequence button, which will trigger a “re-reading” of the sequence
in the Imported Sequence textview widget. If erroneous characters are still found, they are
presented to the user in red color.

86 CHAPTER 8. POLYXEDIT

Note that, for maximum flexibility, the user is allowed an immediate and direct editing of
the imported sequence in the textview widget (that is, the textview widget is not read-only).

Once the sequence if finally depured from all the invalid characters, the user can select it
in the textview on the left of the window and can paste it in the polyxedit sequence editor.
This time, the paste operation will be error-free.

Importing Of Sequences As Raw Text Files

It might be of interest to be able to import a sequence from a raw file. To this end, the
user is provided a menu item Edit— Import Raw Text from the contextual menu of the
sequence editor widget (available by right-clicking on the polymer sequence editor region).
Using that menu, the user will be provided a file selection window from which to choose the
file to import. The program then iterates in the lines of that file and checks their content
for validity. If errors are found, then the same process as described earlier for clipboard-
imported sequences is started. The user can then purify the sequence imported from the
file and finally integrate that sequence in the polymer sequence currently edited. Note that
if any sequence portion is currently selected, it will be replaced by the one that is being
imported.

Sequence Selections: The Various X Mechanisms

As any text editor, the polyxedit polymer sequence editor can perform the usual clipboard
operations. In the X window world, there is another process to copy text and paste it into
another place: the X window primary selection mechanism. That process is easy: text is
first selected (either using the keyboard or the mouse; that makes the selection), and when
that selected text needs to be pasted, the user just clicks the mouse’s middle button at the
destination location. The copy/cut/paste process, much usual in the MS Windows system,
is implemented also. Thus, the users of polyxedit get the best features of selection and
pasting.

When the user tries to paste a sequence element from the clipboard (say, after copying
it from a web browser), the program checks that sequence very thoroughly. If an invalid
character is found, the whole process is stopped with a message logged to the console; the
sequence is not modified in any way and the user may verify that sequence so that she
removes the invalid characters or codes.

When the users copies/cuts a sequence from the polyxedit sequence editor window to
the clipboard, what is actually copied in the clipboard is a text string that is made with all
the monomer codes of the polymer sequence that was selected the copying/cutting operation
was performed.

Visual Feedback In The Editor

The polymer sequence editor provides a number of widgets to inform in real time the user
about what is going on in it. These widgets are briefly reviewed below, and the user is invited
to look at Figure 8.8 on the facing page:

* The Un/Modified label informs the user if the polymer sequence was modified or not
since it was either last written to a file on disk or last read from a file;

87

Show/Hide Polymer Sequence Data

N e Modified

+ [[T T R
BRI I O e e e

Show/Hide Left And Right Ends' Madifications

Editing feedback

Figure 8.8: Visual feedback in the polyxedit sequence editor. This figure shows the
feedback that the user is provided when moving the mouse cursor over monomer icons. See
the text for details.

% The monomer status flag (here it is red-green-red) is supposed to inform the user about
the status of the monomer onto which the mouse cursor is positioned (in the image
example, that is monomer ‘S’; at position 22). The flag is interpreted in the following
manner:

+ The first flag element (red in the example) tells if the monomer contains properties.
That is a flag about the internal status of the monomer. This flag is mainly
interesting to the power user who goes in the source code and modifies it to adapt
it to her specific needs. Red means that the monomer has at least one “prop”
object in it. Green means that it has no such “prop” in it. If this flag element is
green, then the two remaining flags are necessarily green. This is because the two
other flag elements tell the presence or the absence of monomer characteristics
that are subsets of the “prop” object;

+ The second flag element (green in our example) tells if the monomer has been
annotated at least once. The green color indicates that no note is found in the
monomer. That flag would be red if the monomer had been annotated at least
once;

+ The third flag element (red in our example) tells if the monomer has undergone
a chemical modification. In our example that flag is red, because as the reader
can see, the ‘S’ monomer at position 22 is indeed modified: it is a phosphorylated
seryl residue! If the monomer had not been modified, then that flag element would
have been green.

% The label that is located left of the monomer status flag (it indicates 8 on the figure)
tells the sequence position of the monomer onto which the cursor is positioned at any
given time!.

1The cursor is not visible because the screen dump function in The Gimp removes it to clean the image.

88 CHAPTER 8. POLYXEDIT

Sequence Annotation: The Various Mechanisms

The annotation of polymer sequences is very often required in projects for which a number
of scientist-made observations are to be “connected” in a time-lasting manner either to a
polymer sequence (as a whole object per se) or to any monomer in a polymer sequence.

polyxedit allows the annotation of the whole polymer and/or of any (and any number)
of monomers in the polymer sequence. There is no limitation on the number of notes that
can be set to the polymer or any given monomer. Further, the user is provided with two
mechanisms by which she can set notes to monomers (annotate): single-mode monomer
annotation and range-mode monomer annotation. All these polymer/monomer note-setting
processes are described in detail below.

First, however, I should tell you, respected reader, that a note is basically an envelope
that contains a number of elements:

* A textual element that is the name of the note;

* Any number of paired data, called noteval objects (like “note value”). A noteval is
made of two data:

+ A datum describing the type of the noteval: either string, or integer, or double;

+ The contents of the noteval object.

The notes are stored in the polymer sequence file and are easily managed graphically, as
we’ll describe now.

Managing Polymer Notes

The user may set/modify /remove polymer notes using the following contextual menu:
Edit— Annotation— Polymer

The Figure 8.9 on the next page shows the window that pops up to let the user perform
a number of note-related actions that are rather self-explanatory.

A note that is set to a polymer sequence is set to that sequence as a whole, and not
to any specific monomer or monomer range. If all the monomers in the annotated polymer
sequence were removed, that (empty) polymer sequence would still bear the annotation. In
order to add notes, the user must first fill-in the note Name field. Once this field is filled,
the user clicks the Add New Note button. The note name will be listed in the Name column
of the Notes Already Set treeview.

It is only once a note (name) has been added, as described above, that the user can add
notevalue objects to that note. Remember, we said earlier that a note was made of a name
and of any number of [value type+value contents] noteval pairs. The note, or one of its
noteval objects, has to be selected in the treeview on the left hand side of the window, so
that the user can add a noteval object, by:

* Choosing the type of the value (string, integer or double) by selecting the radiobutton
of choice in the Type widget;

* Entering the data proper in the Contents textview widget;

% Clicking onto the Add New Value button.

89

Figure 8.9: Annotating polymer sequences. This figure shows the graphical interface to
the annotation of polymer sequences.

90 CHAPTER 8. POLYXEDIT

Notes Specific Actions

. — = Remove Item (Single)

(]

C

Figure 8.10: The menu governing actions on note items. This figure shows the menu
that the user may use in order to remove any item currently selected in the treeview. When
the window is opened in single-mode, the range-mode actions are inactive.

Accomplishing the tasks above will create a new subitem in the treeview: a new noteval
object will be listed under the node corresponding to the note name under which a new
noteval [type-contents] pair has been defined.

It is possible to change the note name of a note that is selected in the treeview or to
change the type or contents of a noteval object that is currently selected in the treeview.
Most intuitively, these changes are done by editing the data in their respective widgets, and
then clicking either Apply Note Changes or Apply Value Changes.

It is also possible to remove any item that is currently selected in the treeview. The menu
entitled Notes Specific Actions will popup when clicked, to show the menu items shown on
the Figure 8.10.

Setting notes to the polymer sequence as a whole is conceptually simpler than what we
are about to visit: the annotation of any monomer in either single-mode or range-mode.

Managing Monomer Notes

As stated earlier, monomer notes can be set in two distinct modes: single-mode and range-
mode. Setting notes to a monomer is as easy as setting notes to a polymer sequence. However,
before starting doing any annotation work, it should be understood what kind of note is
appropriate for the specific annotation task. Let’s first see the simplest mode of monomer
annotation: single-mode.

Managing Monomer Notes In Single-Mode

If the annotation pertains to a single monomer in the sequence,? the user should hit the
corresponding monomer icon with the mouse and right-click onto it so that the following
menu item can be selected out of the contextual menu that pops up:
Edit— Annotation— Monomer— Single

The precise mouse-clicking of that specific monomer icon will trigger internal calculations
that will lead to the proper initialization of the popped up window, as shown in Figure 8.11,
where the Ref. Monomer Code/Pos. label indicates F/15. That example means that the user
wanted to annotate a phenylalanine residue located at position 15 of the polymer (protein)
sequence. Note, by the way, that the Range label indicates no specific value (- -). We’ll see
later that this bit of information is useful in other cases.

Once the window shown in that example is displayed, the managing of monomer notes is
identical to the managing of polymer notes (as was previously described).

2Like indicating that this specific residue is polymorphic, for example, or entering any kind of comment.

91

Show/Hide Target Data |

Ref Monomer Code/Pos: F/15

Range: --

Sequence Name |Sample

ID Number | 0x83b43d8

Notes Already Set Current Note
Name

Name | Value | Type |
- POLYMORPHISM

=~ POLYMORPHISM

This Phe residue is polymorphic:

e el st o o T str + Add New Note | v Apply Note Changes |

Value
Tvpe
string integer double |
Contents

This Phe residue is polymorphic:
seen replaced with a Trp

Add New Value | Apply Value Changes
Notes Specific Actions + v

Figure 8.11: Annotating monomers in single-mode. This figure shows the graphical
interface to the annotation of monomers in single-mode.

Managing Monomer Notes In Range-Mode

Sometimes it is desirable to be able to set an identical note to a range of consecutive
monomers. For example, one user might want to set to a range of residues in a protein
a note (with a name “TRYPSIN” and a number of notevalue objects describing scientific
observations (either text or numerical) and interrogations, for example). That note will be
set in each monomer of the range of monomers. Once the range-mode annotation has been
performed, each note in each monomer will behave exactly the same way as notes set using
the single-mode annotation procedures. See Figure 8.12 on the next page for a good example
of such note.

So, how are range-mode annotations actually carried out by the program? The very first
thing is to select —in the polymer sequence editor— the range of monomers to be annotated.
Once that range of monomers is effectively selected, the user can mouse-click with the right
button one specific monomer, in that range of selected monomers. In order to elicit the
displaying of a window like the one represented in Figure 8.12 on the following page, the
user must select the following menu item from the contextual menu:

Edit— Annotation— Monomer— Range

As can be seen on that figure, this time the Range label gives an indication in the form
[xx->yy]. This means that the user wanted to edit a note for all the monomers comprised
in that range (from position xx to position yy). That makes a range-mode annotation action
that is taken on three monomers.

One interesting question is: —“Given the fact that the user is performing a range-mode
annotation, to which monomer do belong the notes shown in the Notes Already Set list on the
left hand side of the window?” That’s undoubtedly a good question. The answer is that the
notes that are listed there belong to the reference monomer, that is the monomer that was
actually pointed while right-clicking the sequence (to elicit the popping up of the contextual

92

Figure 8.12: Annotating monomers in range-mode. This figure shows the graphical

Show/Hide Target Data |

CHAPTER 8. POLYXEDIT

Sequence Name |Samp|e

Ref Monomer Code/Pos:

ID Number |0x83b43d8

Range: [14--=17]

Ki17

MNotes Already Set

= TRYPSIN

Peptide from the alpha subunit
Strange mass: phosphorylated ?

4345.85 dbl

str

MNotes Specific Actions |

Name | Value | Twpe |

Current Note

Name

|TRYPSIN

< Add New Note

Value
Tvpe

string integer © double |

| v Apply Note Changes |

Contents
4345 85

b Add New Value

v Apply Value Changes

|_ = Removwe ltemn (Single)

= Removwe ltemn (Range)

BD Propagate Item (Range) |

interface to the annotation of monomers in range-mode.

menu). This reference monomer is very important, as we’ll see in a moment.

The Figure 8.12 shows that range-mode annotations are performed much like monomer

single annotations or polymer annotations (same window, in fact, with same widgets). The
big difference comes with the notes menu, that lists menu items that are specific to the
range-mode actions (Figure 8.12):

from all the monomers in the range;

% The menu item — Remove Item (Range) will remove the selected item (note item)

* The menu item — Propagate Item (Range) will make a copy of a newly created note

into all the other monomers in the range. Note that, if a note by the same name exists
already in any of the monomers in the range, the note is not added to it. The user will
be informed by a dialog window that a given monomer was skipped.

Note that the single-mode menu item (Remove Item (Single) will perform the action, when

in range-mode, on the reference monomer, that is the one that was right-clicked upon when
the note editing process was triggered (see above for the definition of the reference monomer.

93

It is important to grasp that in the range-mode annotations, when an action can-
not be performed in one of the monomers in the selected range of monomers, then
this does not prevent the process from trying to accomplish the task on the other
monomers of the range. For example, the user selects a stretch of twenty monomon-
ers in a polymer sequence, and then elicits a range-mode annotation process (namely
the addition of a note) onto these twenty monomers. Let’s say that the to-be-added
note is identical to a note present in the fifth monomer of the monomer range. The
note addition —for this monomer— is going to fail. That does not mean that the
whole process is stopped: if the to-be-added note is not found identical in any other
monomer, it is going to be successfully added into all the remaining monomers. In
other words, one failure does not abort the whole range-mode annotation process.

Without bothering the reader with more descriptions, I would suggest that she experi-
ments with the features described here. The design has been conceived as the most flexible
possible. Notheworthy is that flexibility sometimes goes with risky programmatic behaviours:
the user must know what she does when clicking onto a button! The Save As menu item is
your friend before experimenting that annotation feature.

Chemically Moditying Polymer Sequences

It very much often happens that the (bio) chemist uses chemical reactions to modify the
polymer sequence she is working on. Mass spectrometry is then often used to check if the
reaction proceeded properly or not. Further, in nature, chemical modifications of biopolymer
sequences are very often encountered. For example, protein sequences get often modified as
a means to regulate their function (phophorylations, namely). Nucleic acid sequences are
very often and extensively modified with modifications such as methylation. . .

It is thus crucial that GINU polyxmass be able to model with high precision and
flexibility the various chemical reactions that can be either made in the chemistry lab or found
in nature. The GNU polyxmass program provides two different chemical modification
processes:

% A process by which monomers in the polymer sequence can be individually modified;

% A process by which the whole polymer sequence can be modified, either on its left end
or on its right end or even on both ends.

We shall review these two processes separately in the two sections below.

Chemical Modification Of Monomers
Modification Of Monomers

There are a number of manners in which monomers can be modified in a polymer sequence.
The Figure 8.13 on page 97 shows the simplest manner: the user first selects the monomer
icon to modify, next calls the Chemistry— Modifications— Monomer menu and —as a
result— is provided with a window where all the modifications currently available in the
polymer chemistry definition are listed. Since a monomer icon was initially selected in the
editor window, the Selected Monomer target radiobutton is on by default. It is then simply

94 CHAPTER 8. POLYXEDIT

a matter of choosing the right modification from the Available Modifications list and clicking
onto the Modify button.

The modified seryl residue is shown in the polymer sequence editor window: a transparent
graphics object (a red ‘P’) was overlaid onto the corresponding seryl monicon.

While the Modification Target(s) frame widget contains radiobuttons the signification of
which is rather easy to understand, we want to detail one of these: the Specific Monomer
Locations frame. If the user selects the radiobutton inside that specific frame (labelled
Positions Should Be Separated With ';'), she also has to write the locations in the text entry
widget below it. This text entry widget receives textual strings that should describe what
locations on the polymer sequence should be modified. The syntax of the descriptive string
allows logical positions to be indicated. The user is invited to experiment, maybe using
variations on the themes described below as examples:

% ALL That would mean that the currently selected modification in the Available modifi-
cations list is to be applied to all the monomers in the polymer sequence. This is equal
to selecting the radiobutton labelled All Monomers;

* EVEN or even This will modify all monomers at even positions: 2, 4, 6. ..
* ODD or odd This will modify all monomers at odd positions: 1, 3, 5...
* EVEN;ODD is identical to ALL;

* [1-10];[20-30,0dd] This will modify all the monomers from position 1 to position 10
inclusive, and all the odd-positioned monomers between position 20 and position 30
inclusive;

The user is responsible for correctly reading the results that are published in the paned
textview lying between the upper pane (labelled Monomer Modification Rules) and the two
buttons at the bottom of the window. Further, when a modification or un-modification is
performed, the count of successful events and of failed events is displayed in the messages’
text widget at the very bottom of the window. The messages that are displayed in this
widget are not permanent, they last some seconds and disappear. Care should be taken at
what is displayed in this messages’ text widget.

Attention should be paid to the fact that the user is responsible for applying chem-
ical modifications to monomers that are listed as modifiable with the modification
used. For example, if a phosphorylation modification is applied to a monomer that
is not listed as phosphorylatable in the relevant configuration file, then the modi-
fication is applied to it (which means that —internally— the monomer is modified)
but its corresponding monicon is not graphically changed because no graphical rule
is associated with the phosphorylation of this monomer (see section 9 on page 136,
the file of interest is monicons.dic).

It is important to understand that, when a monomer is modified, its previous modification
(if any) is overwritten with the new one. The user is invited to experiment a bit with the
monomer modification process, so as to be confident of the results that she is going to obtain
when real polymer chemistry work is to be modelled in GNU polyxmass.

Show/Hide Polymer Sequence Data

Sequence Name |Samp|e

ID Number |0xB1fb0B8

Unmodified

95

Maodification Of One/More/all Monomer(s) In The Polymer Sequence

Show/Hide Left And Right Ends' Modifications

Polymer Data Selected Monomer Data

Sequence Name |Samp|e Code |K

ID Number |0xB1b0B8 Pasition |26

|Acetylation QEdit |Phasphorylation J

Editing feedback

| | =

Show/Hide Polymer Sequence Data

Sequence Name |Samp|e

ID Number |0xB1fb0B8

Meonomer Madification Rules

Available Modifications Madification Target(s)
Name JFormuIa " Selected Monomer Monomers
Phosphorylation -H+H2PO3 " Monomers Of Same Code Name
Acetylation H+CZH3IC © Monomers From The List EHETE
Amidation -OH+NHZ AT Alanine
SulfideBond H2 Valine
uiideson Specific Monomer Locations .
= Leucine
.~ Positions Should Be)
Separated With ;' Isoleucine
| J Serine

Modified

4} Unmodify

Show/Hide Left And Right Ends' Modifications

|Acetylation QEdit |Phasphorylation

Editing feedback

Figure 8.13: Modification of a monomer in a polymer sequence. This figure shows
the graphical rendering of a phosphorylation of a seryl residue in a protein polymer sequence.

96 CHAPTER 8. POLYXEDIT

Un-Modification Of Monomers

If a monomer is modified, then it also should be possible to revert the chemical reaction: to
un-modify it. There is, however, a subtlety here, that we ought to put into the limelight: an
example will do.

Let’s say that all the seryl residues of our protein polymer sequence are phosphorylated.?
Only seryl residues are phosphorylated in this polymer sequence. We thus see all their
corresponding monicons overlaid with a small ‘P’ on them (see the example above). Other
monomers are acetylated, like lysyl residues, for example. What we want to do is un-modify
all the phosphorylated seryl monomers in one go. We thus open the monomer modification
window, select the monomer code corresponding to the seryl residue in the Monomers list,
select the rabiobutton labelled Monomers From The List, we select “Phosphorylation” in the
Available Modifications list and finally we click the Unmodify button. All the seryl residues
currently phosphorylated are un-modified. This is OK.

Now, let’s assume that we had not selected “Phosphorylation” in the list of available
modifications, but “Acetylation”, for example: no phosphorylated seryl residue would have
been un-modified. This is a foolproof feature: if you select a modification name from the
list of available modifications, and next click onto the Unmodify button, that means that
your un-modifying action has —as targets— monomers that are currently modified with the
modification that you selected.

That means that if, in our example, you had selected, as monomer targets to the un-
modification, the All Monomers radiobutton, selected the “Phosphorylation” modification
and clicked onto the Unmodify button, only the phosphorylated monomers* would have been
un-modified.

Now, if you un-select all the items in the list of available modifications®, that you select
the All Monomers radiobutton and next click onto the Unmodify button, then you’ll un-modify
absolutely all the monomers, because you are not restricting the monomer targets neither
by their code, neither by the identity of their potential modification.

The user is encouraged to play with these features... Also of great importance is to
understand that the modifications that can be set to the monomers do disappear when
the monomer is removed from the polymer sequence. These modifications are monomer
modifications, they belong to the monomer that is modified. We say that these modifications
are ntrinsic.

Chemical Modification Of The Polymer Sequence

We have seen above that it is possible to modify any monomer in the polymer sequence and
that when the modified monomer is removed, the modification associated to it disappears
also.

The modifications that we describe here are not of this kind. They can be applied to
either the left end of the polymer sequence or its right end. But these modifications do
belong to the polymer sequence per se and are not removed from it even if the polymer
sequence is edited by removing the left end monomer or the right end monomer. We say
that these polymer modifications are permanent.

3That’s protein chemistry stuff.
4Whatever they be, because the All Monomers radiobutton was selected.

5You may need to maintain the key pressed while clicking onto the currently selected item to
unselect it.

Show/Hide Polymer Sequence Data

Sequence Name |Samp|e

ID Number |ex51ﬂ:enn

Modified

Show/Hide Left And Right Ends' Modifications

QEdit“Nune set

|Nane set

97

olymer sequence’s Endls

Editing feedback

Show/Hide Polymer Sequence Data

Current Modifications

Left End |A(etydatiun

Polymer Data

Sequence Name |Samp|e

ID Number |0xB1b0B8 Right End | nane set

Sequence Name |Samp|e

ID Number |0xB1fb0B8

Polymer Modification Rules

Available Modifications Madification Target(s)

Name IFormuIa ¢ LeftEnd
Phosphorylation -H+H2PO3 © Right End
Acetylation -H+C2H30
Amidation -OH+NH2

Modified

aﬂodify ‘ Q Unmodify ‘

Show/Hide Left And Right Ends' Modifications

|A(etydatiun

QEdit“Nune set

Editing feedback

Figure 8.14: Modification of the left end of a polymer sequence This figure shows
how simple it is to permanently modify a polymer sequence on either or both its left /right

ends.

The permanent modifications currently set to a polymer sequence are conveniently

listed in two text widgets located under the polymer sequence rendering area.

98 CHAPTER 8. POLYXEDIT

The way in which a polymer sequence is modified using polymer modifications is much
easier than the previous monomer modifications case. The modification window is opened
by choosing the Chemistry — Modifications— Polymer menu or the Edit button below the
polymer sequence rendering area. The Figure 8.14 on the previous page shows that window.

The modification is absolutely easy to perform, with a clear feedback provided to the user
(by listing the permanent modifications in two convenient text widgets located under the
polymer sequence graphical rendering area, under label Left and Right Ends’ Modifications).
In the example (Figure 8.14 on the preceding page), the top polymer sequence is not yet
modified. By using the window on the right, the polymer sequence is modified on its left end
using the “Acetylation” modification. The newly modified polymer sequence is shown in the
window below, with the left text widget displaying the name of the left end modification.

The Unmodify button is responsible for the un-modification of the selected polymer se-
quence end (left/right), so that reverting a modification is perfectly feasible.

Finding and Replacing Sequence Motifs

It is very much often the case that one wants to find a given sequence motif quickly. GNU
polyxmass allows this easily by selecting in the contextual menu the following menu item:

Edit—Find Replace

Using that menu item will provide an options window, as described in Figure 8.15 on the
next page.

What is interesting with this Figure 8.15 on the facing page is that it shows how flexible
the functionality is: the user has two sequence editor widgets at hand. The left one Find
Motif is where the motif to find should be entered. The right one Replace Motif is where
the motif to be used in order to replace the found motif is edited. As visible on the right
hand widget, the monomers entered in these two widgets might be modified (by chemical
modification) or annotated (by monomer annotation) exactly in the same way as the user is
used to do in the polymer sequence editor. The sequence editor widgets in Figure 8.15 on
the next page are actually the same as the ones that are located in the polymer sequence
editor windows.

Let us see some of the available options:

% Start At Point The find operation will not start from the very first monomer in the
polymer sequence, but at the position where the cursor is located (the point);

% Backward Normally, the find operation is performed downstream of the current location;
thus the next found motif will necessarily occur at positions in the polymer sequence
greater than the current. With this option, however, it is possible to reverse the
direction of the search. Backward instructs the search engine to look for motifs in the
upstream sequence with respect to the current location ; thus any found motif will be
at a position lesser than the current position;

% Matching Strictness (M1 and M2 matching rules) These matching rules will govern the
way monomers in the polymer sequence are considered as matching the monomers in
the Find Motif motif sequence or how stringent the replacement using Replace Motif
should be:

4+ The Find matching rules:

99

Figure 8.15: Find/Replace options window. This figure shows the window with which
the user is provided when she performs a polymer sequence find/replace operation. The
two sequence editing regions are full blown sequence editor widgets in which the user edits
sequence motifs exactly the same way she edits a sequence in the polymer sequence editor.
This allows for flexible find/replace operations.

100 CHAPTER 8. POLYXEDIT

* M1 ldentical To M2: M1 is a given monomer in the polymer sequence and
M2 is a monomer in the Find Motif motif sequence; both monomer are being
compared, and will be considered to actually match only if both are absolutely
identical;

*x M2 Is Subset of M1: M1 is a given monomer in the polymer sequence and
M2 is a monomer in the Find Motif motif sequence; both monomer are being
compared, and will be considered to actually match if all the modification
and/or note(s) present in M2 are found in M1, even if M1 might contain
other modification and/or note(s);

+ The Replace matching rules:

* New Identical To M2: New is the monomer that will be in the polymer sequence
after the replacement is performed and M2 is the monomer from the Replace
Motif sequence that was used to guide the replacement process; the new
monomer will be identical to M2;

* New Superset Of M2: New is the monomer that will be in the polymer se-
quence after the replacement is performed and M2 is the monomer from the
Replace Motif sequence that was used to guide the replacement process; upon
replacement all the modification and/or notes from M2 will be present in the
New monomer, but if the original monomer in polymer sequence had modifi-
cation and/or notes not present in M2, then these will be retained; thus, New
will be a superset of M2;

It is obvious that the Replace Motif sequence might be empty when performing Find or
Replace operations.

The way Replace operations are performed is sequential: first the user clicks onto the
Find button. If a sequence element is found to match the Find Motif sequence it is selected
in the polymer sequence editor window. At this time the user might click onto the Replace
button. Once the replacement is performed, the search engine is automatically asked to find
a new occurrence of the Find Motif sequence, and so on. ..

The user is invited to experiment with the series of options described above as these
render the operations rather flexible.

Cleavage Of Polymer Sequences

It happens very often that polymer sequences get cleaved in a sequence-specific manner.
These specific cleavages do occur very often in nature, and are made by enzymes that
do cleave biopolymer sequences, like the glycosidases (cleaving saccharides), the proteases
(cleaving proteins) or the nucleases (cleaving nucleic acids). But the scientist also uses pu-
rified enzymes to perform such cleavages in the test tube. GNU polyxmass must be able
to perform thoses cleavages in silico. Let’s see how a polymer sequence can be cleaved using
GNU polyxmass.

It is a matter of having a polymer sequence opened in an editor window and selecting the
Chemistry — Cleave menu. The user is provided with a window where a number of cleavage
specifications are listed (Figure 8.16 on the facing page). These cleavage specifications are
listed by looking into the polymer chemistry definition corresponding to the polymer sequence
to be cleaved. The program knows, for example, that the polymer sequence to be cleaved is of
the “protein” chemistry type, and thus will list all the cleavage specifications that were defined

101

Figure 8.16: Cleavage options window. This figure shows the window with which the
user is provided when she performs a polymer sequence cleavage. The user can select one
cleavage specification and specify what level of partial cleavage the chemical cleavage should
perform.

102

Cleavage Results

CHAPTER 8. POLYXEDIT

Polymer Sequence Data

Sequence Name |Sample

ID Number | 0x81fb088

Cleavage Results

Oligomers
Part. Cleav. | Number| Coordinates | Mono Mass | Avg Mass | Modified
0 ponl [1-1] 150.058876 150.220807 o
I 0 p0-n2 [2--18] 2120.012267 2121.354771
0 p0-n3 [19--38] 2334.369534 2335.837291
0 pO-nd [39--50] 1590.789131 1591.857619 O

Selected Oligomer Data

| Sequence Oligomer Data Cleavage Data
|

GRESKKEKKEKKPWWSWFTM

X Close |

Figure 8.17: Cleavage-generated oligomers window. This figure shows the window
that is opened so that the oligomers generated upon cleavage of a polymer sequence can be
displayed. Other data are also displayed (see text for details).

in the “protein” polymer chemistry definition. The cleavage specifications are available for
the user to select one of them to perform the cleavage.

The user selects the cleavage specification of interest and also sets the number of partial
cleavages that the cleaving agent may yield. In our example, 2 was entered, which means
that the cleavage reaction will yield the set of oligomers corresponding to a total cleavage
(no missed cleavages=partial cleavages 0) along with the set of oligomers corresponding to
1 missed cleavage and to 2 missed cleavages. The calculating process is extremely rapid, so
the user may enter rather high values here.

Upon successful termination of the cleavage reaction, the user is provided with a new
window (Figure 8.17) in which all the oligomers that were generated are listed (upper pane).
The listview widget on the upper pane sports a number of columns. Each row of this listview
widget describes the properties of a single oligomer. The different columns are detailed below:

% Part. Cleav. This is the missed cleavage level for which the oligomer was generated;

* Number This is the number of the oligomer, so that the user may refer to it simply.
The syntax is simple: pz-ny means that this oligomer is the oligomer number y from
the set of oligomers obtained in the z-missed cleavages series;

* Coordinates These are the coordinates of the oligomer as it is occurring in the polymer
sequence that was cleaved in the first place. For example, “[19-38]” would mean that
the oligomer starts at position 19 and ends at position 38 of the polymer sequence,
both values being inclusive;

103

Selected Oligomer Data

Sequence Oligomer Data | Cleavage Data

| Modifications

Position | Code | Monomer Modif. | Left End Madif. | Right End Madif.

I 4 5 Phosphorylation
8 K Acetylation
16 5 Phosphorylation

Figure 8.18: Cleavage-generated oligomers’ data. This figure shows the notebook tab
in which data pertaining to a selected oligomer are displayed. In particular, this tab contains
a listview where monomer modifications of the selected oligomer (if any) are displayed.

Selected Oligomer Data

Sequence Oligomer Data Cleavage Data

Results' set Mass Calculation Specifications lonization rules
| Identity Number |[px83ela20 Polymer Sequence Actform | +H
Oligomer Count |59 | Unitary Charge |1

Cleavage Specifications | Level |1

Cleaving Agent |CyanogenBromide
Monomer [
Partial Cleavages |1

Figure 8.19: Cleavage specification data. This figure shows the notebook tab in which
data pertaining to the cleavage operation are displayed.

* Mono Mass This is the monoisotopic mass of the oligomer, computed using the options
that are set in the Calculation Options window (see above);

* Avg Mass Same as above, but for the average mass;

* Modified Indicates if the oligomer contains an intrinsically-modified monomer (it does
not mean that the modification’s mass was taken into account, it simply says that at
least one monomer is modified in the oligomer. See below for details).

The lower pane of the Cleavage Results window contains a number of additional data, dis-
played in a set of pages belonging to the Selected Oligomer Data notebook widget:

* Sequence (Figure 8.17 on the facing page) This is the sequence that is displayed when
an oligomer is selected in the listview displaying the oligomers (in the upper pane);

% Oligomer Data (Figure 8.18) This is the place where monomer modifications are listed
as soon as an oligomer that contains modified monomers is selected in the listview.
Note that each modified monomer in the selected oligomer will show up as a row in
this listview.

% Cleavage Data (Figure 8.19) This is the place where the cleavage operation configuration
is reported, so that each cleavage results’ displaying window is self-traceable to both
the cleavage configuration and the polymer sequence that was cleaved in the first place.

104 CHAPTER 8. POLYXEDIT

Define The Fragmentation Options

Polymer Sequence Data

Sequence Name |Sample

ID Number |0x81fb088 |

Fragmentation Options

Fragmentation Specifications

Name |End| Actferm | Comment | Name | Prev|
ba LE €10l -
| b LE -HO
2 LE +N1H2+4H1 that'sjustacomment
z RE -N1H1 Mot in CID high En. frag
v RE +H2
[= RE +C1ol ||

imm NE -ClO1+H1

&Eragment |

Figure 8.20: Fragmentation options window. This figure shows the window with which
the user is provided when she performs a polymer sequence fragmentation. The user can
select one or more fragmentation specifications (patterns).

The button labelled Find will allow the user to find masses in the oligomers that were
generated upon the cleavage reaction simulation (see section 8 on page 108)

Fragmentation Of Polymer Sequences

It happens very often that polymer sequences need to be fragmented in the gas phase (in
the mass spectrometer) so that structure characterizations may be performed. For protein
chemistry, this happens very often in order to get sequence information for a given peptide ion
selected in the gas phase. GNU polyxmass must be able to perform those fragmentations
in silico. Let’s see how a polymer sequence can be fragmented using GNU polyxmass.

It is a matter of having a polymer sequence opened in an editor window and select-
ing the sequence region to be fragmented. Once this is done, the user selects the Chem-
istry— Fragment menu. The user is provided with a window where a number of fragmen-
tation specifications are listed (Figure 8.20). These fragmentation specifications are listed
by looking into the polymer chemistry definition corresponding to the polymer sequence to
be fragmented. The program knows, for example, that the polymer sequence to be cleaved
is of the “protein” chemistry type, and thus will list all the fragmentation specifications that
were defined in the “protein” polymer chemistry definition.

The user selects the fragmentation specification(s) of interest and clicks the Fragment
button.

Upon successful termination of the fragmentation reaction, the user is provided with a
new window (Figure 8.21 on the next page) in which all the oligomers that were generated
are listed (upper pane). The listview widget on the upper pane sports a number of columns.

105

Polymer Sequence Data
Sequence Name |Samp|e
ID Number |0x81fb088
Fragmentation Results
Oligomers
Frag. Spec. Name | Mono Mass | Avg Mass | Modified |
a a-13 1571.716419 1572.721714
a a-14 1685.759347 1686.824599
a a-15 1832.827761 1833.998837
a a-16 1945.911825 1947.156748
Selected Oligomer Data
Sequence Oligomer Data Fragmentation Data §
MEFEEDFSGREDKNF ‘
X Close | @End [

Figure 8.21: Fragmentation-generated oligomers window. This figure shows the win-
dow that is opened so that the oligomers generated upon fragmentation of a polymer sequence
can be displayed.

Each row of this listview widget describes the properties of a single oligomer. The different
columns are detailed below:

% Frag. Spec. This is the name of the fragmentation specification that was used to
compute the corresponding fragment;

% Name This is the name of the oligomer, so that the user may refer to it simply. The
syntax is simple: z-y means that this oligomer is the oligomer number y from the
fragmentation specification z;

% Mono Mass This is the monoisotopic mass of the oligomer, computed using the options
that are set in the Calculation Options window (see earlier explanations);

* Avg Mass Same as above, but for the average mass;

* Modified Indicates if the oligomer contains an intrinsically-modified monomer (it does
not mean that the modification’s mass was taken into account, it simply says that at
least one monomer is modified in the oligomer. See below for details).

The Sequence, Oligomer Data and Fragmentation Data pages of the notebook in the Se-
lected Oligomer Data frame widget are conceptually identical to the ones described at the
section 8 on page 102).

The button labelled Find will allow the user to find masses in the oligomers that were
generated upon the fragmentation reaction simulation (see section 8 on the next page).

106 CHAPTER 8. POLYXEDIT

Define The Find Mass Options

Oligomers' Set To Process

Results' Set ID Number |0x9398e80

Masses To Find

Monoisotopic Average
1685.75 2419.7
1832.83 3148.64
[[
Tolerances
Monoisotopic Average
Atomic Mass Unit | Atomic Mass Unit
0.05 | 0.3 | |

Unigque Mass Find Mode &End

Figure 8.22: Finding masses in a set of oligomers. This figure shows how to ask that
masses be found in a set of oligomers that result, for example, from the fragmentation of a
polymer sequence.

Finding Masses In The Results

It is often necessary to make sure that a mass —observed in the real mass spectrum— actually
corresponds to an oligomer that was generated during a previous simulation experiment
(like a cleaving of the polymer sequence with a given cleavage agent or a fragmentation of a
simple mass searching operation —see section 8 on page 110). To allow this, and as shown
in Figures 8.17 to 8.21 on pages 104-107, it is possible to ask that masses be found into the
oligomers resulting from any previous simulation (cleavage or fragmentation of a polymer
sequence or arbitrary mass search operations). Indeed, the button labelled Find will open a
window where the user may enter masses to be found.

The Figure 8.22 illustrates how easy it is to defines the mass(es) to be found in a set of
oligomers, either in the monoisotopic mass list or in the average mass list. There are two
ways to actually trigger the mass finding operation:

* When the Unique Mass Find Mode checkbutton is checked: the user must enter one
mass in the single-line text entry widget and hitting the Find button or the
issues the “Find Mass” request. For this to happen properly, it is necessary that only
one of the two single-line text entry widgets be filled with a mass (either monoisotopic
or average). This is because if there are two masses entered in the widgets, the program
would not know which one of the monoisotopic or average masses is to be found in the
set of oligomers.

* When the Unique Mass Find Mode checkbutton is not checked: the user may enter
masses in whatever the single- or multi-line widgets (either by keying-in one mass per
line or by pasting a preformatted list of masses). In the present case, hitting the

107

Tolerances

Monoisotopic Average
Atomic Mass Unit | Atomic Mass Unit | |
Percentage || 0.3 | ‘

|0

Part Per Million

Unigue Mass And Mode = &Eﬂd

Figure 8.23: Tolerances available in finding masses. This figure shows the three different
ways that tolerances can be configured.

Oligomers' Set To Process

Results' Set ID Number | 0x9398e80

Mass Find Results

Oligomers

To Find | Error | Name | Number| Mass Type Mono Mass | Avg Mass |
2419700000 0.064248 a-20 3 AVG 2418.169849 2419.764248
1832.830000 -0.002239 a-15 2 MONO 1832.827761 1833.998837 H
1685.750000 0.009347 a-14 1 MONO 1685.759347 1686.824599

X Close |

ITOtﬂ| number of oligomers: 3

Figure 8.24: Finding masses in a set of oligomers. This figure shows oligomers that
were found in a set of oligomers after a mass finding operation has been performed.

ENTER | key will trigger the “multi-mass” mass finding operation only if the Find
button has the focus. A click onto the Find button will do!

Prior to asking that masses be found, it is required that tolerances be entered for either
monoisotopic or average masses (or both if both kinds of masses are of interest) in their
respective text entry widget. In the example of Figure 8.22, the tolerance that is given
to the mass finding operation on monoisotopic masses is of 0.1 amu, while the one for
the average masses is greater (1 amu). These values must be understood in a “broad”
manner (i.e. + tolerance): for example, if we searched for a mass 1000 with a 0.5 amu
tolerance, we would get all the oligomers having masses ranging [1000 — 0.5 — 1000 + 0.5]
(which is [999.5-1000.5] and not [999.75-1000.25]). The Figure 8.23 shows that there are
two other means to define the tolerance with which masses should be found. They all are
self-explanatory and should also be understood in the same “broad” manner described above.

The oligomers that were found to comply with the masses to find and with the tolerances
defined are displayed in a window similar to the one shown in Figure 8.24.

Note that here also the traceability of the data is ensured using unambiguous identity
numbers (Results’ Set ID Number). This identity number is unique and describes the results
window in which the user has asked that masses be found (see Figure 8.22 on the preceding

page).

108 CHAPTER 8. POLYXEDIT

Define The Search Mass Options

Polymer Sequence Data

Sequence Name ID Number

Sample 0xB2d6ffa
Whole Sequence Selection Only

Masses To Search
Monoisotopic Average

645.4
3201.73
1709.83
2088.94
918.56

2700.3
5855.26
1932.0
5522.8 (|

Tolerances

Monoisotopic Average
Atomic Mass Unit | Atomic Mass Unit

0.1 | |05 | |
Unigque Mass Search Mode &gearch |

Figure 8.25: Finding masses in a polymer sequence. This figure shows how to ask that
masses be searched in a polymer sequence.

Searching Masses In The Polymer Sequence

It may happen that the scientist needs to know if some polymer sequence region would have a
given mass. GINU polyxmass allows for mass searching operations in the polymer sequence.
This is done by using the menu Chemistry — Search Mass(es). The window illustrated in
Figure 8.25 on the following page shows up and the user enters masses to search for (see
section 8 on page 108 for details on the workings of a very similar window).

Once the masses have been searched, if results are found they are displayed in the window
shown in Figure 8.26 on the facing page. This window has very similar characteristics to the
ones of the previously described results’ windows (see section 8 on page 102, for example).

The button labelled Find will allow the user to find masses in the oligomers that were
generated upon the mass searching operation (see section 8 on page 108).

The acido-basic calculations: pH, pI and charges

When preparing biochemical experiments, very often users need to know how many charges
a given polymer sequence will bear at any given pH. Equally important is the ability to know
at which pH value the polymer sequence will have a net charge near to zero. The pH value
for which a given polymer sequence has a net charge near to zero (typically this means that
the number of positive charges equals the number of negative charges) is called the isoelectric
point —the pl.

Such computations are pretty computer-intensive and require a very precise knowledge of

Search Mass Results

Polymer Sequence Data

Sequence Name |Samp|e

ID Number |0x82d6f8

Search Mass Results

MONO

Oligomers

To Search | Error | Nﬂ] Number] Coords. | Mass Type] Mono Mass JMg Mass | Modified | s
649.400000 0.003722 1 1 [13..17] MONOD 649.403722 649.803452 [l
649.400000 -0.053793 2 2 [147..151] MOND 649.346207 649.761993 (|
649.400000 -0.095539 3 3 [172..177] MONOD 649304461 649.669190
649.400000 -0.057816 4 4 [351..358] MOND 649.342184 649.720610 (|
649.400000 -0.065027 5 5 [691..695] MONOD 649.334973 649.758648
649.400000 -0.065678 & [[963..967] MOND 649.334322 649.782906 (|
649.400000 -0.007512 7 7 [972..977] MONOD 649.392488 649.800107
649.400000 -0.007512 8 8 [973..978] MOND 649.392488 649.800107
3201.730000 -0.055433 1 9 [34..61] MONOD 3201.674567 3203.807739
3201.730000 0.009477 2 10 [41..69] MOND 3201.739477 3203.956223 (|
3201.730000 -0.033652 3 11 [692..718] MONOD 3201.696348 3203.781847
3201.730000 -0.071559 4 12 [1029..1056] MONO 3201.658441 3203.585365 (|
3201.730000 0.029552 5 13 [1180..1208] MONO 3201.759552 3203.631880
1709.830000 0.001651 1 14 [61..76] MOND 1709.831651 1711.101579 (|
1709.830000 -0.024371 2 15 [94..108] 1709.805629

1710.884184

Selected Oligomer Data

LTDDWS

Sequence l Oligomer Data

Mass Search Data

X Close

109

Figure 8.26: Results window after searching masses in a a polymer sequence. This
figure shows the oligomers that were found upon a mass search operation.

110 CHAPTER 8. POLYXEDIT

the chemical structure of the different monomers that take part in the definition of the poly-
mer chemistry. A file, called acidobasic.xml is located in the polymer chemistry definition
directory. This file lists all the chemical groups that are possibly charged; each monomer of
the polymer definition is represented by a <mnm> element in which data are defined for any
chemical group of that monomer that might bear a charge at any given pH. You can find
the listing of the acidobasic.xml file in chapter 11 on page 151. We’'ll discuss any aspect of
this file’s contents in the next sections with enough detail that the user will be able to write
one such file for her specific polymer chemistry.

At the moment, two entities in the polymer chemistry definition might have chemical
groups bearing charges: monomers and modifications. We will first review monomers, and
modifications next.

Monomers might have ionized chemical group(s)

Some theory first

Monomers are the building blocks of polymer sequences. These blocks must have at least two
reactive groups so that they can be polymerized into a polymer sequence thread. Reactive
groups are often chargeable groups; for example, the amino group of amino-acids is such that
it gets protonated (positively charged) at a pH inferior to its pKa (that is a physiological
pH). Similarly, the carboxylate group —that is the other reactive group of amino-acids— is
charged at physiological pH: it is in its carboxylate form (that is singly negatively charged;
COO™) instead of being in its carboxylic form (that is non-charged; COOH).

For the non-biochemist reader, amino-acids involved in the formation of proteins have
always at least two chemical groups that are of inverted electrical charge, at physiological
pH values (see Figure 8.27):

* The amino group (called aNHs) has a typical pKa value of 9.6. This means that, at
physiological pH values (between 6.5 and 7.5), the amino group will find the environ-
ment rather acidic, and will thus be protonated, leading to a positively-charged species
(aNHy);

* The carboxylic group (called «COOH) has a typical pKa value of 2.35. This means
that, at physiological pH values, the carboxylic group will be in a rather basic environ-
ment, and will thus be deprotonated, leading to a negatively-charged species (a«COO™).

It should be clear that, at physiological pH values the two « chemical groups have a net
charge of 0. But proteins are charged, and this is because some of the twenty common
amino-acids have other chemical groups beyond the two others already described.

Indeed, some amino-acids have lateral chains that bear groups that might be charged
depending on the pH: seryl residues have an alcohol group that has a pKa of 13, for example;
that means that it is almost always uncharged (form ROH at physiological pH values). The
lateral chain of lysine has a pKa of 10.53, which means that at pH values below this pKa
value, the eNHy gets protonated, introducing a positive charge in the protein. Similarly,
amino-acids glutamate and aspartate do have a lateral chain ended with a yCOOH and a
BCOOH, respectively. Their pKa values are below 4.5, and thus the groups are negatively
charged a physiological pH values.

When the net charge of a polymer sequence has to be computed for a given pH condition,
the program iterates in the sequence, and for each monomer will check which one of its
chemical group(s) is possibly charged. For this to happen, it is required that a number of data

111

9.6 2.35
HZN—CllH—COOH
R

POLAR SIDE CHAINS

ARG —CH,—CH,—CH,—NH—C —NH
2T 2 ASN©_ H,—co— N,

I
2 1ys 10.53 GIN
é’ - —CH,—CHy—CH,— CH,— NH, 0 —CHz —CH,— CO — NH,
9 ©n
97) =
< |gig —CH;—C—N 5 13
A~ I & SR _ch,—on
H HC CH 4 S
N 2
NH
6.0 3 THR —CH —CHs
= T |
i 3.65 2 o
=
. Z
2 ASP —CH,— COOH — 101
z D R oy, /7 on
o Y 2TN_7
O 4.25
g GIE‘U —CH,—CH,—COOH s 8.3
g < —CHy—SH
NON-POLAR SIDE CHAINS
GLY. 4 MET —CHy—CH,—S—CHj
G M
\.
ALA PRO N—C—COOH
—CHj3 - | |
A HG CH
H CH
VAL /s PHE /=N
vy —oH e
CHj -
CH3
LEU =
| —onmol R a7
CH; w N2
NH
CHj3
/
ILI.E —cH
\CH,—CHj

Figure 8.27: Different pKa values for a number of amino-acids’ chemical groups.
All of the twenty amino-acids are represented here, which each amino-acid’s lateral chain
fully represented. Above each chemical group —for which the value makes sense from a
biological perspective— the pKa value is indicated.

112 CHAPTER 8. POLYXEDIT

be known for each monomer’s chemical group that might play a role in the determination
of the polymer sequence’s electrical charge. Thus, for each chemical group a number of
data should be listed in the acidobasic.xml file (please, see that file in the chapter 11 on
page 151):

% the chemical group’s <name> element is required. Examples: “aNHy” or “eNHa” or “aCOOH”;

% the chemical group’s <pka> element is optional, but is the basis for the charge calcu-
lation. Examples: 9.6 for the “aNHs” or 2.35 for “aCOOH”;

* the <acidcharged> element is required if the <pka> element is given. This element is
respounsible for telling if the chemical group is charged (positively) when the pH is lower
than pKa (that is when the medium is acidic with respect to the pKa). Examples: an
amine is positively charged when it is in its acidic form (protonated); a carboxylic acid is not charged

when it is in its acidic form;

* there can be none, one or more <polrule> element(s) for each chemgroup. The <pol-
rule> element gives informations about the way the chemical group at hand might be
“trapped” (or not) in the formation of inter-monomer bonds (while the monomer is poly-
merized into the polymer sequence). The value “left_trapped” means that the chemical
group ceases to be involved in charge calculations as soon as it has a monomer at its
left end. The value “right_trapped” means the same as above, but when a monomer
is polymerized at its right end. For a chemical group that is “left_trapped”, we un-
derstand that it is only effectively evaluated if it is at the left end of the polymer
sequence, since in this case it does not have a monomer at its left side. Conversely, a
chemical group that has a <polrule> element with value “right_trapped”, will be eval-
uated only if the monomer is actually the right end monomer in the polymer sequence.
Finally, the typical lateral chains of amino-acids have a <polrule> element with a
value “never_trapped”, as these chemical groups do not take part in the formation of
the inter-monomer bond;

% there can be none, one or more <chemgrouprule> element(s) for each chemgroup. A
chemgrouprule element should contain the following:

+ there must be an <entity> element that indicates what is the chemical entity
being dealt with in the current chemgroup element. Valid values for this element
are “LE_PLM_MODIF”, “RE_PLM_MODIF” or “MNM_MODIF”;

+ there must be a <name> element naming the chemical entity properly;

+ there must be an <outcome> element telling what action should be taken when
encountering the <entity> on the chemgroup. Valid values are either “LOST” or
“PRESERVED?”.

Understanding by example

Let us take some examples in order to make sure we actually understand the process of
describing how an electrical net charge is calculated for a given polymer sequence and at any
given pH value.

Let us see the example of the aspartate amino-acid, of which the lateral chain is nothing
but CH,COOH:

113

<mnm>
<code>D</code>
<chemgroup>
<name>N-term NH2</name>
<pka>9.6</pka>
<acidcharged>TRUE</acidcharged>
<polrule>left_trapped</polrule>
<chemgrouprule>
<entity>LE_PLM_MODIF</entity>
<name>Acetylation</name>
<outcome>L0OST</outcome>
</chemgrouprule>
</chemgroup>
<chemgroup>
<name>C-term COOH</name>
<pka>2.36</pka>
<acidcharged>FALSE</acidcharged>
<polrule>right_trapped</polrule>
</chemgroup>
<chemgroup>
<name>Lateral COOH</name>
<pka>3.65</pka>
<acidcharged>FALSE</acidcharged>
<polrule>never_trapped</polrule>
<chemgrouprule>
<entity>MNM_MODIF</entity>
<name>AmidationAsp</name>
<outcome>LOST</outcome>
</chemgrouprule>
</chemgroup>
</mnm>

We see that the code of the monomer for which acid-basic data are being defined is ‘D’ and
that this monomer has three chemical groups that might bring electrical charges. These
chemical groups are described by three <chemgroup> elements that we will review in detail
below (see Figure 8.27 on the previous page).

The first <chemgroup> element is related to the aNHs amino group of the amino-acid:

% <name>N-term NH2</name> The name of the chemical group is not immediately useful,
but will be used when reports are to be prepared for the calculation;

% <pka>9.6</pka> This element is optional. However, of course, if the chemical group
might be electrically charged, the pKa value will be essential in order to compute the
charge that is brought by this chemical group at any given pH;

% <acidcharged>TRUE</acidcharged> This element is also optional, however, if the
previous element is given, then this one is compulsory. Telling if the conjugated acid
form is charged (that is protonated) is essential in order to know what sign the charge
has to be when the chemical group is ionized. The value “TRUE” indicates that when
the pH is lower than the pKa, the chemical group is charged, thus protonated (in the

114

CHAPTER 8. POLYXEDIT

form NHj). Consequently, if the pH is higher than the pKa, then the chemical group
is neutral (in the form NHy);

<polrule>left_trapped</polrule> This element indicates that the chemical group
should only be taken into account in the eventuality that the monomer bearing it (code
‘D’) is the left end monomer of the polymer sequence. This can easily be understood,
as this chemical group is responsible for the establishment of the inter-monomer bond
towards the left end of the polymer sequence;

<chemgrouprule> This element provides further details on the chemistry that the
chemical group at hand (aNHj) might be involved in:

+ <entity>LE_PLM_MODIF</entity> This element indicates that the supplemen-
tary data in the current <chemgrouprule> element are pertaining to the aNHy
chemical group only in case the polymer sequence is left end-modified (that is with
a permanent left end modification) and the monomer (code ‘D’) is located at the
left end of the polymer sequence (that is: it is the first monomer of the sequence
for which the electrical charge —or pI— computation is to be performed).

+ <name>Acetylation</name> This element goes further in the detail of the poten-
tial chemistry of the alNHy chemical group: if the left end permanent modification
is “Acetylation”, then the current chemgrouprule element can be further processed,
otherwise it should be abandoned;

+ <outcome>L0ST</outcome> This element actually indicates what should be done
with the chemical group for which the chemgrouprule is being defined. What we
see here is: —“If the aNHy chemical group, belonging to a ‘D’ monomer located at
the left end of a polymer sequence, is modified permanently with an “Acetylation”
left end modification, it should not be taken into account when computing the
charge that it could bring to the polymer sequence.”

The second <chemgroup> element is related to the «COOH carboxylic group of the amino-

acid:
t 3
*

*

<name>C-term COOH</name> Same remark as above;
<pka>2.36</pka> Same remark as above;

<acidcharged>FALSE</acidcharged> Same remark as above. However, as we can see,
the value indicates that the acid conjugate (form COOH) does not bring any charge.
This means that when the basic conjugate is predominant (that is when pH > pKa),
it brings a negative charge: the form is COO;

<polrule>right_trapped</polrule> The chemical group should not be evaluated if
a monomer is linked to it at its right side. That means that the current chemical group
is only evaluated if the monomer bearing it is located at the right end of the polymer
sequence. This is easily understood, as the «COOH chemical group is involved in the
formation of the inter-monomer bond towards the right end of the polymer sequence.

The third <chemgroup> element is related to the SCOOH carboxylic group of the amino-

acid:
*

*

<name>Lateral COOH</name>;

<pka>3.65</pka>;

115

% <acidcharged>FALSE</acidcharged>;

% <polrule>never_trapped</polrule> This element indicates that, whatever the po-
sition of the monomer bearing the chemical group in the polymer sequence (left end,
right end or middle), the chemical group is to be evaluated;

% <chemgrouprule> This element provides further details on the chemistry that the
chemical group at hand (GCOOH) might be involved in:

+ <entity>MNM_MODIF</entity> This element indicates that the supplementary
data in the current <chemgrouprule> element are pertaining to the SCOOH

chemical group only in case the monomer bearing the chemical group is chemically
modified;

+ <name>AmidationAsp</name> This is the modification by which the monomer
should be modified in order to have the <chemgrouprule> element effectively
evaluated;

+ <outcome>L0OST</outcome> This element actually indicates that if the monomer
bearing the chemical group is modified with an “AmidationAsp” chemical modifi-
cation, then the chemical group should not be evaluated any more for the electrical
charge —or pI— calculations, since reacting a carboxylate group with an amino
group produces an amide group which is not easily chargeable at physiological pH
values.

At this point we should have made it clear how the charge calculations can be configured for
the different monomers in the polymer chemistry definition. As usual, the more the polymer
chemistry definition is sophisticated, the more sophisticated the computations allowed.

Modifications might have ionized chemical group(s)

In the excerpt from the acidobasic.xml file below, we see that chemical modifications can
also bring charges. The example of the chemical modification “Phosphorylation” shows that
when a monomer is phosphorylated, two chemical groups are brought in: the first has a pKa
value of 12 (that is it will always be protonated at physiological pH values), the second has
a pKa value of 7 (that is it will be divided by half in a protonated (not charged) form and
in an un-protonated (negatively charged) form, leading to a net electrical charge of —0.5.

<modifs>
<mdf>
<name>Phosphorylation</name>
<chemgroup>
<name>none_set</name>
<pka>12</pka>
<acidcharged>FALSE</acidcharged>
</chemgroup>
<chemgroup>
<name>none_set</name>
<pka>7</pka>
<acidcharged>FALSE</acidcharged>
</chemgroup>
</mdf>
</modifs>

116 CHAPTER 8. POLYXEDIT

polyxedit: Acido-Basic Computations

Acido-Basic Computations:
MNet Charge and Isoelectric Point

Polymer Sequence Data

Sequence Name | Sample

ID Number | 0x82d19a8

Define The Sequence Interval For The Computation

Sequence Eegio_n [1 - wlsll]
Whole Sequence

pH -- pl - Electrical Charges Data
pH - pl -- pKa
pH | 7.00000 pl
Number Of Chemical Groups That Were Treated 8
Electric Charges
Positive | 1.997485 Megative |-4.994197

MNet Charge Of The Polymer Sequence | -2.996712

&Compute Net Charge | &Compute Isoelectric Point

Figure 8.28: Acido-basic computations: pl, pH, pKa. This figure shows the options
that can be set for the calculations related to the charges beared by the polymer sequence.

At this point we should be able to study the way computations are actually performed in
the polyxedit module.

Performing pH, pl and charges computations

The user willing to compute charges (positive, negative, net) or the isoelectric point for the
current polymer sequence uses the contextual menu — pKa-pH-pI— Computations which
triggers the appearance of the window shown in Figure 8.28 on page 118.

This figure shows that the user might either compute the charges (positive, negative and
net) for the polymer sequence by setting the pH value at which the computation should take
place and clicking onto the Compute Net Charge button, or ask that the isoelectric point be
computed ez nihilo by clicking onto the Compute Isoelectric Point button (in which case the
pl text entry widget will display the pH at which the Net Charge Of The Polymer Sequence
will be near to 0.

Clicking onto the Compute Isoelectric Point will trigger computations that are lengthy,
and the user is advised to be patient. As an example, on my computer,’® the pI computation
for a protein of 10201 residues took 10 seconds (no modifications taken into account). If the
user asks that the different modifications (permanent polymer modifications and monomer
modifications) be taken into account, the duration of the computation is twice as long (23
seconds).

Note that the computations might involve the permanent left/right modifications of the
polymer sequence, as well as the monomer chemical modifications. To configure the way net

6My /proc/cpuinfo and /proc/meminfo say “Intel(R) Pentium(R) M processor 1400MHz; cpu family: 6;
model: 9; 1024 KB cache size; 774376 kB of memory; bogomips: 2768.89".

117

charge —or pl— computations are performed, please use the calculations engine configura-
tion window, as described in Figure 8.4 on page 80.

The m/z Ratio Calculator

When requiring m/z ratio calculations the user might use the
Chemistry—m/z Ratio Calculations
contextual menu that shows up when the user right-clicks onto the polymer sequence.
Note that the process of using the calculator was described in Section 7 on page 73. When the
calculator is used in polyxedit, the initial ionization status data are set from the currently
defined ionization rules (see the lonization Rules frame in the window displayed in Figure 8.4
on page 80) of the polymer sequence for which the computations are to be performed.

The Self-Read Feature Of Polymer Sequences

It happens some times that the user needs somebody to read a sequence while he double-
checks the sequence being read. I have been confronted to that situation a number of times
(in particular when having to confirm oligonucleotidic sequences), and finally decided that I
would give polymer sequences a “self-reading” ability.

The basis of the self-reading framework is as simple as the writing of (yet) another
dictionary that makes —for each polymer chemistry definition— the correspondence between
a chemical entity and a sound file that should be played in order to “read out” a polymer
sequence. Two chemical entities are able to read themselves out:

* Monomers: the user may define two sound files for each monomer of the polymer chem-
istry definition: a sound file vocalizing the monomer name (“alanine”, for example),
and another sound file vocalizing the monomer code (“A” or “Ala”; for example).

* Modifications: the user may define only one sound file for each modification of the
polymer chemistry definition.

Selecting the
Edit— Export Sound Playlist

menu item in the contextual menu that pops up when the user right-clicks onto the
polymer sequence will trigger the window displayed in Figure 8.29 on the following page to
show up.

If a polymer sequence region is selected when the menu above is selected, then the posi-
tions of the monomers delimiting that region are displayed in the Define Self-Reading Sequence
Interval frame. If the user changes the selection in the sequence editor, these values can be
updated by clicking onto the Sequence Region button. It is, however, possible to ask that the
whole polymer sequence be self-spoken out by clicking onto the Whole Sequence checkbutton.

The polymer sequence self-reading feature allows to select if monomer codes or monomer
names should be vocalized in the sequence, and if the monomer modifications should be
vocalized also.

Finally, the Temporal Segmentation frame lets the user define how the files corresponding
to the monomers’ code/name (and modifications’ name, if so is required) are played. Specif-
ically, it is possible to ask that silences be interspersed between the sounds corresponding
to the chemical entities being self-spoken out. Silent delays are played exactly in the same

118 CHAPTER 8. POLYXEDIT

-gelect Cutput Fle

@ Make Self-Read Playlist

Figure 8.29: Polymer Sequence Self-Read Options. This figure shows the options that
can be set for the polymer sequence to read itself out to a playlist file.

119

manner as the other chemical entities’ sounds (that is: a silent delay is played as a “silence
sound” file...). The user might ask that the sequence read-out be interspersed with the
following silent delays:

% Start Self-Reading After Silent Slices: the “silent sound” file is played the specified
number of times before the sequence starts to read itself out. If the “silent sound” file is
300 milliseconds-long, and the user wants a 1 second delay before the sequence actually
begins to read itself out, the number asked would be 3;

% Inter-Monomer Delay Of Silent Slices: a silent delay will be inserted between each
monomer sound;

* Extra Delay Of (x] Silent Slices Every Other Monomer : it might be useful, sometimes,
to insert a silent delay each time a given number of monomers have been spelled. This
is particularly interesting when nucleic acids sequences read themselves out, so that
a “reading frame” is conserved all along. One would thus set the silent delay to be
inserted every three monomers. ..

The user indicates the name of the file where the playlist is to be written. It is advisable
to use the m3u file extension so that the sound player will recognize that file as a playlist file.

Indeed, GNU polyxmass does not generate sounds on the sound card. All it does is
write a sound playlist that the user later hands out to a sound player, like xmms or winamp.

The m3u file format is pretty easy: it is a list of files to be played in succession. Note that
for the sequence to be properly spoken-out at that step, the “shuffle” feature of the player
should be disabled.

The following is the contents of the sequence.m3u playlist file that was obtained by
having a protein sequence read itself out:

/usr/share/polyxmass/polchem-defs/protein/sounds/glutamate.ogg
/usr/share/polyxmass/polchem-defs/protein/sounds/glutamate.ogg
/usr/share/polyxmass/polchem-defs/protein/sounds/aspartate.ogg
/usr/share/polyxmass/polchem-defs/protein/sounds/silence.ogg
/usr/share/polyxmass/polchem-defs/protein/sounds/phenylalanine.ogg
/usr/share/polyxmass/polchem-defs/protein/sounds/serine.ogg
/usr/share/polyxmass/polchem-defs/protein/sounds/phospho.ogg

Note that the last serine monomer is phosphorylated and that the user asked that an
interval be played every three monomers.

The correspondence between a given monomer (or modification) and the sound it should
use to read itself out is performed in a text file (sounds.dic) located in the sounds directory
itself located in the polymer chemistry definition data directory. See the chapter about GNU
polyxmass-common for details.

Results Reporting

polyxedit allows the user to perform a great number of different simulations on any number
of polymer sequences opened at any given time. While the simultaneity of simulations (for
example having at one given time different enzymatic cleavages on a set of different proteins)

120 CHAPTER 8. POLYXEDIT

=1 polyxedit: Reporting Options 000

Configure The Reporting Engine For The Polymer Sequence

Polymer Sequence Data
Sequence Mame Sample

1D Nummber 0x8283308

Export Format
Simple Text

Polymer Oligopmer Monomer
Select The Items That Have To Be Included In The Report
Masses
Calculations Options Whole Sequence Masses Selected Sequence Masses

Sequence Data
Sequence Properties Author Date

of Apply

cgyahdate 3 cancel

Figure 8.30: The reporting options configuration. The configuration of the way win-
dow contents are reported is highly configurable. The configuration will affect the way the
polymer sequence’s data are reported, but also the way oligomers’ data are reported and
monomers’. Each tab of the depicted window deals with each one of these configuration
options..

is necessary, as a simple matter of flexibility and power, it is necessary to perform well-
organized results reporting.

The reports might be asked for any window that displays results. For example, a window
that displays a polymer sequence (the polymer sequence editor, in fact) is a results window
as it displays a sequence. A window displaying the oligomers obtained upon cleavage of
a polymer sequence with a chemical cleavage agent is also a results window. As we have
seen earlier, each results window is registered to the program and its specifics are stored in
items visible in the Available Windows treeview of the window management window shown
in Figure 5.4 on page 48.

The configuration of the way reports are prepared takes place in the polymer sequence
context. The polymer sequence editor window menu

Reporting— Reporting Options

will open a window as depicted in Figure 8.30.

Once the reporting options are configured in a polymer sequence editing context, they
automaticall apply for all the results windows in the same polymer sequence editing context.
The reporting options are always modifiable using the same menu as above. Once the
configuration of the reporting options is performed, the user might use the

Reporting— Make Reports

menu to elicit the opening of the window management window, where the following
reporting actions are made avaiblable through button widgets.

After selecting a particular window item from the Available Windows treeview, it becomes
possible to ask that the selected window exports a report about its contents. The report can
be sent to the clibpoard or to a file (in append or overwrite mode) by using the corresponding
button widgets in the window management window:

* Report To Clipboard: ask that the window contents be exported to the clipboard;

121

% Overwrite To File: ask that the window contents be exported to a file. Overwrite the file if it exists
already;

% Append To File: ask that the window contents be exported to a file. The new contents report data

are appended to a preexisting file.

122 CHAPTER 8. POLYXEDIT

9

GNU

polyxmass-
common: The
Configuration
and Data Files

Hierarchy

re suite is designed to be compatible with any polymer chem
s to define. To be that flexible, GNU polyxmass has to be able

124 CHAPTER 9. GNU POLYXMASS-COMMON

to store polymer chemistry definition files and related data files in a very clearly-designed
“file-system”. The structure of this “file-system” is what this chapter is all about.

When the user defines a polymer chemistry definition (typically using polyxdef), the
contents of that definition are saved in a text file (using the xml format). Once a polymer
chemistry definition is saved and registered in the GNU polyxmass system, the user can
create a new polymer sequence of that polymer chemistry:! when entering monomer codes
at the keyboard, the user sees monomer icons (small graphical images) being displayed in
the sequence editor (we call that process the “graphical rendering” of the polymer sequence).
So, here are a number of typical questions:

* Where is defined the correspondence between any monomer code (as keyed-in during
a polymer sequence editing session) and the monomer icon? that is displayed in the
polyxedit sequence editor?

% Where are located all the graphics files that are used to graphically render a sequence
in the editor? And the sound files used to let a polymer sequence speak itself out?

* Where is located the atom definition that should be used with this specific polymer
chemistry definition, and were is defined the correspondence between a polymer chem-
istry and the atom definition file that is required?

Within GNU polyxmass, there are two different kinds of data/configuration data files:

* Compulsory data/configuration files that must be on the system at precise locations
whatever the chemical definitions being used on that system;

* Optional data/configuration files that are installed by users (or system administrators)
so as to comply with requirements specific of each installation.?

The present chapter is about the first item in the above bulleted list: compulsory data/configuration
files that are all shipped with the GNU polyxmass-common package. We will review the
locations where data/configuration files are installed and the mechanics that make GNU
polyxmass work on any kind of polymer chemistry.

Overview Of The Files Installed

Let us first review all the files that are installed by the GNU polyxmass-common package:

/usr/share/polyxmass/atom-defs/atoms.xml

/usr/share/polyxmass/polchem-defs/protein
/usr/share/polyxmass/polchem-defs/protein/acetyl.png
/usr/share/polyxmass/polchem-defs/protein/acetyl.svg
/usr/share/polyxmass/polchem-defs/protein/acetyl-text.svg
/usr/share/polyxmass/polchem-defs/protein/alanine.png
/usr/share/polyxmass/polchem-defs/protein/alanine.svg
/usr/share/polyxmass/polchem-defs/protein/alanine-text.svg

1Editing of polymer sequences is typically performed in polyxedit.

2We call that icon a “monicon.”

3For example, a synthetic polymer lab will almost certainly not install data packages about pro-
teins or nucleic acids, while a biochemistry lab will almost certainly not install packages about poly-
methylmetacrylate. . .

125

/usr/share/polyxmass/polchem-defs/protein/monicons.dic
/usr/share/polyxmass/polchem-defs/protein/sounds/alanine.ogg
/usr/share/polyxmass/polchem-defs/protein/sounds/a.ogg
/usr/share/polyxmass/polchem-defs/protein/sounds/methyl.ogg
/usr/share/polyxmass/polchem-defs/protein/sounds/sounds.dic

/usr/share/polyxmass/polchem-defs/protein/chempad.conf
/usr/share/polyxmass/polchem-defs/protein/acidobasic.xml
/usr/share/polyxmass/polchem-defs/protein/cursor.svg

/usr/share/polyxmass/polchem-defs/protein/protein.xml
/usr/share/polyxmass/polchem-defs/protein/peptide.xml

/usr/share/polyxmass/pol-seqs/protein-sample.pxm
/usr/share/polyxmass/pol-seqs/protein-fragments-sample.pxm

/etc/polyxmass/atom-defs/polyxmass—-common-atom-defs-cat
/etc/polyxmass/polchem-defs/polyxmass-common-polchem-defs-cat
/etc/polyxmass/polchem-defs/polyxmass-common-polchem-defs-atom-defs-dic

/etc/polyxmass/chempad.conf

/usr/share/doc/polyxmass-common/AUTHORS
/usr/share/doc/polyxmass-common/COPYING
/usr/share/doc/polyxmass-common/INSTALL
/usr/share/doc/polyxmass—-common/NEWS
/usr/share/doc/polyxmass-common/README
/usr/share/doc/polyxmass-common/T0ODO
/usr/share/doc/polyxmass-common/THANKS

/usr/share/man/man7/polyxmass-common. 7

/usr/lib/pkgconfig/polyxmass-common.pc

All the text above is the output (edited for clarity) of the make install command that is

performed to install the GNU polyxmass-common package on the system. It is taken for
granted that the user did not change the ——sysconfdir=/etc option to the configure script
and that he passed the following option to that same configure script: ——-prefix=/usr. If
the GNU polyxmass-common package is installed as a binary package, then the user
needs not worry: the packager did choose the best installation directories. Let us review
each file that is installed one by one, telling what it is meant for:

% Files located in /etc/polyxmass:

+ atom-defs/polyxmass-common-atom-defs—-cat This file is the catalog file correspond-
ing to the GNU polyxmass-common package. It contains the list of the atom definition files

that are brought by the GNU polyxmass-common package.

+ polchem-defs/polyxmass-common-polchem-defs-cat This file is the catalog file cor-
responding to the GNNU polyxmass-common package. It contains the list of the polymer
chemistry definition files that are brought by the GNU polyxmass-common package.

+ polchem-defs/polyxmass-common-polchem-defs-atom-defs-dic This file is the
dictionary file corresponding to the GNU polyxmass-common package. It contains the rela-
tions between each polymer chemistry definition file shipped with the package and its cognate

atom definition file.

126

*

CHAPTER 9. GNU POLYXMASS-COMMON

chempad. conf This file describes the layout of the chemical pad of the polyxcalc module, in
case the polymer chemistry definition does not have one and the user does not have one neither.

This file can thus be called the “default” layout definition file for the polyxcalc’s chemical pad.

% Files located in /usr/share/polyxmass:

*

‘

polyxmass/atom-defs/atoms.xml This file is the “basic” atom definition file. The GNU

polyxmass software suite mandates that one atom definition file be present in the system.

polyxmass/polchem-defs/protein/acetyl.png This is one of the raster files that
are used in the polymer chemistry definition to graphically render the “Acetylation” chemical
modification. Note that also installed is a file by the same name but with extension .svg, instead

of .png. This file is a scalar vector graphics version from which the .png file was generated.

polyxmass/polchem-defs/protein/alanine.png One of the graphics files that are
used to render graphically the monomers defined in the polymer chemistry definition (in this

case the monomer is “alanine”). Same remark as above for the .svg extension file.

polyxmass/polchem-defs/protein/chempad.conf This file describes the layout of
the chemical pad of the polyxcalc module. Each polymer chemistry definition might have a
chempad. conf file associated to it. This file is optional.

polyxmass/polchem-defs/protein/acidobasic.xml This file describes the chem-
istry of all the monomers and modifications in the polymer chemistry definition that might
bring charges. The data contained in this file are used by the functions that compute either the
charge level of a polymer sequence at a given pH value, or the isoelectric point of a polymer

sequence (that is the pH value at which the net charge of the protein is near zero).

polyxmass/polchem-defs/protein/monicons.dic This file is the one that lists the
correspondence between the monomer codes/modifications and the files used to render the
monomers/modifications graphically in the sequence editor. The lines in this file look like:
monomer ;A=alanine.svglalanine.png for a monomer, and like:

modif ;Phosphorylation’T%phospho.svg|phospho.png for a modification. The latter line indi-
cates that when a monomer is modified using the “Phosphorylation” modification, the to-be-
modified monomer icon get modified by transparently pasting onto it the monicon contained in
the file phospho.svg (see the %T%).

polyxmass/polchem-defs/protein/sounds/sounds.dic This file is the one that
lists the correspondence between the monomer codes (or names) and their corresponding sound
files. The same is true for modifications. The file contains lines in the form:
monomer ; Y=tyrosine.ogg|y.ogg for monomers and in the form:

modif ;Phosphorylation=phospho.ogg for modifications. The “monomer;” line indicates that the
monomer ‘Y’ has its name vocalized in the tyrosine.ogg file, while its monomer is vocalized
in the y.ogg file. The “modif;” line indicates that that the “Phosphorylation” modification is
vocalized in the phospho.ogg file.

polyxmass/polchem-defs/protein/cursor.svg This file is a graphics file that de-
scribes how the cursor should be rendered graphically in the polymer sequence editor. Each

polymer chemistry definition must provide this file.

polyxmass/polchem-defs/protein/protein.xml This is the actual polymer chem-
istry definition file. This file is a text file formatted according to the xml standard. It contains

a description of all the chemical entities that make up the polymer chemistry definition.

polyxmass/pol-seqs/protein-sample.pxm This is an example polymer sequence file.

It can be used by the user to learn how to use the polyxedit module. This protein sequence

127

is of polymer chemistry definition “protein”, that is defined in the file that we described above

(protein.xml).

+ ma.n/ma.n?/polyxmass—common. 7 This file is the manual page that accompanies the GNU

polyxmass-common package.
* Files located in /usr/1ib:

+ pkgconfig/polyxmass-common.pc This file is the pkg-config configuration file that will
allow other packages to check if GNU polyxmass-common is installed correctly and what is

its version.

Detailed Explanations About Installed Files

Now that we have an overview of what each one of the files that get installed does, we may
want to take a closer look at some of the files that were listed above.

File polyxmass-common-atom-defs-cat

Each package that brings atom definition files, should list —in a similar file (ending with
the atom-defs-cat suffix)— all the atom definitions that are made available to the system.
The GNU polyxmass-common package installs

polyxmass—-common-atom-defs-cat in

/etc/polyxmass/atom-defs. Its contents are:

basic=/usr/share/polyxmass/atom-defs/atoms.xml

Thus, we see that GNU polyxmass-common brings one atom definition file (atoms.xml),
installed in /usr/share/polyxmass/atom-defs and made available to the GNU polyxmass
system under the name “basic”. This latter name is the one used by polymer definitions to
specify with what atom definition file they should be working. We’ll see that later.

File polyxmass-common-polchem-defs-cat

Each package that brings polymer chemistry definition files, should list —in a similar file
(ending with the polchem-defs-cat suffix)— all the polymer chemistry definitions that are
made available to the system. The GNU polyxmass-common package installs
polyxmass-common-polchem-defs-cat in
/etc/polyxmass/polchem-defs. Its contents are (each polymer chemistry definition
name and its corresponding data must be on a single line without space; here, for clarity the
line was broken, as symbolised with the “\\” characters that are absent in the file):

protein=/usr/share/polyxmass/polchem-defs/protein/protein.xml\\
%/usr/share/polyxmass/polchem-defs/protein
peptide=/usr/share/polyxmass/polchem-defs/protein/peptide.xml\\
%/usr/share/polyxmass/polchem-defs/protein

128 CHAPTER 9. GNU POLYXMASS-COMMON

Thus, we see that GNU polyxmass-common brings two polymer chemistry definition
files (protein.xml and peptide.xml), installed in /usr/share/polyxmass/polchem-defs
and made available to the GNU polyxmass system under the names “protein” and “pep-
tide”, respectively. As can be seen by the example above, the polymer chemistry definition
file names are absolute file names (that means that they are preceded by the whole path
leading to the file in question) and are separated —by a % character— from the absolute
name of the directory where corresponding data reside.

Thus, the “protein” polymer chemistry definition file is protein.xml, that is located at
/usr/share/polyxmass/polchem-defs.

The directory where all the “protein” polymer chemistry definition-related data are lo-
cated is:

/usr/share/polyxmass/polchem-defs/protein.

We will see later how this catalogue file is used, in order to create a main catalogue file
that is use to read the proper polymer chemistry definition file that is needed when the user
asks, for example, that a “protein” sequence be displayed in polyxedit.

File polyxmass-common-polchem-defs-atom-defs-dic

Each package that brings polymer chemistry definition files, should list —in a similar file
(ending with the polchem-defs-atom-defs-dic suffix)— all the relations that govern the
use of a determinate atom definition file by any given polymer chemistry definition. The
GNU polyxmass-common package installs
polyxmass—common-polchem-defs-atom-defs—-dic in
/etc/polyxmass/polchem-defs. Its contents are:

protein=basic
peptide=basic

The first line of this file stipulates that —“When working on polymer sequences of polymer
chemistry “protein”, the atom definition to be used is the one having name “basic.” Since
the system knows what actual file corresponds to the atom definition “basic”, as we already
have seen above, it is not difficult to load that specific atom definition file from disk.

File chempad.conf

This file is responsible for governing the chemical pad layout in the polyxcalc module. Each
polymer chemistry definition may have one such file in its directory (for example, for the
“protein” polymer chemistry definition, we have the

/usr/share/polyxmass/polchem-defs/protein/chempad. conf file.

When a polymer chemistry definition with no chempad.conf is used in polyxcalc, the
program automatically tries to read the file from the user’s .polyxmass/chempad.conf file.
If that user’s file is not found, the last resort is to read the

/etc/polyxmass/chempad. conf file.

This file contains lines like the following:

chempad_columns$3

chempadkey=protonatey+Hljadds a proton

129

chempadkey=hydrate’+H201%adds a water molecule
chempadkey=0H-ylate’+01H1%adds an hydroxyl group
chempadkey=acetylate’-H1+C2H301%adds an acetyl group
chempadkey=protonatej+Hl%adds a proton
chempadkey=hydrate+H201%adds a water molecule

The first line tells that the chemical pad buttons should be laid out in three columns.
Each following line configures one button, that will sit on the chemical pad. Thus, the syntax
of a line is the following:

chempadkey=button_label%action-formulajbutton_tooltip

The first button-defining line, for example, configures the creation of a button with the label
“protonate” which —when mouse-clicked— will elicit the addition of the contents of the
action-formula “4H1” in the polyxcalc module. The string “adds a proton” is the text that
will appear as a tooltip when the mouse cursor sits on the button.

File acidobasic.xml

This file contains all the pKa data about all the different chemical groups beared either by
monomers or modifications defined in the polymer chemistry definition. This file is used
when computations about net charges of polymer sequence at a given pH value are asked.
Also, this file is used when isoelectric point calculations are performed. See section 8 on
page 110.

File monicons.dic

This file is obligatory for each polymer chemistry definition. So, for our example of the “pro-
tein” polymer chemistry, it would be found in that polymer chemistry definition directory:
/usr/share/polyxmass/polchem-defs/protein/monicons.dic.

See below for detailed explanations of its contents.

File atoms.xml

This file, that is located at

/usr/share/polyxmass/atom-defs,

is obligatory for GNU polyxmass to operate normally. Indeed, if there were no atom
definitions, we would be in trouble to compute masses for any chemical entity that is rep-
resented by its formula (or action-formula). There might be other atom definitions files,
located in that same directory, but with other names. As we have seen above, there is one
atom definition, called “basic”, that is used by the “protein” and “peptide” polymer chemistry
definitions. This “basic” atom definition is actually this atoms.xml file.

In more details: this file is an atom definition file, where atoms are defined by defining
their individual data. An atom is the resultant of the isotope(s) that it is comprised of. Some
atoms only have one isotope, other atoms have as much as seven or eight different isotopes.
An isotope is characterized by its mass and its abundance. Hence, the structure of an atom
definition, in this file:

130 CHAPTER 9. GNU POLYXMASS-COMMON

<atom>
<name>Carbon</name>
<symbol>C</symbol>
<isotope>
<mass>12.0000000000</mass>
<abund>98.9300000000</abund>
</isotope>
<isotope>
<mass>13.0033548390</mass>
<abund>1.0700000000</abund>
</isotope>
</atom>

There might be as many such atom definitions —in this atom definition file— as required
for the polymer chemistry definition with which it is to be used. Indeed, we already have
mentioned that any polymer chemistry definition must specify the atom definition with which
it must work specifically for things to behave properly (that association is specified in the

polyxmass-common-polchem-defs-atom-defs.dic file (for the polymer chemistry defi-
nitions brought by the GNU polyxmass-common package; see above).

Directory protein

This directory is the directory where the example “protein” polymer chemistry definition data
are located (/usr/share/polyxmass/polchem-defs/protein). Indeed, GNU polyxmass-
common comes with a full polymer chemistry definition; that is: a polymer chemistry def-
inition file (protein.xml) and all the data files that permit a polymer sequence of that
polymer chemistry to be rendered graphically in the polyxedit editor module. Also, comes
with the “protein” polymer chemistry data, a chempad.conf file that describes —for this
specific polymer chemistry— how to lay out the chemical pad used in the polyxcalc mod-
ule. Let’s review all the files that make up the “protein” polymer chemistry definition as a
functional set of data.

File protein.xml

This file is located in the “protein” polymer chemistry definition directory:
/usr/share/polyxmass/polchem-defs/protein.
It is the file where the “protein” polymer chemistry definition is detailed. Its contents
look like this (omitting the DTD of the xml-format file):

<polchemdefdata>
<type>protein</type>
<leftcap>+H</leftcap>
<rightcap>+0H</rightcap>
<codelen>1</codelen>
<ionizerule>
<actform>+H</actform>
<charge>1</charge>
<level>1</level>

</ionizerule>

<monomers>

<mnm>
<name>Glycine</name>
<code>G</code>
<formula>C2H3NO</formula>
</mnm>

<mnm>
<name>Alanine</name>
<code>A</code>
<formula>C3H5NO</formula>
</mnm>

</monomers>

<modifs>

<mdf>
<name>Phosphorylation</name>
<actform>-H+H2P03</actform>
</mdf>

<mdf>
<name>Acetylation</name>
<actform>-H+C2H30</actform>
</mdf>

<mdf>

<name>Amidation</name>
<actform>-0H+NH2</actform>
</mdf>

</modifs>

<cleavespecs>

<cls>
<name>CyanogenBromide</name>
<pattern>M/</pattern>

<clr>
<re-mnm-code>M</re-mnm-code>
<re-actform>-CH2S+0</re-actform>
</clr>

</cls>

<cls>
<name>Trypsin</name>
<pattern>K/;R/;-K/P</pattern>
</cls>

</cleavespecs>
<fragspecs>

<fgs>

<name>a</name>
<end>LE</end>
<actform>-C101</actform>
<fgr>

131

132 CHAPTER 9. GNU POLYXMASS-COMMON

<name>a-fgr-1</name>
<actform>+H200</actform>
<prev-mnm-code>E</prev-mnm-code>
<this-mnm-code>D</this-mnm-code>
<next-mnm-code>F</next-mnm-code>
<comment>comment here!</comment>
</fgr>

<fgs>

<name>z</name>

<end>RE</end>
<actform>-N1H1</actform>
<comment>Not in CID high En. frag</comment>
</fgs>

<fgs>

<name>imm</name>
<end>NE</end>
<actform>-C101+H1</actform>
</fgs>

</fragspecs>
</polchemdefdata>

As can be seen, the chemical entities that make up the “protein” polymer chemistry definition
are listed here in a very structured way. This file is written by the polyxdef module,
described in another chapter of this manual. Note that some data shown here are fake —as
far as the “protein” polymer chemistry is concerned— and are only listed as examples of the
fine-grain with which chemical data can be defined in this file.

When a polymer sequence is either loaded from disk, or created ex nihilo, the GNU
polyxmass program will manage to know of what polymer chemistry definition it is. Once
it knows what polymer chemistry definition is involved for the polymer sequence at hand,
the program loads the corresponding file from disk (if it has not already done so; no polymer
chemistry definition file is read from disk more than once, to preserve the smallest memory
footprint for the whole GNU polyxmass software suite).

Files alanine.svg and alanine.png

These two files are located in the “protein” polymer chemistry definition directory:

/usr/share/polyxmass/polchem-defs/protein.

There are two such files for any monomer that is defined in the polymer definition file
(for our example that is the protein.xml file).

These two files are responsible for the graphical rendering —in the polymer sequence edi-
tor, the polyxedit module— of the monomers that constitute a polymer sequence. For each
monomer in a polymer sequence, its graphical representation is performed by the graphical
rendering of a “monomer icon” file (that we call “monicon”). These two files are “monicon
files” (see the chapter 8 on page 77).

It should be noted right now that the user may ask that the rendering of the monomers
in a polymer sequence be performed at a given size (in pixel units). Thus the size of the

133

monicons has to be regulatable —preferably without loss of resolution: we will see now how
this is achieved.

Of these two files, the first has a name ending with the .svg extension: it is a scalar
vector graphics file (svg-format file) that describes vector-graphically how the corresponding
monomer should be displayed in the polyxedit sequence editor. The fact that this file is
of that svg format is interesting because it makes it possible to render in the editor the
monicon at any size asked by the user without loosing the image resolution.

The second of these two files has a .png extension: it is a portable network graphics file
(png-format file) that describes raster-graphically how the corresponding monomer should
be displayed in the polyxedit sequence editor. Since this file describes the rendering of a
monomer icon in a “static” raster/bitmap graphics format, it cannot scale properly without
loss of resolution.

It is noteworthy that in theory, if all the scalar vector graphics files (svg files) were
correctly interpreted by the polymer sequence editor, the raster vector graphics files (png
files) should be totally redundant and useless. However, the png file-reading libraries are
much more robust than the svg file-reading libraries (svg is a rather recent standard). This
is why it is required to always provide the polymer sequence editor with a fall-back solution
in the form of a raster graphics png file to be used in case the monicon rendering from the
scalar vector graphics file failed.

Finally, we should mention that because the user may draw himself these small graphics
files, the graphical rendering of a polymer sequence is totally customizable. For the user to
be guided in this process, I would simply mention that the svg files were all drawn using the
sodipodi software program, and that the raster png files were obtained using the “export”
function in this same program.

We will see later how the correspondence between a monomer in the polymer chemistry
definition and its corresponding graphics files is established, so that when the user edits a
polymer sequence —by typing the monomer codes at the keyboard— the proper monicon is
displayed in the polyxedit sequence editor.

Files acetyl.svg and acetyl.png

According to the same token as above, for monomer icon files, these two files are respectively
the svg and png versions of the file that is used to graphically render the “Acetylation”
monomer modification. These files are with a transparent background and the small “Ac”
red text that appears on them is the only graphical element that will be visible when the
files are used for compositing their contents onto the monomer icon file that is used to render
the monomer being chemically modified using the “Acetylation” modification.

We will see later how the correspondence between a chemical modification and its graph-
ical file is performed, so that when the user selects a monomer in the sequence editor and
modifies it, the proper graphical modification of its monicon is performed in order to give
the user a proper feedback that the monomer has effectively been modified.

File cursor.svg

This file is responsible for the representation of the editing cursor in the polyxedit module.
Depending on the color of the monicons, it might be necessary to modify the graphical
rendering of the cursor in the polymer sequence editor. This is necessary so that the graphical
rendering of polymer chemistries during polymer sequence editing can be totally themeable.
The cursor graphics file is necessarily a svg file because it has to scale up/down properly

134 CHAPTER 9. GNU POLYXMASS-COMMON

when the user changes the dimension of the monicons that render the polymer sequence in
the editor. The cursor always scales with the monomer icons and adopts the same dimensions
as theirs.

File chempad.conf

We have already explained what this file is for. It might exist in the polymer chemistry
definition directory, in which case it is used to lay out the chemical pad in the polyxcalc
module. Note that this file is used only if polyxcalc is run with specifying that a polymer
chemistry definition be loaded in it.

File monicons.dic

This file, also located in the “protein” polymer chemistry definition directory, contains crit-
ical correspondences between monomer codes and the graphics files used to render these
monomers in the sequence editor. Also, this file lists the correspondences between the chem-
ical modifications that might be set to monomers and the graphical operations to perform
so that the user is provided with a visual feedback. Its contents are:

monomer ;A=alanine.svg|alanine.png

monomer ; C=cysteine.svg|cysteine.png

monomer ;D=aspartate.svg|aspartate.png

monomer ;E=glutamate.svg|glutamate.png

monomer ; F=phenylalanine.svg|phenylalanine.png

modif ;PhosphorylationyT/phospho.svg|phospho.png
modif ;Acetylation)Thacetyl.svglacetyl.png

modif ;AmidationAsp/0’%asparagine.svg|asparagine.png
modif ;AmidationGlul,0%glutamine.svg|glutamine.png

The first line of this file is saying —“Whenever the user wants to insert —in the polymer
sequence— a monomer by keying-in ‘A’, that monomer should be rendered using the ala-
nine.svg file or, if that rendering fails, using the alanine.png file”. The same wording is
true for all the monomers in the polymer chemistry definition.

The sixth line indicates that the monomers that are chemically modified using a modifica-
tion called “Phosphorylation” should have their monicon graphically altered by compositing
%Thransparently (onto the monicon of the monomer being modified) either the transparent
scalar vector graphics phospho.svg file, or —if something is wrong with this file— the raster
phospho.png file (see the chapter 8 on page 77).

The eighth line shows another graphical compositing rule. The rule is not %T%ransparency,
but involves an %0%paque graphical compositing. This line says that when a monomer
is modified using an “AmidationAsp” modification, its monomer icon should be replaced
using a monomer icon rendered ex novo by reading either the scalar vector graphics file
asparagine.svg, or —if something is wrong with this file— by using the raster graphics file
asparagine.png.

135

File sounds.dic

This file, located in the “protein” polymer chemistry definition directory (in the sounds
sub-directory), contains critical correspondences between monomers’ code/name or modifi-
cations’ names and their corresponding sound files. The format of the file is very simple, as
shown below:

silence-sound$silence.ogg

monomer ;A=alanine.oggla.ogg
monomer ; C=cysteine.ogglc.ogg
monomer ;D=aspartate.oggld.ogg
monomer ; E=glutamate.oggle.ogg
monomer ; F=phenylalanine.oggl|f.ogg

modif ;Phosphorylation=phospho.ogg
modif;AmidationAsp=amidation.ogg
modif;Acetylation=acetyl.ogg
modif;AmidationGlu=amidation.ogg

The first line of this file is saying —“Whenever the user wants to insert —in the polymer
sequence self-speak playlist— a silent delay, that file silence.ogg is to be used”.

The second line indicates that when a sequence that is speaking itself out encounters a
monomer of code ‘A’, then the file to be used should be either:

% alanine.ogg if the user asks that the monomer names be vocalized in the playlist;
% a.ogg if the user asks that the monomer codes be vocalized in the playlist.

The same wording is true for all the other monomers in the polymer chemistry definition
(see the chapter 8 on page 77).

The seventh line states that if modifications are to speak themselves out, the “Phospho-
rylation” modification should use the sound file phospho.ogg.

Polymer Sequence Sample Files

There are two polymer sequence sample files that are shipped with GNU polyxmass-
common. We'll detail one of the two in this section.

File protein-sample.pxm

This file is a sample “protein”-polymer chemistry polymer sequence. It is shipped with
GNU polyxmass-common in order to let the user experiment with the GNU polyxmass
software package right after installation. This polymer sequence file is of polymer chemistry
definition “protein” as can be seen from part of its contents:

<polseqdata>
<polseqinfo>
<type>protein</type>

136 CHAPTER 9. GNU POLYXMASS-COMMON

<name>Sample</name>
<code>SP2003</code>
<author>rusconi</author>
<date>

<year>2004</year>
<month>01</month>
<day>19</day>

</date>

</polseqinfo>
</polseqinfo>

<polseqg>

<monomer>

<code>M</code>

<prop>
<name>MODIF</name>
<data>Acetylation</data>
</prop>

</monomer>
<codes>EFEEDF</codes>

<monomer>

<code>V</code>

<pr0p>

<name>NOTE</name>

<data>SAMPLE-NOTE</data>

<data type="str">This monomer belongs to the KPVV
peptide [30-->33]</data>

</prop>

</monomer>

</polseq>

<prop>

<name>NOTE</name>

<data>COMMENT</data>

<data type="str">this polymer is partly membranous.</data>

</prop>

<prop>

<name>LEFT_END_MODIF</name>

<data>Acetylation</data>

</prop>

<prop>

<name>NOTE</name>

<data>COMMENT</data>

<data type="str">This protein is responsible
for the multi-drug resistance effect.</data>

</prop>

</polseqdata>

As can be seen here, one xm1 element, tagged “<type>" contains a datum “protein”, that
tells polyxmass that, when this polymer sequence file is loaded, it should ensure that the

137

“protein” polymer chemistry definition file is used to interpret its data.

Other data follow that detail what the user has put in this polymer sequence (monomer
modifications —see element “<name>MODIF< /name>"—, polymer modifications —see el-
ement “<name>LEFT_END_MODIF< /name>"—, etc...)

Example Of A New Atom Definition

The GNU polyxmass package has to ensure that users can either develop their own polymer
chemistry definitions or install packages that ship polymer chemistry definition files (along
with their configuration files and data files; the whole set of files is collectively called the
“polymer chemistry definition”). To achieve that goal, the GNU polyxmass software suite
needs to be able to screen catalogue files on the system in search for these atom/polymer
chemistry definitions.

The user willing to understand the process that leads to the creation of a polymer
chemistry definition package, can study the GNU polyxmass-data package that
is part of the GNU polyxmass software suite. This package brings a number
of new polymer chemistry definitions, like the “dna”, “rna”; “saccharide” polymer
chemistry definitions. When installed, this package will make sure that catalogue
files are installed in the configuration directory of the GNU polyxmass software
suite. This way, when polyxmass is executed, it can parse these catalogue files
in search for all the available polymer chemistry/atom definitions. The GNU
polyxmass-data package is an excellent tutorial for the user willing to learn how
to package polymer chemistry definitions.

Packages can either bring atom definition files or polymer chemistry definition files or both.
In each case, different catalogue files are to be installed in different configuration directories.
In this section we are exploring the ways to install a new atom definition. Users are — once
again — invited to peruse the chapter about GNNU polyxmass customization for detailed
instructions about creating and installing new polymer chemistry definition packages.

When an atom definition package brings one or more atom definition files to the GNU
polyxmass software suite, it should bring the equivalent of the

polyxmass-common-atom-defs-cat

file that is brought by the GNU polyxmass-common package.

Let’s see an example where a new atom definition file might be of great use. Imagine that
we are using mass spectrometry to fully characterize bacterially-synthesized polypeptides for
use in nuclear magnetic resonance studies. These polypeptides were almost fully [*°N]-
labelled by growing the bacteria in [!°N]-saturated culture medium. Of course, the way
masses should be computed is very different than the usual way, because the isotopic ﬁi—m
ratio of the nitrogen element has changed dramatically from the naturally-occurring one.

How would this situation be dealt with in GNU polyxmass? The first action would be to
create a new atom definition file, say atoms-n-nmr .xml, for example. This atoms-n-nmr . xml
atom definition file would list —amongst all the other atoms— only one isotope for the
nitrogen atom, the [°N] isotope: its mass would thus be 15.0001089780 and its abundance
would be set to 100. We may give that new atom definition the following name: “n-nmr”
(see below).

138 CHAPTER 9. GNU POLYXMASS-COMMON

How to let GNU polyxmass know that we may want to use this new atom definition file?
We would make a package, put that file into it, name the package in a GNU polyxmass-
consistent way, like “polyxmass-n-nmr” for example. We also would have to put in that
package a file listing the name of the atom definition that should be correlated to the shipped
atom definition file. This file should look like the file that we already described earlier,
which is shipped with GNU polyxmass-common: polyxmass-common-atom-defs-cat
(see above about the requirement that atom definition catalogues must have a filename
ending with the atom-defs-cat suffix. Typically, the prefix should be the name of the
package that brings that catalogue file, such as polyxmass-common, which thus yields the
polyxmass-common-atom-defs-cat catalogue name). Thus we may ship a catalogue file
that should be named polyxmass-n-nmr-atom-defs-cat listing these contents:

n-nmr=/usr/share/polyxmass/atom-defs/polyxmass-n-nmr-atom-def .xml

This polyxmass-n-nmr-atom-defs-cat catalogue file should be installed in the
/etc/polyxmass/atom—-defs directory, thus its absolute file name should be:
/etc/polyxmass/atom-defs/polyxmass-n-nmr-atom-defs-cat.

When our atom definition package is installed, and polyxmass is executed, its catalogue
file will be parsed and the atom definition will automatically be made available for use in
the whole GNU polyxmass software suite.

At this point, we have to make sure that this new atom definition is used to compute
masses when we are working on the polypeptides of interest (the ones that are [!5N]-rich);
that is, we must let GNNU polyxmass know that there exists a new notion of a poly-
mer chemistry definition, say “n-nmr-protein”, for example. As the system administrator,
we can create a new polymer chemistry catalogue file, like the one we described earlier:
polyxmass-common-polchem-defs-cat, but naming it this way, for example:
polyxmass-n-nmr-polchem-defs-cat. These files are located in
/etc/polyxmass/polchem-defs. The new file should contain this line (each polymer chem-
istry definition name and its corresponding data must be on a single line without space; here,
for clarity the line was broken, as symbolised with the “\\” characters that are absent in the
file):

n-nmr-protein=/usr/share/polyxmass/polchem-defs/protein/protein.xml\\
% /usr/share/polyxmass/polchem-defs/protein

What this line says is that there now exists a new polymer chemistry definition, named
“n-nmr-protein”, that uses a pre-existing polymer chemistry definition named “protein”.

When our new polymer chemistry definition catalogue file is installed, and that polyxmass
is run, it will parse that catalogue file along with all the other ones and will thus aknowledge
that the “n-nmr-protein” polymer chemistry definition should use the polymer chemistry
definition data located in the directory mentioned on the line above.

Now comes the really interesting configuration: we have to let GNU polyxmass know
that, whenever a polymer chemistry definition “nmr-protein” is used, the atom definition
“n-nmr” is to be used in order to compute masses.

To do that we have to create, as root, a new dictionary file, similar to the one that we
have described earlier:

polyxmass-common-polchem-defs-atom-defs-dic, but naming it this way, for example:

n-nmr-protein-polchem-defs-atom-defs-dic. These files are located in

/etc/polyxmass/polchem-defs. That file should contain this line:

139
n-mnr-protein=n-nmr

When our new polymer chemistry definition/atom definition dictionary file is installed,
this new dictionary file will be parsed by polyxmass and it will thus be known that when
using the “n-nmr-protein” polymer chemistry definition, the atom definition “n-nmr” should
be used for any computation.

The last action that we should take in order to automatically compute the masses in
the “n-nmr”-specialized way we want, is to tell the polypeptide sequences we are working on
that they are of polymer chemistry definition “n-nmr-protein”. To that end, make a copy of
the polymer sequence of interest and change, using a text editor, the contents of the <type>
element (that is “protein”) to “n-nmr-protein”. Open that new sequence file in a freshly
started GNU polyxmass program, and the masses should be computed with the new atom
definitions.

That’s the end of the story here.

Conclusion

In this chapter, we have described what file-system hierarchy governs the GNU polyxmass
understanding of different polymer chemistries. The described set of data/configuration files
(and directories) is the minimal set of information that is required for GNU polyxmass to
operate.

The user willing to learn how to create brand new packages that bring to the user new
atom definitions and/or new polymer chemistry definitions is invited to carefully study the
GNU polyxmass-data package, that is optional in the GNU polyxmass software suite.

The data/configuration files that are brought by both packages (GNU polyxmass-
common and GNU polyxmass-data) are installed —by default— in system directories,
like /usr, /etc, /usr/local... and are thus available to all the users gaining access to the
system. GINU polyxmass manages a creativity space for the individual user to add atom
definitions and/or polymer chemistry definitions for his own use ezclusively.

The next chapter describes in detail the process leading to the customization of the GNU
polyxmass software suite, by going through the example of adding the “saccharide” polymer
chemistry definition to the GNU polyxmass software suite for individual use (not globally
available to the system).

140 CHAPTER 9. GNU POLYXMASS-COMMON

10

GNU

polyxmass
Customization:
Adding Atom

and Chemistry
Definitions

This chapter will guide the user through a step-by-step procedure to learn how to customize
the GNU polyxmass software suite by adding atom definitions and polymer chemistry

definitions for a local and individual use.

141

142 CHAPTER 10. GNU POLYXMASS CUSTOMIZATION

Getting The Substrate Of Our Experiment

The example that we will make will be based on part of the contents of the GNU polyxmass-
data package (the “saccharide” polymer chemistry definition), that the user is invited to
download without installing it. The best way to go is to download the “source tarball”: the
file polyxmass-data-0.8.7.tar.gz and perform the following procedure to unpack it in a
suitable place:

* Copy that file to a directory where you have write permissions:!
mkdir /home/rusconi/tmp <P
cp polyxmass-data-0.8.7.tar.gz /home/rusconi/tmp <P
* Unpack the tar.gz archive into the current working directory:

tar xvzf polyxmass-data-0.8.7.tar.gz <P

* Now go to the newly created directory:

cd polyxmass-data-0.8.7 «P

% Check that there is effectively the directory with the “saccharide” polymer chemistry
definition data:

1ls polchem-defs/saccharide «P

You should get a rather large listing of files, and if you look well at them you’ll see
two files of interest: saccharide.xml and monicons.dic. Also, a sounds directory
should contain empty sound files (filename extensions are .ogg) and a dictionary file
(sounds.dic). Great, we have the substrate with which we will demonstrate how to
bring new polymer chemistry definitions to the GNU polyxmass software suite!

Creating A New Polymer Chemistry Definition

At this point we know we can go on with our procedure. We should immediately create a
directory where we will install the “saccharide” polymer chemistry definition-related files:

mkdir /home/rusconi/pxm-custom «P

Now we can copy the “saccharide” polymer chemistry definition directory in our juste-made
directory (we are still in the polyxmass-data-0.8.7 directory):

1 usually work by making a tmp directory in my home directory and copying there the files
that correspond to temporary tasks; thus our tarball file would have the following absolute name:
/home/rusconi/tmp/polyxmass-data-0.8.7.tar.gz.

143

cp -rpf polchem-defs/saccharide /home/rusconi/pxm-custom «P

Right, we now have our new “saccharide” polymer chemistry definition data; we could
have made them from scratch, but we happen to be lazy so we copied them from an available
package. .. We now have to start the configuration process that will let GNU polyxmass
know that we have brought one more polymer chemistry definition. To do that, we’ll have
to create (if it does not exist already) the .polyxmass directory in our home directory.?

Also, we should make the polchem-defs directory inside it. So these are the command
lines:

mkdir /home/rusconi/.polyxmass <P
mkdir /home/rusconi/.polyxmass/polchem-defs «P

At this point, we should mimick the file-system hierarchy that we have already described
for the /etc/polyxmass directory, by creating a rusconi-polchem-defs-cat where we’ll
add the line corresponding to the new “saccharide” polymer chemistry definition, as we have
seen in the chapter about GNU polyxmass-common (note the compulsory polchem-defs-
cat suffix in the catalogue filename):

cd /home/rusconi/.polyxmass/polchem-defs «P
touch rusconi-polchem-defs-cat P

Now use an editor to put the following line in this file (each polymer chemistry definition
name and its corresponding data must be on a single line without space; here, for clarity
the line was broken, as symbolised with the “\\” characters that are absent in the file).
Remember to terminate the text line with a carriage return, symbolized with ‘P’ below!:

saccharide=/home/rusconi/pxm-custom/saccharide/saccharide.xml\\
% /home/rusconi/pxm-custom/saccharide «P

If we started GNU polyxmass now, we would be able to partially enjoy the result:
when trying to load the new polymer chemistry definition in polyxdef, we would get the
file-chooser window shown on Figure 10.1.

However, if we were courageous enough to select “saccharide” from the listview and click
the Validate button, we would find an error because GNU polyxmass does not yet know
what atom definition should be used with this polymer chemistry definition. The error
message that is sent to the terminal window is the following:

x (polyxmass:14734): CRITICAL #**: polyxdef-ui-polchemdef.c@225:
failed setting the proper atom definition name for current
polymer definition to combo list

2The home directory, in UNIX systems, is the directory where the user finds himself once logged onto
the system. Usually, it is something like /home/ logname, with logname being the username used to log onto
the system (for me that’s rusconi). Furthermore, the home directory of a user is visible in the /etc/passwd
file, which lists it for the user ruscons in this way (try for yourself):

rusconi:x:1000:1000:Filippo Rusconi:/home/rusconi:/bin/bash

144 CHAPTER 10. GNU POLYXMASS CUSTOMIZATION

L] Select a Polymer Definition A e e
Polymer Definitions Available On The System
Choose One Of The Available Definitions...
Def. Type Def. Fle Def. Dir

saccharide fhome/frusconi/pxm-custom/saccharide/saccharide.xml (heme/rusconi/p:
protein Jusrfshare/polyxmass/polchem-defs/protein/protein.xml jusr/share/polyx

peptide Jusrfshare/polyxmass/polchem-defs/protein/peptide.xml jusr/share/polyx

Choose A Polymer Chemistry Definition Fle...

1 Home .l Home || tmp
() FAlesystem —
(=) Zip Drive Name
() winzk Fllibpolyxmass-global
(Jusb Flma
Eold-polyxmass-global
o Add i

x Cancel eialidate

Figure 10.1: The new polymer chemistry definition The new polymer chem-
istry definition “saccharide” is now known to the system, since we have edited the
/home/rusconi/.polyxmass/polchem-defs/rusconi-polchem-defs-cat catalogue file to
that precise end.

Creating A New Atom Definition

What this error message is saying, is that the program could not tell what atom definition
was to be loaded for us to correctly display (and supposedly edit) the polymer chemistry
definition that was selected. That means that we still have some work to do: we still have
to provide an atom definition and register it to GNU polyxmass.

We could —of course— just tell GNU polyxmass that the atom definition to be used
when working with the “saccharide” polymer chemistry definition is the “basic” atom defini-
tion that is shipped with the GNU polyxmass-common package. But since we are making
a tutorial hands-on procedure, we’ll fake the system into thinking that the “saccharide” poly-
mer chemistry definition requires a specific atom definition called “mysugar”. But we do not
want to write that atom definition file ez nihilo, so we’ll just make a copy of the atoms.xml
atom definition file that was shipped with the GNU polyxmass-common package. On my
system, the GNU polyxmass-common package was installed in the /usr system directory
tree, so I'll find that atoms.xm1l file there, and copy it to /home/rusconi/pxm-custon , like
this (on a single line, please):

cp /usr/share/polyxmass/atom-defs/atoms.xml
/home/rusconi/pxm-custom/for-sugar.xml «f

At this point we’ll have to inform the GNU polyxmass software suite that we have a new
atom definition, named “mysugar”, of which the file is
/home/rusconi/pxm-custom/for-sugar.xml.

For this, we’ll have to continue mimicking the file-system hierarchy that we have already

145

described for the /etc/polyxmass directory, by creating an atom-defs directory in the
user’s /home/rusconi/.polyxmass directory. Inside this directory, we will have to create the
rusconi-atom—defs-cat file where we’ll add the line corresponding to our new “mysugar”
atom definition, as we have seen in the chapter about GNU polyxmass-common (note
the compulsory atom-defs-cat suffix in the catalogue filename):

mkdir /home/rusconi/.polyxmass/atom-defs «P
cd /home/rusconi/.polyxmass/atom-defs «P
touch rusconi-atom-defs-cat <P

Now we have to use an editor, so that we can put the following line in this file. Remember
to terminate the line with a carriage return, symbolized with ‘P’ below!

mysugar=/home/rusconi/pxm-custom/for-sugar.xml «f

The Polymer Chemistry Definition—Atom Defini-
tion Dictionary

At this point, we have told GINU polyxmass that we have a new atom definition file,
but we still have to make sure this atom definition is actually loaded each time a “sac-
charide” polymer chemistry definition is used. For this, we already know that we have to
edit a dictionary file so that we can make the correspondence between the polymer chem-
istry definition and the atom definition. This dictionary file should be located, along with
the polymer chemistry definition files, in /home/rusconi/.polyxmass/polchem-defs, and
be named, as in /etc/polyxmass/polchem-defs, rusconi-polchem-defs-atom-defs-dic
(note the compulsory polchem-defs-atom-defs-dic suffix in the dictionary filename):

cd /home/rusconi/.polyxmass/polchem-defs/
touch rusconi-polchem-defs-atom-defs-dic <P
Now use an editor to put the following line in this file. Remember to terminate the line

with a carriage return, symbolized with ‘P’ below!:

saccharide=mysugar <«f

Enjoying The New Polymer Chemistry Defini-
tion

At this point, the user has successfully configured the new polymer chemistry definition and
can start enjoying it: if we try to open, in a new polyxmass session (polyxmass needs to be
restarted because all the files we have been configuring are read at startup), the “saccharide”
polymer chemistry definition, we can do it successfully, as shown on Figure 10.2.

146

[=1

polyxdef - Edit Polymer Definition

CHAPTER 10. GNU POLYXMASS CUSTOMIZATION

(=W -"]

Polymer Definition Type |baccharide

Unmodified

Atomn Definition To Use

|mysugar

S

|,-‘home,-‘rusconi,-‘pxm-custom!‘fcr—sugar.xml

a Read Atomn Definition J

[PS Locate Atom Definition J

Polymer Endings' Chemistry (Caps)

Polymer lonization Rule

Left Cap Actform
|+H |+H
Right Cap Charge

|+oH |2

S

MonomerslModificatiuns Cleavages Fragmentations

Manomers Available

Name Code | Formula

Allose All CaH1005
Altrose Alt CaH1005
Arabinose Ara CSHBO4

Details

Maximum Number Of Allowed Characters For A Monomer Code | 3 ; :J

Actions
= e =T |
Polymer Definition Fle Actions
"@ Check Syntax J Egave J @ Save As J ‘
Messages

Figure 10.2: Loading the newly installed polymer chemistry definition Finally the
polymer chemistry definition “saccharide” can be opened from disk using the polyxdef mod-
ule, as all the configurations were performed. Note the Atom Definition To Use data at the top
of the window, which indicate with what atom definition this polymer chemistry definition

will work.

147

~— polyxedit: ose-sample. pxm A& &

Show/Hide Polymer Sequence Data

Sequence Name l" | harid quence ‘

ID Number |0x834a028
2 CC T 17 7 Unmodified

Show/Hide Left And Right Ends' Modifications

Methylat e Methan |

Editing feedback
[[|
| |

]

Figure 10.3: Loading a “saccharidic” polymer sequence Since the “saccharide” polymer
chemistry definition is fully configured, we can load from disk a polymer sequence of that
chemistry definition.

Finally, since we have an example “saccharide” sequence in the data that we initially
unpacked in /home/rusconi/tmp/polyxmass-data-0.8.7, we can try to open the “saccha-
ridic” polymer sequence file pol-seqs/ose-sample.pxm. That works perfectly, as shown on
Figure 10.3.

148 CHAPTER 10. GNU POLYXMASS CUSTOMIZATION

11

Appendices

The “basic” Atom Definition File

<?xml version="1.0" encoding="UTF-8" standalone="yes"7>
<!-- DTD for atom definitions, used by the
’GNU polyxmass’ suite of mass spectrometry applications.

Copyright
<!DOCTYPE
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
1>

2003, 2004 Filippo Rusconi - Licensed under the GNU GPL -->
atomdefdata [

atomdefdata (atom+)>

atom (name,symbol,isotope+)>

name (#PCDATA)>

symbol (#PCDATA)>

isotope (mass , abund)>

mass (#PCDATA)>

abund (#PCDATA)>

<atomdefdata>

<atom>

<name>Hydrogen</name>

<symbol>H</symbol>

<isotope>
<mass>1.0078250370</mass>
<abund>99.9885000000</abund>

</isotope>

<isotope>
<mass>2.0141017870</mass>
<abund>0.0115000000</abund>

</isotope>

149

150 CHAPTER 11.

</atom>
<atom>
<name>Helium</name>
<symbol>He</symbol>
<isotope>
<mass>4.0026032500</mass>
<abund>99.9998600000</abund>
</isotope>
<isotope>
<mass>3.0160292970</mass>
<abund>0.0001400000</abund>
</isotope>
</atom>
<atom>
<name>Lithium</name>
<symbol>Li</symbol>
<isotope>
<mass>7.0160045000</mass>
<abund>92.4100000000</abund>
</isotope>
<isotope>
<mass>6.0151232000</mass>
<abund>7.5900000000</abund>
</isotope>
</atom>
<atom>
<name>Beryllium</name>
<symbol>Be</symbol>
<isotope>
<mass>9.0121825000</mass>
<abund>100.0000000000</abund>
</isotope>
</atom>
<atom>
<name>Bore</name>
<symbol>B</symbol>
<isotope>
<mass>11.0093053000</mass>
<abund>80.1000000000</abund>
</isotope>
<isotope>
<mass>10.0129380000</mass>
<abund>19.9000000000</abund>
</isotope>
</atom>
<atom>
<name>Carbon</name>
<symbol>C</symbol>
<isotope>
<mass>12.0000000000</mass>

APPENDICES

<abund>98.9300000000</abund>
</isotope>
<isotope>
<mass>13.0033548390</mass>
<abund>1.0700000000</abund>
</isotope>
</atom>
<atom>
<name>Nitrogen</name>
<symbol>N</symbol>
<isotope>
<mass>14.0030740080</mass>
<abund>99.6320000000</abund>
</isotope>
<isotope>
<mass>15.0001089780</mass>
<abund>0.3680000000</abund>
</isotope>
</atom>
<atom>
<name>0xygen</name>
<symbol>0</symbol>
<isotope>
<mass>15.9949146400</mass>
<abund>99.7570000000</abund>
</isotope>
<isotope>
<mass>16.9991306000</mass>
<abund>0.0380000000</abund>
</isotope>
<isotope>
<mass>17.9991593900</mass>
<abund>0.2050000000</abund>
</isotope>
</atom>
<atom>
<name>Fluorine</name>
<symbol>F</symbol>
<isotope>
<mass>18.9984032500</mass>
<abund>100.0000000000</abund>
</isotope>
</atom>
<atom>
<name>Neon</name>
<symbol>Ne</symbol>
<isotope>
<mass>19.9924391000</mass>
<abund>90.4800000000</abund>
</isotope>

151

152 CHAPTER 11.

<isotope>
<mass>20.9938453000</mass>
<abund>0.2700000000</abund>
</isotope>
<isotope>
<mass>21.9913837000</mass>
<abund>9.2500000000</abund>
</isotope>
</atom>
<atom>
<name>Sodium</name>
<symbol>Na</symbol>
<isotope>
<mass>22.9897697000</mass>
<abund>100.0000000000</abund>
</isotope>
</atom>
<atom>
<name>Magnesium</name>
<symbol>Mg</symbol>
<isotope>
<mass>23.9850450000</mass>
<abund>78.9900000000</abund>
</isotope>
<isotope>
<mass>24.9858392000</mass>
<abund>10.0000000000</abund>
</isotope>
<isotope>
<mass>25.9825954000</mass>
<abund>11.0100000000</abund>
</isotope>
</atom>
<atom>
<name>Aluminium</name>
<symbol>Al</symbol>
<isotope>
<mass>26.9815413000</mass>
<abund>100.0000000000</abund>
</isotope>
</atom>
<atom>
<name>Silicon</name>
<symbol>Si</symbol>
<isotope>
<mass>27.9769284000</mass>
<abund>92.2297000000</abund>
</isotope>
<isotope>
<mass>28.9764964000</mass>

APPENDICES

<abund>4.6832000000</abund>
</isotope>
<isotope>
<mass>29.9737717000</mass>
<abund>3.0872000000</abund>
</isotope>
</atom>
<atom>
<name>Phosphorus</name>
<symbol>P</symbol>
<isotope>
<mass>30.9737634000</mass>
<abund>100.0000000000</abund>
</isotope>
</atom>
<atom>
<name>Sulfur</name>
<symbol>S</symbol>
<isotope>
<mass>31.9720718000</mass>
<abund>94.9300000000</abund>
</isotope>
<isotope>
<mass>32.9714591000</mass>
<abund>0.7600000000</abund>
</isotope>
<isotope>
<mass>33.9678677400</mass>
<abund>4.2900000000</abund>
</isotope>
<isotope>
<mass>35.9670790000</mass>
<abund>0.0200000000</abund>
</isotope>
</atom>
<atom>
<name>Chlorine</name>
<symbol>C1l</symbol>
<isotope>
<mass>34.9688527290</mass>
<abund>75.7800000000</abund>
</isotope>
<isotope>
<mass>36.9659026240</mass>
<abund>24.2200000000</abund>
</isotope>
</atom>
<atom>
<name>Argon</name>
<symbol>Ar</symbol>

153

154 CHAPTER 11.
<isotope>
<mass>35.9675456050</mass>
<abund>0.3365000000</abund>
</isotope>
<isotope>
<mass>37.9627322000</mass>
<abund>0.0632000000</abund>
</isotope>
<isotope>
<mass>39.9623831000</mass>
<abund>99.6003000000</abund>
</isotope>
</atom>
<atom>
<name>Potassium</name>
<symbol>K</symbol>
<isotope>
<mass>38.9637079000</mass>
<abund>93.2581000000</abund>
</isotope>
<isotope>
<mass>39.9639988000</mass>
<abund>0.0117000000</abund>
</isotope>
<isotope>
<mass>40.9618254000</mass>
<abund>6.7302000000</abund>
</isotope>
</atom>
<atom>
<name>Calcium</name>
<symbol>Ca</symbol>
<isotope>
<mass>39.9625907000</mass>
<abund>96.9410000000</abund>
</isotope>
<isotope>
<mass>41.9586218000</mass>
<abund>0.6470000000</abund>
</isotope>
<isotope>
<mass>42.9587704000</mass>
<abund>0.1350000000</abund>
</isotope>
<isotope>
<mass>43.9554848000</mass>
<abund>2.0860000000</abund>
</isotope>
<isotope>

<mass>45

.9536890000</mass>

APPENDICES

<abund>0.0040000000</abund>
</isotope>
<isotope>
<mass>47.9525320000</mass>
<abund>0.1870000000</abund>
</isotope>
</atom>
<atom>
<name>Scandium</name>
<symbol>Sc</symbol>
<isotope>
<mass>44.9559136000</mass>
<abund>100.0000000000</abund>
</isotope>
</atom>
<atom>
<name>Titanium</name>
<symbol>Ti</symbol>
<isotope>
<mass>45.9526327000</mass>
<abund>8.2500000000</abund>
</isotope>
<isotope>
<mass>46.9517649000</mass>
<abund>7.4400000000</abund>
</isotope>
<isotope>
<mass>47.9479467000</mass>
<abund>73.7200000000</abund>
</isotope>
<isotope>
<mass>48.9478705000</mass>
<abund>5.4100000000</abund>
</isotope>
<isotope>
<mass>49.9447858000</mass>
<abund>5.1800000000</abund>
</isotope>
</atom>
<atom>
<name>Vanadium</name>
<symbol>V</symbol>
<isotope>
<mass>49.9471613000</mass>
<abund>0.2500000000</abund>
</isotope>
<isotope>
<mass>50.9439625000</mass>
<abund>99.7500000000</abund>
</isotope>

155

156 CHAPTER 11.

</atom>
<atom>
<name>Chromium</name>
<symbol>Cr</symbol>
<isotope>
<mass>49.9464630000</mass>
<abund>4.3450000000</abund>
</isotope>
<isotope>
<mass>51.9405097000</mass>
<abund>83.7890000000</abund>
</isotope>
<isotope>
<mass>52.9406510000</mass>
<abund>9.5010000000</abund>
</isotope>
<isotope>
<mass>53.9388822000</mass>
<abund>2.3650000000</abund>
</isotope>
</atom>
<atom>
<name>Manganese</name>
<symbol>Mn</symbol>
<isotope>
<mass>54.9380463000</mass>
<abund>100.0000000000</abund>
</isotope>
</atom>
<atom>
<name>Iron</name>
<symbol>Fe</symbol>
<isotope>
<mass>53.9396121000</mass>
<abund>5.8450000000</abund>
</isotope>
<isotope>
<mass>55.9349393000</mass>
<abund>91.7540000000</abund>
</isotope>
<isotope>
<mass>56.9353957000</mass>
<abund>2.1190000000</abund>
</isotope>
<isotope>
<mass>57.9332778000</mass>
<abund>0.2820000000</abund>
</isotope>
</atom>
<atom>

APPENDICES

157

<name>Cobalt</name>
<symbol>Co</symbol>
<isotope>
<mass>58.9331978000</mass>
<abund>100.0000000000</abund>
</isotope>
</atom>
<atom>
<name>Nickel</name>
<symbol>Ni</symbol>
<isotope>
<mass>57.9353471000</mass>
<abund>68.0769000000</abund>
</isotope>
<isotope>
<mass>59.9307890000</mass>
<abund>26.2231000000</abund>
</isotope>
<isotope>
<mass>60.9310586000</mass>
<abund>1.1399000000</abund>
</isotope>
<isotope>
<mass>61.9283464000</mass>
<abund>3.6345000000</abund>
</isotope>
<isotope>
<mass>63.9279680000</mass>
<abund>0.9256000000</abund>
</isotope>
</atom>
<atom>
<name>Copper</name>
<symbol>Cu</symbol>
<isotope>
<mass>62.9295992000</mass>
<abund>69.1700000000</abund>
</isotope>
<isotope>
<mass>64.9277924000</mass>
<abund>30.8300000000</abund>
</isotope>
</atom>
<atom>
<name>Zinc</name>
<symbol>Zn</symbol>
<isotope>
<mass>63.9291454000</mass>
<abund>48.6300000000</abund>
</isotope>

158 CHAPTER 11.

<isotope>
<mass>65.9260352000</mass>
<abund>27.9000000000</abund>
</isotope>
<isotope>
<mass>66.9271289000</mass>
<abund>4.1000000000</abund>
</isotope>
<isotope>
<mass>67.9248458000</mass>
<abund>18.7500000000</abund>
</isotope>
<isotope>
<mass>69.9253249000</mass>
<abund>0.6200000000</abund>
</isotope>
</atom>
<atom>
<name>Gallium</name>
<symbol>Ga</symbol>
<isotope>
<mass>68.9255809000</mass>
<abund>60.1080000000</abund>
</isotope>
<isotope>
<mass>70.9247006000</mass>
<abund>39.8920000000</abund>
</isotope>
</atom>
<atom>
<name>Germanium</name>
<symbol>Ge</symbol>
<isotope>
<mass>69.9242498000</mass>
<abund>20.8400000000</abund>
</isotope>
<isotope>
<mass>71.9220800000</mass>
<abund>27.5400000000</abund>
</isotope>
<isotope>
<mass>72.9234639000</mass>
<abund>7.7300000000</abund>
</isotope>
<isotope>
<mass>73.9211788000</mass>
<abund>36.2800000000</abund>
</isotope>
<isotope>
<mass>75.9214027000</mass>

APPENDICES

<abund>7.6100000000</abund>
</isotope>
</atom>
<atom>
<name>Arsenic</name>
<symbol>As</symbol>
<isotope>
<mass>74.9215955000</mass>
<abund>100.0000000000</abund>
</isotope>
</atom>
<atom>
<name>Selenium</name>
<symbol>Se</symbol>
<isotope>
<mass>73.9224771000</mass>
<abund>0.8900000000</abund>
</isotope>
<isotope>
<mass>75.9192066000</mass>
<abund>9.3700000000</abund>
</isotope>
<isotope>
<mass>76.9199077000</mass>
<abund>7.6300000000</abund>
</isotope>
<isotope>
<mass>77.9173040000</mass>
<abund>23.7700000000</abund>
</isotope>
<isotope>
<mass>79.9165205000</mass>
<abund>49.6100000000</abund>
</isotope>
<isotope>
<mass>81.9167090000</mass>
<abund>8.7300000000</abund>
</isotope>
</atom>
<atom>
<name>Bromine</name>
<symbol>Br</symbol>
<isotope>
<mass>78.9183361000</mass>
<abund>50.6900000000</abund>
</isotope>
<isotope>
<mass>80.9162900000</mass>
<abund>49.3100000000</abund>
</isotope>

159

160 CHAPTER 11.

</atom>
<atom>
<name>Krypton</name>
<symbol>Kr</symbol>
<isotope>
<mass>77.9203970000</mass>
<abund>0.3500000000</abund>
</isotope>
<isotope>
<mass>79.9163750000</mass>
<abund>2.2800000000</abund>
</isotope>
<isotope>
<mass>81.9134830000</mass>
<abund>11.5800000000</abund>
</isotope>
<isotope>
<mass>82.9141340000</mass>
<abund>11.4900000000</abund>
</isotope>
<isotope>
<mass>83.9115064000</mass>
<abund>57.0000000000</abund>
</isotope>
<isotope>
<mass>85.9106140000</mass>
<abund>17.3000000000</abund>
</isotope>
</atom>
<atom>
<name>Rubidium</name>
<symbol>Rb</symbol>
<isotope>
<mass>84.9117996000</mass>
<abund>72.1700000000</abund>
</isotope>
<isotope>
<mass>86.9091836000</mass>
<abund>27.8300000000</abund>
</isotope>
</atom>
<atom>
<name>Strontium</name>
<symbol>Sr</symbol>
<isotope>
<mass>83.9134280000</mass>
<abund>0.5600000000</abund>
</isotope>
<isotope>
<mass>85.9092732000</mass>

APPENDICES

<abund>9.8600000000</abund>
</isotope>
<isotope>
<mass>86.9088902000</mass>
<abund>7.0000000000</abund>
</isotope>
<isotope>
<mass>87.9056249000</mass>
<abund>82.5800000000</abund>
</isotope>
</atom>
<atom>
<name>Yttrium</name>
<symbol>Y</symbol>
<isotope>
<mass>88.9058560000</mass>
<abund>100.0000000000</abund>
</isotope>
</atom>
<atom>
<name>Zirconium</name>
<symbol>Zr</symbol>
<isotope>
<mass>89.9047080000</mass>
<abund>51.4500000000</abund>
</isotope>
<isotope>
<mass>90.9056442000</mass>
<abund>11.2200000000</abund>
</isotope>
<isotope>
<mass>91.9050392000</mass>
<abund>17.1500000000</abund>
</isotope>
<isotope>
<mass>93.9063191000</mass>
<abund>17.3800000000</abund>
</isotope>
<isotope>
<mass>95.9082720000</mass>
<abund>2.8000000000</abund>
</isotope>
</atom>
<atom>
<name>Niobium</name>
<symbol>Nb</symbol>
<isotope>
<mass>92.9063780000</mass>
<abund>100.0000000000</abund>
</isotope>

161

162 CHAPTER 11.

</atom>
<atom>
<name>Molybdenum</name>
<symbol>Mo</symbol>
<isotope>
<mass>91.9068090000</mass>
<abund>14.8400000000</abund>
</isotope>
<isotope>
<mass>93.9050862000</mass>
<abund>9.2500000000</abund>
</isotope>
<isotope>
<mass>94.9058379000</mass>
<abund>15.9200000000</abund>
</isotope>
<isotope>
<mass>95.9046755000</mass>
<abund>16.6800000000</abund>
</isotope>
<isotope>
<mass>96.9060179000</mass>
<abund>9.5500000000</abund>
</isotope>
<isotope>
<mass>97.9054050000</mass>
<abund>24.1300000000</abund>
</isotope>
<isotope>
<mass>99.9074730000</mass>
<abund>9.6300000000</abund>
</isotope>
</atom>
<atom>
<name>Rutenium</name>
<symbol>Ru</symbol>
<isotope>
<mass>95.9075960000</mass>
<abund>5.5400000000</abund>
</isotope>
<isotope>
<mass>97.9052870000</mass>
<abund>1.8700000000</abund>
</isotope>
<isotope>
<mass>98.9059371000</mass>
<abund>12.7600000000</abund>
</isotope>
<isotope>
<mass>99.9042175000</mass>

APPENDICES

<abund>12.6000000000</abund>
</isotope>
<isotope>
<mass>100.9055808000</mass>
<abund>17.0600000000</abund>
</isotope>
<isotope>
<mass>101.9043475000</mass>
<abund>31.5500000000</abund>
</isotope>
<isotope>
<mass>103.9054220000</mass>
<abund>18.6200000000</abund>
</isotope>
</atom>
<atom>
<name>Rhodium</name>
<symbol>Rh</symbol>
<isotope>
<mass>102.9055030000</mass>
<abund>100.0000000000</abund>
</isotope>
</atom>
<atom>
<name>Palladium</name>
<symbol>Pd</symbol>
<isotope>
<mass>101.9056090000</mass>
<abund>1.0200000000</abund>
</isotope>
<isotope>
<mass>103.9040260000</mass>
<abund>11.1400000000</abund>
</isotope>
<isotope>
<mass>104.9050750000</mass>
<abund>22.3300000000</abund>
</isotope>
<isotope>
<mass>105.9034750000</mass>
<abund>27.3300000000</abund>
</isotope>
<isotope>
<mass>107.9038940000</mass>
<abund>26.4600000000</abund>
</isotope>
<isotope>
<mass>109.9051690000</mass>
<abund>11.7200000000</abund>
</isotope>

163

164 CHAPTER 11.

</atom>
<atom>
<name>Silver</name>
<symbol>Ag</symbol>
<isotope>
<mass>106.9050950000</mass>
<abund>51.8390000000</abund>
</isotope>
<isotope>
<mass>108.9047540000</mass>
<abund>48.1610000000</abund>
</isotope>
</atom>
<atom>
<name>Cadmium</name>
<symbol>Cd</symbol>
<isotope>
<mass>105.9064610000</mass>
<abund>1.2500000000</abund>
</isotope>
<isotope>
<mass>107.9041860000</mass>
<abund>0.8900000000</abund>
</isotope>
<isotope>
<mass>109.9030007000</mass>
<abund>12.4900000000</abund>
</isotope>
<isotope>
<mass>110.9041820000</mass>
<abund>12.8000000000</abund>
</isotope>
<isotope>
<mass>111.9027614000</mass>
<abund>24.1300000000</abund>
</isotope>
<isotope>
<mass>112.9044013000</mass>
<abund>12.2200000000</abund>
</isotope>
<isotope>
<mass>113.9033607000</mass>
<abund>28.7300000000</abund>
</isotope>
<isotope>
<mass>115.9047580000</mass>
<abund>7.4900000000</abund>
</isotope>
</atom>
<atom>

APPENDICES

<name>Indium</name>

<symbol>In</symbol>

<isotope>
<mass>112.9040560000</mass>
<abund>4.2900000000</abund>

</isotope>

<isotope>
<mass>114.9038750000</mass>
<abund>95.7100000000</abund>

</isotope>

</atom>
<atom>

<name>Tin</name>

<symbol>Sn</symbol>

<isotope>
<mass>111.9048230000</mass>
<abund>0.9700000000</abund>

</isotope>

<isotope>
<mass>113.9027810000</mass>
<abund>0.6600000000</abund>

</isotope>

<isotope>
<mass>114.9033441000</mass>
<abund>0.3400000000</abund>

</isotope>

<isotope>
<mass>115.9017435000</mass>
<abund>14.5400000000</abund>

</isotope>

<isotope>
<mass>116.9029536000</mass>
<abund>7.6800000000</abund>

</isotope>

<isotope>
<mass>117.9016066000</mass>
<abund>24.2200000000</abund>

</isotope>

<isotope>
<mass>118.9033102000</mass>
<abund>8.5900000000</abund>

</isotope>

<isotope>
<mass>119.9021990000</mass>
<abund>32.5800000000</abund>

</isotope>

<isotope>
<mass>121.9034400000</mass>
<abund>4.6300000000</abund>

</isotope>

165

166 CHAPTER 11.

<isotope>
<mass>123.9052710000</mass>
<abund>5.7900000000</abund>
</isotope>
</atom>
<atom>
<name>Antimony</name>
<symbol>Sb</symbol>
<isotope>
<mass>120.9038237000</mass>
<abund>57.2100000000</abund>
</isotope>
<isotope>
<mass>122.9042220000</mass>
<abund>42.7900000000</abund>
</isotope>
</atom>
<atom>
<name>Tellurium</name>
<symbol>Te</symbol>
<isotope>
<mass>119.9040210000</mass>
<abund>0.0900000000</abund>
</isotope>
<isotope>
<mass>121.9030550000</mass>
<abund>2.5500000000</abund>
</isotope>
<isotope>
<mass>122.9042780000</mass>
<abund>0.8900000000</abund>
</isotope>
<isotope>
<mass>123.9028250000</mass>
<abund>4.7400000000</abund>
</isotope>
<isotope>
<mass>124.9044350000</mass>
<abund>7.0700000000</abund>
</isotope>
<isotope>
<mass>125.9033100000</mass>
<abund>18.8400000000</abund>
</isotope>
<isotope>
<mass>127.9044640000</mass>
<abund>31.7400000000</abund>
</isotope>
<isotope>
<mass>129.9062290000</mass>

APPENDICES

<abund>34.0800000000</abund>
</isotope>
</atom>
<atom>
<name>Iodine</name>
<symbol>I</symbol>
<isotope>
<mass>126.9044770000</mass>
<abund>100.0000000000</abund>
</isotope>
</atom>
<atom>
<name>Xenon</name>
<symbol>Xe</symbol>
<isotope>
<mass>123.9061200000</mass>
<abund>0.0900000000</abund>
</isotope>
<isotope>
<mass>125.9042810000</mass>
<abund>0.0900000000</abund>
</isotope>
<isotope>
<mass>127.9035308000</mass>
<abund>1.9200000000</abund>
</isotope>
<isotope>
<mass>128.9047801000</mass>
<abund>26.4400000000</abund>
</isotope>
<isotope>
<mass>129.9035095000</mass>
<abund>4.0800000000</abund>
</isotope>
<isotope>
<mass>130.9050760000</mass>
<abund>21.1800000000</abund>
</isotope>
<isotope>
<mass>131.9041480000</mass>
<abund>26.8900000000</abund>
</isotope>
<isotope>
<mass>133.9053950000</mass>
<abund>10.4400000000</abund>
</isotope>
<isotope>
<mass>135.9072190000</mass>
<abund>8.8700000000</abund>
</isotope>

167

168 CHAPTER 11. APPENDICES

</atom>
<atom>
<name>Caesium</name>
<symbol>Cs</symbol>
<isotope>
<mass>132.9054330000</mass>
<abund>100.0000000000</abund>
</isotope>
</atom>
<atom>
<name>Barium</name>
<symbol>Ba</symbol>
<isotope>
<mass>129.9062770000</mass>
<abund>0.1060000000</abund>
</isotope>
<isotope>
<mass>131.9050420000</mass>
<abund>0.1010000000</abund>
</isotope>
<isotope>
<mass>133.9044900000</mass>
<abund>2.4170000000</abund>
</isotope>
<isotope>
<mass>134.9056680000</mass>
<abund>6.5920000000</abund>
</isotope>
<isotope>
<mass>135.9045560000</mass>
<abund>7.8540000000</abund>
</isotope>
<isotope>
<mass>136.9058160000</mass>
<abund>11.2320000000</abund>
</isotope>
<isotope>
<mass>137.9052360000</mass>
<abund>71.6980000000</abund>
</isotope>
</atom>
<atom>
<name>Lanthanium</name>
<symbol>La</symbol>
<isotope>
<mass>137.9071140000</mass>
<abund>0.0900000000</abund>
</isotope>
<isotope>
<mass>138.9063550000</mass>

<abund>99.9100000000</abund>
</isotope>
</atom>
<atom>
<name>Gold</name>
<symbol>Au</symbol>
<isotope>
<mass>196.9665600000</mass>
<abund>100.0000000000</abund>
</isotope>
</atom>
<atom>
<name>Mercury</name>
<symbol>Hg</symbol>
<isotope>
<mass>195.9658120000</mass>
<abund>0.1500000000</abund>
</isotope>
<isotope>
<mass>197.9667600000</mass>
<abund>9.9700000000</abund>
</isotope>
<isotope>
<mass>198.9682690000</mass>
<abund>16.8700000000</abund>
</isotope>
<isotope>
<mass>199.9683160000</mass>
<abund>23.1000000000</abund>
</isotope>
<isotope>
<mass>200.9702930000</mass>
<abund>13.1800000000</abund>
</isotope>
<isotope>
<mass>201.9706320000</mass>
<abund>29.8600000000</abund>
</isotope>
<isotope>
<mass>203.9734810000</mass>
<abund>6.8700000000</abund>
</isotope>
</atom>
<atom>
<name>Lead</name>
<symbol>Pb</symbol>
<isotope>
<mass>203.9730370000</mass>
<abund>1.4000000000</abund>
</isotope>

169

170

<isotope>

<mass>205.
<abund>24.

</isotope>
<isotope>

<mass>206.
<abund>22.

</isotope>
<isotope>

<mass>207.
.4000000000</abund>

<abund>52
</isotope>
</atom>
</atomdefdata>

CHAPTER 11.

9744550000</mass>
1000000000</abund>

9758850000</mass>
1000000000</abund>

9766410000</mass>

APPENDICES

171

The Protein Chemistry Definition File

<?7xml version="1.0" encoding="UTF-8" standalone="yes"7>

<!-- DTD for polymer definitions, used by the

’GNU polyxmass’ suite of mass spectrometry applicatioms.

2003, 2004 Filippo Rusconi - Licensed under the GNU GPL -->
polchemdefdata [

polchemdefdata (type,1eftcap,rightcap,codelen,ionizerule,

Copyright
<!DOCTYPE
<!ELEMENT

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
1>

monomers,modifs,cleavespecs,fragspecs)>

ionizerule (actform,charge,level)>
monomers (mnm*)>

modifs (mdfx*)>

cleavespecs (cls*)>

fragspecs (fgs*)>

mnm
mdf
cls
fgs
clr
fgr

(name, code, formula) >

(name,actform)>

(name,pattern,clr*)>

(name,end,actform, comment?,fgr*)>

((le-mnm-code,le-actform)?, (re-mnm-code,re-actform)?)>
(name,actform,prev-mnm-code?,this-mnm-code?,next-mnm-code?,comment?)>

type (#PCDATA)>
leftcap (#PCDATA)>
rightcap (#PCDATA)>
codelen (#PCDATA)>
actform (#PCDATA)>
charge (#PCDATA)>
level (#PCDATA)>
name (#PCDATA)>
code (#PCDATA)>
formula (#PCDATA)>
pattern (#PCDATA)>

end

(#PCDATA) >

le-mnm-code (#PCDATA)>
re-mnm-code (#PCDATA)>
le-actform (#PCDATA)>
re-actform (#PCDATA)>
comment (#PCDATA)>

prev-mnm-code (#PCDATA)>
this-mnm-code (#PCDATA)>
next-mnm-code (#PCDATA)>

<polchemdefdata>
<type>protein</type>
<leftcap>+H</leftcap>
<rightcap>+0H</rightcap>
<codelen>1</codelen>
<ionizerule>
<actform>+H</actform>
<charge>1</charge>

172 CHAPTER 11.

<level>1</level>
</ionizerule>
<monomers>

<mnm>
<name>Glycine</name>
<code>G</code>
<formula>C2H3NO</formula>

</mnm>

<mnm>
<name>Alanine</name>
<code>A</code>
<formula>C3H5NO</formula>

</mnm>

<mnm>
<name>Valine</name>
<code>V</code>
<formula>C5HINO</formula>

</mnm>

<mnm>
<name>Leucine</name>
<code>L</code>
<formula>C6H11NO</formula>

</mnm>

<mnm>
<name>Isoleucine</name>
<code>I</code>
<formula>C6H11NO</formula>

</mnm>

<mnm>
<name>Serine</name>
<code>S</code>
<formula>C3H5N02</formula>

</mnm>

<mnm>
<name>Threonine</name>
<code>T</code>
<formula>C4H7N02</formula>

</mnm>

<mnm>
<name>Cysteine</name>
<code>C</code>
<formula>C3H5N0S</formula>

</mnm>

<mnm>
<name>Methionine</name>
<code>M</code>
<formula>C5HINOS</formula>

</mnm>

<mnm>
<name>Arginine</name>

APPENDICES

<code>R</code>
<formula>C6H12N40</formula>
</mnm>
<mnm>
<name>Lysine</name>
<code>K</code>
<formula>C6H12N20</formula>
</mnm>
<mnm>
<name>Aspartate</name>
<code>D</code>
<formula>C4H5N03</formula>
</mnm>
<mnm>
<name>Glutamate</name>
<code>E</code>
<formula>C5H7N03</formula>
</mnm>
<mnm>
<name>Asparagine</name>
<code>N</code>
<formula>C4H6N202</formula>
</mnm>
<mnm>
<name>Glutamine</name>
<code>Q</code>
<formula>C5H8N202</formula>
</mnm>
<mnm>
<name>Tryptophan</name>
<code>W</code>
<formula>C11H10N20</formula>
</mnm>
<mnm>
<name>Phenylalanine</name>
<code>F</code>
<formula>COHON10</formula>
</mnm>
<mnm>
<name>Tyrosine</name>
<code>Y</code>
<formula>C9HON102</formula>
</mnm>
<mnm>
<name>Histidine</name>
<code>H</code>
<formula>C6H7N30</formula>
</mnm>
<mnm>
<name>Proline</name>

173

174 CHAPTER 11.

<code>P</code>
<formula>C5H7N101</formula>
</mnm>
</monomers>
<modifs>
<mdf>
<name>Phosphorylation</name>
<actform>-H+H2P03</actform>
</mdf>
<mdf>
<name>Acetylation</name>
<actform>-H+C2H30</actform>
</mdf>
<mdf>
<name>Amidation</name>
<actform>-0H+NH2</actform>
</mdf>
<mdf>
<name>SulfideBond</name>
<actform>-H2</actform>
</mdf>
</modifs>
<cleavespecs>
<cls>
<name>CyanogenBromide</name>
<pattern>M/</pattern>
<clr>
<re-mnm-code>M</re-mnm-code>
<re-actform>-CH2S+0</re-actform>
</clr>
</cls>
<cls>
<name>Trypsin</name>
<pattern>K/;R/;-K/P</pattern>
</cls>
<cls>
<name>Chymotrypsin</name>
<pattern>W/;V/</pattern>
</cls>
<cls>
<name>EndoLysC</name>
<pattern>K/</pattern>
</cls>
<cls>
<name>EndoAspN</name>
<pattern>/D</pattern>
</cls>
<cls>
<name>GluC</name>
<pattern>E/</pattern>

APPENDICES

175

</cls>
</cleavespecs>
<fragspecs>
<fgs>
<name>a</name>
<end>LE</end>
<actform>-C101</actform>
<fgr>
<name>a-fgr-1</name>
<actform>+H200</actform>
<prev-mnm-code>E</prev-mnm-code>
<this-mnm-code>D</this-mnm-code>
<next-mnm-code>F</next-mnm-code>
<comment>comment here!</comment>
</fgr>
<fgr>
<name>a-fgr-2</name>
<actform>+H100</actform>
<prev-mnm-code>F</prev-mnm-code>
<this-mnm-code>D</this-mnm-code>
<next-mnm-code>E</next-mnm-code>
<comment>comment here!</comment>
</fgr>
</fgs>
<fgs>
<name>b</name>
<end>LE</end>
<actform>-HO</actform>
</fgs>
<fgs>
<name>c</name>
<end>LE</end>
<actform>+N1H2+H1</actform>
<comment>that’s just a comment</comment>
</fgs>
<fgs>
<name>z</name>
<end>RE</end>
<actform>-N1H1</actform>
<comment>Not in CID high En. frag</comment>
</fgs>
<fgs>
<name>y</name>
<end>RE</end>
<actform>+H2</actform>
</fgs>
<fgs>
<name>x</name>
<end>RE</end>
<actform>+C101</actform>

176 CHAPTER 11. APPENDICES

<fgr>
<name>x-fgr-1</name>
<actform>+H100</actform>
<prev-mnm-code>E</prev-mnm-code>
<this-mnm-code>D</this-mnm-code>
<next-mnm-code>F</next-mnm-code>
<comment>comment here!</comment>
</fgr>
<fgr>
<name>x-fgr-2</name>
<actform>+H200</actform>
<prev-mnm-code>F</prev-mnm-code>
<this-mnm-code>D</this-mnm-code>
<next-mnm-code>E</next-mnm-code>
<comment>comment here!</comment>
</fgr>
</fgs>
<fgs>
<name>imm</name>
<end>NE</end>
<actform>-C101+H1</actform>
</fgs>
</fragspecs>
</polchemdefdata>

The acidobasic.xml File

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!-- DTD for polymer elements’ pka data, used by the

’GNU polyxmass’ suite of mass spectrometry applications.

Copyright 2003, 2004 Filippo Rusconi - Licensed under the GNU GPL -->
<!DOCTYPE acidobasicdata [

<IELEMENT acidobasicdata (monomers*,modifsx*)>

<!ELEMENT monomers (mnmx)>

<!ELEMENT modifs (mdfx*)>

<!ELEMENT mnm (code,chemgroupx*)>

<!ELEMENT mdf (name,chemgroup*)>

<!ELEMENT chemgroup (name, (pka,acidcharged)?,polrule*,chemgrouprulex)>
<!ELEMENT chemgrouprule (entity,name,outcome)>

<!ELEMENT pka (#PCDATA)>

<!ELEMENT value (#PCDATA)>

<!ELEMENT code (#PCDATA)>

<!ELEMENT outcome (#PCDATA)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT entity (#PCDATA)>

<!ELEMENT acidcharged (#PCDATA)>

<!ELEMENT polrule (#PCDATA)>
1>
<acidobasicdata>
<monomers>
<mnm>
<code>A</code>
<chemgroup>
<name>N-term NH2</name>
<pka>9.6</pka>
<acidcharged>TRUE</acidcharged>
<polrule>left_trapped</polrule>
<chemgrouprule>
<entity>LE_PLM_MODIF</entity>
<name>Acetylation</name>
<outcome>LOST</outcome>
</chemgrouprule>
</chemgroup>
<chemgroup>
<name>C-term COOH</name>
<pka>2.35</pka>
<acidcharged>FALSE</acidcharged>
<polrule>right_trapped</polrule>
</chemgroup>
</mnm>
<mnm>
<code>C</code>
<chemgroup>
<name>N-term NH2</name>
<pka>9.6</pka>
<acidcharged>TRUE</acidcharged>
<polrule>left_trapped</polrule>
<chemgrouprule>
<entity>LE_PLM_MODIF</entity>
<name>Acetylation</name>
<outcome>LOST</outcome>
</chemgrouprule>
</chemgroup>
<chemgroup>
<name>C-term COOH</name>
<pka>2.35</pka>
<acidcharged>FALSE</acidcharged>
<polrule>right_trapped</polrule>
</chemgroup>
<chemgroup>
<name>Lateral SH2</name>
<pka>8.3</pka>
<acidcharged>FALSE</acidcharged>
<polrule>never_trapped</polrule>
</chemgroup>
</mnm>

177

178 CHAPTER 11.

<mnm>
<code>D</code>
<chemgroup>
<name>N-term NH2</name>
<pka>9.6</pka>
<acidcharged>TRUE</acidcharged>
<polrule>left_trapped</polrule>
<chemgrouprule>
<entity>LE_PLM_MODIF</entity>
<name>Acetylation</name>
<outcome>LOST</outcome>
</chemgrouprule>
</chemgroup>
<chemgroup>
<name>C-term COOH</name>
<pka>2.36</pka>
<acidcharged>FALSE</acidcharged>
<polrule>right_trapped</polrule>
</chemgroup>
<chemgroup>
<name>Lateral COOH</name>
<pka>3.65</pka>
<acidcharged>FALSE</acidcharged>
<polrule>never_trapped</polrule>
<chemgrouprule>
<entity>MNM_MODIF</entity>
<name>AmidationAsp</name>
<outcome>LOST</outcome>
</chemgrouprule>
</chemgroup>
</mnm>
<mnm>
<code>E</code>
<chemgroup>
<name>N-term NH2</name>
<pka>9.6</pka>
<acidcharged>TRUE</acidcharged>
<polrule>left_trapped</polrule>
<chemgrouprule>
<entity>LE_PLM_MODIF</entity>
<name>Acetylation</name>
<outcome>LOST</outcome>
</chemgrouprule>
</chemgroup>
<chemgroup>
<name>C-term COOH</name>
<pka>2.36</pka>
<acidcharged>FALSE</acidcharged>
<polrule>right_trapped</polrule>
</chemgroup>

APPENDICES

<chemgroup>
<name>Lateral COOH</name>
<pka>4.25</pka>
<acidcharged>FALSE</acidcharged>
<polrule>never_trapped</polrule>
<chemgrouprule>
<entity>MNM_MODIF</entity>
<name>AmidationGlu</name>
<outcome>LOST</outcome>
</chemgrouprule>
</chemgroup>
</mnm>
<mnm>
<code>F</code>
<chemgroup>
<name>N-term NH2</name>
<pka>9.6</pka>
<acidcharged>TRUE</acidcharged>
<polrule>left_trapped</polrule>
<chemgrouprule>
<entity>LE_PLM_MODIF</entity>
<name>Acetylation</name>
<outcome>LOST</outcome>
</chemgrouprule>
</chemgroup>
<chemgroup>
<name>C-term COOH</name>
<pka>2.35</pka>
<acidcharged>FALSE</acidcharged>
<polrule>right_trapped</polrule>
</chemgroup>
</mnm>
<mnm>
<code>G</code>
<chemgroup>
<name>N-term NH2</name>
<pka>9.6</pka>
<acidcharged>TRUE</acidcharged>
<polrule>left_trapped</polrule>
<chemgrouprule>
<entity>LE_PLM_MODIF</entity>
<name>Acetylation</name>
<outcome>LOST</outcome>
</chemgrouprule>
</chemgroup>
<chemgroup>
<name>C-term COOH</name>
<pka>2.35</pka>
<acidcharged>FALSE</acidcharged>
<polrule>right_trapped</polrule>

179

180 CHAPTER 11.

</chemgroup>
</mnm>
<mnm>
<code>H</code>
<chemgroup>
<name>N-term NH2</name>
<pka>9.6</pka>
<acidcharged>TRUE</acidcharged>
<polrule>left_trapped</polrule>
</chemgroup>
<chemgroup>
<name>C-term COOH</name>
<pka>2.36</pka>
<acidcharged>FALSE</acidcharged>
<polrule>right_trapped</polrule>
</chemgroup>
<chemgroup>
<name>In-ring NH+</name>
<pka>6</pka>
<acidcharged>TRUE</acidcharged>
<polrule>never_trapped</polrule>
</chemgroup>
</mnm>
<mnm>
<code>I</code>
<chemgroup>
<name>N-term NH2</name>
<pka>9.6</pka>
<acidcharged>TRUE</acidcharged>
<polrule>left_trapped</polrule>
<chemgrouprule>
<entity>LE_PLM_MODIF</entity>
<name>Acetylation</name>
<outcome>LOST</outcome>
</chemgrouprule>
</chemgroup>
<chemgroup>
<name>C-term COOH</name>
<pka>2.35</pka>
<acidcharged>FALSE</acidcharged>
<polrule>right_trapped</polrule>
</chemgroup>
</mnm>
<mnm>
<code>K</code>
<chemgroup>
<name>N-term NH2</name>
<pka>9.6</pka>
<acidcharged>TRUE</acidcharged>
<polrule>left_trapped</polrule>

APPENDICES

<chemgrouprule>
<entity>LE_PLM_MODIF</entity>
<name>Acetylation</name>
<outcome>LOST</outcome>
</chemgrouprule>
</chemgroup>
<chemgroup>
<name>C-term COOH</name>
<pka>2.36</pka>
<acidcharged>FALSE</acidcharged>
<polrule>right_trapped</polrule>
</chemgroup>
<chemgroup>
<name>Lateral NH2</name>
<pka>10.53</pka>
<acidcharged>TRUE</acidcharged>
<polrule>never_trapped</polrule>
<chemgrouprule>
<entity>MNM_MODIF</entity>
<name>Acetylation</name>
<outcome>LOST</outcome>
</chemgrouprule>
</chemgroup>
</mnm>
<mnm>
<code>L</code>
<chemgroup>
<name>N-term NH2</name>
<pka>9.6</pka>
<acidcharged>TRUE</acidcharged>
<polrule>left_trapped</polrule>
<chemgrouprule>
<entity>LE_PLM_MODIF</entity>
<name>Acetylation</name>
<outcome>LOST</outcome>
</chemgrouprule>
</chemgroup>
<chemgroup>
<name>C-term COOH</name>
<pka>2.35</pka>
<acidcharged>FALSE</acidcharged>
<polrule>right_trapped</polrule>
</chemgroup>
</mnm>
<mnm>
<code>M</code>
<chemgroup>
<name>N-term NH2</name>
<pka>9.6</pka>
<acidcharged>TRUE</acidcharged>

181

182 CHAPTER 11.

<polrule>left_trapped</polrule>
<chemgrouprule>
<entity>LE_PLM_MODIF</entity>
<name>Acetylation</name>
<outcome>LOST</outcome>
</chemgrouprule>
</chemgroup>
<chemgroup>
<name>C-term COOH</name>
<pka>2.35</pka>
<acidcharged>FALSE</acidcharged>
<polrule>right_trapped</polrule>
</chemgroup>
</mnm>
<mnm>
<code>N</code>
<chemgroup>
<name>N-term NH2</name>
<pka>9.6</pka>
<acidcharged>TRUE</acidcharged>
<polrule>left_trapped</polrule>
<chemgrouprule>
<entity>LE_PLM_MODIF</entity>
<name>Acetylation</name>
<outcome>LOST</outcome>
</chemgrouprule>
</chemgroup>
<chemgroup>
<name>C-term COOH</name>
<pka>2.35</pka>
<acidcharged>FALSE</acidcharged>
<polrule>right_trapped</polrule>
</chemgroup>
</mnm>
<mnm>
<code>P</code>
<chemgroup>
<name>N-term NH2</name>
<pka>9.6</pka>
<acidcharged>TRUE</acidcharged>
<polrule>left_trapped</polrule>
<chemgrouprule>
<entity>LE_PLM_MODIF</entity>
<name>Acetylation</name>
<outcome>LOST</outcome>
</chemgrouprule>
</chemgroup>
<chemgroup>
<name>C-term COOH</name>
<pka>2.35</pka>

APPENDICES

<acidcharged>FALSE</acidcharged>
<polrule>right_trapped</polrule>
</chemgroup>
</mnm>
<mnm>
<code>Q</code>
<chemgroup>
<name>N-term NH2</name>
<pka>9.6</pka>
<acidcharged>TRUE</acidcharged>
<polrule>left_trapped</polrule>
<chemgrouprule>
<entity>LE_PLM_MODIF</entity>
<name>Acetylation</name>
<outcome>LOST</outcome>
</chemgrouprule>
</chemgroup>
<chemgroup>
<name>C-term COOH</name>
<pka>2.35</pka>
<acidcharged>FALSE</acidcharged>
<polrule>right_trapped</polrule>
</chemgroup>
</mnm>
<mnm>
<code>R</code>
<chemgroup>
<name>N-term NH2</name>
<pka>9.6</pka>
<acidcharged>TRUE</acidcharged>
<polrule>left_trapped</polrule>
<chemgrouprule>
<entity>LE_PLM_MODIF</entity>
<name>Acetylation</name>
<outcome>LOST</outcome>
</chemgrouprule>
</chemgroup>
<chemgroup>
<name>C-term COOH</name>
<pka>2.36</pka>
<acidcharged>FALSE</acidcharged>
<polrule>right_trapped</polrule>
</chemgroup>
<chemgroup>

<name>Lateral guanidinium</name>

<pka>12.48</pka>
<acidcharged>TRUE</acidcharged>
<polrule>never_trapped</polrule>
</chemgroup>
</mnm>

183

184 CHAPTER 11.

<mnm>
<code>S</code>
<chemgroup>
<name>N-term NH2</name>
<pka>9.6</pka>
<acidcharged>TRUE</acidcharged>
<polrule>left_trapped</polrule>
<chemgrouprule>
<entity>LE_PLM_MODIF</entity>
<name>Acetylation</name>
<outcome>LOST</outcome>
</chemgrouprule>
</chemgroup>
<chemgroup>
<name>C-term COOH</name>
<pka>2.35</pka>
<acidcharged>FALSE</acidcharged>
<polrule>right_trapped</polrule>
</chemgroup>
<chemgroup>
<name>Lateral alcohol</name>
<pka>13</pka>
<acidcharged>FALSE</acidcharged>
<polrule>never_trapped</polrule>
<chemgrouprule>
<entity>MNM_MODIF</entity>
<name>Phosphorylation</name>
<outcome>LOST</outcome>
</chemgrouprule>
</chemgroup>
</mnm>
<mnm>
<code>T</code>
<chemgroup>
<name>N-term NH2</name>
<pka>9.6</pka>
<acidcharged>TRUE</acidcharged>
<polrule>left_trapped</polrule>
<chemgrouprule>
<entity>LE_PLM_MODIF</entity>
<name>Acetylation</name>
<outcome>LOST</outcome>
</chemgrouprule>
</chemgroup>
<chemgroup>
<name>C-term COOH</name>
<pka>2.35</pka>
<acidcharged>FALSE</acidcharged>
<polrule>right_trapped</polrule>
</chemgroup>

APPENDICES

<chemgroup>

<name>Lateral alcohol</name>

<pka>13</pka>
<acidcharged>FALSE</acidcharged>
<polrule>never_trapped</polrule>
<chemgrouprule>
<entity>MNM_MODIF</entity>
<name>Phosphorylation</name>
<outcome>LOST</outcome>
</chemgrouprule>
</chemgroup>
</mnm>
<mnm>
<code>V</code>
<chemgroup>
<name>N-term NH2</name>
<pka>9.6</pka>
<acidcharged>TRUE</acidcharged>
<polrule>left_trapped</polrule>
<chemgrouprule>
<entity>LE_PLM_MODIF</entity>
<name>Acetylation</name>
<outcome>LOST</outcome>
</chemgrouprule>
</chemgroup>
<chemgroup>
<name>C-term COOH</name>
<pka>2.35</pka>
<acidcharged>FALSE</acidcharged>
<polrule>right_trapped</polrule>
</chemgroup>
</mnm>
<mnm>
<code>W</code>
<chemgroup>
<name>N-term NH2</name>
<pka>9.6</pka>
<acidcharged>TRUE</acidcharged>
<polrule>left_trapped</polrule>
<chemgrouprule>
<entity>LE_PLM_MODIF</entity>
<name>Acetylation</name>
<outcome>LOST</outcome>
</chemgrouprule>
</chemgroup>
<chemgroup>
<name>C-term COOH</name>
<pka>2.35</pka>
<acidcharged>FALSE</acidcharged>
<polrule>right_trapped</polrule>

185

186 CHAPTER 11.

</chemgroup>
</mnm>
<mnm>
<code>Y</code>
<chemgroup>
<name>N-term NH2</name>
<pka>9.6</pka>
<acidcharged>TRUE</acidcharged>
<polrule>left_trapped</polrule>
<chemgrouprule>
<entity>LE_PLM_MODIF</entity>
<name>Acetylation</name>
<outcome>LOST</outcome>
</chemgrouprule>
</chemgroup>
<chemgroup>
<name>C-term COOH</name>
<pka>2.36</pka>
<acidcharged>FALSE</acidcharged>
<polrule>right_trapped</polrule>
</chemgroup>
<chemgroup>
<name>Lateral phenol</name>
<pka>10.1</pka>
<acidcharged>FALSE</acidcharged>
<polrule>never_trapped</polrule>
<chemgrouprule>
<entity>MNM_MODIF</entity>
<name>Phosphorylation</name>
<outcome>LOST</outcome>
</chemgrouprule>
</chemgroup>
</mnm>
</monomers>
<modifs>
<mdf>
<name>Phosphorylation</name>
<chemgroup>
<name>none_set</name>
<pka>12</pka>
<acidcharged>FALSE</acidcharged>
</chemgroup>
<chemgroup>
<name>none_set</name>
<pka>7</pka>
<acidcharged>FALSE</acidcharged>
</chemgroup>
</mdf>
</modifs>
</acidobasicdata>

APPENDICES

187

188 CHAPTER 11. APPENDICES

GNU General Public License

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original

USA

authors’ reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any

patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the

Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and

you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

189

190 CHAPTER 11. APPENDICES

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,

and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based

on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

191

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent

192 CHAPTER 11. APPENDICES

infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. 1In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software

193

Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

194 CHAPTER 11. APPENDICES

the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate
parts of the General Public License. O0f course, the commands you use may
be called something other than ‘show w’ and ‘show c’; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

	Preface
	UNIX and GNU/Linux Histories
	Typographical conventions
	Program Availability, Technicalities
	Organization Of This Manual
	GNU polyxmass' Licensing Philosophy
	Contacting The Author

	Installation Overview
	Installing From The tar.gz Sources
	Installing From The deb Binary Package
	Installing From The rpm Binary Package
	Installation On A Mac OS X System With Fink
	Summary

	Basics in Polymer Chemistry
	Polymers? Where? Everywhere!
	Various Biopolymer Structures
	To Sum Up
	Polymer Chain Disrupting Chemistry

	Basics in Mass Spectrometry
	Ion Production: The Source
	The Analyzer
	What Is Really Measured?

	GNU polyxmass Generalities
	General GNU polyxmass Concepts
	On Formulae And Chemical Reactions
	The GNU polyxmass Framework Data Format
	Editing the Data in GNU polyxmass Files
	General Polymer Element Naming Policy
	Graphical Interface Design
	Feedback From GNU polyxmass To The User: The Console Window
	Window Management

	polyxdef
	Editing an atom definition
	Editing a polymer chemistry definition
	Various Identification And Singular Data
	Various Plural Data
	Saving A Polymer Chemistry Definition

	polyxcalc
	polyxcalc Invocation
	polyxcalc Operation: An Easy Task
	polyxcalc Contains A m/z Ratio Calculator
	polyxcalc Is A Programmable Calculator
	polyxcalc Is LogBook-Friendly

	polyxedit
	polyxedit Invocation
	polyxedit Operation: In Medias Res
	polyxedit The Polymer Sequence Menu
	Editing Polymer Sequences
	Clipboard-Importing Of Sequences
	Importing Of Sequences As Raw Text Files
	Sequence Selections: The Various X Mechanisms
	Visual Feedback In The Editor
	Sequence Annotation: The Various Mechanisms
	Chemically Modifying Polymer Sequences
	Finding and Replacing Sequence Motifs
	Cleavage Of Polymer Sequences
	Fragmentation Of Polymer Sequences
	Finding Masses In The Results
	Searching Masses In The Polymer Sequence
	The acido-basic calculations: pH, pI and charges
	The m/z Ratio Calculator
	The Self-Read Feature Of Polymer Sequences
	Results Reporting

	GNU polyxmass-common
	Overview Of The Files Installed
	Detailed Explanations About Installed Files
	Example Of A New Atom Definition
	Conclusion

	GNU polyxmass Customization
	Getting The Substrate Of Our Experiment
	Creating A New Polymer Chemistry Definition
	Creating A New Atom Definition
	The Polymer Chemistry Definition--Atom Definition Dictionary
	Enjoying The New Polymer Chemistry Definition

	Appendices
	The ``basic'' Atom Definition File
	The Protein Chemistry Definition File
	The acidobasic.xml File
	GNU General Public License

