Maxima Manual



Maxima is a computer algebra system, implemented in Lisp.

Maxima is derived from the Macsyma system, developed at MIT in the years 1968 through
1982 as part of Project MAC. MIT turned over a copy of the Macsyma source code to the
Department of Energy in 1982; that version is now known as DOE Macsyma. A copy of DOE
Macsyma was maintained by Professor William F. Schelter of the University of Texas from
1982 until his death in 2001. In 1998, Schelter obtained permission from the Department of
Energy to release the DOE Macsyma source code under the GNU Public License, and in 2000
he initiated the Maxima project at SourceForge to maintain and develop DOE Macsyma, now
called Maxima.



Maxima Manual



Chapter 1: Introduction to Maxima 3

1 Introduction to Maxima

Start Maxima with the command "maxima". Maxima will display version information and
a prompt. End each Maxima command with a semicolon. FEnd the session with the command

“quit();"

. Here’s a sample session:

[wfs@chromium] $ maxima

Maxima 5.9.1 http://maxima.sourceforge.net

Using Lisp CMU Common Lisp 19a

Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.

This is a development version of Maxima. The function bug_report()
provides bug reporting information.

(%i1) factor(10!);

8 4 2

(%o1) 2 3 5 7
(%12) expand ((x + y)~6);

6 5 2 4 3 3 4 2 5 6

(ho2) y +6xy +16x y +20x y +15x y +6x y+X
(%1i3) factor (x°6 - 1);

2 2

(%03) (x-1) x+1) x -x+1) (x +x+1)
(hid) quitQ;
[wfs@chromium] $

Maxima can search the info pages. Use the describe command to show all the commands
and variables containing a string, and optionally their documentation. The question mark 7 is
an abbreviation for describe:

(%11) 7 integ

©

0N Ok WN B+~ O

(maxima.info)Introduction to Elliptic Functions and Integrals.
Definitions for Elliptic Integrals.

Integration.

Introduction to Integration.

Definitions for Integration.

askinteger :Definitions for Simplification.

integerp :Definitions for Miscellaneous Options.

integrate :Definitions for Integration.

integrate_use_rootsof :Definitions for Integration.
integration_constant_counter :Definitions for Integration.

Enter space-separated numbers, ‘all’ or ‘none’: 6 5

Info from file /usr/local/info/maxima.info:
- Function: integerp (<expr>)

Returns ‘true’ if <expr> is an integer, otherwise ‘false’.

Function: askinteger (expr, integer)
Function: askinteger (expr)
Function: askinteger (expr, even)
Function: askinteger (expr, odd)

‘askinteger (expr, integer)’ attempts to determine from the

‘assume’ database whether ‘expr’ is an integer. ‘askinteger’ will
ask the user if it cannot tell otherwise, and attempt to install
the information in the database if possible. ‘askinteger (expr)’

is equivalent to ‘askinteger (expr, integer)’.

‘askinteger (expr, even)’ and ‘askinteger (expr, odd)’ likewise



4 Maxima Manual

attempt to determine if ‘expr’ is an even integer or odd integer,
respectively.

(%o1) false

To use a result in later calculations, you can assign it to a variable or refer to it by its
automatically supplied label. In addition, 7 refers to the most recent calculated result:

(%i1) u: expand ((x + y)~6);

6 5 2 4 3 3 4 2 5 6
(Jol) y +6xy +15x y +20x y +165x y +6x y+x
(%i2) diff (u, x);

5 4 2 3 3 2 4 5
(ho2) 6y +30xy +60x y +60x y +30x y+6x
(%i83) factor (%02);
5

(%03) 6 (y + x)

Maxima knows about complex numbers and numerical constants:
(%i1) cos(%pi);

(%o1) -1
(%12) exp(hi*%pi);
(%02) -1

Maxima can do differential and integral calculus:

(%i1) u: expand ((x + y)~6);
6 5 2 4 3 3 4 2 5 6
(Jol) y +6xy +15x y +20x y +165x y +6x y+x
(%i2) diff (%, x);
5 4 2 3 3 2 4 5
(ho2) 6y +30xy +60x y +60x y +30x y+6x
(%13) integrate (1/(1 + x~3), x);

2x-1
2 atan(------- )
log(x - x + 1) sqrt (3) log(x + 1)
(%03) - + +
6 sqrt(3) 3

Maxima can solve linear systems and cubic equations:
(%11) linsolve ([3*x + 4xy =7, 2xx + axy = 13], [x, yl);

7 a - 52 25

(%o1) [x = ———————- , § = ——m———- ]
3a-38 3a-8

(%i2) solve (x"3 - 3*x"2 + b¥x = 15, x);

(%02) [x = - sqrt(5) %i, x = sqrt(b) %i, x = 3]

Maxima can solve nonlinear sets of equations. Note that if you don’t want a result printed,
you can finish your command with $ instead of ;.
(%i1) eq_1: x72 + 3*xxy + y~2 = 0%
(%hi2) eq_2: 3*x + y = 18
(%13) solve ([eq_1, eq_2]1);

3 sqrt(b) + 7 sqrt(5) + 3
(ho3) [y = - —===—==—————- s X = mmmmm—————— 1,
2 2
3 sqrt(s) - 7 sqrt(5) - 3
by = -~ B S 1]
2 2

Maxima can generate plots of one or more functions:
(%11) eq_1: x72 + 3*xxy + y"2 = 0%



Chapter 1: Introduction to Maxima 5)

(%12) eq_2: 3*x + y = 1$
(%13) solve ([eq_1, eq_21);

3 sqrt(5) + 7 sqrt(5) + 3
(%03) [y = = ———==———=—-—- , X = —mmmmmmm—— e 1,
2 2
3 sqrt(5) - 7 sqrt(5) - 3
ly = - B S 1]
2 2
(%i4) kill(labels);
(%00) done
(%i1) plot2d (sin(x)/x, [x, -20, 20]);
(hol)
(%i2) plot2d ([atan(x), erf(x), tanh(x)], [x, -5, 5]);
(%02)

(%13) plot3d (sin(sqrt(x"2 + y~2))/sqrt(x"2 + y~2), [x, -12, 121, [y, -12, 12]);
(%03)



Maxima Manual



Chapter 2: Bug Detection and Reporting 7

2 Bug Detection and Reporting

2.1 Introduction to Bug Detection and Reporting

Like all large programs, Maxima contains both known and unknown bugs. This chapter
describes the built-in facilities for running the Maxima test suite as well as reporting new bugs.

2.2 Definitions for Bug Detection and Reporting

run_testsuite ( Function
run_testsuite (boolean) Function
run_testsuite (boolean, boolean) Function
run_testsuite (boolean, boolean, list) Function

Run the Maxima test suite. Tests producing the desired answer are considered “passes,”
as are tests that do not produce the desired answer, but are marked as known bugs.

run_testsuite () displays only tests that do not pass.
run_testsuite (true) displays tests that are marked as known bugs, as well as failures.
run_testsuite (true, true) displays all tests.

If the optional third argument is given, a subset of the tests is run. The subset of the tests
to run is given as a list of the names of the tests. The complete set of tests is specified by
testsuite_files.

run_testsuite changes the Maxima environment. Typically a test script executes kill to
establish a known environment (namely one without user-defined functions and variables)
and then defines functions and variables appropriate to the test.

run_testsuite returns done.

testsuite_files Option variable
testsuite_files is the set of tests to be run by run_testsuite. It is a list of names of
the files containing the tests to run. If some of the tests in a file are known to fail, then
instead of listing the name of the file, a list containing the file name and the test numbers
that fail is used.

For example, this is a part of the default set of tests:
["rtest13s", ["rtestl14", 57, 63]]

This specifies the testsuite consists of the files "rtest13s" and "rtest14", but "rtest14"
contains two tests that are known to fail: 57 and 63.

bug_report () Function
Prints out Maxima and Lisp version numbers, and gives a link to the Maxima project bug
report web page. The version information is the same as reported by build_info.

When a bug is reported, it is helpful to copy the Maxima and Lisp version information
into the bug report.

bug_report returns an empty string "".

build_info () Function
Prints out a summary of the parameters of the Maxima build.

build_info returns an empty string "".



Maxima Manual



Chapter 3: Help 9

3 Help

3.1 Introduction to Help

The primary on-line help function is describe, which is typically invoked by the question
mark ? at the interactive prompt. ? foo (with a space between ? and foo) is equivalent to
describe ("foo"), where foo is the name or part of the name of a function or topic; describe
then finds all documented items which contain the string foo in their titles. If there is more
than one such item, Maxima asks the user to select an item or items to display.

(%i1) 7 integ

0: (maxima.info)Introduction to Elliptic Functions and Integrals.
Definitions for Elliptic Integrals.

Integration.

Introduction to Integration.

Definitions for Integration.

askinteger :Definitions for Simplification.

integerp :Definitions for Miscellaneous Options.

integrate :Definitions for Integration.
integrate_use_rootsof :Definitions for Integration.

9: integration_constant_counter :Definitions for Integration.
Enter space-separated numbers, ‘all’ or ‘none’: 7 8

W ~NO O WN -

Info from file /use/local/maxima/doc/info/maxima.info:

- Function: integrate (expr, var)

- Function: integrate (expr, var, a, b)
Attempts to symbolically compute the integral of ‘expr’ with
respect to ‘var’. ‘integrate (expr, var)’ is an indefinite
integral, while ‘integrate (expr, var, a, b)’ is a definite
integral, [...]

In this example, items 7 and 8 were selected. All or none of the items could have been
selected by entering all or none, which can be abbreviated a or n, respectively.

3.2 Lisp and Maxima

Maxima is written in Lisp, and it is easy to access Lisp functions and variables from Maxima
and vice versa. Lisp and Maxima symbols are distinguished by a naming convention. A Lisp
symbol which begins with a dollar sign $ corresponds to a Maxima symbol without the dollar
sign. A Maxima symbol which begins with a question mark ? corresponds to a Lisp symbol
without the question mark. For example, the Maxima symbol foo corresponds to the Lisp
symbol $foo, while the Maxima symbol ?foo corresponds to the Lisp symbol foo, Note that
7foo is written without a space between 7 and foo; otherwise it might be mistaken for describe
( n fOO u) .

Hyphen -, asterisk *, or other special characters in Lisp symbols must be escaped by backslash
\ where they appear in Maxima code. For example, the Lisp identifier *foo-bar* is written
?\*foo\-bar\* in Maxima.

Lisp code may be executed from within a Maxima session. A single line of Lisp (containing
one or more forms) may be executed by the special command :1isp. For example,

(%i1) :lisp (foo $x $y)

calls the Lisp function foo with Maxima variables x and y as arguments. The :1isp construct
can appear at the interactive prompt or in a file processed by batch or demo, but not in a file
processed by load, batchload, translate_file, or compile_file.

The function to_lisp() opens an interactive Lisp session. Entering (to-maxima) closes the
Lisp session and returns to Maxima.



10 Maxima Manual

Lisp functions and variables which are to be visible in Maxima as functions and variables
with ordinary names (no special punctuation) must have Lisp names beginning with the dollar
sign $.

Maxima is case-sensitive, distinguishing between lowercase and uppercase letters in identi-
fiers, while Lisp is not. There are some rules governing the translation of names between Lisp
and Maxima.

1. A Lisp identifier not enclosed in vertical bars corresponds to a Maxima identifier in lower-
case. Whether the Lisp identifier is uppercase, lowercase, or mixed case, is ignored. E.g.,
Lisp $foo, $F00, and $Foo all correspond to Maxima foo.

2. A Lisp identifier which is all uppercase or all lowercase and enclosed in vertical bars corre-
sponds to a Maxima identifier with case reversed. That is, uppercase is changed to lowercase
and lowercase to uppercase. E.g., Lisp |$F00| and |$fool| correspond to Maxima foo and
F0O, respectively.

3. A Lisp identifier which is mixed uppercase and lowercase and enclosed in vertical bars
corresponds to a Maxima identifier with the same case. E.g., Lisp |$Fool| corresponds to
Maxima Foo.

The #$ Lisp macro allows the use of Maxima expressions in Lisp code. #$expr$ expands to
a Lisp expression equivalent to the Maxima expression expr.
(msetq $foo #$[x, yI$)
This has the same effect as entering
(%i1) foo: [x, yl;
The Lisp function displa prints an expression in Maxima format.
(%i1) :lisp #$[x, y, z1$
((MLIST SIMP) $X $Y $2)
(%1i1) :lisp (displa ’ ((MLIST SIMP) $X $Y $Z))
[x, y, z]
NIL

Functions defined in Maxima are not ordinary Lisp functions. The Lisp function mfuncall
calls a Maxima function. For example:

(%11) foo(x,y) := x*xy$
(%12) :lisp (mfuncall ’$foo ’a ’b)
((MTIMES SIMP) A B)
Some Lisp functions are shadowed in the Maxima package, namely the following.

complement, continue, //, float, functionp, array, exp, listen, signum, atan, asin,
acos, asinh, acosh, atanh, tanh, cosh, sinh, tan, break, and gcd.

3.3 Garbage Collection

Symbolic computation tends to create a good deal of garbage, and effective handling of this
can be crucial to successful completion of some programs.

Under GCL, on UNIX systems where the mprotect system call is available (including SUN
OS 4.0 and some variants of BSD) a stratified garbage collection is available. This limits the
collection to pages which have been recently written to. See the GCL documentation under
ALLOCATE and GBC. At the Lisp level doing (setq si::*notify-gbc* t) will help you determine
which areas might need more space.

3.4 Documentation

The Maxima on-line user’s manual can be viewed in different forms. From the Maxima
interactive prompt, the user’s manual is viewed as plain text by the ? command (i.e., the
describe function). The user’s manual is viewed as info hypertext by the info viewer program
and as a web page by any ordinary web browser.

example displays examples for many Maxima functions. For example,



Chapter 3: Help

(%i1)
yields

(%i2)

(%02)

(%i3)
(%03)
(hid)
(%ho4)
(%i5)
(%05)

example (integrate);
test (f) :=block([u] ,u:integrate(f,x) ,ratsimp(f-diff (u,x)))
test(f) := block([u]l, u : integrate(f, x),
ratsimp(f - diff(u, x)))

test(sin(x))

0
test(1/(x+1))

0
test(1/(x"2+1))

0

and additional output.

3.5 Definitions for Help

demo (filename)
Evaluates Maxima expressions in filename and displays the results. demo pauses after
evaluating each expression and continues after the user enters a carriage return. (If running
in Xmaxima, demo may need to see a semicolon ; followed by a carriage return.)

11

Function

demo searches the list of directories file_search_demo to find filename. If the file has
the suffix dem, the suffix may be omitted. See also file_search.

demo evaluates its argument. demo returns the name of the demonstration file.

Example:

(%i1) demo ("disol");

batching /home/wfs/maxima/share/simplification/disol.dem
At the _ prompt, type ’;’ followed by enter to get next demo

(%i2) load(disol)

(%i3) expl : a (e (g+ £) +b (d+ c))
(%o3) a(e(g+1f)+bd+c))
2%14) disolate(expl, a, b, e)
(%t4) d +c

(%t5) g+ f

(%05) a (%t5 e + %t4 b)

(%i5) demo ("rncomb");
batching /home/wfs/maxima/share/simplification/rncomb.dem

At the _ prompt, type ’;’ followed by enter to get next demo
(%hi6) load (rncomb)

ChiT) expl : ———-—- oo



12 Maxima Manual

o) - + mmmmmomes

(%18) combine (expl)

(o8 = A —

(%i9) rncombine (%)
2z +x

(o>  mmmmm———
2 (y + x)

d c b a
(%110) exp2 : - + - + - +
3 3 2 2
d ¢ b a
(%010) -t - -
3 3 2 2

(%i11) combine (exp2)
2d+2c+ 3 (b+a)
(ho11)  mmmmmmmmm e
6
(hil12) rncombine (exp2)
2d+2c+3b+3a
(ho12)  mmmmmmmm
6
(%i13)
describe (string) Function

Finds all documented items which contain string in their titles. If there is more than one
such item, Maxima asks the user to select an item or items to display. At the interactive
prompt, ? foo (with a space between ? and foo) is equivalent to describe ("foo").
describe ("") yields a list of all topics documented in the on-line manual.
describe quotes its argument. describe always returns false.
Example:

(%11) 7 integ

0: (maxima.info)Introduction to Elliptic Functions and Integrals.
Definitions for Elliptic Integrals.
Integration.
Introduction to Integration.
Definitions for Integration.
askinteger :Definitions for Simplification.
integerp :Definitions for Miscellaneous Options.
integrate :Definitions for Integration.
integrate_use_rootsof :Definitions for Integration.
integration_constant_counter :Definitions for Integration.

O© 00 ~NO Ok WN =



Chapter 3: Help

13

Enter space-separated numbers, ‘all’ or ‘none’: 7 8

Info

from file /use/local/maxima/doc/info/maxima.info:

- Function: integrate (expr, var)
- Function: integrate (expr, var, a, b)

Attempts to symbolically compute the integral of ‘expr’ with
respect to ‘var’. ‘integrate (expr, var)’ is an indefinite
integral, while ‘integrate (expr, var, a, b)’ is a definite
integral, [...]

In this example, items 7 and 8 were selected. All or none of the items could have been
selected by entering all or none, which can be abbreviated a or n, respectively.

see Section 3.1 [Introduction to Help], page 9

example (topic) Function

example ()

Function

example (topic) displays some examples of topic, which is a symbol (not a string). Most
topics are function names. example () returns the list of all recognized topics.

The name of the file containing the examples is given by the global variable manual_demo,
which defaults to "manual.demo".

example quotes its argument. example returns done unless there is an error or there is
no argument, in which case example returns the list of all recognized topics.

Examples:
(%i1)
(%12)
(%02)
(%ho2)
(%13)
(%id)
(%o4)
(%15)
(%05)
(%05)

example (append) ;
append([x+y,0,-3.2], [2.5E+20,x])
ly + x, 0, - 3.2, 2.5E+20, x]
done

example (coeff);
coeff (b+tan(x)+2*a*tan(x) = 3+bxtan(x),tan(x))
2a+1=5
coeff (1+x*%e " x+y,x,0)
y+1
done



14

Maxima Manual



Chapter 4: Command Line 15

4 Command Line

4.1 Introduction to Command Line

non

Operator
The single quote operator ’ prevents evaluation.
Applied to a symbol, the single quote prevents evaluation of the symbol.

Applied to a function call, the single quote prevents evaluation of the function call, al-
though the arguments of the function are still evaluated (if evaluation is not otherwise
prevented). The result is the noun form of the function call.

Applied to a parenthesized expression, the single quote prevents evaluation of all symbols
and function calls in the expression. E.g., > (£ (x)) means do not evaluate the expression
f(x). *£(x) (with the single quote applied to f instead of f(x)) means return the noun
form of £ applied to [x].

The single quote does not prevent simplification.

When the global flag noundisp is true, nouns display with a single quote. This switch is
always true when displaying function definitions.

See also the quote-quote operator ’’ and nouns.

Examples:

Applied to a symbol, the single quote prevents evaluation of the symbol.
(%i1) aa: 1024;

(%o1) 1024
(%i2) aa~2;
(%02) 1048576
(%i3) ’aa”2;

2
(%03) aa
(%id) *%;
(%hod) 1048576

Applied to a function call, the single quote prevents evaluation of the function call. The
result is the noun form of the function call.

(%i1) x0: 5;

(%o1) 5
(%i2) x1: 7;
(%02) 7
(%13) integrate (x72, x, x0, x1);
218
(%03) -—=
3
(%i4) ’integrate (x°2, x, x0, x1);
7
/
[ 2
(%04) I x dx
]
/
5
(%15) %, nouns;
218
(%05) -—=
3

Applied to a parenthesized expression, the single quote prevents evaluation of all symbols
and function calls in the expression.



16

n'n

Maxima Manual

(%i1) aa: 1024;

(%hol) 1024
(%i2) bb: 19;

(%02) 19

(%i3) sqrt(aa) + bb;

(%ho3) 51

(%14) ’(sqrt(aa) + bb);

(ho4d) bb + sqrt(aa)
(kiB) 2°%;

(%05) 51

The single quote does not prevent simplification.
(%11) sin (17 * %pi) + cos (17 * %pi);

(%hol) -1
(%12) ’(sin (17 * %pi) + cos (17 * %pi));
(%ho2) -1
Operator
The ’’ (double single quotes) operator causes an extra evaluation to occur. E.g., >’%i4

will re-evaluate input line %i4. °’’ (f(x)) means evaluate the expression f (x) an extra
time. ’’f(x) (with the double single quotes applied to f instead of f(x)) means return
the verb form of £ applied to [x].

4.2 Definitions for Command Line

alias (new_name_1, old_name_1, ..., new_name_n, old_name_n) Function

provides an alternate name for a (user or system) function, variable, array, etc. Any even
number of arguments may be used.

debugmode Option variable

Default value: false

When a Maxima error occurs, Maxima will start the debugger if debugmode is true. The
user may enter commands to examine the call stack, set breakpoints, step through Maxima
code, and so on. See debugging for a list of debugger commands.

Enabling debugmode will not catch Lisp errors.

ev (expr, arg_1, ..., arg_n) Function

Evaluates the expression expr in the environment specified by the arguments arg_1, ...,
arg_n. The arguments are switches (Boolean flags), assignments, equations, and functions.
ev returns the result (another expression) of the evaluation.
The evaluation is carried out in steps, as follows.
1. First the environment is set up by scanning the arguments which may be any or all
of the following.

e simp causes expr to be simplified regardless of the setting of the switch simp
which inhibits simplification if false.

e noeval supresses the evaluation phase of ev (see step (4) below). This is useful
in conjunction with the other switches and in causing expr to be resimplified
without being reevaluated.

e nouns causes the evaluation of noun forms (typically unevaluated functions such
as ’integrate or ’diff) in expr.

e expand causes expansion.

e expand (m, n) causes expansion, setting the values of maxposex and maxnegex
to m and n respectively.

e detout causes any matrix inverses computed in expr to have their determinant
kept outside of the inverse rather than dividing through each element.



Chapter 4: Command Line 17

e diff causes all differentiations indicated in expr to be performed.

e derivlist (x, y, z, ...) causes only differentiations with respect to the indi-
cated variables.

e float causes non-integral rational numbers to be converted to floating point.

e numer causes some mathematical functions (including exponentiation) with nu-
merical arguments to be evaluated in floating point. It causes variables in expr
which have been given numervals to be replaced by their values. It also sets the
float switch on.

e pred causes predicates (expressions which evaluate to true or false) to be eval-
uated.

e eval causes an extra post-evaluation of expr to occur. (See step (5) below.)

e A where A is an atom declared to be an evaluation flag (see evflag) causes A to
be bound to true during the evaluation of expr.

e V: expression (or alternately V=expression) causes V to be bound to the value
of expression during the evaluation of expr. Note that if V is a Maxima option,
then expression is used for its value during the evaluation of expr. If more than
one argument to ev is of this type then the binding is done in parallel. If V is a
non-atomic expression then a substitution rather than a binding is performed.

e F where F, a function name, has been declared to be an evaluation function (see
evfun) causes F to be applied to expr.

e Any other function names (e.g., sum) cause evaluation of occurrences of those
names in expr as though they were verbs.

e In addition a function occurring in expr (say F(x)) may be defined locally for the
purpose of this evaluation of expr by giving F(x) := expression as an argument
to ev.

e If an atom not mentioned above or a subscripted variable or subscripted expres-
sion was given as an argument, it is evaluated and if the result is an equation
or assignment then the indicated binding or substitution is performed. If the
result is a list then the members of the list are treated as if they were additional
arguments given to ev. This permits a list of equations to be given (e.g. [X=1,
Y=A*%2]) or a list of names of equations (e.g., [%t1, %t2] where %t1 and %t2
are equations) such as that returned by solve.

The arguments of ev may be given in any order with the exception of substitution
equations which are handled in sequence, left to right, and evaluation functions which
are composed, e.g., ev (expr, ratsimp, realpart) is handled as realpart (ratsimp
(expr)).

The simp, numer, float, and pred switches may also be set locally in a block, or
globally in Maxima so that they will remain in effect until being reset.

If expr is a canonical rational expression (CRE), then the expression returned by ev
is also a CRE, provided the numer and float switches are not both true.

2. During step (1), a list is made of the non-subscripted variables appearing on the left
side of equations in the arguments or in the value of some arguments if the value is
an equation. The variables (subscripted variables which do not have associated array
functions as well as non-subscripted variables) in the expression expr are replaced by
their global values, except for those appearing in this list. Usually, expr is just a label
or % (as in %i2 in the example below), so this step simply retrieves the expression
named by the label, so that ev may work on it.

3. If any substitutions are indicated by the arguments, they are carried out now.

4. The resulting expression is then re-evaluated (unless one of the arguments was
noeval) and simplified according to the arguments. Note that any function calls
in expr will be carried out after the variables in it are evaluated and that ev(F(x))
thus may behave like F(ev(x)).

5. If one of the arguments was eval, steps (3) and (4) are repeated.

Examples



18 Maxima Manual

(%11) sin(x) + cos(y) + (w+1)~2 + ’diff (sin(w), w);

d 2
(%o1) cos(y) + sin(x) + -- (sin(w)) + (w + 1)
dw
(%i2) ev (%, sin, expand, diff, x=2, y=1);
2
(%02) cos(w) +w + 2w + cos(1l) + 1.909297426825682

An alternate top level syntax has been provided for ev, whereby one may just type in its
arguments, without the ev(). That is, one may write simply

expr, arg-1, ..., arg.n
This is not permitted as part of another expression, e.g., in functions, blocks, etc.
Notice the parallel binding process in the following example.

(%i3) programmode: false;

(%03) false
(%i4) x+y, x: aty, y: 2;
(%04) y+a+?2

(%i5) 2%x - 3%y = 3%
(%i6) -3*x + 2xy = -4%
(%i7) solve ([%o5, %o6]1);

Solution
(%t7) y=--
6
(%t8) X = -
5
(%08) LO%ht7, %t8l]
(%i8) %06, %08;
(%08) -4=-4
(%19) x + 1/x > gamma (1/2);
1
(%09) x + - > sqrt(%pi)
X
(%i10) %, numer, x=1/2;
(%o10) 2.5 > 1.772453850905516
(%i11) %, pred;
(%o11) true
evflag Property

Some Boolean flags have the evflag property. ev treats such flags specially. A flag with
the evflag property will be bound to true during the execution of ev if it is mentioned
in the call to ev. For example, demoivre and ratfac are bound to true during the call
ev (%, demoivre, ratfac).

The flags which have the evflag property are: algebraic, cauchysum, demoivre,
dotscrules, Jjemode, %enumer, exponentialize, exptisolate, factorflag, float,
halfangles, infeval, isolate_wrt_times, keepfloat, letrat, listarith, logabs,
logarc, logexpand, lognegint, lognumer, mipbranch, numer_pbranch, programmode,
radexpand, ratalgdenom, ratfac, ratmx, ratsimpexpons, simp, simpsum, sumexpand,
and trigexpand.

The construct :1isp (putprop ’|$fool| t ’evflag) gives the evflag property to the
variable foo, so foo is bound to true during the call ev (%, foo). Equivalently, ev (%,
foo:true) has the same effect.



Chapter 4: Command Line 19

evfun Property

Some functions have the evfun property. ev treats such functions specially. A function
with the evfun property will be applied during the execution of ev if it is mentioned in
the call to ev. For example, ratsimp and radcan will be applied during the call ev (%,
ratsimp, radcan).

The functions which have the evfun property are: bfloat, factor, fullratsimp,
logcontract, polarform, radcan, ratexpand, ratsimp, rectform, rootscontract,
trigexpand, and trigreduce.

The construct :1isp (putprop ’ |$fool t ’evfun) gives the evfun property to the func-
tion foo, so that foo is applied during the call ev (%, foo). Equivalently, foo (ev (%))
has the same effect.

infeval Option variable

Enables "infinite evaluation" mode. ev repeatedly evaluates an expression until it stops
changing. To prevent a variable, say X, from being evaluated away in this mode, simply
include X=X as an argument to ev. Of course expressions such as ev (X, X=X+1, infeval)
will generate an infinite loop.

kill (symbol_1, ..., symbol_n) Function
kill (labels) Function
kill (inlabels, outlabels, linelabels) Function
kill (n) Function
kill ([m, n]) Function
kill (values, functions, arrays, ...) Function
kill (all) Function
kill (allbut (symbol_1, ..., symbol_n)) Function

Removes all bindings (value, function, array, or rule) from the arguments symbol_1, ...,
symbol_n. An argument may be a single array element or subscripted function.

Several special arguments are recognized. Different kinds of arguments may be combined,
e.g., kill (inlabels, functions, allbut (foo, bar)).

kill (labels) unbinds all input, output, and intermediate expression labels created so
far. kill (inlabels) unbinds only input labels which begin with the current value of
inchar. Likewise, ki1l (outlabels) unbinds only output labels which begin with the
current value of outchar, and kill (linelabels) unbinds only intermediate expression
labels which begin with the current value of 1inechar.

kill (n), where n is an integer, unbinds the n most recent input and output labels.
kill ([m, n]) unbinds input and output labels m through n.

kill (infolist), where infolist is any item in infolists (such as values, functions, or
arrays) unbinds all items in infolist. See also infolists.

kill (all) unbinds all items on all infolists. kill (all) does not reset global variables
to their default values; see reset on this point.

kill (allbut (symbol_1, ..., symbol.n)) unbinds all items on all infolists except for
symbol_1, ..., symbol_n. kill (allbut (infolist)) unbinds all items except for the ones
on infolist, where infolist is values, functions, arrays, etc.

The memory taken up by a bound property is not released until all symbols are unbound
from it. In particular, to release the memory taken up by the value of a symbol, one
unbinds the output label which shows the bound value, as well as unbinding the symbol
itself.

kill quotes its arguments. The double single quotes operator, ’’, defeats the quotation.

kill (symbol) unbinds all properties of symbol. In contrast, remvalue, remfunction,
remarray, and remrule unbind a specific property.

kill always returns done, even if an argument has no binding.



20 Maxima Manual

labels (symbol) Function

labels System variable
Returns the list of input, output, or intermediate expression labels which begin with
symbol. Typically symbol is the value of inchar, outchar, or linechar. The label
character may be given with or without a percent sign, so, for example, i and %i yield
the same result.

If no labels begin with symbol, 1labels returns an empty list.

The function labels quotes its argument. The double single quotes operator ’’ defeats
quotation. For example, labels (’’inchar) returns the input labels which begin with
the current input label character.

The variable labels is the list of input, output, and intermediate expression labels, in-
cluding all previous labels if inchar, outchar, or 1inechar were redefined.

By default, Maxima displays the result of each user input expression, giving the result an
output label. The output display is suppressed by terminating the input with $ (dollar
sign) instead of ; (semicolon). An output label is constructed and bound to the result,
but not displayed, and the label may be referenced in the same way as displayed output
labels. See also %, %%, and %th.

Intermediate expression labels can be generated by some functions. The flag programmode
controls whether solve and some other functions generate intermediate expression labels
instead of returning a list of expressions. Some other functions, such as 1display, always
generate intermediate expression labels.

See also inchar, outchar, linechar, and infolists.

linenum System variable
The line number of the current pair of input and output expressions.

myoptions System variable
Default value: []

myoptions is the list of all options ever reset by the user, whether or not they get reset
to their default value.

nolabels Option variable
Default value: false

When nolabels is true, input and output result labels (%i and %o, respectively) are
displayed, but the labels are not bound to results, and the labels are not appended to
the labels list. Since labels are not bound to results, garbage collection can recover the
memory taken up by the results.

Otherwise input and output result labels are bound to results, and the labels are appended
to the labels list.

Intermediate expression labels (%t) are not affected by nolabels; whether nolabels is
true or false, intermediate expression labels are bound and appended to the labels list.

See also batch, load, and labels.

optionset Option variable
Default value: false

When optionset is true, Maxima prints out a message whenever a Maxima option is
reset. This is useful if the user is doubtful of the spelling of some option and wants to
make sure that the variable he assigned a value to was truly an option variable.



Chapter 4: Command Line 21

playback () Function
playback (n Function
playback ([m, n]) Function
playback ([m]) Function
playback (input) Function
playback (slow) Function
playback (time) Function
playback (grind) Function

Displays input, output, and intermediate expressions, without recomputing them.
playback only displays the expressions bound to labels; any other output (such as text
printed by print or describe, or error messages) is not displayed. See also labels.
playback quotes its arguments. The double single quotes operator, *’, defeats quotation.
playback always returns done.

playback () (with no arguments) displays all input, output, and intermediate expressions
generated so far. An output expression is displayed even if it was suppressed by the $
terminator when it was originally computed.

playback (n) displays the most recent n expressions. Each input, output, and interme-
diate expression counts as one.

playback ([m, n]) displays input, output, and intermediate expressions with numbers
from m through n, inclusive.

playback ([m]) is equivalent to playback ([m, m]); this usually prints one pair of
input and output expressions.

playback (input) displays all input expressions generated so far.

playback (slow) pauses between expressions and waits for the user to press enter. This
behavior is similar to demo. playback (slow) is useful in conjunction with save or
stringout when creating a secondary-storage file in order to pick out useful expressions.

playback (time) displays the computation time for each expression.

playback (grind) displays input expressions in the same format as the grind function.
Output expressions are not affected by the grind option. See grind.

Arguments may be combined, e.g., playback ([5, 10], grind, time, slow).

printprops (a, i) Function
printprops ([a-1, ..., a_n], i) Function
printprops (all, i) Function

Displays the property with the indicator i associated with the atom a. a may also be a list
of atoms or the atom all in which case all of the atoms with the given property will be
used. For example, printprops ([f, g], atvalue). printprops is for properties that
cannot otherwise be displayed, i.e. for atvalue, atomgrad, gradef, and matchdeclare.

prompt Option variable
Default value: _

prompt is the prompt symbol of the demo function, playback (slow) mode, and the
Maxima break loop (as invoked by break).

quit () Function
Terminates the Maxima session. Note that the function must be invoked as quit(); or
quit () $, not quit by itself.
To stop a lengthy computation, type control-C. The default action is to return to the
Maxima prompt. If *debugger-hook* is nil, control-C opens the Lisp debugger. See
also debugging.

remfunction (.1, ..., fn) Function

remfunction (all) Function
Unbinds the function definitions of the symbols f_.1, ..., fn. The arguments may be the
names of ordinary functions (created by := or define) or macro functions (created by

Di=).



22 Maxima Manual
remfunction (all) unbinds all function definitions.
remfunction quotes its arguments.
remfunction returns a list of the symbols for which the function definition was unbound.
false is returned in place of any symbol for which there is no function definition.

reset () Function
Resets many global variables and options, and some other variables, to their default values.
reset processes the variables on the Lisp list *variable-initial-values*. The Lisp
macro defmvar puts variables on this list (among other actions). Many, but not all, global
variables and options are defined by defmvar, and some variables defined by defmvar are
not global variables or options.

showtime Option variable
Default value: false
When showtime is true, the computation time and elapsed time is printed with each
output expression.
The computation time is always recorded, so time and playback can display the compu-
tation time even when showtime is false.
See also timer.

sstatus (feature, package) Function
Sets the status of feature in package. After sstatus (feature, package) is executed,
status (feature, package) returns true. This can be useful for package writers, to keep
track of what features they have loaded in.

to_lisp () Function
Enters the Lisp system under Maxima. (to-maxima) returns to Maxima.

values System variable

Initial value: []

values is a list of all bound user variables (not Maxima options or switches). The list
comprises symbols bound by : , ::, or :=.



Chapter 5: Operators 23

5 Operators

5.1 nary

An nary operator is used to denote a function of any number of arguments, each of which is
separated by an occurrence of the operator, e.g. A+B or A+B+C. The nary("x") function is a
syntax extension function to declare x to be an nary operator. Functions may be declared to be
nary. If declare(j,nary); is done, this tells the simplifier to simplify, e.g. j(j(a,b),j(c,d))
to j(a, b, c, d).

See also syntax.

5.2 nofix

nofix operators are used to denote functions of no arguments. The mere presence of such
an operator in a command will cause the corresponding function to be evaluated. For example,
when one types "exit;" to exit from a Maxima break, "exit" is behaving similar to a nofix
operator. The function nofix("x") is a syntax extension function which declares x to be a
nofix operator.

See also syntax.

5.3 operator

See operators.

5.4 postfix

postfix operators like the prefix variety denote functions of a single argument, but in this
case the argument immediately precedes an occurrence of the operator in the input string, e.g.
3! . The postfix("x") function is a syntax extension function to declare x to be a postfix
operator.

See also syntax.

5.5 prefix

A prefix operator is one which signifies a function of one argument, which argument imme-
diately follows an occurrence of the operator. prefix("x") is a syntax extension function to
declare x to be a prefix operator.

See also syntax.

5.6 Definitions for Operators

nin

Operator
The factorial operator. For any complex number x (including integer, rational, and real
numbers) except for negative integers, x! is defined as gamma (x+1).

For an integer x, x! simplifies to the product of the integers from 1 to x inclusive. 0!
simplifies to 1. For a floating point number x, x! simplifies to the value of gamma (x+1).
For x equal to n/2 where n is an odd integer, x! simplifies to a rational factor times
sqrt (%pi) (since gamma (1/2) is equal to sqrt (%pi)). If x is anything else, x! is not
simplified.

The variables factlim, minfactorial, and factcomb control the simplification of expres-
sions containing factorials.

The functions gamma, bffac, and cbffac are varieties of the gamma function. makegamma
substitutes gamma for factorials and related functions.

See also binomial.



24

nign

n%#n

Maxima Manual

e The factorial of an integer, half-integer, or floating point argument is simplified unless
the operand is greater than factlim.

(%i1) factlim:
(%i2) [o!,

(%o2) [1,

10$
(r/2)v, 4.77', 8!, 20!];
105 sqrt (%pi)

16

, 81.44668037931193, 40320, 20!]

e The factorial of a complex number, known constant, or general expression is not
simplified. Even so it may be possible simplify the factorial after evaluating the

operand.

(hi1) [ + 1, Ypit, %e!, (cos(1) + sin(1))!];

(%o1)

L + DY, %pi!, %e!, (sin(1) + cos(1))!]
(%i2) ev (%, numer, %enumer);
(h02) [hi + 1)1, 7.188082728976031, 4.260820476357003,

1.227580202486819]

e The factorial of an unbound symbol is not simplified.

(%i1) kill (foo)$

(%i2) foo!;

(%o2) foo!
e Factorials are simplified, not evaluated. Thus x! may be replaced even in a quoted
expression.
(hi1) > (CLov, (r/2)', 4.77!', 8!, 20'1);

(%o1) [1,

105 sqrt (%pi)

The double factorial operator.

, 81.44668037931193, 40320, 20!]

Operator

For an integer, float, or rational number n, n!! evaluates to the product n (n-2) (n-4)
(n-6) ... (n -2 (k-1)) where k is equal to entier (n/2), that is, the largest integer
less than or equal to n/2. Note that this definition does not coincide with other published
definitions for arguments which are not integers.

For an even (or odd) integer n, n!! evaluates to the product of all the consecutive even
(or odd) integers from 2 (or 1) through n inclusive.

For an argument n which is not an integer, float, or rational, n!! yields a noun form
genfact (n, n/2, 2).

Operator

Represents the negation of syntactic equality =.

Note that because of the rules for evaluation of predicate expressions (in particular because
not expr causes evaluation of expr), not a = b is not equivalent to a # b in some cases.

Examples:
(ki)
(o)
(%i2)
(%02)
(%13)
(%03)
(%14)
(%04)
(%15)
(%05)
(%i6)
(%06)

'_l.
7
~
)
]

a # b;

not a
is (a #

is (not

b);

false

a#b

true

true

true



Chapter 5: Operators 25

Operator
The dot operator, for matrix (non-commutative) multiplication. When "." is used in this
way, spaces should be left on both sides of it, e.g. A . B. This distinguishes it plainly from
a decimal point in a floating point number.

See also dot, dotOnscsimp, dotOsimp, dotlsimp, dotassoc, dotconstrules,
dotdistrib, dotexptsimp, dotident, and dotscrules.

Operator
The assignment operator. E.g. A:3 sets the variable A to 3.

Operator
Assignment operator. :: assigns the value of the expression on its right to the value of the
quantity on its left, which must evaluate to an atomic variable or subscripted variable.

n= Operator
Macro function definition operator. ::= defines a function (called a "macro" for histori-
cal reasons) which quotes its arguments, and the expression which it returns (called the
"macro expansion") is evaluated in the context from which the macro was called. A macro
function is otherwise the same as an ordinary function.

macroexpand returns a macro expansion (without evaluating it). macroexpand (foo (x))
followed by ’°’Y% is equivalent to foo (x) when foo is a macro function.

: := puts the name of the new macro function onto the global list macros. kill, remove,
and remfunction unbind macro function definitions and remove names from macros.

fundef or dispfun return a macro function definition or assign it to a label, respectively.

Macro functions commonly contain buildq and splice expressions to construct an ex-
pression, which is then evaluated.

Examples

A macro function quotes its arguments, so message (1) shows y - z, not the value of y -
z. The macro expansion (the quoted expression ’ (print ("(2) x is equal to", x)) is
evaluated in the context from which the macro was called, printing message (2).

(%1i1) x: %pi;

(o) %ipi

(%i2) y: 1234;

(%02) 1234

(%i3) z: 1729 * w;

(%03) 1729 w

(%14) printql (x) ::= block (print ("(1) x is equal to", x), ’(print ("(2) x is
(%04) printql(x) ::= block(print("(1) x is equal to", x),

>(print("(2) x is equal to", x)))
(%i5) printql (y - z);
(1) x is equal toy - z
(2) x is equal to %pi
(%05) hpi
An ordinary function evaluates is arguments, so message (1) shows the value of y = z. The
return value is not evaluated, so message (2) is not printed until the explicit evaluation

1) ;%.
(hi1) x: %pi;
(%hol) hpi
(%i2) y: 1234;
(%ho2) 1234
(%i3) z: 1729 * w;
(%03) 1729 w

(%14) printel (x) := block (print ("(1) x is equal to", x), ’(print ("(2) x is
(%04) printel(x) := block(print("(1) x is equal to", x),
>(print("(2) x is equal to", x)))



26 Maxima Manual

(%i5) printel (y - z);

(1) x is equal to 1234 - 1729 w

(%05) print((2) x is equal to, x)

(ri6) 7 %;

(2) x is equal to %pi

(%06) hpi
macroexpand returns a macro expansion. macroexpand (foo (x)) followed by ’°% is
equivalent to foo (x) when foo is a macro function.

(hi1) x: %pi;

(%hol) hpi

(%i2) y: 1234;

(%02) 1234

(%hi3) z: 1729 * w;

(%03) 1729 w

(%14) g (x) ::= buildq ([x], print ("x is equal to", x));
(%hod) g(x) ::= buildq([x], print("x is equal to", x))
(%15) macroexpand (g (y - 2));

(%05) print(x is equal to, y - z)

(%i6) *°%;

X 1s equal to 1234 - 1729 w

(%o6) 1234 - 1729 w
hi7) g (y - 2);

x is equal to 1234 - 1729 w

(%oT) 1234 - 1729 w

= Operator
The function definition operator. E.g. £(x) :=sin(x) defines a function f.

= Operator
denotes an equation to Maxima. To the pattern matcher in Maxima it denotes a total
relation that holds between two expressions if and only if the expressions are syntactically
identical.

The negation of = is represented by #. Note that because of the rules for evaluation of
predicate expressions (in particular because not expr causes evaluation of expr), not a =
b is not equivalent to a # b in some cases.

and Operator
The logical conjunction operator. and is an n-ary infix operator; its operands are Boolean
expressions, and its result is a Boolean value.

and forces evaluation (like is) of one or more operands, and may force evaluation of all
operands.

Operands are evaluated in the order in which they appear. and evaluates only as many of
its operands as necessary to determine the result. If any operand is false, the result is
false and no further operands are evaluated.

The global flag prederror governs the behavior of and when an evaluated operand cannot
be determined to be true or false. and prints an error message when prederror is true.
Otherwise, and returns unknown.

and is not commutative: a and b might not be equal to b and a due to the treatment of
indeterminate operands.

or Operator
The logical disjunction operator. or is an n-ary infix operator; its operands are Boolean
expressions, and its result is a Boolean value.

or forces evaluation (like is) of one or more operands, and may force evaluation of all
operands.



Chapter 5: Operators 27

Operands are evaluated in the order in which they appear. or evaluates only as many of
its operands as necessary to determine the result. If any operand is true, the result is
true and no further operands are evaluated.

The global flag prederror governs the behavior of or when an evaluated operand cannot
be determined to be true or false. or prints an error message when prederror is true.
Otherwise, or returns unknown.

or is not commutative: a or b might not be equal to b or a due to the treatment of
indeterminate operands.

not Operator
The logical negation operator. not is a prefix operator; its operand is a Boolean expression,
and its result is a Boolean value.
not forces evaluation (like is) of its operand.
The global flag prederror governs the behavior of not when its operand cannot be de-
termined to be true or false. not prints an error message when prederror is true.
Otherwise, not returns unknown.
abs (expr) Function
Returns the absolute value expr. If expr is complex, returns the complex modulus of expr.
additive Keyword
If declare(f,additive) has been executed, then:
(1) If £ is univariate, whenever the simplifier encounters f applied to a sum, £ will be
distributed over that sum. Le. f(y+x) will simplify to f (y)+f (x).
(2) If £ is a function of 2 or more arguments, additivity is defined as additivity in the first
argument to f, as in the case of sum or integrate, i.e. f(h(x)+g(x),x) will simplify to
f(h(x),x)+f(g(x),x). This simplification does not occur when f is applied to expressions
of the form sum(x[i],i,lower-limit,upper-1limit).
allbut Keyword
works with the part commands (i.e. part, inpart, substpart, substinpart, dpart, and
lpart). For example,
(%i1) expr: e+d+c+b+a$
(%i2) part (expr, [2, 5]1);
(%02) d + a
while
(%13) part (expr, allbut (2, 5));
(%03) e+ c+b
It also works with the ki1l command,
kill (allbut (name_1, ..., name_k))
will do a kill (all) except it will not kill the names specified. Note: name_i means a
name such as function name such as u, £, foo, or g, not an infolist such as functions.
antisymmetric Declaration
If declare(h,antisymmetric) is done, this tells the simplifier that h is antisymmetric.
E.g. h(x,z,y) will simplify to - h(x, y, z). That is, it will give (-1)"n times the re-
sult given by symmetric or commutative, where n is the number of interchanges of two
arguments necessary to convert it to that form.
cabs (expr) Function

Returns the complex absolute value (the complex modulus) of expr.



28 Maxima Manual

ceiling (x) Function
When x is a real number, return the least integer that is greater than or equal to x.

If x is a constant expression (10 * %pi, for example), ceiling evaluates x using big floating
point numbers, and applies ceiling to the resulting big float. Because ceiling uses
floating point evaluation, it’s possible, although unlikely, that ceiling could return an
erroneous value for constant inputs. To guard against errors, the floating point evaluation
is done using three values for fpprec.

For non-constant inputs, ceiling tries to return a simplified value. Here are examples of
the simplifications that ceiling knows about:

(%i1) ceiling(ceiling(x));
(%o1) ceiling(x)
(%12) ceiling(floor(x));
(%02) floor(x)
(%13) declare(n,integer)$
(%14) [ceiling(n), ceiling(abs(n)), ceiling(max(n,6))];
(%04) [n, abs(n), max(n,6)]
(%i5) assume(x > 0, x < 1)$
(%16) ceiling(x);
(%06) 1
(%17) tex(ceiling(a));
$$\left \lceil a \right \rceil$$

The function ceiling does not automatically map over lists or matrices. Finally, for all
inputs that are manifestly complex, ceiling returns a noun form.

If the range of a function is a subset of the integers, it can be declared to be integervalued.
Both the ceiling and floor functions can use this information; for example:

(%11) declare(f,integervalued)$
(%hi2) floor(£(x));

(ho2) £(x)

(%i3) ceiling(f(x) -1);

(%ho3) f(x)-1

charfun (p) Function
Return 0 when the predicate p evaluates to false; return 1 when the predicate evaluates
to true. When the predicate evaluates to something other than true or false (unknown),
return a noun form.

Examples:

(%i1) charfun(x<1);

(%01) charfun(x<1)

(%12) subst (x=-1,%);

(ho2) 1

(%i3) e : charfun(’"and"(-1 < x, x < 1))$

(%i4) [subst(x=-1,e), subst(x=0,e), subst(x=1,e)];
(%o04) [0,1,0]

commutative Declaration
If declare(h,commutative) is done, this tells the simplifier that h is a commutative
function. E.g. h(x,z,y) will simplify to h(x, y, z). This is the same as symmetric.

compare (x, y) Function
Return a comparison operator op (<, <=, >, >=, = or #) such that is (x op y) evaluates
to true; when either x or y depends on %i and x # y, return notcomparable; when there
is no such operator or Maxima isn’t able to determine the operator, return unknown.

Examples:



Chapter 5: Operators 29

(%i1) compare(1,2);
(hol) <
(%12) compare(1,x);
(%02) unknown
(%13) compare(%i,%i);
(%03) =
(%14) compare(%i,%i+1);
(%04) notcomparable
(%1i5) compare(1/x,0);
(%hob) #
(%16) compare(x,abs(x));
(ho6) <=
The function compare doesn’t try to determine whether the real domains of its arguments
are nonempty; thus

(%1i1) compare(acos(x"2+1), acos(x"2+1) + 1);
(%hol) <
The real domain of acos (x~2 + 1) is empty.

entier (x) Function
Returns the largest integer less than or equal to x where x is numeric. fix (as in fixnum)
is a synonym for this, so fix(x) is precisely the same.

equal (expr_1, expr_2) Function
Used with an is, returns true (or false) if and only if expr_1 and expr_2 are equal (or
not equal) for all possible values of their variables (as determined by ratsimp). Thus
is (equal ((x +1)72, x"2 + 2%x + 1)) returns true whereas if x is unbound is ((x +
1)72 =x"2 + 2xx + 1) returns false. Note also that is(rat(0)=0) yields false but is
(equal (rat(0), 0)) yields true.

If a determination can’t be made, then is (equal (a, b)) returns a simplified but equiv-
alent expression, whereas is (a=b) always returns either true or false.

All variables occurring in expr_1 and expr_2 are presumed to be real valued.

The negation of equal is notequal. Note that because of the rules for evaluation of
predicate expressions (in particular because not expr causes evaluation of expr), notequal
is not equivalent to not equal in some cases.

ev (expr, pred) is equivalent to is (expr).
(%i1) is (x72 >= 2*x - 1);

(%o1) true
(%i2) assume (a > 1);
(ho2) [a > 1]
(%13) is (log (log (a+1) + 1) > 0 and a"2 + 1 > 2%*a);
(%03) true
floor (x) Function

When x is a real number, return the largest integer that is less than or equal to x.

If x is a constant expression (10 * %pi, for example), floor evaluates x using big floating
point numbers, and applies floor to the resulting big float. Because floor uses floating
point evaluation, it’s possible, although unlikely, that floor could return an erroneous
value for constant inputs. To guard against errors, the floating point evaluation is done
using three values for fpprec.

For non-constant inputs, floor tries to return a simplified value. Here are examples of
the simplifications that floor knows about:

(%11) floor(ceiling(x));
(%01) ceiling(x)

(%i2) floor(floor(x));
(%ho2) floor(x)



30

Maxima Manual

(%13) declare(n,integer)$
(%i3) [floor(n), floor(abs(n)), floor(min(n,6))];
(%04) [n,abs(n),min(n,6)]
(%i4) assume(x > 0, x < 1)$
(%i5) floor(x);
(%ho5) 0
(%i6) tex(floor(a);
$$\left \1floor a \right \rfloor$$

The function floor does not automatically map over lists or matrices. Finally, for all
inputs that are manifestly complex, floor returns a noun form.

If the range of a function is a subset of the integers, it can be declared to be integervalued

Both the ceiling and floor functions can use this information; for example:

(%i1) declare(f,integervalued)$
(%i2) floor (f(x));

(ho2) £(x)

(%i3) ceiling(f(x) -1);

(%ho3) f(x)-1

notequal (expr_1, expr_2)
Represents the negation of equal (expr_1, expr_2).

eval

Function

Note that because of the rules for evaluation of predicate expressions (in particular because
not expr causes evaluation of expr), notequal is not equivalent to not equal in some

cases.

Examples:

(%i1) equal (a, b);

(%ho1) equal(a, b)

(%i2) maybe (equal (a, b));

(%02) unknown

(%13) notequal (a, b);

(%ho3) notequal(a, b)

(%i4) not equal (a, b);

‘macsyma’ was unable to evaluate the predicate:
equal(a, b)

-- an error. Quitting. To debug this try debugmode(true);

(%15) maybe (notequal (a, b));

(%05) unknown
(%16) maybe (not equal (a, b));

(%06) unknown
(%i7) assume (a > b);

(%oT) [a > b]
(%18) equal (a, b);

(%08) equal(a, b)
(%19) maybe (equal (a, b));

(%09) false
(%110) notequal (a, b);

(%010) notequal(a, b)
(%111) not equal (a, b);

(%o11) true
(%112) maybe (notequal (a, b));

(ho12) true
(%113) maybe (not equal (a, b));
(%o13) true

Operator

As an argument in a call to ev (expr), eval causes an extra evaluation of expr. See ev.



Chapter 5: Operators 31

evenp (expr) Function
Returns true if expr is an even integer. false is returned in all other cases.

fix (x) Function

A synonym for entier (x).

fullmap (f, expr_1, ...) Function
Similar to map, but fullmap keeps mapping down all subexpressions until the main oper-
ators are no longer the same.

fullmap is used by the Maxima simplifier for certain matrix manipulations; thus, Maxima
sometimes generates an error message concerning fullmap even though fullmap was not
explicitly called by the user.

(%i1) a + b*c$

(%i2) fullmap (g, %);

(%02) g() glc) + g(a)
(%13) map (g, %th(2));
(%03) g(b c) + g(a)
fullmapl (f, List_1, ...) Function

Similar to fullmap, but fullmapl only maps onto lists and matrices.
(%i1) fullmapl ("+", [3, [4, 511, [[a, 11, [0, -1.5]1);

(%o1) [[a + 3, 4], [4, 3.5]]
is (expr) Function
Attempts to determine whether the predicate expr is provable from the facts in the assume
database.

If the predicate is provably true or false, is returns true or false, respectively. Oth-
erwise, the return value is controlled by the global flag prederror. When prederror is
false, is returns unknown for a predicate which cannot be proven nor disproven, and
reports an error otherwise.

See also assume, facts, and maybe.

Examples:

is causes evaluation of predicates.
(%i1) %pi > %e;

(%o1) %pi > %e
(%i2) is (hpi > %e);
(%02) true

is attempts to derive predicates from the assume database.
(%i1) assume (a > b);

(%hol) [a > b]
(%i2) assume (b > c);

(%02) [b > c]
(%i3) is (a < b);

(%03) false
(%id) is (a > ¢);

(%o4) true
(%i5) is (equal (a, c));

(%05) false

If is can neither prove nor disprove a predicate from the assume database, the global flag
prederror governs the behavior of is.

(%i1) assume (a > b);

(%o1) [a > b]
(%i2) prederror: true$

(%i3) is (a > 0);



32 Maxima Manual

‘macsyma’ was unable to evaluate the predicate:

a>o0

-- an error. Quitting. To debug this try debugmode(true);
(%i4) prederror: false$

(%i5) is (a > 0);

(%05) unknown
maybe (expr) Function
Attempts to determine whether the predicate expr is provable from the facts in the assume
database.

If the predicate is provably true or false, maybe returns true or false, respectively.
Otherwise, maybe returns unknown.

maybe is functionally equivalent to is with prederror: false, but the result is computed
without actually assigning a value to prederror.

See also assume, facts, and is.
Examples:

(%11) maybe (x > 0);

(%o1) unknown
(%i2) assume (x > 1);

(%02) [x > 1]
(%13) maybe (x > 0);

(%03) true

isqrt (x) Function
Returns the "integer square root" of the absolute value of x, which is an integer.

lmax (L) Function
When L is a list or a set, return apply (’max, args (L)). When L isn’t a list or a set,
signal an error.

lmin (L) Function
When L is a list or a set, return apply (’min, args (L)). When L isn’t a list or a set,
signal an error.

max (x-1, ..., x_n) Function
Return a simplified value for the maximum of the expressions x_1 through x_.n. When get
(trylevel, maxmin), is 2 or greater, max uses the simplification max (e, -e) --> |e]l.
When get (trylevel, maxmin) is 3 or greater, max tries to eliminate expressions that
are between two other arguments; for example, max (x, 2*x, 3*x) --> max (x, 3*x). To
set the value of trylevel to 2, use put (trylevel, 2, maxmin).

min (x_1, ..., x_n) Function
Return a simplified value for the minimum of the expressions x_1 through x_n. When get
(trylevel, maxmin), is 2 or greater, min uses the simplification min (e, -e) --> -|e].
When get (trylevel, maxmin) is 3 or greater, min tries to eliminate expressions that are
between two other arguments; for example, min (x, 2*x, 3*x) --> min (x, 3*x). To set
the value of trylevel to 2, use put (trylevel, 2, maxmin).

polymod (p) Function

polymod (p, m) Function
Converts the polynomial p to a modular representation with respect to the current mod-
ulus which is the value of the variable modulus.

polymod (p, m) specifies a modulus m to be used instead of the current value of modulus.

See modulus.



Chapter 5: Operators 33

mod (x, y) Function
If x and y are real numbers and y is nonzero, return x = y * floor(x / y). Further for
all real x, we have mod (x, 0) = x. For a discussion of the definition mod (x, 0) = x, see
Section 3.4, of "Concrete Mathematics," by Graham, Knuth, and Patashnik. The function
mod (x, 1) is a sawtooth function with period 1 with mod (1, 1) = 0 and mod (0, 1) =
0.

To find the principal argument (a number in the interval (-%pi, %pil) of a complex
number, use the function x |-> %pi - mod (%pi - x, 2x%pi), where x is an argument.

When x and y are constant expressions (10 * %pi, for example), mod uses the same big
float evaluation scheme that floor and ceiling uses. Again, it’s possible, although
unlikely, that mod could return an erroneous value in such cases.

For nonnumerical arguments x or y, mod knows several simplification rules:

(%i1) mod(x,0);
(%hol1) x

(%12) mod(a*x,ax*y);
(%02) a*mod(x,y)
(%13) mod(0,x);
(%03) 0

oddp (expr) Function

is true if expr is an odd integer. false is returned in all other cases.

pred Operator
As an argument in a call to ev (expr), pred causes predicates (expressions which evaluate
to true or false) to be evaluated. See ev.

make_random _state (n) Function
make_random_state (s) Function
make_random _state (true) Function
make_random_state (false) Function

A random state object represents the state of the random number generator. The state
comprises 627 32-bit words.

make_random_state (n) returns a new random state object created from an integer seed
value equal to n modulo 2732. n may be negative.

make_random_state (s) returns a copy of the random state s.

make_random_state (true) returns a new random state object, using the current com-
puter clock time as the seed.

make_random_state (false) returns a copy of the current state of the random number
generator.

set_random_state (s) Function
Copies s to the random number generator state.

set_random_state always returns done.

random (x) Function
Returns a pseudorandom number. If x is an integer, random (x) returns an integer from 0
through x - 1 inclusive. If x is a floating point number, random (x) returns a nonnegative
floating point number less than x. random complains with an error if x is neither an integer
nor a float, or if x is not positive.

The functions make_random_state and set_random_state maintain the state of the ran-
dom number generator.

The Maxima random number generator is an implementation of the Mersenne twister M'T
19937.

Examples:



34

rationalize (expr)

Maxima Manual

(%i1) s1: make_random_state (654321)$
(%i2) set_random_state (s1);

(%02) done

(%i3) random (1000);

(%03) 768

(%i4) random (9573684);

(%ho4d) 7657880

(%i5) random (2°75);

(%05) 11804491615036831636390

(%16) s2: make_random_state (false)$
(%i7) random (1.0);

(hoT) .2310127244107132
(%1i8) random (10.0);

(%08) 4.394553645870825
(%19) random (100.0);

(%09) 32.28666704056853
(%110) set_random_state (s2);

(%010) done

(%i11) random (1.0);

(%ho11) .2310127244107132
(%112) random (10.0);

(%ho12) 4.394553645870825
(%i13) random (100.0);

(%ho13) 32.28666704056853

Convert all double floats and big floats in the Maxima expression expr to their exact
rational equivalents. If you are not familiar with the binary representation of floating
point numbers, you might be surprised that rationalize (0.1) does not equal 1/10. This
behavior isn’t special to Maxima — the number 1/10 has a repeating, not a terminating,
binary representation.

(%i1) rationalize(0.5);

(%01) 1/2

(%i2) rationalize(0.1);

(%ho2) 3602879701896397/36028797018963968
(%i3) fpprec : 5%

(%i4) rationalize(0.1b0);

(%od) 209715/2097152

(%1i5) fpprec : 20%

(%i6) rationalize(0.1b0);

(%o6) 236118324143482260685/2361183241434822606848
(%1i7) rationalize(sin(0.1 * x + 5.6));

(%07) sin((3602879701896397*x)/36028797018963968+3152519739159347/5629499534213

Example use:
unitfrac(r) := block([uf : [1, ql,

if not(ratnump(r)) then error("The input to ’unitfrac’ must be a rational nu

while r # 0 do (
uf : cons(q : 1/ceiling(1/r), uf),
r:r-aq,

reverse (uf)) ;

(%12) unitfrac(9/10);
(%ho2) [1/2,1/3,1/15]
(%13) apply("+",%);
(%03) 9/10

(%i4) unitfrac(-9/10);

Function



Chapter 5: Operators 35

(%04) [-1,1/10]

(%i5) apply("+",%);

(%05) -9/10

(%i6) unitfrac(36/37);

(%o6) [1/2,1/3,1/8,1/69,1/6808]
(%1i7) apply("+",%);

(%o7) 36/37

sign (expr) Function
Attempts to determine the sign of expr on the basis of the facts in the current data base.
It returns one of the following answers: pos (positive), neg (negative), zero, pz (positive
or zero), nz (negative or zero), pn (positive or negative), or pnz (positive, negative, or
zero, i.e. nothing known).

signum (x) Function
For numeric x, returns 0 if x is 0, otherwise returns -1 or +1 as x is less than or greater
than 0, respectively.

If x is not numeric then a simplified but equivalent form is returned. For example,
signum(-x) gives -signum(x).

sort (list, p) Function
sort (list) Function
Sorts list according to a predicate p of two arguments, such as "<" or orderlessp.

sort (list) sorts list according to Maxima’s built-in ordering.
list may contain numeric or nonnumeric items, or both.

sqrt (x) Function
The square root of x. It is represented internally by x~(1/2). See also rootscontract.

radexpand if true will cause nth roots of factors of a product which are powers of n to
be pulled outside of the radical, e.g. sqrt(16*x~2) will become 4*x only if radexpand is
true.

sqrtdispflag Option variable
Default value: true
When sqrtdispflag is false, causes sqrt to display with exponent 1/2.

sublis (list, expr) Function
Makes multiple parallel substitutions into an expression.
The variable sublis_apply_lambda controls simplification after sublis.

Example:
(%i1) sublis ([a=b, b=a], sin(a) + cos(b));
(%o1) sin(b) + cos(a)
sublist (list, p) Function

Returns the list of elements of list for which the predicate p returns true.
Example:

(%i1) L: [1, 2, 3, 4, 5, 6]%

(%12) sublist (L, evenp);

(%o2) (2, 4, 6]

sublis_apply_lambda Option variable
Default value: true - controls whether lambda’s substituted are applied in simplification
after sublis is used or whether you have to do an ev to get things to apply. true means
do the application.



36 Maxima Manual

subst (a, b, ¢) Function

Substitutes a for b in ¢. b must be an atom or a complete subexpression of ¢. For example,
x+y+z is a complete subexpression of 2x(x+y+z) /w while x+y is not. When b does not
have these characteristics, one may sometimes use substpart or ratsubst (see below).
Alternatively, if b is of the form e/f then one could use subst (a*xf, e, c) while if b is
of the form e~ (1/f) then one could use subst (a"f, e, c). The subst command also
discerns the x”y in x"-y so that subst (a, sqrt(x), 1/sqrt(x)) yields 1/a. a and b
may also be operators of an expression enclosed in double-quotes " or they may be function
names. If one wishes to substitute for the independent variable in derivative forms then
the at function (see below) should be used.

subst is an alias for substitute.

subst (eq_1, expr) or subst ([eq_1, ..., eq_k], expr) are other permissible forms.
The eq.i are equations indicating substitutions to be made. For each equation, the right
side will be substituted for the left in the expression expr.

exptsubst if true permits substitutions like y for %e~x in %e” (a*x) to take place.

When opsubst is false, subst will not attempt to substitute into the operator of an
expression. E.g. (opsubst: false, subst (x"2, r, r+r[0])) will work.

Examples:
(%i1) subst (a, x+y, x + (x+y)"2 + y);
2
(%hol) y+x+a
(%i2) subst (-%i, %i, a + bx¥i);
(%02) a-%b
For further examples, do example (subst).
substinpart (x, expr, n_1, ..., n_k) Function

Similar to substpart, but substinpart works on the internal representation of expr.
(hi1) x . ’diff (£(x), x, 2);

2
D
(hol) x . —— (f(x))
2
dx
(%i2) substinpart (472, %, 2);
2
(%02) x . d
(%1i3) substinpart (f1, f[1](x+1), 0);
(%03) f1(x + 1)

If the last argument to a part function is a list of indices then several subexpressions are
picked out, each one corresponding to an index of the list. Thus

(%1i1) part (x+y+z, [1, 31);

(hol) zZ + X
piece holds the value of the last expression selected when using the part functions. It is
set during the execution of the function and thus may be referred to in the function itself
as shown below. If partswitch is set to true then end is returned when a selected part
of an expression doesn’t exist, otherwise an error message is given.

(%1i1) expr: 27*y~3 + Bdxxxy~2 + 36%x"2%y + y + 8%x"3 + x + 1;

3 2 2 3
(%hol) 27y +54xy +36x y+y+8x +x+1
(%i2) part (expr, 2, [1, 31);
2
(%02) 54 y
(%13) sqrt (piece/54);
(%03) abs(y)

(%i4) substpart (factor (piece), expr, [1, 2, 3, 51);



Chapter 5: Operators 37

3
(hod) By+2x) +y+x+1
(%ib) expr: 1/x + y/x - 1/z;
1 vy 1
(%05) S S

z X X

(%16) substpart (xthru (piece), expr, [2, 3]);
y +1 1
(%06) - - -
X z

Also, setting the option inflag to true and calling part or substpart is the same as
calling inpart or substinpart.

substpart (x, expr, n_1, ..., n_k) Function
Substitutes x for the subexpression picked out by the rest of the arguments as in part. It
returns the new value of expr. x may be some operator to be substituted for an operator
of expr. In some cases x needs to be enclosed in double-quotes " (e.g. substpart ("+",
axb, 0) yields b + a).

(ki) 1/(x"2 + 2);

1
oty ==
2
x + 2
(%1i2) substpart (3/2, %, 2, 1, 2);
1
(ho2> e
3/2
X + 2
(%1i3) a*x + £ (b, y);
(%03) ax + f(b, y)
(%i4) substpart ("+", %, 1, 0);
(hod) x + f(b, y) + a

Also, setting the option inflag to true and calling part or substpart is the same as
calling inpart or substinpart.

subvarp (expr) Function
Returns true if expr is a subscripted variable, for example a[i].

symbolp (expr) Function
Returns true if expr is a symbol, else false. In effect, symbolp(x) is equivalent to the
predicate atom(x) and not numberp(x).

See also Identifiers.

unorder () Function
Disables the aliasing created by the last use of the ordering commands ordergreat and
orderless. ordergreat and orderless may not be used more than one time each without
calling unorder. See also ordergreat and orderless.

(%i1) unorder();

(%o1) (]
(%1i2) b*x + a”~2;

2
(%02) bx+a
(%13) ordergreat (a);
(%03) done

(%i4) b*xx + a"~2;



38 Maxima Manual

(%ho4d) a +bx
(%i5) %th(1) - %th(3);
2 2
(%05) a - a
(%i6) unorder();
(%086) [al
vectorpotential (givencurl) Function

Returns the vector potential of a given curl vector, in the current coordinate system.
potentialzeroloc has a similar role as for potential, but the order of the left-hand
sides of the equations must be a cyclic permutation of the coordinate variables.

xthru (expr) Function
Combines all terms of expr (which should be a sum) over a common denominator without
expanding products and exponentiated sums as ratsimp does. xthru cancels common
factors in the numerator and denominator of rational expressions but only if the factors
are explicit.

Sometimes it is better to use xthru before ratsimping an expression in order to cause ex-
plicit factors of the ged of the numerator and denominator to be canceled thus simplifying
the expression to be ratsimped.

(%1i1) ((x+2)720 - 2*y)/(x+y)~20 + (x+y)~(-19) - x/(x+y)~20;

20
1 x+2) -2y X
(ho1) - B
19 20 20
(y + %) (y + %) (y + %)
(%i2) xthru (4 ;
20
(x + 2) -y
Go2)  mmmmmmmmeeees
20
(y + x)
zeroequiv (expr, v) Function

Tests whether the expression expr in the variable v is equivalent to zero, returning true,
false, or dontknow.

zeroequiv has these restrictions:
1. Do not use functions that Maxima does not know how to differentiate and evaluate.

2. If the expression has poles on the real line, there may be errors in the result (but this
is unlikely to occur).

3. If the expression contains functions which are not solutions to first order differential
equations (e.g. Bessel functions) there may be incorrect results.

4. The algorithm uses evaluation at randomly chosen points for carefully selected subex-
pressions. This is always a somewhat hazardous business, although the algorithm tries
to minimize the potential for error.

For example zeroequiv (sin(2*x) - 2*sin(x)*cos(x), x) returns true and zeroequiv
(%e"x + x, x) returns false. On the other hand zeroequiv (log(axb) - log(a) -
log(b), a) returns dontknow because of the presence of an extra parameter b.



Chapter 6: Expressions 39

6 Expressions

6.1 Introduction to Expressions

There are a number of reserved words which cannot be used as variable names. Their use
would cause a possibly cryptic syntax error.

integrate next from diff
in at limit sum
for and elseif then
else do or if
unless product while thru
step

Most things in Maxima are expressions. A sequence of expressions can be made into an
expression by separating them by commas and putting parentheses around them. This is similar
to the C comma expression.

(%i1) x: 3%
%i2) (x: x+1, x: x°2);

(%02) 16
(%1i3) (if (x > 17) then 2 else 4);
(%03) 4
(%14) (if (x > 17) then x: 2 else y: 4, y+x);
(%04) 20

Even loops in Maxima are expressions, although the value they return is the not too useful
done.

(%i1) y: (x: 1, for i from 1 thru 10 do (x: x*i))$
(%i2) y;
(ho2) done
whereas what you really want is probably to include a third term in the comma expression
which actually gives back the value.

(%i3) y: (x: 1, for i from 1 thru 10 do (x: x*i), x)$
(%i4) v;
(%o4) 3628800

6.2 Assignment

There are two assignment operators in Maxima, : and ::. E.g., a: 3 sets the variable a to 3.
:: assigns the value of the expression on its right to the value of the quantity on its left, which
must evaluate to an atomic variable or subscripted variable.

6.3 Complex

A complex expression is specified in Maxima by adding the real part of the expression to %i
times the imaginary part. Thus the roots of the equation x~2 - 4*x + 13 = 0 are 2 + 3*1i and 2
- 3%%1i. Note that simplification of products of complex expressions can be effected by expanding
the product. Simplification of quotients, roots, and other functions of complex expressions can
usually be accomplished by using the realpart, imagpart, rectform, polarform, abs, carg
functions.

6.4 Nouns and Verbs

Maxima distinguishes between operators which are "nouns" and operators which are "verbs".
A verb is an operator which can be executed. A noun is an operator which appears as a symbol
in an expression, without being executed. By default, function names are verbs. A verb can be
changed into a noun by quoting the function name or applying the nounify function. A noun



40 Maxima Manual

can be changed into a verb by applying the verbify function. The evaluation flag nouns causes
ev to evaluate nouns in an expression.

The verb form is distinguished by a leading dollar sign $ on the corresponding Lisp symbol.
In contrast, the noun form is distinguished by a leading percent sign % on the corresponding
Lisp symbol. Some nouns have special display properties, such as >integrate and ’derivative
(returned by diff), but most do not. By default, the noun and verb forms of a function are
identical when displayed. The global flag noundisp causes Maxima to display nouns with a
leading quote mark ’.

See also noun, nouns, nounify, and verbify.

Examples:
(%i1) foo (x) := x72;
2
(%o1) foo(x) := x
(%i2) foo (42);
(%ho2) 1764
(%i3) ’foo (42);
(%03) foo(42)
(%i4) ’foo (42), nouns;
(%o4) 1764
(%15) declare (bar, noun);
(%05) done
(%i6) bar (x) := x/17;
x
(%06) bar(x) := --
17

(%i7) bar (52);
(%oT) bar (52)
(%1i8) bar (52), nouns;

52
(%08) .
17
(%19) integrate (1/x, x, 1, 42);
(%09) log(42)
(%110) ’integrate (1/x, x, 1, 42);
42
/
[ 1
(%010) I - dx
] X
/
1
(%i11) ev (%, nouns);
(%hol1) log(42)

6.5 Identifiers

Maxima identifiers may comprise alphabetic characters, plus the numerals 0 through 9, plus
any special character preceded by the backslash \ character.

A numeral may be the first character of an identifier if it is preceded by a backslash. Numerals
which are the second or later characters need not be preceded by a backslash.

A special character may be declared alphabetic by the declare function. If so declared, it
need not be preceded by a backslash in an identifier. The alphabetic characters are initially A
through Z, a through z, %, and _.

Maxima is case-sensitive. The identifiers foo, FOO, and Foo are distinct. See Section 3.2 [Lisp
and Maximal, page 9 for more on this point.



Chapter 6: Expressions 41

A Maxima identifier is a Lisp symbol which begins with a dollar sign $. Any other Lisp
symbol is preceded by a question mark ? when it appears in Maxima. See Section 3.2 [Lisp and
Maximal, page 9 for more on this point.

Examples:
(%i1) %an_ordinary_identifier4?2;
(%o1) %an_ordinary_identifier42
(%12) embedded\ spaces\ in\ an\ identifier;
(%02) embedded spaces in an identifier
(%i3) symbolp (%);
(%03) true
(%i4) [foo+bar, foo\+bar];
(%o4) [foo + bar, foo+bar]
(%1i5) [1729, \1729];
(%05) [1729, 1729]
(%16) [symbolp (fool+tbar), symbolp (\1729)];
(%06) [true, true]
(%1i7) [is (foo\+bar = foo+bar), is (\1729 = 1729)];
(%oT) [false, false]
(%18) baz\~quux;
(%08) baz~quux
(%19) declare ("™", alphabetic);
(%09) done
(%110) baz~quux;
(%010) baz~quux
(%i11) [is (foo = F00), is (FOD = Foo), is (Foo = foo)];
(%o11) [false, false, false]

(%112) :1isp (defvar *my-lisp-variable* ’$foo)
*MY-LISP-VARIABLE*

(%112) ?\*my\-lisp\-variable\*;

(ho12) foo

6.6 Inequality

Maxima has the inequality operators <, <=, >= > #, and notequal. See if for a description
of conditional expressions.

6.7 Syntax

It is possible to define new operators with specified precedence, to undefine existing operators,
or to redefine the precedence of existing operators. An operator may be unary prefix or unary
postfix, binary infix, n-ary infix, matchfix, or nofix. "Matchfix" means a pair of symbols which
enclose their argument or arguments, and "nofix" means an operator which takes no arguments.
As examples of the different types of operators, there are the following.

unary prefix
negation - a

unary postfix
factorial a!

binary infix
exponentiation a”~b

n-ary infix addition a + b
matchfix  list construction [a, b]

(There are no built-in nofix operators; for an example of such an operator, see nofix.)

The mechanism to define a new operator is straightforward. It is only necessary to declare a
function as an operator; the operator function might or might not be defined.



42

Maxima Manual

An example of user-defined operators is the following. Note that the explicit function call

"dd" (a) is
functions "d
(%hi1)
(%o1)
(%hi2)
(%02)
(%i3)
(%03)
(%hid)
(%o4)
(%1i5)
(%05)
(%ie6)
(%06)

equivalent to dd a, likewise "<-" (a, b) is equivalent to a <- b. Note also that the
d" and "<-" are undefined in this example.

prefix ("dd");

dd
dd a;
dd a
"dd" (a);
dd a
infix ("<-");
<_
a <- dd b;
a<-dd b
|I<_ll (a’ lldd" (b)) ;
a<-dd b

The Maxima functions which define new operators are summarized in this table, stating the

default left

and right binding powers (Ibp and rbp, respectively). (Binding power determines

operator precedence. However, since left and right binding powers can differ, binding power is
somewhat more complicated than precedence.) Some of the operation definition functions take
additional arguments; see the function descriptions for details.

prefix
postfix
infix
nary
matchfix

nofix

rbp=180

Thp=180

Ibp=180, rbp=180

Thp=180, rbp=180

(binding power not applicable)
(binding power not applicable)

For comparison, here are some built-in operators and their left and right binding powers.

Operator  1bp rbp
: 180 20
- 180 20
1= 180 20
1= 180 20
! 160
I 160
- 140 139
. 130 129
* 120
/ 120 120
+ 100 100
- 100 134
= 80 80
# 80 80
> 80 80
>= 80 80
< 80 80
<= 80 80
not 70
and 65
or 60
s 10
$ -1



Chapter 6: Expressions 43

remove and kill remove operator properties from an atom. remove ("a", op) removes only
the operator properties of a. kill ("a") removes all properties of a, including the operator
properties. Note that the name of the operator must be enclosed in quotation marks.
(%i1) infix ("@");
(%o01) Q
(%i2) "@" (a, b) := a’b;

b
(%02) a@b :=a
(%i3) 5 @ 3;
(%03) 125
(%i4) remove ("Q@", op);
(%o04) done

(%i5) 5 @ 3;
Incorrect syntax: @ is not an infix operator
50

(hi5) "e" (5, 3);

(%05) 125
(%i6) infix ("@");

(%06) @
(%i7) 5 @ 3;

(%oT) 125
(%i8) kill ("e");

(%08) done

(%19) 5 @ 3;

Incorrect syntax: @ is not an infix operator
5@

(%19) "e" (5, 3);

(%09) e(5, 3)

6.8 Definitions for Expressions

at (expr, [eqn_1, ..., eqn_n]) Function
at (expr, eqn) Function
Evaluates the expression expr with the variables assuming the values as specified for them
in the list of equations [eqn_1, ..., eqn_n] or the single equation eqn.

If a subexpression depends on any of the variables for which a value is specified but there
is no atvalue specified and it can’t be otherwise evaluated, then a noun form of the at is
returned which displays in a two-dimensional form.

at carries out multiple substitutions in series, not parallel.
See also atvalue. For other functions which carry out substitutions, see also subst and

ev.
Examples:
(%11) atvalue (f(x,y), [x =0, y = 1], a~2);
2
(%o1) a
(%12) atvalue (’diff (f(x,y), x), x =0, 1 + y);
(%02) @2 + 1

(%13) printprops (all, atvalue);
!
d !
-—— (f(e1, @2))! =02 + 1
de1l !
1ol

]
o



44

2
£f(0, 1) = a
(%03) done
(%i4) diff (4xf(x, y)°2 - ulx, y)~°2, x);
d d

Maxima Manual

(hod) 8 f(x, y) (—— (£(x, y¥)) - 2 ulx, y) (- (ulx, y)))

dx dx
(%i5) at (%, [x = 0, y = 11);
1
2 d !
(%05) 16 a - 2 u(0o, 1) (-- (ux, yN!
dx !
'x =0, vy

box (expr)
box (expr, a)

Function
Function

Returns expr enclosed in a box. The return value is an expression with box as the operator
and expr as the argument. A box is drawn on the display when display2d is true.

box (expr, a) encloses expr in a box labelled by the symbol a. The label is truncated if

it is longer than the width of the box.

A boxed expression does not evaluate to its content, so boxed expressions are effectively

excluded from computations.

boxchar is the character used to draw the box in box and in the dpart and 1part functions.

Examples:
(%i1) box (a"2 + b~2);

n 2 2 n

(%01) "p + a "

(%i2) box (a"2 + b~2, term_1);
term_lllll n
n 2 2 n

(%02) ||b + a n

nunwnnnnnn

(%13) 1729 - box (1729);

mmwmwnnn

(%03) 1729 - ll1729"
(%i4) boxchar: "-";
(%o4) -
(%15) box (sin(x) + cos(y));

(%05) -CO0S(y) + SIN(x)-

(%i6)

boxchar
Default value: "

Option variable

boxchar is the character used to draw the box in the box and in the dpart and lpart

functions.

All boxes in an expression are drawn with the current value of boxchar; the drawing

character is not stored with the box expression.



Chapter 6: Expressions 45

carg (z) Function
Returns the complex argument of z. The complex argument is an angle theta in (-%pi,
%pil such that r exp (theta %i) = z where r is the magnitude of z.

carg is a computational function, not a simplifying function.
carg ignores the declaration declare (x, complex), and treats x as a real variable. This

is a bug.
See also abs (complex magnitude), polarform, rectform, realpart, and imagpart.
Examples:
(%i1) carg (1);
(%01) 0
(%12) carg (1 + %i);
hpi
(%o2) -
4
(%13) carg (exp (%i));
(%03) 1
(%i4) carg (exp (%pi * %i));
(%ho4d) hpi
(%i5) carg (exp (3/2 * %pi * %i));
%pi
(%05) - -
2
(%16) carg (17 * exp (2 * %i));
(%06) 2
constant Special operator

declare (a, constant) declares a to be a constant. See declare.

constantp (expr) Function
Returns true if expr is a constant expression, otherwise returns false.
An expression is considered a constant expression if its arguments are numbers (includ-
ing rational numbers, as displayed with /R/), symbolic constants such as %pi, %e, and
%1, variables bound to a constant or declared constant by declare, or functions whose
arguments are constant.
constantp evaluates its arguments.
Examples:

(%11) constantp (7 * sin(2));
(ho1) TRUE

(%1i2) constantp (rat (17/29));
(%02) TRUE

(%13) constantp (%pi * sin(%e));
(%03) TRUE

(%14) constantp (exp (x));

(%04) FALSE

(%i5) declare (x, constant);
(%05) DONE

(%16) constantp (exp (x));

(%ho86) TRUE

(%i7) constantp (foo (x) + bar (%e) + baz (2));
(%oT) FALSE

(%18)

declare (a_1, f .1, a2, f2, ...) Function
Assigns the atom a_i the flag fi. The a_i’s and f.i’s may also be lists of atoms and flags
respectively in which case each of the atoms gets all of the properties.



46 Maxima Manual
declare quotes its arguments. declare always returns done.
The possible flags and their meanings are:
constant makes a_i a constant as is %pi.
mainvar makes a_i a mainvar. The ordering scale for atoms: numbers < constants (e.g.
%e, %pi) < scalars < other variables < mainvars.
scalar makes a_i a scalar.
nonscalar makes a_i behave as does a list or matrix with respect to the dot operator.
noun makes the function a_i a noun so that it won’t be evaluated automatically.
evfun makes a_i known to the ev function so that it will get applied if its name is men-
tioned. See evfun.
evflag makes a_i known to the ev function so that it will be bound to true during the
execution of ev if it is mentioned. See evflag.
bindtest causes a_i to signal an error if it ever is used in a computation unbound.
Maxima currently recognizes and uses the following features of objects:
even, odd, integer, rational, irrational, real, imaginary,
and complex
The useful features of functions include:
increasing,
decreasing, oddfun (odd function), evenfun (even function),
commutative (or symmetric), antisymmetric, lassociative and
rassociative
The a_i and f.i may also be lists of objects or features.
featurep (object, feature) determines if object has been declared to have feature.
See also features.
disolate (expr, x_1, ..., x_n) Function
is similar to isolate (expr, x) except that it enables the user to isolate more than one
variable simultaneously. This might be useful, for example, if one were attempting to
change variables in a multiple integration, and that variable change involved two or more of
the integration variables. This function is autoloaded from ‘simplification/disol.mac’.
A demo is available by demo("disol")$.
dispform (expr) Function
Returns the external representation of expr with respect to its main operator. This should
be useful in conjunction with part which also deals with the external representation.
Suppose expr is -A . Then the internal representation of expr is "*"(-1,A), while the
external representation is "-"(A). dispform (expr, all) converts the entire expression
(not just the top-level) to external format. For example, if expr: sin (sqrt (x)), then
freeof (sqrt, expr) and freeof (sqrt, dispform (expr)) give true, while freeof
(sqrt, dispform (expr, all)) gives false.
distrib (expr) Function

Distributes sums over products. It differs from expand in that it works at only the top
level of an expression, i.e., it doesn’t recurse and it is faster than expand. It differs from
multthru in that it expands all sums at that level.

Examples:
(%i1) distrib ((a+b) * (c+d));
(%o1) bd+ad+bc+ac
(%12) multthru ((a+b) * (c+d));
(%02) (b+a)d+ (b+a)c
(%13) distrib (1/((a+b) * (c+d)));

)



Chapter 6: Expressions 47

(b +a) (d+ ¢
(%i4) expand (1/((a+b) * (c+d)), 1, 0);

S

bd+ad+bc+ac

dpart (expr, n_1, ..., n_k) Function
Selects the same subexpression as part, but instead of just returning that subexpression
as its value, it returns the whole expression with the selected subexpression displayed
inside a box. The box is actually part of the expression.
(%i1) dpart (x+y/z"2, 1, 2, 1);

y
(ho1) -+ x

2

IIle
nnn

exp (x) Function
Represents the exponential function. Instances of exp (x) in input are simplified to %e"x;
exp does not appear in simplified expressions.

demoivre if true causes %e” (a + b %i) to simplify to %e~(a (cos(b) + %i sin(b))) if b
is free of %i. See demoivre.

hemode, when true, causes %e” (%pi %i x) to be simplified. See %emode.

%enumer, when true causes %e to be replaced by 2.718... whenever numer is true. See
Jenumer.

Y%emode Option variable
Default value: true

When %emode is true, %e” (%4pi %i x) is simplified as follows.

he” (hpi %i x) simplifies to cos (%pi x) + %1 sin (%pi x) if x is an integer or a multiple
of 1/2,1/3, 1/4, or 1/6, and then further simplified.

For other numerical x, %e” (%pi %i x) simplifies to %e”~ (%pi %i y) where y is x - 2 k for
some integer k such that abs(y) < 1.

When %emode is false, no special simplification of %e~ (%pi %i x) is carried out.

Y%enumer Option variable
Default value: false

When %enumer is true, %e is replaced by its numeric value 2.718... whenever numer is
true.

When Yenumer is false, this substitution is carried out only if the exponent in %e~x
evaluates to a number.

See also ev and numer.

exptisolate Option variable
Default value: false

exptisolate, when true, causes isolate (expr, var) to examine exponents of atoms
(such as %e) which contain var.

exptsubst Option variable
Default value: false

exptsubst, when true, permits substitutions such as y for %e"x in %e”~ (a x).



48 Maxima Manual

freeof (x_1, ..., x_n, expr) Function
freeof (x_1, expr) Returns true if no subexpression of expr is equal to x_1 or if x_1
occurs only as a dummy variable in expr, and returns false otherwise.

freeof (x_1, ..., x_n, expr) is equivalent to freeof (x_I1, expr) and ... and freeof
(x_n, expr).

The arguments x_1, ..., x_.n may be names of functions and variables, subscripted names,
operators (enclosed in double quotes), or general expressions. freeof evaluates its argu-
ments.

freeof operates only on expr as it stands (after simplification and evaluation) and does
not attempt to determine if some equivalent expression would give a different result. In
particular, simplification may yield an equivalent but different expression which comprises
some different elements than the original form of expr.

A variable is a dummy variable in an expression if it has no binding outside of the expres-
sion. Dummy variables recognized by freeof are the index of a sum or product, the limit
variable in 1imit, the integration variable in the definite integral form of integrate, the
original variable in laplace, formal variables in at expressions, and arguments in lambda
expressions. Local variables in block are not recognized by freeof as dummy variables;
this is a bug.

The indefinite form of integrate is not free of its variable of integration.

e Arguments are names of functions, variables, subscripted names, operators, and ex-
pressions. freeof (a, b, expr) is equivalent to freeof (a, expr) and freeof (b,

expr).

(%i1) expr: z"3 * cos (al[1]) * b~ (c+d);
d+c 3

(%hol) cos(a ) b z

1

(%12) freeof (z, expr);

(%02) false

(%13) freeof (cos, expr);

(%03) false

(%14) freeof (alll, expr);

(%04) false

(%15) freeof (cos (all]), expr);

(%05) false

(%16) freeof (b~(c+d), expr);

(%06) false

(%17) freeof (""", expr);

(%oT) false

(%18) freeof (w, sin, a[2], sin (a[2]), bx(c+d), expr);

(%08) true

e freeof evaluates its arguments.

(%i1) expr: (a+b)~5$

(%12) c: a$

(%13) freeof (c, expr);

(%h03) false

e freeof does not consider equivalent expressions. Simplification may yield an equiv-
alent but different expression.

(%i1) expr: (a+b)~5$
(%12) expand (expr);

5 4 2 3 3 2 4 5
(%02) b +5ab +10a b +10a b +5a b+a
(%i3) freeof (a+b, %);

(%h03) true
(%i4) freeof (atb, expr);
(%ho4d) false



Chapter 6: Expressions 49

(%i5) exp (x);

x
(%05) he

(%i6) freeof (exp, exp (x));

(%o6) true

e A summation or definite integral is free of its dummy variable. An indefinite integral
is not free of its variable of integration.

(%i1) freeof (i, ’sum (£f(i), i, 0, n));

(%o1) true
(%12) freeof (x, ’integrate (x72, x, 0, 1));
(%h02) true
(%13) freeof (x, ’integrate (x72, x));
(%03) false
genfact (x, y, z) Function
Returns the generalized factorial, defined as x (x-z) (x-22z) ... (x-(y-1) 2).

Thus, for integral x, genfact (x, x, 1) = x! and genfact (x, x/2, 2) =x!!.

imagpart (expr) Function
Returns the imaginary part of the expression expr.
imagpart is a computational function, not a simplifying function.
See also abs, carg, polarform, rectform, and realpart.

infix (op) Function
infix (op, Ibp, rbp) Function
infix (op, Ibp, rbp, Ipos, rpos, pos) Function

Declares op to be an infix operator. An infix operator is a function of two arguments, with
the name of the function written between the arguments. For example, the subtraction
operator - is an infix operator.

infix (op) declares op to be an infix operator with default binding powers (left and right
both equal to 180) and parts of speech (left and right both equal to any).

infix (op, Ibp, rbp) declares op to be an infix operator with stated left and right binding
powers and default parts of speech (left and right both equal to any).

infix (op, Ibp, rbp, Ipos, rpos, pos) declares op to be an infix operator with stated
left and right binding powers and parts of speech.

The precedence of op with respect to other operators derives from the left and right
binding powers of the operators in question. If the left and right binding powers of op
are both greater the left and right binding powers of some other operator, then op takes
precedence over the other operator. If the binding powers are not both greater or less,
some more complicated relation holds.

The associativity of op depends on its binding powers. Greater left binding power (Ibp)
implies an instance of op is evaluated before other operators to its left in an expression,
while greater right binding power (rbp) implies an instance of op is evaluated before other
operators to its right in an expression. Thus greater Ibp makes op right-associative, while
greater rbp makes op left-associative. If Ibp is equal to rbp, op is left-associative.

See also Syntax.

Examples:

e If the left and right binding powers of op are both greater the left and right binding
powers of some other operator, then op takes precedence over the other operator.

(%11) ||@u(a’ b) .= SCOHC&t("(", a, ||’u’ b, ||)u)$
(%12) :1lisp (get ’$+ ’1bp)

100

(%12) :1lisp (get ’$+ ’rbp)

100

(%i2) infix ("@", 101, 101)$



50 Maxima Manual

(%i3) 1 + a@b + 2;

(%03) (a,b) + 3
(%i4) infix ("@", 99, 99)$

(%i5) 1 + aGb + 2;

(%h05) (a+1,b+2)
e Greater Ibp makes op right-associative, while greater rbp makes op left-associative.
(%11) ||@u(a’ b) .= SCOHC&t("(", a, ||’u’ b, ||)u)$

(%i2) infix ("@", 100, 99)$

(%13) foo @ bar @ baz;

(%03) (foo, (bar,baz))
(%i4) infix ("@", 100, 101)$

(%i5) foo @ bar @ baz;

(%05) ((foo,bar) ,baz)

inflag Option variable
Default value: false

When inflag is true, functions for part extraction inspect the internal form of expr.

Note that the simplifier re-orders expressions. Thus first (x + y) returns x if inflag is
true and y if inflag is false. (first (y + x) gives the same results.)

Also, setting inflag to true and calling part or substpart is the same as calling inpart
or substinpart.

Functions affected by the setting of inflag are: part, substpart, first, rest, last,
length, the for ... in construct, map, fullmap, maplist, reveal and pickapart.

inpart (expr, n_1, ..., n_k) Function
is similar to part but works on the internal representation of the expression rather than
the displayed form and thus may be faster since no formatting is done. Care should be
taken with respect to the order of subexpressions in sums and products (since the order
of variables in the internal form is often different from that in the displayed form) and in
dealing with unary minus, subtraction, and division (since these operators are removed
from the expression). part (x+y, 0) or inpart (x+y, 0) yield +, though in order to refer

to the operator it must be enclosed in "s. For example ... if inpart (%09,0) = "+"
then ....
Examples:
(%hil) x + y + wkz;
(%o1) wz+y+x
(%i2) inpart (%, 3, 2);
(%02) z
(%13) part (%th (2), 1, 2);
(%03) z
(%14) ’limit (f(x)"g(x+1), x, O, minus);
glx + 1)
(%o4) limit  f(x)
x => 0-
(%i5) inpart (%, 1, 2);
(%05) glx + 1)
isolate (expr, x) Function

Returns expr with subexpressions which are sums and which do not contain var replaced
by intermediate expression labels (these being atomic symbols like %t1, %t2, ...). This
is often useful to avoid unnecessary expansion of subexpressions which don’t contain the
variable of interest. Since the intermediate labels are bound to the subexpressions they
can all be substituted back by evaluating the expression in which they occur.

exptisolate (default value: false) if true will cause isolate to examine exponents of
atoms (like %e) which contain var.



Chapter 6: Expressions 51

isolate_wrt_times if true, then isolate will also isolate wrt products. See isolate_
wrt_times.

Do example (isolate) for examples.

isolate_wrt_times Option variable
Default value: false

When isolate_wrt_times is true, isolate will also isolate wrt products. E.g. compare
both settings of the switch on

(%i1) isolate_wrt_times: true$
(%12) isolate (expand ((atb+c)~2), c);

(ht2) 2 a
(%t3) 2 b
2 2
(%htd) b +2ab+a
2
(%od) c + %t3 c + %t2 c + Yt4d

(%i4) isolate_wrt_times: false$
(%15) isolate (expand ((atb+c)~2), c);
2
(%05) c +2bc+2ac+ %td

listconstvars Option variable
Default value: false

When listconstvars is true, it will cause listofvars to include %e, %pi, %i, and
any variables declared constant in the list it returns if they appear in the expression
listofvars is called on. The default is to omit these.

listdummyvars Option variable
Default value: true

When 1listdummyvars is false, "dummy variables" in the expression will not be included
in the list returned by listofvars. (The meaning of "dummy variables" is as given in
freeof. "Dummy variables" are mathematical things like the index of a sum or product,
the limit variable, and the definite integration variable.) Example:

(%1i1) listdummyvars: true$

(%i2) listofvars (Csum(f(i), i, 0, n));
(%ho2) [i, n]
(%13) listdummyvars: false$

(%i4) listofvars (’sum(f(i), i, 0, n));
(%ho4d) [n]

listofvars (expr) Function
Returns a list of the variables in expr.

listconstvars if true causes listofvars to include %e, %pi, %i, and any variables
declared constant in the list it returns if they appear in expr. The default is to omit these.

(%i1) listofvars (f (x[1]+y) / g~ (2+a));

(%o1) g, a, x , vyl
1



52 Maxima Manual

Ifreeof (list, expr) Function
For each member m of list, calls freeof (m, expr). It returns false if any call to freeof
does and true otherwise.

lopow (expr, x) Function
Returns the lowest exponent of x which explicitly appears in expr. Thus

(%i1) lopow ((x+y)~2 + (x+y)~a, x+y);
(ho1) min(a, 2)

Ipart (label, expr, n_1, ..., n_k) Function
is similar to dpart but uses a labelled box. A labelled box is similar to the one produced
by dpart but it has a name in the top line.

multthru (expr) Function
multthru (expr_1, expr_2) Function
Multiplies a factor (which should be a sum) of expr by the other factors of expr. That
is, expr is £.1 f2 ... f.n where at least one factor, say f.i, is a sum of terms. Each term
in that sum is multiplied by the other factors in the product. (Namely all the factors
except f.i). multthru does not expand exponentiated sums. This function is the fastest
way to distribute products (commutative or noncommutative) over sums. Since quotients
are represented as products multthru can be used to divide sums by products as well.
multthru (expr_1, expr-2) multiplies each term in expr_-2 (which should be a sum or an
equation) by expr_1. If expr_1 is not itself a sum then this form is equivalent to multthru
(expr_lxexpr_2).
hil) x/(x-y)~2 - 1/(x-y) - £(x)/(x-y)~3;
1 X f(x)
(%o1) - - +ommmmmmm e

x - x -
(%12) multthru ((x-y)~3, %);

2
(ho2) - x-y) +x -y - f&
(%i3) ratexpand (%) ;
2
(%03) -y +xy-fx
(%1i4) ((a+b)~10*s"2 + 2*axbxs + (axb)~2)/(a*xbxs”2);
10 2 2 2
(b + a) s +2abs+a b
(%hod) e
2
abs
(%i5) multthru (%); /* note that this does not expand (b+a) 10 */
10
2 ab (b + a)
(%05) e
s 2 ab
s
(%16) multthru (a.(b+c.(d+e)+f));
(%06) a.f+a.c.(e+d +a.b
(%i7) expand (a.(b+c.(d+e)+f));
(%07) a.f+a.c.e+a.c.d+a.b
nounify (f) Function

Returns the noun form of the function name f. This is needed if one wishes to refer to the
name of a verb function as if it were a noun. Note that some verb functions will return
their noun forms if they can’t be evaluated for certain arguments. This is also the form
returned if a function call is preceded by a quote.



Chapter 6: Expressions 53

nterms (expr) Function
Returns the number of terms that expr would have if it were fully expanded out and no
cancellations or combination of terms occurred. Note that expressions like sin (expr),
sqrt (expr), exp (expr), etc. count as just one term regardless of how many terms expr
has (if it is a sum).

op (expr) Function
Returns the main operator of the expression expr. op (expr) is equivalent to part (expr,
0).

op returns a string if the main operator is a built-in or user-defined prefix, binary or n-ary
infix, postfix, matchfix, or nofix operator. Otherwise op returns a symbol.

op observes the value of the global flag inflag.
op evaluates it argument.
See also args.
Examples:
(%1i1) ?stringdisp: true$
(%i2) op (a * b * c);

(%02) Ny

(%13) op (a * b + c);

(%03) ll+ll

(%14) op (’sin (a + b));

(%hod) sin

(%i5) op (a!);

(%05) ll!ll

(%i6) op (-a);

(%06) n_n

(%17) op ([a, b, cl);

(%07) ll[ll

(%18) op (°(if a > b then c else d));

(%08) nifn

(%19) op (Pfoo (2));

(%09) foo

(%110) prefix (foo);

(%o010) "foo"

(%i11) op (foo a);

(%ho11) "foo"
operatorp (expr, op) Function
operatorp (expr, [op-1, ..., op-1]) Function

operatorp (expr, op) returns true if op is equal to the operator of expr.

operatorp (expr, [op_1, ..., op_n]) returns true if some element op_1, ..., op_n is
equal to the operator of expr.

optimize (expr) Function
Returns an expression that produces the same value and side effects as expr but does so
more efficiently by avoiding the recomputation of common subexpressions. optimize also
has the side effect of "collapsing" its argument so that all common subexpressions are
shared. Do example (optimize) for examples.

optimprefix Option variable
Default value: %

optimprefix is the prefix used for generated symbols by the optimize command.

ordergreat (v_1, ..., v_n) Function
Sets up aliases for the variables v_1, ..., v_n such that v_.1 > v.2 > ... > v_n, and v_n > any
other variable not mentioned as an argument.

See also orderless.



54 Maxima Manual

ordergreatp (expr_1, expr.2) Function
Returns true if expr_2 precedes expr_1 in the ordering set up with the ordergreat func-
tion.

orderless (v_1, ..., v_n) Function
Sets up aliases for the variables v_1, ..., v_n such that v_1 < v_.2 < ... < v_n, and v_n < any

other variable not mentioned as an argument.

Thus the complete ordering scale is: numerical constants < declared constants < declared
scalars < first argument to orderless < ... < last argument to orderless < variables
which begin with A < ... < variables which begin with Z < last argument to ordergreat
< ... < first argument to ordergreat < declared mainvars.

See also ordergreat and mainvar.

orderlessp (expr_1, expr.2) Function
Returns true if expr_1 precedes expr_2 in the ordering set up by the orderless command.

part (expr, n_1, ..., n_k) Function
Returns parts of the displayed form of expr. It obtains the part of expr as specified by
the indices n_1, ..., n_k. First part n_1 of expr is obtained, then part n_2 of that, etc. The
result is part n_k of ... part n_2 of part n_1 of expr.

part can be used to obtain an element of a list, a row of a matrix, etc.

If the last argument to a part function is a list of indices then several subexpressions are
picked out, each one corresponding to an index of the list. Thus part (x +y +z, [1,
3]) is z+x.

piece holds the last expression selected when using the part functions. It is set during
the execution of the function and thus may be referred to in the function itself as shown
below.

If partswitch is set to true then end is returned when a selected part of an expression
doesn’t exist, otherwise an error message is given.

Example: part (z+2*y, 2, 1) yields 2.
example (part) displays additional examples.

partition (expr, x) Function
Returns a list of two expressions. They are (1) the factors of expr (if it is a product), the
terms of expr (if it is a sum), or the list (if it is a list) which don’t contain var and, (2)
the factors, terms, or list which do.

(%11) partition (2*axx*f(x), x);

(%hol) [2 a, x T(x)]
(%12) partition (a+b, x);
(%ho2) [b + a, 0]
(%13) partition ([a, b, f(a), cl, a);
(%03) [[b, c], [a, f(a)]]
partswitch Option variable

Default value: false

When partswitch is true, end is returned when a selected part of an expression doesn’t
exist, otherwise an error message is given.

pickapart (expr, n) Function
Assigns intermediate expression labels to subexpressions of expr at depth n, an integer.
Subexpressions at greater or lesser depths are not assigned labels. pickapart returns an
expression in terms of intermediate expressions equivalent to the original expression expr.
See also part, dpart, lpart, inpart, and reveal.

Examples:



Chapter 6: Expressions

(%11) expr: (a+b)/2 + sin (x72)/3 - log (1 + sqrt(x+1));

2
sin(x ) b+ a
(%o1) - log(sqrt(x + 1) + 1) + ——————- + =
3 2
(%12) pickapart (expr, 0);
2
sin(x ) b+ a
(%t2) - log(sqrt(x + 1) + 1) + ——————- + ————
3 2
(ho2) ht2
(%13) pickapart (expr, 1);
(%ht3) - log(sqrt(x + 1) + 1)
2
sin(x )
(G2
3
b+ a
k8 ==
2
(%05) hts + %td + %t3
(%15) pickapart (expr, 2);
(%ht6) log(sqrt(x + 1) + 1)
2
(%t7) sin(x )
(%t8) b+ a
ht8  Wt7
(%08) -—— + ——= - }t6
2 3
(%18) pickapart (expr, 3);
(%t9) sqrt(x + 1) + 1
2
(%t10) X
b+ a sin(%t10)
(Yho1t0) === - log(%t9) + —————----
2 3

(%110) pickapart (expr, 4);



56 Maxima Manual

(ht11) sqrt(x + 1)
2
sin(x ) b+ a
(hott) - + —-——- - log(%t1l + 1)
3 2

(%i11) pickapart (expr, 5);

(ht12) x + 1
2
sin(x ) b+ a

(ho12)  —=————- + ————= - log(sqrt(%t12) + 1)

3 2
(%112) pickapart (expr, 6);

2

sin(x ) b+ a
(ho12) === + ————= - log(sqrt(x + 1) + 1)
3 2
piece System variable

Holds the last expression selected when using the part functions. It is set during the
execution of the function and thus may be referred to in the function itself.

polarform (expr) Function
Returns an expression r %e” (%i theta) equivalent to expr, such that r and theta are
purely real.

powers (expr, x) Function
Gives the powers of x occuring in expr.
load (powers) loads this function.

product (expr, i, i.0, i_1) Function
Represents a product of the values of expr as the index i varies from i_0 to i_1. The noun
form ’product is displayed as an uppercase letter pi.

product evaluates expr and lower and upper limits i_0 and i_1, product quotes (does not
evaluate) the index i.

If the upper and lower limits differ by an integer, expr is evaluated for each value of the
index i, and the result is an explicit product.

Otherwise, the range of the index is indefinite. Some rules are applied to simplify the
product. When the global variable simpproduct is true, additional rules are applied. In
some cases, simplification yields a result which is not a product; otherwise, the result is a
noun form ’product.

See also nouns and evflag.

Examples:
(%i1) product (x + ix(i+1)/2, i, 1, 4);
(%01) (x+1) (x+3) (x+6) (x +10)
(%i2) product (i~2, i, 1, 7);
(%02) 25401600
(%13) product (alil, i, 1, 7);
(%03) a a a a a a a

1 2 3 4 5 6 7
(%14) product (a(i), i, 1, 7);
(%04) a(1l) a(2) a(3) a(4) a(s) a(6) a(7)
(%15) product (a(i), i, 1, n);



Chapter 6: Expressions 57

n
/===\
1o
(%05) P load)
1ol
i=1
(%16) product (k, k, 1, n);
n
[===
1o
(%06) Lok
o
k=1
(%i7) product (k, k, 1, n), simpproduct;
(%07) n!
(%18) product (integrate (x°k, x, 0, 1), k, 1, n);
n
/===
]
(%08) Pl ===
1k +1
k=1
(%19) product (if k <= 5 then a"k else b7k, k, 1, 10);
15 40
(%09) a b
realpart (expr) Function

Returns the real part of expr. realpart and imagpart will work on expressions involving
trigonometic and hyperbolic functions, as well as square root, logarithm, and exponenti-
ation.

rectform (expr) Function
Returns an expression a + b %1 equivalent to expr, such that a and b are purely real.

rembox (expr, unlabelled) Function
rembox (expr, label) Function
rembox (expr) Function

Removes boxes from expr.

rembox (expr, unlabelled) removes all unlabelled boxes from expr.
rembox (expr, label) removes only boxes bearing label.

rembox (expr) removes all boxes, labelled and unlabelled.

Boxes are drawn by the box, dpart, and lpart functions.

Examples:
(%i1) expr: (axd - b*c)/h"2 + sin(%pi*x);
ad-bc
(ho1) sin(Ypi x) + ——————---
2
h
(%12) dpart (dpart (expr, 1, 1), 2, 2);
L L TP R S
(ho2) sin("%pi x") + ————--——-
n 2"

||h n



58 Maxima Manual

(%i3) expr2: lpart (BAR, lpart (F0O0, %, 1), 2);
FoQU BAR""muwnnun
n nunnwnn N "sd-Dbc"
(%03) "sin("%pi X")" + M n

n URIRININININ]) n n nnnn n
muwmwmwmnnnmnmmnnnn n n 2" n
n llh n n
n nwnn n

nuuwnnnn

(%i4) rembox (expr2, unlabelled);

BARH nuwwnwnnn
FOO" nunwnonn Ha d —_ 'b C"
(%04) "sin(%pi X)" o M "
nmuuuoommmnnn n 2 n
n h n
(%15) rembox (expr2, FO0);
BARH nunnnn
nuwnnn "a d — b C||
(%05) Sin("%pi X") + N e n
nmwmwnnn n nnnn n
n n 2 n n
n ||h n n
(%16) rembox (expr2, BAR);
FOOH nunumnonnnn
n nuwnuwnnn n a d — b c
(%06) "sin(ll%pi Xll)" 4+ ————-— -
n nuwmnwnon n nwnn
nmuuuooommnnnnn n 2"
llh n
(%17) rembox (expr2);
ad-bc
(%hoT) sin(Y%pi x) + —-———————-
2
h
sum (expr, i, i.0, i_1) Function

Represents a summation of the values of expr as the index i varies from i_0 to i_1. The
noun form ’sum is displayed as an uppercase letter sigma.

sum evaluates its summand expr and lower and upper limits i-0 and i_1, sum quotes (does
not evaluate) the index i.

If the upper and lower limits differ by an integer, the summand expr is evaluated for each
value of the summation index i, and the result is an explicit sum.

Otherwise, the range of the index is indefinite. Some rules are applied to simplify the
summation. When the global variable simpsum is true, additional rules are applied. In
some cases, simplification yields a result which is not a summation; otherwise, the result
is a noun form ’sum.

When the evflag (evaluation flag) cauchysum is true, a product of summations is ex-
pressed as a Cauchy product, in which the index of the inner summation is a function of
the index of the outer one, rather than varying independently.

The global variable genindex is the alphabetic prefix used to generate the next index of
summation, when an automatically generated index is needed.



Chapter 6: Expressions 59

gensumnum is the numeric suffix used to generate the next index of summation, when an
automatically generated index is needed. When gensumnum is false, an automatically-
generated index is only genindex with no numeric suffix.

See also sumcontract, intosum, bashindices, niceindices, nouns, evflag, and

zeilberger.

Examples:
(%i1)
(%o1)
(hi2)
(%ho2)
(%13)
(%03)
(%1i4)

(%o4)

(%i5)

(%05)

(%hi6)

(%06)
ChiT)

(o)

(%i8)

(%08)

(%19)

(%09)

sum (i~2, i, 1, 7);
140

sum (alil, i, 1, 7);

a +a +a +a +a +a +a

7 6 5 4 3 2 1
sum (a(i), i, 1, 7);

a(7) + a(6) + a(b) + a(4) + a(3) + a(2) + a(l)

sum (a(i), i, 1, n);

n
\
> a(i)
/
i=1
sum (27i + i"2, i, 0, n);
n
\ i 2
> 2 +1)
/
i=0
sum (2°i + i"2, i, 0, n), simpsum;
3 2
n+1 2n +3n +n
2 e -1
6
sum (1/37i, i, 1, inf);
inf
\ 1
> —
/ i
=== 3
i=1
sum (1/37i, i, 1, inf), simpsum;
1
2
sum (i~2, i, 1, 4) * sum (1/i"2, i, 1, inf);
inf
\ 1
30 > -
/ 2
==== ]
i=1

(%110) sum (i"2, i, 1, 4) * sum (1/i"2, i, 1, inf), simpsum;

2



60

(%010)

(%i11) sum (integrate (x°k, x, 0, 1), k,

(%o11)

(%i12) sum (if k <= 5 then a"k else b7k,

Incorrect syntax: Too many )’s

else bk, k, 1, 10))

(%i12)
(%o11)
(%i12)

(ho12)

(%113)

(%013)

Isum (expr, x, L)

linenum:11;

5 %pi
n
\ 1
> _____
/ k +1
k=1
11
sum (integrate (x°k, x, 0, 1), k,
n
\ 1
> _____
/ k+1
k=1
sum (if k <= 5 then a"k else b7k,

10 9
b +Db

7 6 5 4

+b +a +a +a +a + a

Represents the sum of expr for each element x in L.

A noun form ’1sum is returned if the argument L does not evaluate to a list.

Examples:

(%i1) 1lsum (x7i, 1,

(%o1)

(1, 2, 71);

7 2
x +x +x

(%i2) 1lsum (i~2, i, rootsof (x°3 - 1));

(%o2)

verbify (f)

3

i in rootsof(x - 1)

Returns the verb form of the function name f.

See also verb, noun, and nounify.

Examples:

(%1i1) verbify (’foo);

(hol)
(%i2)
$F00

(%12) nounify (foo);

(%o2)
(%i3)
%F00

:lisp $%

:lisp $%

foo

foo

k, 1, 10));

k, 1, 10);

Maxima Manual

Function

Function



Chapter 7: Simplification 61

7 Simplification

7.1 Definitions for Simplification

askexp System variable
When asksign is called, askexp is the expression asksign is testing.

At one time, it was possible for a user to inspect askexp by entering a Maxima break with

control-A.
askinteger (expr, integer) Function
askinteger (expr) Function
askinteger (expr, even) Function
askinteger (expr, odd) Function

askinteger (expr, integer) attempts to determine from the assume database whether
expr is an integer. askinteger prompts the user if it cannot tell otherwise, and attempt
to install the information in the database if possible. askinteger (expr) is equivalent to
askinteger (expr, integer).

askinteger (expr, even) and askinteger (expr, odd) likewise attempt to determine if
expr is an even integer or odd integer, respectively.

asksign (expr) Function
First attempts to determine whether the specified expression is positive, negative, or zero.
If it cannot, it asks the user the necessary questions to complete its deduction. The user’s
answer is recorded in the data base for the duration of the current computation. The
return value of asksign is one of pos, neg, or zero.

demoivre (expr) Function

demoivre Option variable
The function demoivre (expr) converts one expression without setting the global variable
demoivre.

When the variable demoivre is true, complex exponentials are converted into equivalent
expressions in terms of circular functions: exp (a + b*%i) simplifies to %e~a * (cos(b) +
%ixsin(b)) if b is free of %i. a and b are not expanded.

The default value of demoivre is false.

exponentialize converts circular and hyperbolic functions to exponential form.
demoivre and exponentialize cannot both be true at the same time.

domain Option variable
Default value: real

When domain is set to complex, sqrt (x72) will remain sqrt (x72) instead of returning

abs(x).
expand (expr) Function
expand (expr, p, n) Function

Expand expression expr. Products of sums and exponentiated sums are multiplied out,
numerators of rational expressions which are sums are split into their respective terms,
and multiplication (commutative and non-commutative) are distributed over addition at
all levels of expr.

For polynomials one should usually use ratexpand which uses a more efficient algorithm.

maxnegex and maxposex control the maximum negative and positive exponents, respec-
tively, which will expand.

expand (expr, p, n) expands expr, using p for maxposex and n for maxnegex. This is
useful in order to expand part but not all of an expression.



62 Maxima Manual

expon - the exponent of the largest negative power which is automatically expanded (in-
dependent of calls to expand). For example if expon is 4 then (x+1)~(-5) will not be
automatically expanded.

expop - the highest positive exponent which is automatically expanded. Thus (x+1) 3,
when typed, will be automatically expanded only if expop is greater than or equal to 3.
If it is desired to have (x+1) "n expanded where n is greater than expop then executing
expand ((x+1) n) will work only if maxposex is not less than n.

The expand flag used with ev causes expansion.

The file ‘simplification/facexp.mac’ contains several related functions (in partic-
ular facsum, factorfacsum and collectterms, which are autoloaded) and variables
(nextlayerfactor and facsum_combine) that provide the user with the ability to struc-
ture expressions by controlled expansion. Brief function descriptions are available in
‘simplification/facexp.usg’. A demo is available by doing demo("facexp").

expandwrt (expr, x_1, ..., x_n) Function
Expands expression expr with respect to the variables x_1, ..., x_n. All products involving
the variables appear explicitly. The form returned will be free of products of sums of
expressions that are not free of the variables. x_1, ..., x_n may be variables, operators, or
expressions.

By default, denominators are not expanded, but this can be controlled by means of the
switch expandwrt_denom.

This function is autoloaded from ‘simplification/stopex.mac’.

expandwrt_denom Option variable
Default value: false

expandwrt_denom controls the treatment of rational expressions by expandwrt. If true,
then both the numerator and denominator of the expression will be expanded according to
the arguments of expandwrt, but if expandwrt_denom is false, then only the numerator
will be expanded in that way.

expandwrt_factored (expr, x_1, ..., x_n) Function
is similar to expandwrt, but treats expressions that are products somewhat differently.
expandwrt_factored expands only on those factors of expr that contain the variables
x_1, ..., xn.

This function is autoloaded from ‘simplification/stopex.mac’.

expon Option variable
Default value: 0

expon is the exponent of the largest negative power which is automatically expanded
(independent of calls to expand). For example, if expon is 4 then (x+1)~(-5) will not be
automatically expanded.

exponentialize (expr) Function
exponentialize Option variable
The function exponentialize (expr) converts circular and hyperbolic functions in expr
to exponentials, without setting the global variable exponentialize.
When the variable exponentialize is true, all circular and hyperbolic functions are
converted to exponential form. The default value is false.

demoivre converts complex exponentials into circular functions. exponentialize and
demoivre cannot both be true at the same time.

expop Option variable
Default value: 0
expop is the highest positive exponent which is automatically expanded. Thus (x + 1) "3,
when typed, will be automatically expanded only if expop is greater than or equal to 3.
If it is desired to have (x + 1) "n expanded where n is greater than expop then executing
expand ((x + 1) "n) will work only if maxposex is not less than n.



Chapter 7: Simplification 63

factlim Option variable
Default value: -1

factlim specifies the highest factorial which is automatically expanded. If it is -1 then
all integers are expanded.

intosum (expr) Function
Moves multiplicative factors outside a summation to inside. If the index is used in the
outside expression, then the function tries to find a reasonable index, the same as it
does for sumcontract. This is essentially the reverse idea of the outative property of
summations, but note that it does not remove this property, it only bypasses it.

In some cases, a scanmap (multthru, expr) may be necessary before the intosum.

lassociative Declaration
declare (g, lassociative) tells the Maxima simplifier that g is left-associative. E.g., g
(g (a, b), g (c, 4)) will simplify to g (g (g (a, b), c), d).

linear Declaration
One of Maxima’s operator properties. For univariate £ so declared, "expansion" f(x +
y) yields f£(x) + £(y), f(a*x) yields a*xf(x) takes place where a is a "constant". For
functions of two or more arguments, "linearity" is defined to be as in the case of sum or
integrate, i.e., f (a*x + b, x) yields a*f (x,x) + b*f(1,x) for a and b free of x.

linear is equivalent to additive and outative. See also opproperties.

mainvar Declaration

You may declare variables to be mainvar. The ordering scale for atoms is essentially:
numbers < constants (e.g., %e, %pi) < scalars < other variables < mainvars. E.g., com-
pare expand ((X+Y)~4) with (declare (x, mainvar), expand ((x+y)~4)). (Note: Care
should be taken if you elect to use the above feature. E.g., if you subtract an expression
in which x is a mainvar from one in which x isn’t a mainvar, resimplification e.g. with ev
(expr, simp) may be necessary if cancellation is to occur. Also, if you save an expression
in which x is a mainvar, you probably should also save x.)

maxapplydepth Option variable
Default value: 10000

maxapplydepth is the maximum depth to which applyl and apply2 will delve.

maxapplyheight Option variable
Default value: 10000

maxapplyheight is the maximum height to which applybl will reach before giving up.

maxnegex Option variable
Default value: 1000

maxnegex is the largest negative exponent which will be expanded by the expand command
(see also maxposex).

maxposex Option variable
Default value: 1000

maxposex is the largest exponent which will be expanded with the expand command (see
also maxnegex).

multiplicative Declaration
declare (f, multiplicative) tells the Maxima simplifier that £ is multiplicative.

1. If £ is univariate, whenever the simplifier encounters £ applied to a product, £ dis-
tributes over that product. E.g., f (x*xy) simplifies to £ (x)*£ (y).



64 Maxima Manual

2. If f is a function of 2 or more arguments, multiplicativity is defined as multiplicativity
in the first argument to £, e.g., £ (g(x) * h(x), x) simplifies to £ (g(x) ,x) * £
(h(x), x).

This simplification does not occur when £ is applied to expressions of the form product
(x[i], i, m, n).

negdistrib Option variable
Default value: true

When negdistrib is true, -1 distributes over an expression. E.g., —(x + y) becomes - y
- x. Setting it to false will allow - (x + y) to be displayed like that. This is sometimes
useful but be very careful: like the simp flag, this is one flag you do not want to set to
false as a matter of course or necessarily for other than local use in your Maxima.

negsumdispflag Option variable
Default value: true

When negsumdispflag is true, x - y displays as x - y instead of as - y + x. Setting it
to false causes the special check in display for the difference of two expressions to not
be done. One application is that thus a + %i*b and a - %i*b may both be displayed the
same way.

noeval Special symbol
noeval suppresses the evaluation phase of ev. This is useful in conjunction with other
switches and in causing expressions to be resimplified without being reevaluated.

noun Declaration
noun is one of the options of the declare command. It makes a function so declared a
"noun", meaning that it won’t be evaluated automatically.

noundisp Option variable
Default value: false

When noundisp is true, nouns display with a single quote. This switch is always true
when displaying function definitions.

nouns Special symbol
nouns is an evflag. When used as an option to the ev command, nouns converts all
"noun" forms occurring in the expression being ev’d to "verbs", i.e., evaluates them. See
also noun, nounify, verb, and verbify.

numer Special symbol
numer causes some mathematical functions (including exponentiation) with numerical ar-
guments to be evaluated in floating point. It causes variables in expr which have been
given numervals to be replaced by their values. It also sets the float switch on.

numerval (x_1, expr_1, ..., var_n, expr-n) Function
Declares the variables x_1, ..., x_n to have numeric values equal to expr_1, ..., expr_n.
The numeric value is evaluated and substituted for the variable in any expressions in which
the variable occurs if the numer flag is true. See also ev.

The expressions expr_1, ..., expr_n can be any expressions, not necessarily numeric.

opproperties System variable
opproperties is the list of the special operator properties recognized by the Maxima sim-
plifier: linear, additive, multiplicative, outative, evenfun, oddfun, commutative,
symmetric, antisymmetric, nary, lassociative, rassociative.



Chapter 7: Simplification 65

opsubst Option variable
Default value: true

When opsubst is false, subst does not attempt to substitute into the operator of an
expression. E.g., (opsubst: false, subst (x"2, r, r+r[0])) will work.

outative Declaration
declare (f, outative) tells the Maxima simplifier that constant factors in the argument
of £ can be pulled out.

1. If £ is univariate, whenever the simplifier encounters £ applied to a product, that
product will be partitioned into factors that are constant and factors that are not
and the constant factors will be pulled out. E.g., f(a*x) will simplify to a*f(x)
where a is a constant. Non-atomic constant factors will not be pulled out.

2. If £ is a function of 2 or more arguments, outativity is defined as in the case of sum
or integrate, i.e., f (a*g(x), x) will simplify to a * £(g(x), x) for a free of x.

sum, integrate, and limit are all outative.

posfun Declaration
declare (f, posfun) declares f to be a positive function. is (f(x) > 0) yields true.

radcan (expr) Function
Simplifies expr, which can contain logs, exponentials, and radicals, by converting it into a
form which is canonical over a large class of expressions and a given ordering of variables;
that is, all functionally equivalent forms are mapped into a unique form. For a somewhat
larger class of expressions, radcan produces a regular form. Two equivalent expressions
in this class do not necessarily have the same appearance, but their difference can be
simplified by radcan to zero.

For some expressions radcan is quite time consuming. This is the cost of exploring certain
relationships among the components of the expression for simplifications based on factoring
and partial-fraction expansions of exponents.

When %e_to_numlog is true, %e” (r*log(expr)) simplifies to expr-r if r is a rational
number.

When radexpand is false, certain transformations are inhibited. radcan (sqrt (1-x))
remains sqrt (1-x) and is not simplified to %i sqrt (x-1). radcan (sqrt (x72 - 2*x +
11)) remains sqrt (x"2 - 2*x + 1) and is not simplified to x - 1.

example (radcan) displays some examples.

radexpand Option variable
Default value: true

radexpand controls some simplifications of radicals.

When radexpand is all, causes nth roots of factors of a product which are powers of n
to be pulled outside of the radical. E.g. if radexpand is all, sqrt (16*x~2) simplifies to
4xx.

More particularly, consider sqrt (x~2).
e [f radexpand is all or assume (x > 0) has been executed, sqrt (x~2) simplifies to x.
o Ifradexpand is true and domain is real (its default), sqrt (x~2) simplifies to abs (x).
e If radexpand is false, or radexpand is true and domain is complex, sqrt(x~2) is
not simplified.

Note that domain only matters when radexpand is true.

radsubstflag Option variable
Default value: false

radsubstflag, if true, permits ratsubst to make substitutions such as u for sqrt (x)
in x.



66 Maxima Manual

rassociative Declaration
declare (g, rassociative) tells the Maxima simplifier that g is right-associative. E.g.,
g(g(a, b), glc, d)) simplifies to g(a, glb, glc, d))).

scsimp (expr, rule_1, ..., rule_n) Function
Sequential Comparative Simplification (method due to Stoute). scsimp attempts to sim-
plify expr according to the rules rule_1, ..., rule_n. If a smaller expression is obtained,
the process repeats. Otherwise after all simplifications are tried, it returns the original
answer.

example (scsimp) displays some examples.

simpsum Option variable
Default value: false

When simpsum is true, the result of a sum is simplified. This simplification may sometimes
be able to produce a closed form. If simpsum is false or if the quoted form ’sum is used,
the value is a sum noun form which is a representation of the sigma notation used in
mathematics.

sumcontract (expr) Function
Combines all sums of an addition that have upper and lower bounds that differ by con-
stants. The result is an expression containing one summation for each set of such sum-
mations added to all appropriate extra terms that had to be extracted to form this sum.
sumcontract combines all compatible sums and uses one of the indices from one of the
sums if it can, and then try to form a reasonable index if it cannot use any supplied.

It may be necessary to do an intosum (expr) before the sumcontract.

sumexpand Option variable
Default value: false

When sumexpand is true, products of sums and exponentiated sums simplify to nested
sums.

See also cauchysum.
Examples:

(%1i1) sumexpand: true$
(%i2) sum (£ (i), i, 0, m) * sum (g (j), j, O, n);

m n
\ \
(%ho2) > > f(i1) g(i2)
/ /
il =01i2 =0
(%1i3) sum (£ (1), i, 0, m)~2;
m m
\ \
(%03) > > £(i3) £(id)

sumsplitfact Option variable
Default value: true

When sumsplitfact is false, minfactorial is applied after a factcomb.



Chapter 7: Simplification 67

symmetric Declaration
declare (h, symmetric) tells the Maxima simplifier that h is a symmetric function. E.g.,
h (x, z, y) simplifies toh (x, y, z).

commutative is synonymous with symmetric.

unknown (expr) Function
Returns true if and only if expr contains an operator or function not recognized by the
Maxima simplifier.



68

Maxima Manual



Chapter 8: Plotting 69

8 Plotting

8.1 Definitions for Plotting

in_netmath Option variable

Default value: false

When in_netmath is true, plot3d prints OpenMath output to the console if plot_format

is openmath; otherwise in_netmath (even if true) has no effect.
in_netmath has no effect on plot2d.

openplot_curves (list, rest_options)
Takes a list of curves such as

[x1, y1, x2, y2, ...], [ul, vi, w2, v2, ...], ..]
or
[[[le yl], [X29 Y2], ~~'], ---]

Function

and plots them. This is similar to xgraph_curves, but uses the open plot routines. Ad-
dtional symbol arguments may be given such as "{xrange -3 4}" The following plots two

curves, using big points, labeling the first one jim and the second one jane.
openplot_curves ([["{plotpoints 1} {pointsize 6} {label jim}

{xaxislabel {joe is nicel}}"], [1, 2, 3, 4, 5, 6, 7, 8],

["{label jane} {color pink }"], [3, 1, 4, 2, 5, 711);

Some other special keywords are xfun, color, plotpoints, linecolors, pointsize,

nolines, bargraph, labelposition, xaxislabel, and yaxislabel.

plot2d (expr, range, ..., options, ...) Function
plot2d (parametric_ eXpr) Function
plot2d (discrete- eXpr) Function
plot2d ([expr_1, ..., expr_n|, x_range, y_range) Function
plot2d ([expr_1, ..., expr_n], x_range) Function
plot2d (expr, X_range y-range) Function
plot2d (expr, X_range) Function
plot2d ([name_1, ..., name_n], x_range, y_range) Function
plot2d ([name_1, ..., name_n], x_range) Function
plot2d (name, X_range y-range) Function
plot2d (name, x_range) Function

Displays a plot of one or more expressions as a function of one variable.

In all cases, expr is an expression to be plotted on the vertical axis as a function of one
variable. x_range, the range of the horizontal axis, is a list of the form [variable, min,
max], where variable is a variable which appears in expr. y_range, the range of the vertical
axis, is a list of the form [y, min, max].

plot2d (expr, x_range) plots expr as a function of the variable named in x_range, over
the range specified in x_range. If the vertical range is not otherwise specified by set_
plot_option, it is chosen automatically. All options are assumed to have default values
unless otherwise specified by set_plot_option.

plot2d (expr, x_range, y_range) plots expr as a function of the variable named in
x_range, over the range specified in x_range. The vertical range is set to y_range. All op-
tions are assumed to have default values unless otherwise specified by set_plot_option.

plot2d ([lexpr_.1, ..., expr.nl, x_range) plots expr_1, ..., expr_n as a function of the
variable named in x_range, over the range specified in x_range. If the vertical range is
not otherwise specified by set_plot_option, it is chosen automatically. All options are
assumed to have default values unless otherwise specified by set_plot_option.

plot2d ([lexpr-1, ..., expr.n], x_range, y_range) plots expr_1, ..., expr_n as a function
of the variable named in x_range, over the range specified in x_range. The vertical range



70

Maxima Manual

is set to y_range. All options are assumed to have default values unless otherwise specified
by set_plot_option.

When the function to be plotted is a function defined in Maxima by := or define, or in
Lisp by DEFUN or DEFMFUN, the function can be specified by name. Functions defined
in Lisp by DEFMSPEC, and simplifying functions, cannot be specified by name; that
includes many built-in functions.

Examples:
Plotting an expression, and setting some commonly-used parameters.

(%11) plot2d (sin(x), [x, -5, 51)%

(%i2) plot2d (sec(x), [x, -2, 21, [y, -20, 20], [nticks, 200]1)$
Plotting functions by name.

(%i1) F(x) :=x"2 $

(%12) :lisp (defun [$gl| (x) (m* x x x))

$g
(%i2) H(x) := if x < 0 then x"4 - 1 else 1 - x°5 $

(%13) plot2d (F, [u, -1, 11D$

(%i4) plot2d ([F, G, HI, [u, -1, 11)$

Anywhere there may be an ordinary expression, there may be a parametric expression:
parametric_expr is a list of the form [parametric, x_expr, y_expr, t_-range, options].
Here x_expr and y_expr are expressions of 1 variable var which is the first element of the
range trange. The plot is of the path traced out by the pair [x_expr, y_expr] as var varies
in trange.

In the following example, we plot a circle, then we do the plot with only a few points used,
so that we get a star, and finally we plot this together with an ordinary function of X.

Examples:
e Plot a circle with a parametric plot.
(%11) plot2d ([parametric, cos(t), sin(t), [t, -%pix2, %pix2],
[nticks, 80]1)$
e Plot a star: join eight points on the circumference of a circle.
(%i2) plot2d ([parametric, cos(t), sin(t), [t, -Upi*2, %pix2],
[nticks, 811)$
e Plot a cubic polynomial with an ordinary plot and a circle with a parametric plot.
(%i3) plot2d ([x"3 + 2, [parametric, cos(t), sin(t), [t, -5, 5],
[nticks, 80111, [x, -3, 31)$

Discrete expressions may also be used instead or ordinary or parametric expressions: dis-
crete_expr is a list of the form [discrete, x_list, y_list] or [discrete, xy_list], where
xy_list is a list of [x,y] pairs.

Examples:
e Create some lists.
(%i1) xx:makelist(x,x,0,10)$
(%12) yy:makelist(exp(-x*1.0),x,0,10)$
(%13) xy:makelist([x,x*x],x,0,5)$

e Plot with line segments.
(%14) plot2d([discrete,xx,yyl)$
e Plot with line segments, using a list of pairs.
(%15) plot2d([discrete,xy]l)$
e Plot with points.

(%16) plot2d([discrete,xx,yy]l, [gnuplot_curve_styles, ["with points"]]1)$



Chapter 8: Plotting 71

e Plot the curve cos(x) using lines and (xx,yy) using points.

plot2d([cos(x), [discrete,xx,yyl], [x,0,10], [gnuplot_curve_styles, ["with lines

See also plot_options, which describes plotting options and has more examples.

xgraph_curves (list) Function

graphs the list of ‘point sets’ given in list by using xgraph.
A point set may be of the form
[x0, yoO, x1, yi, x2, y2, ...]
or
[[x0, yOoI, [x1, yil, ...]
A point set may also contain symbols which give labels or other information.
xgraph_curves ([pt_setl, pt_set2, pt_set3]);
graph the three point sets as three curves.
pt_set: append (["NoLines: True", "LargePixels: true"], [x0, yO, x1, yi,

would make the point set [and subsequent ones|, have no lines between points, and to use
large pixels. See the man page on xgraph for more options to specify.

pt_set: append ([concat ("\"", "x"2+y")], [x0, yO, x1, yi, ...1);

would make there be a "label" of "x~2+y" for this particular point set. The " at the
beginning is what tells xgraph this is a label.

pt_set: append ([concat ("TitleText: Sample Data")], [x0, ...1)$
would make the main title of the plot be "Sample Data" instead of "Maxima Plot".

To make a bar graph with bars which are 0.2 units wide, and to plot two possibly different
such bar graphs:

xgraph_curves ([append (["BarGraph: true", "NoLines: true", "BarWidth:
create_list ([1 - .2, i°2], i, 1, 3)),
append (["BarGraph: true", "NoLines: true", "BarWidth: .2"],
create_list ([1i + .2, .7xi"2], i, 1, 3))1);
A temporary file ‘xgraph-out’ is used.
plot_options System variable

Elements of this list state the default options for plotting. If an option is present in a
plot2d or plot3d call, that value takes precedence over the default option. Otherwise,
the value in plot_options is used. Default options are assigned by set_plot_option.

Each element of plot_options is a list of two or more items. The first item is the name
of an option, and the remainder comprises the value or values assigned to the option. In
some cases the, the assigned value is a list, which may comprise several items.

The plot options which are recognized by plot2d and plot3d are the following:

e Option: plot_format determines which plotting package is used by plot2d and
plot3d.

e Default value: gnuplot Gnuplot is the default, and most advanced, plotting
package. It requires an external gnuplot installation.

e Value: mgnuplot Mgnuplot is a Tk-based wrapper around gnuplot. It is included
in the Maxima distribution. Mgnuplot offers a rudimentary GUI for gnuplot, but
has fewer overall features than the plain gnuplot interface. Mgnuplot requires an
external gnuplot installation and Tcl/Tk.

e Value: openmath Openmath is a Tcl/Tk GUI plotting program. It is included in
the Maxima distribution.

e Value: ps Generates simple PostScript files directly from Maxima. Much more
sophisticated PostScript output can be generated from gnuplot, by leaving the
option plot_format unspecified (to accept the default), and setting the option
gnuplot_term to ps.

D

.2"] s



72

Maxima Manual

Option: run_viewer controls whether or not the appropriate viewer for the plot
format should be run.

e Default value: true Execute the viewer program.
e Value: false Do not execute the viewer program.
gnuplot_term Sets the output terminal type for gnuplot.

e Default value: default Gnuplot output is displayed in a separate graphical win-
dow.

e Value: dumb Gnuplot output is displayed in the Maxima console by an "ASCII
art" approximation to graphics.

e Value: ps Gnuplot generates commands in the PostScript page description lan-
guage. If the option gnuplot_out_file is set to filename, gnuplot writes the
PostScript commands to filename. Otherwise, the commands are printed to the
Maxima console.

Option: gnuplot_out_file Write gnuplot output to a file.
e Default value: false No output file specified.

e Value: filename Example: [gnuplot_out_file, "myplot.ps"] This example
sends PostScript output to the file myplot.ps when used in conjunction with the
PostScript gnuplot terminal.

Option: x The default horizontal range.
[x, - 3, 3]

Sets the horizontal range to [-3, 3.

Option: y The default vertical range.
[y, - 3, 3]

Sets the vertical range to [-3, 3].

Option: t The default range for the parameter in parametric plots.
[t, 0, 10]

Sets the parametric variable range to [0, 10].

Option: nticks Initial number of points used by the adaptive plotting routine.
[nticks, 20]

The default for nticks is 10.

Option: adapt_depth The maximum number of splittings used by the adaptive plot-
ting routine.

[adapt_depth, 5]
The default for adapt_depth is 10.

Option: grid Sets the number of grid points to use in the x- and y-directions for
three-dimensional plotting.

[grid, 50, 50]
sets the grid to 50 by 50 points. The default grid is 30 by 30.

Option: transform_xy Allows transformations to be applied to three-dimensional
plots.

[transform_xy, false]
The default transform_xy is false. If it is not false, it should be the output of
make_transform ([x, y, zl, fi(x, y, z), f2(x, y, z), £3(x, y, z))$
The polar_xy transformation is built in. It gives the same transformation as
make_transform ([r, th, z], r*cos(th), r*sin(th), z)$
Option: colour_z is specific to the ps plot format.
[colour_z, truel
The default value for colour_z is false.
Option: view_direction Specific to the ps plot format.



Chapter 8: Plotting 73

[view_direction, 1, 1, 1]
The default view_direction is [1, 1, 1].

There are several plot options specific to gnuplot. All of these options (except gnuplot_
pm3d) are raw gnuplot commands, specified as strings. Refer to the gnuplot documentation
for more details.

Option: gnuplot_pm3d Controls the usage PM3D mode, which has advanced 3D
features. PM3D is only available in gnuplot versions after 3.7. The default value for
gnuplot_pm3d is false.

Example:
[gnuplot_pm3d, true]

Option: gnuplot_preamble Inserts gnuplot commands before the plot is drawn. Any
valid gnuplot commands may be used. Multiple commands should be separated with
a semi-colon. The example shown produces a log scale plot. The default value for
gnuplot_preamble is the empty string "".

Example:
[gnuplot_preamble, "set log y"]

Option: gnuplot_curve_titles Controls the titles given in the plot key. The default
value is [default], which automatically sets the title of each curve to the function
plotted. If not [default], gnuplot_curve_titles should contain a list of strings,
each of which is "title ’title_string’". (To disable the plot key, add "set nokey"
to gnuplot_preamble.)

Example:

[gnuplot_curve_titles, ["title ’My first function’", "title ’My second funct

Option: gnuplot_curve_styles A list of strings controlling the appearance of curves,
i.e., color, width, dashing, etc., to be sent to the gnuplot plot command. The
default value is ["with lines 3", "with lines 1", "with lines 2", "with lines
5", "with lines 4", "with lines 6", "with lines 7"], which cycles through dif-
ferent colors. See the gnuplot documentation for plot for more information.
Example:

[gnuplot_curve_styles, ["with lines 7", "with lines 2"]]
Option: gnuplot_default_term_command The gnuplot command to set the terminal
type for the default terminal. The default value is the empty string "", i.e., use
gnuplot’s default.
Example:

[gnuplot_default_term_command, "set term x11"]
Option: gnuplot_dumb_term_command The gnuplot command to set the terminal
type for the dumb terminal. The default value is "set term dumb 79 22", which
makes the text output 79 characters by 22 characters.
Example:

[gnuplot_dumb_term_command, "set term dumb 132 50"]
Option: gnuplot_ps_term_command The gnuplot command to set the terminal type
for the PostScript terminal. The default value is "set size 1.5, 1.5;set term
postscript eps enhanced color solid 24", which sets the size to 1.5 times gnu-
plot’s default, and the font size to 24, among other things. See the gnuplot documen-
tation for set term postscript for more information.
Example:

[gnuplot_ps_term_command, "set term postscript eps enhanced color

Examples:

Saves a plot of sin(x) to the file sin.eps.
plot2d (sin(x), [x, 0, 2x%pil, [gnuplot_term, ps], [gnuplot_out_file,

Uses the y option to chop off singularities and the gnuplot_preamble option to put
the key at the bottom of the plot instead of the top.

solid 18"]

"sin.eps".



74 Maxima Manual

plot2d ([gamma(x), 1/gamma(x)], [x, -4.5, 51, [y, -10, 10], [gnuplot_preamble,

e Uses a very complicated gnuplot_preamble to produce fancy x-axis labels. (Note
that the gnuplot_preamble string must be entered without any line breaks.)

my_preamble: "set xzeroaxis; set xtics (’-2pi’ -6.283, ’-3pi/2’ -4.712, ’-pi’ -

plot2d ([cos(x), sin(x), tan(x), cot(x)], [x, -2*Jpi, 2*%pil,
[y, -2, 2], [gnuplot_preamble, my_preamble]);

e Uses a very complicated gnuplot_preamble to produce fancy x-axis labels, and pro-
duces PostScript output that takes advantage of the advanced text formatting avail-
able in gnuplot. (Note that the gnuplot_preamble string must be entered without
any line breaks.)

my_preamble: "set xzeroaxis; set xtics (’-2{/Symbol p}’ -6.283, ’-3{/Symbol p}/:

plot2d ([cos(x), sin(x), tan(x)], [x, -2*%pi, 2*%pil, [y, -2, 21,

[gnuplot_preamble, my_preamble], [gnuplot_term, ps], [gnuplot_out_file, "tr:

e A three-dimensional plot using the gnuplot pm3d terminal.

plot3d (atan (-x"2 + y~3/4), [x, -4, 4], [y, -4, 4], [grid, 50, 50], [gnuplot_p:

e A three-dimensional plot without a mesh and with contours projected on the bottom
plane.

my_preamble: "set pm3d at s;unset surface;set contour;set cntrparam levels 20;u

plot3d (atan (-x"2 + y~3/4), [x, -4, 41, [y, -4, 41, [grid, 50, 50],
[gnuplot_pm3d, truel], [gnuplot_preamble, my_preamble])$

e A plot where the z-axis is represented by color only. (Note that the gnuplot_preamble
string must be entered without any line breaks.)

plot3d (cos (-x"2 + y~3/4), [x, -4, 41, [y, -4, 4],

[gnuplot_preamble, "set view map; unset surface"], [gnuplot_pm3d, truel, [g

plot3d (expr, x_range, y_range, ..., options, ...) Function
plot3d (name, x_range, y_range, ..., options, ...) Function
plot3d ([expr_1, expr_2, expr_3], x_rge, y_rge) Function
plot3d ([name_1, name_2, name_3], x_range, y_range, ..., options, ...) Function

Displays a plot of one or three expressions as functions of two variables.
plotdd (2°(-u"2 + v°2), [u, -5, 5], [v, -7, 71);
plots z = 27 (-u~2+v"2) with u and v varying in [-5,5] and [-7,7] respectively, and with u
on the x axis, and v on the y axis.
An example of the third pattern of arguments is
plot3d ([cos(x)*(3 + yxcos(x/2)), sin(x)*(3 + y*cos(x/2)), y*sin(x/2)],
[x, -%pi, %pil, [y, -1, 11, [’grid, 50, 15]1);
which plots a Moebius band, parametrized by the three expressions given as the first

argument, to plot3d. An additional optional argument [’grid, 50, 15] gives the grid
number of rectangles in the x direction and y direction.

When the function to be plotted is a function defined in Maxima by := or define, or in
Lisp by DEFUN or DEFMFUN, the function can be specified by name. Functions defined
in Lisp by DEFMSPEC, and simplifying functions, cannot be specified by name; that
includes many built-in functions.

This example shows a plot of the real part of z~1/3.

plot3d (r~.33*cos(th/3), [r, 0, 1], [th, 0, 6x*%pil,
[’grid, 12, 80], [’plot_format, ps],
[’transform_xy, polar_to_xyl, [’view_direction, 1, 1, 1.4],
[’colour_z, truel);
Here the view_direction option indicates the direction from which we take a projection.
We actually do this from infinitely far away, but parallel to the line from view_direction

to the origin. This is currently only used in ps plot_format, since the other viewers allow
interactive rotating of the object.

Another example is a Klein bottle:



Chapter 8: Plotting 75

expr_1: 5*cos(x)*(cos(x/2)*cos(y) + sin(x/2)*sin(2xy) + 3.0) - 10.0;
expr_2: -5*xsin(x)*(cos(x/2)*cos(y) + sin(x/2)*sin(2*y) + 3.0);
expr_3: 5*(-sin(x/2)*cos(y) + cos(x/2)*sin(2*y));

plot3d ([expr_1, expr_2, expr_3], [x, -%pi, %pil, [y, -%pi, %pil, [’grid, 40, 4
or a torus

expr_1: cos(y)*(10.0+6*cos(x));

expr_2: sin(y)*(10.0+6%cos(x));

expr_3: -6*sin(x);

plot3d ([expr_1, expr_2, expr_3], [x, 0, 2x%pil, [y, O, 2xY%pil, [’grid, 40, 40]
We can output to gnuplot too:

plot3d (2°(x"2 - y°2), [x, -1, 11, [y, -2, 2], [plot_format, gnuplot]);
Sometimes you may need to define a function to plot the expression. All the arguments to
plot3d are evaluated before being passed to plot3d, and so trying to make an expression
which does just what you want may be difficult, and it is just easier to make a function.

M: matrix([1, 2, 3, 4], [1, 2, 3, 2], [1, 2, 3, 4], [1, 2, 3, 3])$

f(x, y) := float (M [?round(x), 7round(y)])$

plot3d (f, [x, 1, 41, [y, 1, 41, [’grid, 4, 41)$
See plot_options for more examples.

make_transform (vars, fx, fy, fz) Function
Returns a function suitable for the transform function in plot3d. Use with the plot option
transform_xy.
make_transform ([r, th, z], r*cos(th), r*sin(th), z)$
is a transformation to polar coordinates.

plot2d_ps (expr, range) Function
Writes to pstream a sequence of PostScript commands which plot expr over range.

expr is an expression. range is a list of the form [x, min, max] in which x is a variable
which appears in expr.

See also closeps.

closeps () Function
This should usually becalled at the end of a sequence of plotting commands. It closes the
current output stream pstream, and sets it to nil. It also may be called at the start of a
plot, to ensure pstream is closed if it was open. All commands which write to pstream,
open it if necessary. closeps is separate from the other plotting commands, since we may
want to plot 2 ranges or superimpose several plots, and so must keep the stream open.

set_plot_option (option) Function
Assigns one of the global variables for plotting. option is specified as a list of two or more
elements, in which the first element is one of the keywords on the plot_options list.
set_plot_option evaluates its argument. set_plot_option returns plot_options (after
modifying one of its elements).
See also plot_options, plot2d, and plot3d.
Examples:
Modify the grid and x values. When a plot_options keyword has an assigned value,
quote it to prevent evaluation.
(%1i1) set_plot_option ([grid, 30, 40]);
(%o1) [[x, - 1.755559702014E+305, 1.755559702014E+305],
[y, - 1.755559702014E+305, 1.755559702014E+305], [t, - 3, 3],
[grid, 30, 40], [view_direction, 1, 1, 1], [colour_z, false],
[transform_xy, false]l, [run_viewer, true],



76

Maxima Manual

[plot_format, gnuplot], [gnuplot_term, default],
[gnuplot_out_file, falsel, [nticks, 10], [adapt_depth, 10],
[gnuplot_pm3d, false], [gnuplot_preamble, ],
[gnuplot_curve_titles, [default]],

[gnuplot_curve_styles, [with lines 3, with lines 1,

with lines 2, with lines 5, with lines 4, with lines 6,
with lines 7]], [gnuplot_default_term_command, ],
[gnuplot_dumb_term_command, set term dumb 79 22],
[gnuplot_ps_term_command, set size 1.5, 1.5;set term postscript #
eps enhanced color solid 24]]

(%i2) x: 42;

(ho2) 42

(%1i3) set_plot_option ([’x, -100, 100]);

(%03) [[x, - 100.0, 100.0], [y, - 1.7556559702014E+305,
1.755559702014E+305], [t, - 3, 3], [grid, 30, 40],
[view_direction, 1, 1, 1], [colour_z, false],
[transform_xy, false]l, [run_viewer, true],

[plot_format, gnuplot], [gnuplot_term, default],
[gnuplot_out_file, falsel, [nticks, 10], [adapt_depth, 10],
[gnuplot_pm3d, false], [gnuplot_preamble, ],
[gnuplot_curve_titles, [default]],

[gnuplot_curve_styles, [with lines 3, with lines 1,

with lines 2, with lines 5, with lines 4, with lines 6,
with lines 7]], [gnuplot_default_term_command, ],
[gnuplot_dumb_term_command, set term dumb 79 22],
[gnuplot_ps_term_command, set size 1.5, 1.5;set term postscript #
eps enhanced color solid 24]]

psdraw_curve (ptlist) Function

Draws a curve connecting the points in ptlist. The latter may be of the form [x0, yO,
x1, y1, ...]1 or [[x0, yO], [x1, y11, ...]

The function join is handy for taking a list of x’s and a list of y’s and splicing them
together.

psdraw_curve simply invokes the more primitive function pscurve. Here is the definition:

(defun $psdraw_curve (lis)
(p "newpath")
($pscurve 1lis)
(p "stroke"))

pscom (cmd) Function

cmd is inserted in the PostScript file. Example:

pscom ("4.5 72 mul 5.5 72 mul translate 14 14 scale");



Chapter 9: Input and Output 7

9 Input and Output

9.1 Introduction to Input and Output

9.2 Files

A file is simply an area on a particular storage device which contains data or text. Files on
the disks are figuratively grouped into "directories". A directory is just a list of files. Com-
mands which deal with files are: save, load, loadfile, stringout, batch, demo, writefile,
closefile, and appendfile.

9.3 Definitions for Input and Output

_ System variable
_ is the input expression currently being evaluated. That is, while an input expression
expr is being evaluated is expr.

PR——

__ is assigned the input expression before the input is simplified or evaluated. However,
the value of __ is simplified (but not evaluated) when it is displayed.

__ is recognized by batch, but not by load.
See also _ and %.
Examples:

(%1i1) print ("I was called as", __);
I was called as print(I was called as, __)

(%o1) print (I was called as, __)

(%i2) foo (__);

(%02) foo(foo(__))

(%13) g (x) := (print ("Current input expression =", __), 0);
(%03) g(x) := (print("Current input expression =", __), 0)
(%i4) [aa : 1, bb : 2, cc : 3];

(%04) [1, 2, 3]

(%15) (aa + bb + cc)/(dd + ee + g(x));
cc + bb + aa
Current input expression = —-—-—------—-————-

GoB) e

- System variable
_ is the most recent input expression (e.g., %il, %i2, %i3, ...).
_ is assigned the input expression before the input is simplified or evaluated. However,
the value of _ is simplified (but not evaluated) when it is displayed.
_ is recognized by batch, but not by load.
See also __ and .
Examples:
(%i1) 13 + 29;
(hol) 42
(%i2) :lisp $_
((MPLUS) 13 29)
hi2) _;
(%ho2) 42
(%i3) sin (hpi/2);



78 Maxima Manual

(%03) 1
(%i4) :lisp $_

((%SIN) ((MQUOTIENT) $%PI 2))
(%id) _;

(%o4) 1
(%i5) a: 13%

(%i6) b: 29%

(5i7) a + b;

(%oT) 42
(%18) :lisp $_

((MPLUS) $A $B)

(%i8) _;
(%08) b+ a
(%19) a + b;
(%09) 42
(%110) ev (L)
(%010) 42
% System variable

% is the output expression (e.g., %01, %02, %03, ...) most recently computed by Maxima,
whether or not it was displayed.

% is recognized by batch, but not by load.
See also _, %%, and %th.

%% System variable
In compound statements, namely block, lambda, or (s_1, ..., s.n), %% is the value of
the previous statement. For example,

block (integrate (x°5, x), ev (%h, x=2) - ev (h%, x=1));
block ([prev], prev: integrate (x5, x), ev (prev, x=2) - ev (prev, x=1));

yield the same result, namely 21/2.

A compound statement may comprise other compound statements. Whether a statement
be simple or compound, %% is the value of the previous statement. For example,

block (block (a"n, %%h*42), %%h/6)
yields 7*a"n.

Within a compound statement, the value of %% may be inspected at a break prompt, which
is opened by executing the break function. For example, at the break prompt opened by

block (a: 42, break ())$
entering %%; yields 42.

At the first statement in a compound statement, or outside of a compound statement, %%
is undefined.

%% is recognized by both batch and load.
See also %.

Y%edispflag Option variable
Default value: false

When %edispflag is true, Maxima displays %e to a negative exponent as a quotient. For
example, %e”-x is displayed as 1/%e"x.

%th (i) Function
The value of the i’th previous output expression. That is, if the next expression to be
computed is the n’th output, %th (m) is the (n - m)’th output.

%th is useful in batch files or for referring to a group of output expressions. For example,



Chapter 9: Input and Output 79

non

block (s: 0, for i:1 thru 10 do s: s + %th (i))$
sets s to the sum of the last ten output expressions.
%th is recognized by batch, but not by load.

See also %.

Special symbol
As prefix to a function or variable name, ? signifies that the name is a Lisp name, not a
Maxima name. For example, ?round signifies the Lisp function ROUND. See Section 3.2
[Lisp and Maxima|, page 9 for more on this point.

The notation ? word (a question mark followed a word, separated by whitespace) is equiv-
alent to describe ("word").

absboxchar Option variable

Default value: !

absboxchar is the character used to draw absolute value signs around expressions which
are more than one line tall.

file_output_append Option variable

Default value: false

file_output_append governs whether file output functions append or truncate their out-
put file. When file_output_append is true, such functions append to their output file.
Otherwise, the output file is truncated.

save, stringout, and with_stdout respect file_output_append. Other functions which
write output files do not respect file_output_append. In particular, plotting and trans-
lation functions always truncate their output file, and tex and appendfile always append.

appendfile (filename) Function

Appends a console transcript to filename. appendfile is the same as writefile, except
that the transcript file, if it exists, is always appended.

closefile closes the transcript file opened by appendfile or writefile.

batch (filename) Function

Reads Maxima expressions from filename and evaluates them. batch searches for filename
in the list file_search_maxima. See file_search.

filename comprises a sequence of Maxima expressions, each terminated with ; or $. The
special variable % and the function %th refer to previous results within the file. The file
may include :1isp constructs. Spaces, tabs, and newlines in the file are ignored. A
suitable input file may be created by a text editor or by the stringout function.

batch reads each input expression from filename, displays the input to the console, com-
putes the corresponding output expression, and displays the output expression. Input
labels are assigned to the input expressions and output labels are assigned to the output
expressions. batch evaluates every input expression in the file unless there is an error. If
user input is requested (by asksign or askinteger, for example) batch pauses to collect
the requisite input and then continue.

It may be possible to halt batch by typing control-C at the console. The effect of
control-C depends on the underlying Lisp implementation.

batch has several uses, such as to provide a reservoir for working command lines, to give
error-free demonstrations, or to help organize one’s thinking in solving complex problems.

batch evaluates its argument. batch has no return value.

See also load, batchload, and demo.



80 Maxima Manual

batchload (filename) Function
Reads Maxima expressions from filename and evaluates them, without displaying the input
or output expressions and without assigning labels to output expressions. Printed output
(such as produced by print or describe) is displayed, however.

The special variable % and the function %th refer to previous results from the interactive
interpreter, not results within the file. The file cannot include :1isp constructs.

batchload returns the path of filename, as a string. batchload evaluates its argument.
See also batch and load.

closefile () Function
Closes the transcript file opened by writefile or appendfile.

collapse (expr) Function
Collapses expr by causing all of its common (i.e., equal) subexpressions to share (i.e., use
the same cells), thereby saving space. (collapse is a subroutine used by the optimize
command.) Thus, calling collapse may be useful after loading in a save file. You

can collapse several expressions together by using collapse ([expr_1, ..., expr.n]).
Similarly, you can collapse the elements of the array A by doing collapse (listarray
(’A)).

concat (arg_1, arg_2, ...) Function

Concatenates its arguments. The arguments must evaluate to atoms. The return value is
a symbol if the first argument is a symbol and a Maxima string otherwise.

concat evaluates its arguments. The single quote ’ prevents evaluation.
(%i1) y: 7%
(%12) z: 88$
(%13) concat (y, z/2);

(%03) 744
(%i4) concat (’y, z/2);
(ho4d) y44

A symbol constructed by concat may be assigned a value and appear in expressions. The
:: (double colon) assignment operator evaluates its left-hand side.

(%i5) a: concat (’y, z/2);

(%05) a4
(%i6) a:: 123;
(%o6) 123
(%iT) ya4;
(%o7) 123
(%i8) b a;

ya44
(%08) b
(%19) %, numer;

123
(%09) b

Note that although concat (1, 2) looks like a number, it is a Maxima string.
(%110) concat (1, 2) + 3;

(%010) 12 + 3
sconcat (arg_1, arg_2, ...) Function
Concatenates its arguments into a string. Unlike concat, the arguments do not need to
be atoms.

The result is a Lisp string.

(%i1) sconcat ("xx[", 3, "]:", expand ((x+y)~3));
(ho1) xx [3] 1y~ 3+3*x*y " 2+3%x " 2%y+x"3



Chapter 9: Input and Output 81

disp (expr_1, expr_2, ...) Function
is like display but only the value of the arguments are displayed rather than equations.
This is useful for complicated arguments which don’t have names or where only the value
of the argument is of interest and not the name.

dispcon (tensor_1, tensor.2, ...) Function

dispcon (all) Function
Displays the contraction properties of its arguments as were given to defcon. dispcon
(all) displays all the contraction properties which were defined.

display (expr_1, expr_2, ...) Function
Displays equations whose left side is expr_i unevaluated, and whose right side is the value
of the expression centered on the line. This function is useful in blocks and for statements
in order to have intermediate results displayed. The arguments to display are usually
atoms, subscripted variables, or function calls. See also disp.

(%i1) display(B[1,2]1);

(%o1) done

display2d Option variable
Default value: true

When display2d is false, the console display is a string (1-dimensional) form rather
than a display (2-dimensional) form.

display_format_internal Option variable
Default value: false

When display_format_internal is true, expressions are displayed without being trans-
formed in ways that hide the internal mathematical representation. The display then
corresponds to what inpart returns rather than part.

Examples:
User part inpart
a-b; A-B A+ (1B
A -1
a/b; - A B
B
1/2

sqrt(x);  sqrt(X) X

4 X 4
X*4/3; -—= - X
3 3

dispterms (expr) Function

Displays expr in parts one below the other. That is, first the operator of expr is displayed,
then each term in a sum, or factor in a product, or part of a more general expression is
displayed separately. This is useful if expr is too large to be otherwise displayed. For
example if P1, P2, ... are very large expressions then the display program may run out of
storage space in trying to display P1 + P2 + ... all at once. However, dispterms (P1 +
P2 + ...) displays P1, then below it P2, etc. When not using dispterms, if an exponential
expression is too wide to be displayed as A"B it appears as expt (A, B) (or as ncexpt (A,
B) in the case of A~"B).



82 Maxima Manual

error_size Option variable
Default value: 10

error_size modifies error messages according to the size of expressions which appear in
them. If the size of an expression (as determined by the Lisp function ERROR-SIZE) is
greater than error_size, the expression is replaced in the message by a symbol, and the
symbol is assigned the expression. The symbols are taken from the list error_syms.

Otherwise, the expression is smaller than error_size, and the expression is displayed in
the message.

See also error and error_syms.

Example:

The size of U, as determined by ERROR-SIZE, is 24.
(%i1) U: (C°D°E + B + A)/(cos(X-1) + 1)$

(%i2) error_size: 20%
(%13) error ("Example expression is", U);

Example expression is errexpl
-- an error. Quitting. To debug this try debugmode(true);
(%14) errexpl;

%od) e
cos(X - 1) +1
(%1i5) error_size: 30%

(%i6) error ("Example expression is", U);

Example expression is ————-————--——---—
cos(X - 1) + 1
-- an error. Quitting. To debug this try debugmode(true);

error_syms Option variable

Default value: [errexpl, errexp2, errexp3]

In error messages, expressions larger than error_size are replaced by symbols, and the
symbols are set to the expressions. The symbols are taken from the list error_syms. The
first too-large expression is replaced by error_syms[1], the second by error_syms[2],
and so on.

If there are more too-large expressions than there are elements of error_syms, symbols
are constructed automatically, with the n-th symbol equivalent to concat (’errexp, n).

See also error and error_size.

expt (a, b) Function
If an exponential expression is too wide to be displayed as a™b it appears as expt (a, b)
(or as ncexpt (a, b) in the case of a~~b).

expt and ncexpt are not recognized in input.

exptdispflag Option variable
Default value: true
When exptdispflag is true, Maxima displays expressions with negative exponents using
quotients, e.g., X~ (-1) as 1/X.



Chapter 9: Input and Output 83

filename_merge (path, filename) Function
Constructs a modified path from path and filename. If the final component of path is of
the form ###.something, the component is replaced with filename. something. Otherwise,
the final component is simply replaced by filename.

file_search (filename) Function
file_search (filename, pathlist) Function
file_search searches for the file filename and returns the path to the file (as a string) if
it can be found; otherwise file_search returns false. file_search (filename) searches
in the default search directories, which are specified by the file_search_maxima, file_
search_lisp, and file_search_demo variables.

file_search first checks if the actual name passed exists, before attempting to match it to
“wildcard” file search patterns. See file_search_maxima concerning file search patterns.

The argument filename can be a path and file name, or just a file name, or, if a file
search directory includes a file search pattern, just the base of the file name (without an
extension). For example,

file_search ("/home/wfs/special/zeta.mac");
file_search ("zeta.mac");
file_search ("zeta");

all find the same file, assuming the file exists and /home/wfs/special/###.mac is in
file_search_maxima.

file_search (filename, pathlist) searches only in the directories specified by pathlist,
which is a list of strings. The argument pathlist supersedes the default search directories,
so if the path list is given, file_search searches only the ones specified, and not any of
the default search directories. Even if there is only one directory in pathlist, it must still
be given as a one-element list.

The user may modify the default search directories. See file_search_maxima.

file_search is invoked by load with file_search_maxima and file_search_lisp as
the search directories.

file_search_maxima Option variable
file_search_lisp Option variable
file_search_demo Option variable

These variables specify lists of directories to be searched by load, demo, and some other
Maxima functions. The default values of these variables name various directories in the
Maxima installation.

The user can modify these variables, either to replace the default values or to append
additional directories. For example,

file_search_maxima: ["/usr/local/foo/###.mac",
"/usr/local/bar/### .mac"]$

replaces the default value of file_search_maxima, while

file_search_maxima: append (file_search_maxima,
["/usr/local/foo/###.mac", "/usr/local/bar/###.mac"])$

appends two additional directories. It may be convenient to put such an expression in the
file maxima-init.mac so that the file search path is assigned automatically when Maxima
starts.

Multiple filename extensions and multiple paths can be specified by special “wildcard” con-
structions. The string ### expands into the sought-after name, while a comma-separated
list enclosed in curly braces {foo,bar,baz} expands into multiple strings. For example,
supposing the sought-after name is neumann,

"/home/{wfs,gcj}/###.{lisp,mac}"

expands into /home/wfs/neumann.lisp, /home/gcj/neumann.lisp,
/home/wfs/neumann.mac, and /home/gcj/neumann.mac.



84 Maxima Manual

file_type (filename) Function
Returns a guess about the content of filename, based on the filename extension. filename
need not refer to an actual file; no attempt is made to open the file and inspect the content.

The return value is a symbol, either object, lisp, or maxima. If the extension starts
with m or d, file_type returns maxima. If the extension starts with 1, file_type returns
lisp. If none of the above, file_type returns object.

grind (expr) Function

grind Option variable
The function grind prints expr to the console in a form suitable for input to Maxima.
grind always returns done.

When expr is the name of a function or macro, grind prints the function or macro
definition instead of just the name.

See also string, which returns a string instead of printing its output. grind attempts to
print the expression in a manner which makes it slightly easier to read than the output of
string.

When the variable grind is true, the output of string and stringout has the same
format as that of grind; otherwise no attempt is made to specially format the output of
those functions. The default value of the variable grind is false.

grind can also be specified as an argument of playback. When grind is present, playback
prints input expressions in the same format as the grind function. Otherwise, no attempt
is made to specially format input expressions.

grind evaluates its argument.

Examples:

(%i1) aa + 1729;
(%o1) aa + 1729
(%i2) grind (%);
aa+1729%
(%02) done
(%i3) [aa, 1729, aa + 1729];
(%03) [aa, 1729, aa + 1729]
(%i4) grind (%) ;
[aa,1729,aa+1729]$
(%04) done
(%i5) matrix ([aa, 17], [29, bbl);
[ aa 17 ]
(%05) [ ]
[ 29 bb ]
(%i6) grind () ;
matrix([aa,17],[29,bb])$
(%06) done
(%i7) set (aa, 17, 29, bb);
(%oT) {17, 29, aa, bb}
(%i8) grind (%);
{17,29,aa,bb}$
(%08) done
(%19) exp (aa / (bb + 17)729);

aa
29
(bb + 17)
(%09) e
(%110) grind () ;
%e” (aa/ (bb+17) "29)$
(%010) done

(%111) expr: expand ((aa + bb)~10);



Chapter 9: Input and Output 85

10 9 2 8 3 7 4 6
(%011) bb  + 10 aa bb + 45 aa bb + 120 aa bb + 210 aa bb
5 5 6 4 7 3 8 2
+ 252 aa bb + 210 aa bb + 120 aa bb + 45 aa bb
9 10

+ 10 aa bb + aa
(%112) grind (expr);
bb~10+10*aa*xbb~9+45%aa~2*xbb~8+120*aa~3*bb~7+210*aa"~4*xbb”~6
+252%aa " b*xbb~"5+210%aa”~6*bb~4+120*aa”7*bb~3+45%aa”~8*bb"2
+10*aa”9*bb+aa~10$

(%012) done
(%113) string (expr);
(%013) bb~10+10*aa*bb~9+45%aa”~2xbb~8+120*%aa”3*bb"~7+210*aa"~4*xbb~6\
+252%aa”~5*bb~5+210*%aa”~6*bb"4+120*aa”7*bb~3+45%aa~8*bb"2+10*aa”~ 9%\
bb+aa”10
(%114) cholesky (A):= block ([n : length (A), L : copymatrix (4),
p : makelist (0, i, 1, length (A))], for i thru n do for j : i thru n do
(x : L[i, jl, x : x - sum (L[j, k] * L[i, k], k, 1, i - 1), if i = j then
plil : 1 / sqrt(x) else L[j, il : x * p[il), for i thru n do L[i, il : 1 / pl[il
for i thru n do for j : i + 1 thru n do L[i, j] : 0, L)$
(%115) grind (cholesky);
cholesky(A) :=block(

[n:length(A),L:copymatrix(4),

p:makelist(0,i,1,length(A))],

for i thru n do

(for j from i thru n do
(x:L[1,j],x:x-sum(L[j,k]*L[1i,k],k,1,i-1),
if i = j then p[i]:1/sqrt(x)
else L[j,i]:xxp[il)),

for i thru n do L[i,i]:1/pl[i],

for i thru n do (for j from i+l thru n do L[i,j]:0),L)$
(%ho1b) done
(%116) string (fundef (cholesky));
(%016) cholesky(A) :=block([n:length(A),L:copymatrix(A),p:makelis\
t(0,1i,1,length(A))],for i thru n do (for j from i thru n do (x:L\
[i,j],x:x-sum(L[j,k]*L[i,k],k,1,i-1),if i = j then p[i]:1/sqrt(x\
) else L[j,i]l:x*p[il)),for i thru n do L[i,i]l:1/pl[il,for i thru \
n do (for j from i+l thru n do L[i,j]l:0),L)

ibase Option variable
Default value: 10
Integers entered into Maxima are interpreted with respect to the base ibase.
ibase may be assigned any integer between 2 and 35 (decimal), inclusive. When ibase
is greater than 10, the numerals comprise the decimal numerals 0 through 9 plus capital
letters of the alphabet A, B, C, ..., as needed. The numerals for base 35, the largest
acceptable base, comprise 0 through 9 and A through Y.

See also obase.

inchar Option variable

Default value: %i
inchar is the prefix of the labels of expressions entered by the user. Maxima automatically
constructs a label for each input expression by concatenating inchar and linenum. inchar
may be assigned any string or symbol, not necessarily a single character.

(%11) inchar: "input";

(ho1) input

(inputl) expand ((a+b)"3);



86 Maxima Manual

3 2 2 3
(hol) b +3ab +3a b+a
(input?2)
See also labels.
ldisp (expr_1, ..., expr_n) Function
Displays expressions expr_1, ..., expr_n to the console as printed output. 1disp assigns an

intermediate expression label to each argument and returns the list of labels.
See also disp.
(%i1) e: (a+b)"3;

3
(%hol) (b + a)
(%12) f: expand (e);
3 2 2 3
(ho2) b +3ab +3a b+a
(%i3) 1ldisp (e, £);
3
(ht3) (®d + a)
3 2 2 3
(htd) b +3ab +3a b+a
(%o4) [%t3, %t4l
(%i4) %t3;
3
(%hod) (b + a)
(%hib) Wt4;
3 2 2 3
(%05) b +3ab +3a b+a
ldisplay (expr_1, ..., expr_n) Function
Displays expressions expr_1, ..., expr_n to the console as printed output. Each expression

is printed as an equation of the form 1hs = rhs in which 1hs is one of the arguments of
ldisplay and rhs is its value. Typically each argument is a variable. 1disp assigns an
intermediate expression label to each equation and returns the list of labels.

See also display.
(%i1) e: (atb)~3;

3
(%o1) (b + a)
(%12) f: expand (e);
3 2 2 3
(%02) b +3ab +3a b+a
(%13) ldisplay (e, f);
3
(%t3) e = (b + a)
3 2 2 3
(ht4) f=b +3ab +3a b+a
(ho4) [%t3, %t4]
(%i4) %t3;
3
(%04) e = (b + a)
(%15) %t4;
3 2 2 3

(%05) f

b +3ab +3a b+ a



Chapter 9: Input and Output 87

linechar Option variable
Default value: %t

linechar is the prefix of the labels of intermediate expressions generated by Maxima.
Maxima constructs a label for each intermediate expression (if displayed) by concatenating
linechar and linenum. linechar may be assigned any string or symbol, not necessarily
a single character.

Intermediate expressions might or might not be displayed. See programmode and labels.

linel Option variable
Default value: 79

linel is the assumed width (in characters) of the console display for the purpose of
displaying expressions. 1inel may be assigned any value by the user, although very small
or very large values may be impractical. Text printed by built-in Maxima functions, such
as error messages and the output of describe, is not affected by linel.

lispdisp Option variable
Default value: false

When lispdisp is true, Lisp symbols are displayed with a leading question mark 7.
Otherwise, Lisp symbols are displayed with no leading mark.
Examples:

(%1i1) lispdisp: false$

(%i2) ?foo + ?bar;

(ho2) foo + bar

(%13) lispdisp: true$

(%i4) 7?foo + ?bar;

(ho4d) ?foo + ?bar

load (filename) Function
Evaluates expressions in filename, thus bringing variables, functions, and other objects
into Maxima. The binding of any existing object is clobbered by the binding recovered
from filename. To find the file, load calls file_search with file_search_maxima and
file_search_lisp as the search directories. If 1oad succeeds, it returns the name of the
file. Otherwise load prints an error message.

load works equally well for Lisp code and Maxima code. Files created by save,
translate_file, and compile_file, which create Lisp code, and stringout, which cre-
ates Maxima code, can all be processed by load. load calls loadfile to load Lisp files
and batchload to load Maxima files.

See also loadfile, batch, batchload, and demo. loadfile processes Lisp files; batch,
batchload, and demo process Maxima files.

See file_search for more detail about the file search mechanism.
load evaluates its argument.

loadfile (filename) Function
Evaluates Lisp expressions in filename. loadfile does not invoke file_search, so
filename must include the file extension and as much of the path as needed to find
the file.

loadfile can process files created by save, translate_file, and compile_file. The
user may find it more convenient to use load instead of loadfile.

loadfile quotes its argument, so filename must be a literal string, not a string variable.
The double-single-quote operator defeats quotation.

loadprint Option variable
Default value: true

loadprint tells whether to print a message when a file is loaded.



88 Maxima Manual

e When loadprint is true, always print a message.

e When loadprint is *loadfile, print a message only if a file is loaded by the function
loadfile.

e When loadprint is ’autoload, print a message only if a file is automatically loaded.
See setup_autoload.

e When loadprint is false, never print a message.

obase Option variable
Default value: 10

obase is the base for integers displayed by Maxima.

obase may be assigned any integer between 2 and 35 (decimal), inclusive. When obase
is greater than 10, the numerals comprise the decimal numerals 0 through 9 plus capital
letters of the alphabet A, B, C, ..., as needed. The numerals for base 35, the largest
acceptable base, comprise 0 through 9, and A through Y.

See also ibase.

outchar Option variable
Default value: %o

outchar is the prefix of the labels of expressions computed by Maxima. Maxima au-
tomatically constructs a label for each computed expression by concatenating outchar
and linenum. outchar may be assigned any string or symbol, not necessarily a single
character.

(%11) outchar: "output";
(outputl) output
(%i2) expand ((a+b)~3);

3 2 2 3
(output2) b +3ab +3a b+a
(%hi3)

See also labels.

packagefile Option variable
Default value: false

Package designers who use save or translate to create packages (files) for others to use
may want to set packagefile: true to prevent information from being added to Maxima’s
information-lists (e.g. values, functions) except where necessary when the file is loaded
in. In this way, the contents of the package will not get in the user’s way when he adds his
own data. Note that this will not solve the problem of possible name conflicts. Also note
that the flag simply affects what is output to the package file. Setting the flag to true is
also useful for creating Maxima init files.

pfeformat Option variable
Default value: false
When pfeformat is true, a ratio of integers is displayed with the solidus (forward slash)
character, and an integer denominator n is displayed as a leading multiplicative term 1/n.
(%11) pfeformat: false$
(%12) 2°16/7°3;

65536
(o2 ==
343
(%13) (a+b)/8;
b+ a
(o3> ==
8

(%14) pfeformat: true$
(%i5) 2°16/7°3;



Chapter 9: Input and Output 89

(%05) 65536/343
(%i6) (at+b)/8;
(%06) 1/8 (b + a)
print (expr_1, ..., expr_n) Function
Evaluates and displays expr_1, ..., expr_n one after another, from left to right, starting at

the left edge of the console display.

The value returned by print is the value of its last argument. print does not generate
intermediate expression labels.

See also display, disp, ldisplay, and ldisp. Those functions display one expression
per line, while print attempts to display two or more expressions per line.

To display the contents of a file, see printfile.

(%i1) r: print ("(a+b)"3 is", expand ((a+b)~3), "log (a~10/b) is", radcan (log
3 2 2 3
(a+b)"3 is b + 3 ab + 3 a b+ a log (a~10/b) is

10 log(a) - log(b)

(5i2) r;
(ho2) 10 log(a) - log(b)
(%13) disp ("(atb)~3 is", expand ((at+b)~3), "log (a~10/b) is", radcan (log (a~1
(at+b) "3 is
3 2 2 3
b +3ab +3a b+a
log (a~10/b) is
10 log(a) - log(b)
tcl_output (list, i0, skip) Function
tcl_output (list, i0) Function
tcl_output ([list_1, ..., list_n], i) Function

Prints elements of a list enclosed by curly braces { }, suitable as part of a program in the
Tcl/Tk language.

tcl_output (list, i0, skip) prints list, beginning with element i0 and printing elements
i0 + skip, i0 + 2 skip, etc.

tcl_output (list, i0) is equivalent to tcl_output (list, i0, 2).
tcl_output ([list_-1, ..., list_n], i) prints the i’th elements of list_1, ..., list_n.
Examples:

(%i1) tcl_output ([1, 2, 3, 4, 5, 6], 1, 3)$

{1.000000000 4.000000000

}

(%12) tcl_output ([1, 2, 3, 4, 5, 6], 2, 3)$
{2.000000000 5.000000000

}

(%13) tcl_output ([3/7, 5/9, 11/13, 13/17]1, 1$

{((RAT SIMP) 3 7) ((RAT SIMP) 11 13)

}
(%14) tcl_output ([x1, yi1, x2, y2, x3, y3], 2)$

{$Y1 $Y2 $Vv3
}



90 Maxima Manual
(%i5) tcl_output ([[1, 2, 3], [11, 22, 3311, 1)$
{SIMP 1.000000000 11.00000000
}
read (expr_1, ..., expr_n) Function
Prints expr_1, ..., expr_n, then reads one expression from the console and returns the
evaluated expression. The expression is terminated with a semicolon ; or dollar sign $.
See also readonly.
(%i1) foo: 423
(%1i2) foo: read ("foo is", foo, " -- enter new value.")$
foo is 42 -- enter new value.
(a+b) "3;
(%1i3) foo;
3
(%03) (b + a)
readonly (expr_1, ..., expr_n) Function
Prints expr_1, ..., expr_n, then reads one expression from the console and returns the
expression (without evaluation). The expression is terminated with a ; (semicolon) or $
(dollar sign).
(%i1) aa: 7%
(%12) foo: readonly ("Enter an expression:");
Enter an expression:
27aa;
aa
(%02) 2
(%13) foo: read ("Enter an expression:");
Enter an expression:
27aa;
(%03) 128
See also read.
reveal (expr, depth) Function

Replaces parts of expr at the specified integer depth with descriptive summaries.

Sums and differences are replaced by sum(n) where n is the number of operands of

the sum.

Products are replaced by product(n) where n is the number of operands of the
product.

Exponentials are replaced by expt.
Quotients are replaced by quotient.
Unary negation is replaced by negterm.

When depth is greater than or equal to the maximum depth of expr, reveal (expr,
depth) returns expr unmodified.

reveal evaluates its arguments. reveal returns the summarized expression.

Example:

(%1i1) e: expand ((a - b)"2)/expand ((exp(a) + exp(b))~2);

(hol) e

(%i2) reveal (e, 1);
(%ho2) quotient



Chapter 9: Input and Output 91

(%i3) reveal (e, 2);
(%03 ===

(%i4) reveal (e, 3);
expt + negterm + expt
hod) e
product(2) + expt + expt
(%iB) reveal (e, 4);

2 2
b - product(3) + a
(%05) e
product (2) product (2)
2 expt + %e + e
(%i6) reveal (e, 5);
2 2
b -2ab+a
(h06) e
sum(2) 2 b 2 a
2 %e + he + he
(%i7) reveal (e, 6);
2 2
b -2ab+a
(ho7)  mmmmmmmmm e
b+ a 2b 2 a
2 e + he + he
rmxchar Option variable

save
save
save
save
save

Default value: ]
rmxchar is the character drawn on the right-hand side of a matrix.
See also lmxchar.

(filename, name_1, name_2, name_3, ...) Function
(filename, values, functions, labels, ...) Function
(filename, [m, n]) Function
(filename, name_1=expr_1, ...) Function
(filename, all) Function
Stores the current values of name_1, name_2, name_3, ..., in filename. The arguments are

the names of variables, functions, or other objects. If a name has no value or function
associated with it, it is ignored. save returns filename.

save stores data in the form of Lisp expressions. The data stored by save may be recovered
by load (filename).

The global flag file_output_append governs whether save appends or truncates the out-
put file. When file_output_append is true, save appends to the output file. Otherwise,
save truncates the output file. In either case, save creates the file if it does not yet exist.

The special form save (filename, values, functions, labels, ...) stores the items
named by values, functions, labels, etc. The names may be any specified by the
variable infolists. values comprises all user-defined variables.

The special form save (filename, [m, n]) stores the values of input and output labels m
through n. Note that m and n must be literal integers or double-quoted symbols. Input
and output labels may also be stored one by one, e.g., save ("foo.1", %142, %042).
save (filename, labels) stores all input and output labels. When the stored labels are
recovered, they clobber existing labels.

The special form save (filename, name_l=expr_1, name_2=expr_2, ...) stores the val-
ues of expr_1, expr_2, ..., with names name_1, name_2, .... It is useful to apply this form
to input and output labels, e.g., save ("foo.1", aa=%088). The right-hand side of the



92 Maxima Manual

equality in this form may be any expression, which is evaluated. This form does not
introduce the new names into the current Maxima environment, but only stores them in
filename.

These special forms and the general form of save may be mixed at will. For example,
save (filename, aa, bb, cc=42, functions, [11, 17]).

The special form save (filename, all) stores the current state of Maxima. This in-
cludes all user-defined variables, functions, arrays, etc., as well as some automatically
defined items. The saved items include system variables, such as file_search_maxima or
showtime, if they have been assigned new values by the user; see myoptions.

save quotes its arguments. filename must be a string, not a string variable. The first and
last labels to save, if specified, must be integers. The double quote operator evaluates
a string variable to its string value, e.g., s: "foo.1"$ save (’’s, all)$, and integer
variables to their integer values, e.g., m: 58 n: 12$ save ("foo.1", [’’m, ’’n])S$.

savedef Option variable
Default value: true
When savedef is true, the Maxima version of a user function is preserved when the
function is translated. This permits the definition to be displayed by dispfun and allows
the function to be edited.
When savedef is false, the names of translated functions are removed from the
functions list.

show (expr) Function
Displays expr with the indexed objects in it shown having covariant indices as subscripts,
contravariant indices as superscripts. The derivative indices are displayed as subscripts,
separated from the covariant indices by a comma.

showratvars (expr) Function
Returns a list of the canonical rational expression (CRE) variables in expression expr.

See also ratvars.

stardisp Option variable
Default value: false

When stardisp is true, multiplication is displayed with an asterisk * between operands.

string (expr) Function
Converts expr to Maxima’s linear notation just as if it had been typed in.

The return value of string is a string, and thus it cannot be used in a computation.

stringdisp Lisp variable
Default value: false

When ?stringdisp is true, strings are displayed enclosed in double quote marks. Oth-
erwise, quote marks are not displayed.

?stringdisp is always true when displaying a function definition.
?stringdisp is a Lisp variable, so it must be written with a leading question mark 7.
Examples:
(%11) ?7stringdisp: false$
(%12) "This is an example string.";
(%02) This is an example string.
(%13) foo () := print ("This is a string in a function definition.");
(%03) foo() :=
print("This is a string in a function definition.")
(%14) ?stringdisp: true$
(%15) "This is an example string.";
(%05) "This is an example string."



Chapter 9: Input and Output 93

stringout (filename, expr_1, expr_2, expr.3, ...) Function
stringout (filename, [m, n]) Function
stringout (filename, input) Function
stringout (filename, functions) Function
stringout (filename, values) Function

stringout writes expressions to a file in the same form the expressions would be typed
for input. The file can then be used as input for the batch or demo commands, and it may
be edited for any purpose. stringout can be executed while writefile is in progress.

The global flag file_output_append governs whether stringout appends or truncates
the output file. When file_output_append is true, stringout appends to the output
file. Otherwise, stringout truncates the output file. In either case, stringout creates
the file if it does not yet exist.

The general form of stringout writes the values of one or more expressions to the output
file. Note that if an expression is a variable, only the value of the variable is written and
not the name of the variable. As a useful special case, the expressions may be input labels
(%i1, %i2, %i3, ...) or output labels (%01, %02, %03, ...).

If grind is true, stringout formats the output using the grind format. Otherwise the
string format is used. See grind and string.

The special form stringout (filename, [m, n]) writes the values of input labels m
through n, inclusive.

The special form stringout (filename, input) writes all input labels to the file.

The special form stringout (filename, functions) writes all user-defined functions
(named by the global list functions) to the file.

The special form stringout (filename, values) writes all user-assigned variables (named
by the global list values) to the file. Each variable is printed as an assignment statement,
with the name of the variable, a colon, and its value. Note that the general form of
stringout does not print variables as assignment statements.

tex (expr) Function
tex (label) Function
tex (expr, filename) Function
tex (label, filename) Function

Prints a representation of an expression suitable for the TeX document preparation system.
The result is a fragment of a document, which can be copied into a larger document but
not processed by itself.

tex (expr) prints a TeX representation of expr on the console.

tex (label) prints a TeX representation of the expression named by label and assigns it
an equation label (to be displayed to the left of the expression). The TeX equation label
is the same as the Maxima label.

tex (expr, filename) appends a TeX representation of expr to the file filename. tex
quotes the filename argument; quote-quote >’ forces evaluation of the argument.

tex (label, filename) appends a TeX representation of the expression named by label,
with an equation label, to the file filename. tex quotes the filename argument; quote-
quote ’’ forces evaluation of the argument.

tex evaluates its argument after testing it to see if it is a label. Quote-quote ’’ forces
evaluation of the argument, thereby defeating the test and preventing the label.

See also texput.

Examples:
(%11) integrate (1/(1+x73), x);
2x-1
2 atan(------- )
log(x - x + 1) sqrt (3) log(x + 1)
(hol) - e + mmmmmm e + —mmmmm o
6 sqrt (3) 3

(%1i2) tex (%ol);



94

texput
texput

(
(
(

Maxima Manual

$$-{{\log \left(x"2-x+1\right)F\over{6}}+{{\arctan \left ({{2\,x-1
Hover{\sqrt{3}}}\right) F\over{\sqrt{3}}}+{{\log \left(x+1\right)

HNover{3}}\legno{\tt (\%o1)}$$

(%ho2) (\%o1)
(%13) tex (integrate (sin(x), x));
$3-\cos x$$

(%03) false
(%i4) tex (%ol, "foo.tex");
(%04) (\%o1)

a, s)
a, s, operator_type)

texput (a, [s-1, s-2], matchfix)
texput (a, [s-1, s-2, s_3], matchfix)
Set the TeX output for the atom a, which can be a symbol or the name of an operator.

Function
Function
Function
Function

texput (a, s) causes the tex function to interpolate the string s into the TeX output in
place of a.

texput (a, s, operator_type), where operator_type is prefix, infix, or postfix causes
the tex function to interpolate s into the TeX output in place of a, and to place the
interpolated text in the appropriate position.

texput (a, [s_1, s-2], matchfix) causes the tex function to interpolate s_1 and s_2 into
the TeX output on either side of the arguments of a. The arguments (if more than one)
are separated by commas.

texput (a, [s_1, s.2, s3], matchfix) causes the tex function to interpolate s_1 and
s_2 into the TeX output on either side of the arguments of a, with s_3 separating the
arguments.

Examples:

(%11) texput (me,"\\mu_e");

(%o1) \mu_e
(%1i2) tex (me);

$$\mu_e$$

(%02) false
(%13) texput (lcm, "\\mathrm{lcm}");
(%03) \mathrm{lcm}
(%i4) tex (lcm (a, b));
$$\mathrm{lcm}\left(a , b\right)$$

(%o4) false

(%i5) prefix ("grad");

(%05) grad

(%16) texput ("grad", " \\nabla ", prefix);
(%06) 180

(%i7) tex (grad f);
$$ \nabla f$$

(%oT) false
(%i8) infix ("~");

(%08) -
(%19) texput ("7", " \\times ", infix);
(%09) 180

(%i10) tex (a ~ b);
$$a \times b$$

(%010) false
(%i11) postfix ("e");

(%o11) Q
(%112) texput ("@", "!!", postfix);
(%ho12) 160

(%i13) tex (x @);



Chapter 9: Input and Output 95
$$x!118$
(%013) false
(%i14) matchfix ("<<", ">>");
(%o014) <<
(%i15) texput ("<<", [" \\langle ", " \\rangle "], matchfix);
(%015) \langle ( \rangle , false)
(%i16) tex (<<a>>);
$$ \langle a \rangle $$
(%016) false
(%i17) tex (<<a, b>>);
$$ \langle a , b \rangle $$
(%017) false
(%118) texput ("<<", [" \\langle ", " \\rangle ", " \\, | \\,"], matchfix);
(%018) \langle ( \rangle , \, | \,)
(%i19) tex (<<a>>);
$$ \langle a \rangle $$
(%019) false
(%i20) tex (<<a, b>>);
$$ \langle a \, | \,b \rangle $$
(%020) false
system (command) Function

Executes command as a separate process. The command is passed to the default shell for
execution. system is not supported by all operating systems, but generally exists in Unix

and Unix-like environments.

Supposing _hist.out is a list of frequencies which you wish to plot as a bar graph using

xgraph.
(%i1) (with_stdout("_hist.out",

for i:1 thru length(hist) do (

print(i,hist[i]))),

system("xgraph -bar -brw .7 -nl < _hist.out"));

In order to make the plot be done in the background (returning control to Maxima) and

remove the temporary file after it is done do:

system(" (xgraph -bar -brw .7 -nl < _hist.out;

ttyoff
Default value: false

rm -f _hist.out)&")

Option variable

When ttyoff is true, output expressions are not displayed. Output expressions are still

computed and assigned labels. See labels.

Text printed by built-in Maxima functions, such as error messages and the output of

describe, is not affected by ttyoff.

with_stdout (filename, expr_1, expr_2, expr_3, ...)

Function

Opens filename and then evaluates expr_1, expr_2, expr_3, .... The values of the arguments
are not stored in filename, but any printed output generated by evaluating the arguments
(from print, display, disp, or grind, for example) goes to filename instead of the

console.

The global flag file_output_append governs whether with_stdout appends or truncates
the output file. When file_output_append is true, with_stdout appends to the output

file.
creates the file if it does not yet exist.

Otherwise, with_stdout truncates the output file.

In either case, with_stdout

with_stdout returns the value of its final argument.

See also writefile.



96 Maxima Manual

(%i1) with_stdout ("tmp.out", for i:5 thru 10 do print (i, "! yields", i!))$

(%12) printfile ("tmp.out")$

5 ! yields 120

6 | yields 720

7 ! yields 5040

8 ! yields 40320

9 ! yields 362880

10 ! yields 3628800

writefile (filename) Function
Begins writing a transcript of the Maxima session to filename. All interaction between
the user and Maxima is then recorded in this file, just as it appears on the console.

As the transcript is printed in the console output format, it cannot be reloaded into
Maxima. To make a file containing expressions which can be reloaded, see save and
stringout. save stores expressions in Lisp form, while stringout stores expressions in
Maxima form.

The effect of executing writefile when filename already exists depends on the underlying
Lisp implementation; the transcript file may be clobbered, or the file may be appended.
appendfile always appends to the transcript file.

It may be convenient to execute playback after writefile to save the display of previous
interactions. As playback displays only the input and output variables (%i1, %o1, etc.),
any output generated by a print statement in a function (as opposed to a return value) is
not displayed by playback.

closefile closes the transcript file opened by writefile or appendfile.



Chapter 10: Floating Point 97

10 Floating Point

10.1 Definitions for Floating Point

bffac (expr, n) Function
Bigfloat version of the factorial (shifted gamma) function. The second argument is how
many digits to retain and return, it’s a good idea to request a couple of extra.

load ("bffac") loads this function.

algepsilon Option variable
Default value: 1078

algepsilon is used by algsys.

bfloat (expr) Function
Converts all numbers and functions of numbers in expr to bigfloat numbers. The number
of significant digits in the resulting bigfloats is specified by the global variable fpprec.

When float2bf is false a warning message is printed when a floating point number is
converted into a bigfloat number (since this may lead to loss of precision).

bfloatp (expr) Function
Returns true if expr is a bigfloat number, otherwise false.

bfpsi (n, z, fpprec) Function

bfpsi0 (z, fpprec) Function
bfpsi is the polygamma function of real argument z and integer order n. bfpsiO is the
digamma function. bfpsi0 (z, fpprec) is equivalent to bfpsi (0, z, fpprec).

These functions return bigfloat values. fpprec is the bigfloat precision of the return value.

load ("bffac") loads these functions.

bftorat Option variable
Default value: false

bftorat controls the conversion of bfloats to rational numbers. When bftorat is false,
ratepsilon will be used to control the conversion (this results in relatively small rational
numbers). When bftorat is true, the rational number generated will accurately represent
the bfloat.

bftrunc Option variable
Default value: true

bftrunc causes trailing zeroes in non-zero bigfloat numbers not to be displayed. Thus,
if bftrunc is false, bfloat (1) displays as 1.000000000000000B0. Otherwise, this is
displayed as 1.0BO.

cbffac (z, fpprec) Function
Complex bigfloat factorial.

load ("bffac") loads this function.

float (expr) Function
Converts integers, rational numbers and bigfloats in expr to floating point numbers. It is
also an evflag, float causes non-integral rational numbers and bigfloat numbers to be
converted to floating point.



98 Maxima Manual

float2bf Option variable
Default value: false

When float2bf is false, a warning message is printed when a floating point number is
converted into a bigfloat number (since this may lead to loss of precision).

floatnump (expr) Function
Returns true if expr is a floating point number, otherwise false.

fpprec Option variable
Default value: 16

fpprec is the number of significant digits for arithmetic on bigfloat numbers. fpprec does
not affect computations on ordinary floating point numbers.

See also bfloat and fpprintprec.

fpprintprec Option variable
Default value: 0

fpprintprec is the number of digits to print when printing a bigfloat number, making
it possible to compute with a large number of digits of precision, but have the answer
printed out with a smaller number of digits.

When fpprintprec is 0, or greater than or equal to fpprec, then the value of fpprec
controls the number of digits used for printing.

When fpprintprec has a value between 2 and fpprec - 1, then it controls the number
of digits used. (The minimal number of digits used is 2, one to the left of the point and
one to the right.

The value 1 for fpprintprec is illegal.

?round (x) Lisp function

?round (x, divisor) Lisp function
Round the floating point x to the nearest integer. The argument must be an ordinary
float, not a bigfloat. The ? beginning the name indicates this is a Lisp function.

(%i1) ?round (-2.8);

(%hot) -3
?truncate (x) Lisp function
?truncate (x, divisor) Lisp function

Truncate the floating point x towards 0, to become an integer. The argument must be an
ordinary float, not a bigfloat. The ? beginning the name indicates this is a Lisp function.

(%i1) 7truncate (-2.8);

(%o1) -2

(%1i2) ?truncate (2.4);

(%ho2) 2

(%1i3) 7?truncate (2.8);

(%03) 2



Chapter 11: Contexts 99

11 Contexts

11.1 Definitions for Contexts

activate (context_1, ..., context_n) Function
Activates the contexts context_1, ..., context_n. The facts in these contexts are then
available to make deductions and retrieve information. The facts in these contexts are not
listed by facts Q.

The variable activecontexts is the list of contexts which are active by way of the
activate function.

activecontexts System variable
Default value: []

activecontexts is a list of the contexts which are active by way of the activate function,
as opposed to being active because they are subcontexts of the current context.

assume (pred_1, ..., pred_n) Function
Adds predicates pred_1, ..., pred_n to the current context. If a predicate is inconsistent or
redundant with the predicates in the current context, it is not added to the context. The
context accumulates predicates from each call to assume.
assume returns a list whose elements are the predicates added to the context or the atoms
redundant or inconsistent where applicable.
The predicates pred_1, ..., pred_n can only be expressions with the relational operators <
<= equal notequal >= and >. Predicates cannot be literal equality = or literal inequality
# expressions, nor can they be predicate functions such as integerp.
Compound predicates of the form pred_1 and ... and pred.n are recognized, but not
pred_1 or ... or pred_n. not pred_k is recognized if pred_k is a relational predicate.
Expressions of the form not (pred_1 and pred_2) and not (pred_1 or pred_2) are not
recognized.
Maxima’s deduction mechanism is not very strong; there are many obvious consequences
which cannot be determined by is. This is a known weakness.
assume evaluates its arguments.

See also is, facts, forget, context, and declare.

Examples:
(%i1) assume (xx > 0, yy < -1, zz >= 0);
(%ho1) [xx > 0, yy < - 1, zz >= 0]
(%i2) assume (aa < bb and bb < cc);
(%02) [bb > aa, cc > bb]
(%i3) facts O;
(%03) [xx >0, - 1>yy, zz > 0, bb > aa, cc > bb]
(hid) is (xx > yy);
(hod) true
(%15) is (yy < -yy);
(%05) true
(%i6) is (sinh (bb - aa) > 0);
(%06) true
(%17) forget (bb > aa);
(%hoT) [bb > aa]
(%i8) prederror : false;
(%08) false
(%19) is (sinh (bb - aa) > 0);
(%09) unknown

(%110) is (bb"2 < cc~2);
(%010) unknown



100 Maxima Manual

assumescalar Option variable
Default value: true

assumescalar helps govern whether expressions expr for which nonscalarp (expr) is
false are assumed to behave like scalars for certain transformations.

Let expr represent any expression other than a list or a matrix, and let [1, 2, 3]
represent any list or matrix. Then expr . [1, 2, 3] yields [expr, 2 expr, 3 expr] if
assumescalar is true, or scalarp (expr) is true, or constantp (expr) is true.

If assumescalar is true, such expressions will behave like scalars only for commutative
operators, but not for noncommutative multiplication ..

When assumescalar is false, such expressions will behave like non-scalars.

When assumescalar is all, such expressions will behave like scalars for all the operators
listed above.

assume_pos Option variable
Default value: false

When assume_pos is true and the sign of a parameter x cannot be determined from the
current context or other considerations, sign and asksign (x) return true. This may
forestall some automatically-generated asksign queries, such as may arise from integrate
or other computations.

By default, a parameter is x such that symbolp (x) or subvarp (x). The class of expres-
sions considered parameters can be modified to some extent via the variable assume_pos_
pred.

sign and asksign attempt to deduce the sign of expressions from the sign of operands
within the expression. For example, if a and b are both positive, then a + b is also positive.
However, there is no way to bypass all asksign queries. In particular, when the asksign
argument is a difference x - y or a logarithm log(x), asksign always requests an input

from the user, even when assume_pos is true and assume_pos_pred is a function which
returns true for all arguments.

assume_pos_pred Option variable
Default value: false

When assume_pos_pred is assigned the name of a function or a lambda expression of one
argument x, that function is called to determine whether x is considered a parameter for
the purpose of assume_pos. assume_pos_pred is ignored when assume_pos is false.

The assume_pos_pred function is called by sign and asksign with an argument x which
is either an atom, a subscripted variable, or a function call expression. If the assume_pos_
pred function returns true, x is considered a parameter for the purpose of assume_pos.

By default, a parameter is x such that symbolp (x) or subvarp (x).
See also assume and assume_pos.
Examples:

(%i1) assume_pos: true$
(%12) assume_pos_pred: symbolp$
(%i3) sign (a);

(%ho3) pos
(%i4) sign (al1l);
(ho4d) pnz

(%i5) assume_pos_pred: lambda ([x], display (x), true)$
(%16) asksign (a);

(h086) pos
(%17) asksign (al1]);



Chapter 11: Contexts 101

(%hoT) pos
(%18) asksign (foo (a));
x = foo(a)

(%08) pos
(%19) asksign (foo (a) + bar (b));
x = foo(a)
x = bar(b)
(%h09) pos

(%110) asksign (log (a));
X = a

Is a -1 positive, negative, or zero?

o

(%010) pos

(%111) asksign (a - b);
X = a
x=Db
X = a
x=Db

Is b - a positive, negative, or zero?

p;
(%o11) neg

context Option variable
Default value: initial

context names the collection of facts maintained by assume and forget. assume adds
facts to the collection named by context, while forget removes facts.

Binding context to a name foo changes the current context to foo. If the specified context
foo does not yet exist, it is created automatically by a call to newcontext. The specified
context is activated automatically.

See contexts for a general description of the context mechanism.

contexts Option variable
Default value: [initial, globall

contexts is a list of the contexts which currently exist, including the currently active
context.

The context mechanism makes it possible for a user to bind together and name a collection
of facts, called a context. Once this is done, the user can have Maxima assume or forget
large numbers of facts merely by activating or deactivating their context.

Any symbolic atom can be a context, and the facts contained in that context will be
retained in storage until destroyed one by one by calling forget or destroyed as a whole
by calling kill to destroy the context to which they belong.

Contexts exist in a hierarchy, with the root always being the context global, which
contains information about Maxima that some functions need. When in a given context,
all the facts in that context are "active" (meaning that they are used in deductions and
retrievals) as are all the facts in any context which is a subcontext of the active context.



102 Maxima Manual

When a fresh Maxima is started up, the user is in a context called initial, which has
global as a subcontext.

See also facts, newcontext, supcontext, killcontext, activate, deactivate, assume,

and forget.

deactivate (context_1, ..., context_n) Function
Deactivates the specified contexts context_1, ..., context_n.

facts (item) Function

facts () Function
If item is the name of a context, facts (item) returns a list of the facts in the specified
context.

If item is not the name of a context, facts (item) returns a list of the facts known about
item in the current context. Facts that are active, but in a different context, are not listed.

facts () (i.e., without an argument) lists the current context.

features Declaration
Maxima recognizes certain mathematical properties of functions and variables. These are
called "features".
declare (x, foo) gives the property foo to the function or variable x.
declare (foo, feature) declares a new feature foo. For example, declare ([red,
green, blue], feature) declares three new features, red, green, and blue.
The predicate featurep (x, foo) returns true if x has the foo property, and false
otherwise.
The infolist features is a list of known features. These are integer, noninteger,
even, odd, rational, irrational, real, imaginary, complex, analytic, increasing,
decreasing, oddfun, evenfun, posfun, commutative, lassociative, rassociative,
symmetric, and antisymmetric, plus any user-defined features.
features is a list of mathematical features. There is also a list of non-mathematical,
system-dependent features. See status.

forget (pred_1, ..., pred_n) Function
forget (L) Function
Removes predicates established by assume. The predicates may be expressions equivalent
to (but not necessarily identical to) those previously assumed.

forget (L), where L is a list of predicates, forgets each item on the list.

killcontext (context_1, ..., context_n) Function

Kills the contexts context_1, ..., context_n.

If one of the contexts is the current context, the new current context will become the first
available subcontext of the current context which has not been killed. If the first available
unkilled context is global then initial is used instead. If the initial context is killed,

a new, empty initial context is created.

killcontext refuses to kill a context which is currently active, either because it is a
subcontext of the current context, or by use of the function activate.

killcontext evaluates its arguments. killcontext returns done.

newcontext (name) Function
Creates a new, empty context, called name, which has global as its only subcontext. The
newly-created context becomes the currently active context.

newcontext evaluates its argument. newcontext returns name.

supcontext (name, context) Function

supcontext (name) Function
Creates a new context, called name, which has context as a subcontext. context must
exist,.

If context is not specified, the current context is assumed.



Chapter 12: Polynomials 103

12 Polynomials

12.1 Introduction to Polynomials

Polynomials are stored in Maxima either in General Form or as Cannonical Rational Expres-
sions (CRE) form. The latter is a standard form, and is used internally by operations such as
factor, ratsimp, and so on.

Canonical Rational Expressions constitute a kind of representation which is especially suitable
for expanded polynomials and rational functions (as well as for partially factored polynomials
and rational functions when RATFAC is set to true). In this CRE form an ordering of variables
(from most to least main) is assumed for each expression. Polynomials are represented recursively
by a list consisting of the main variable followed by a series of pairs of expressions, one for each
term of the polynomial. The first member of each pair is the exponent of the main variable
in that term and the second member is the coefficient of that term which could be a number
or a polynomial in another variable again represented in this form. Thus the principal part of
the CRE form of 3*X"2-11is (X 2 3 0 -1) and that of 2*X*Y+X-3is (Y 1 (X 12)0 (X110
-3)) assuming Y is the main variable, and is (X 1 (Y 1 2 0 1) 0 -3) assuming X is the main
variable. "Main"-ness is usually determined by reverse alphabetical order. The "variables" of
a CRE expression needn’t be atomic. In fact any subexpression whose main operator is not + -
* / or ~ with integer power will be considered a "variable" of the expression (in CRE form) in
which it occurs. For example the CRE variables of the expression X+SIN(X+1)+2*SQRT(X)+1
are X, SQRT(X), and SIN(X+1). If the user does not specify an ordering of variables by using
the RATVARS function Maxima will choose an alphabetic one. In general, CRE’s represent
rational expressions, that is, ratios of polynomials, where the numerator and denominator have
no common factors, and the denominator is positive. The internal form is essentially a pair
of polynomials (the numerator and denominator) preceded by the variable ordering list. If an
expression to be displayed is in CRE form or if it contains any subexpressions in CRE form,
the symbol /R/ will follow the line label. See the RAT function for converting an expression to
CRE form. An extended CRE form is used for the representation of Taylor series. The notion
of a rational expression is extended so that the exponents of the variables can be positive or
negative rational numbers rather than just positive integers and the coefficients can themselves
be rational expressions as described above rather than just polynomials. These are represented
internally by a recursive polynomial form which is similar to and is a generalization of CRE
form, but carries additional information such as the degree of truncation. As with CRE form,
the symbol /T/ follows the line label of such expressions.

12.2 Definitions for Polynomials

algebraic Option variable
Default value: false

algebraic must be set to true in order for the simplification of algebraic integers to take
effect.

berlefact Option variable
Default value: true
When berlefact is false then the Kronecker factoring algorithm will be used otherwise
the Berlekamp algorithm, which is the default, will be used.

bezout (pl, p2, x) Function
an alternative to the resultant command. It returns a matrix. determinant of this
matrix is the desired resultant.

bothcoef (expr, x) Function
Returns a list whose first member is the coefficient of x in expr (as found by ratcoef if
expr is in CRE form otherwise by coeff) and whose second member is the remaining part
of expr. That is, [A, B] where expr = Axx + B.

Example:



104 Maxima Manual

(%i1) islinear (expr, x) := block ([c],
c: bothcoef (rat (expr, x), x),
is (freeof (x, c) and c[1] # 0))$

(%i2) islinear ((r"2 - (x - r)~2)/x, x);

(%02) true

coefl (expr, x, n) Function
Returns the coefficient of x"n in expr. n may be omitted if it is 1. x may be an atom,
or complete subexpression of expr e.g., sin(x), a[i+1], x + y, etc. (In the last case the
expression (x + y) should occur in expr). Sometimes it may be necessary to expand or
factor expr in order to make x~n explicit. This is not done automatically by coeff.

Examples:
(%i1) coeff (2*a*tan(x) + tan(x) + b = 5xtan(x) + 3, tan(x));
(%hol) 2a+1=5
(%12) coeff (y + xx%e"x + 1, x, 0);
(%ho2) y+ 1
combine (expr) Function

Simplifies the sum expr by combining terms with the same denominator into a single term.

content (p_1, x_1, ..., x_n) Function
Returns a list whose first element is the greatest common divisor of the coefficients of the
terms of the polynomial p_1 in the variable x_n (this is the content) and whose second
element is the polynomial p_1 divided by the content.

Examples:
(%11) content (2*xxy + 4*x”"2%y~2, y);
2
(%hol) [2x,2xy +y]
denom (expr) Function

Returns the denominator of the rational expression expr.

divide (p-1, p-2, x_1, ..., x_n) Function
computes the quotient and remainder of the polynomial p_1 divided by the polynomial p_2,
in a main polynomial variable, x_.n. The other variables are as in the ratvars function.
The result is a list whose first element is the quotient and whose second element is the
remainder.

Examples:

(%11) divide (x +y, x -y, X);

(%o1) [1, 2 vyl
(%12) divide (x + y, x - y);

(%02) -1, 2 x]

Note that y is the main variable in the second example.

eliminate ([eqn_1, ..., eqn_n|, [x_1, ..., x_k]) Function
Eliminates variables from equations (or expressions assumed equal to zero) by taking
successive resultants. This returns a list of n - k expressions with the k variables x_1, ...,
x_k eliminated. First x_1 is eliminated yielding n - 1 expressions, then x_2 is eliminated,
etc. If k = n then a single expression in a list is returned free of the variables x_1, ..., x_k.
In this case solve is called to solve the last resultant for the last variable.

Example:
(%11) exprl: 2*x"2 + y*x + z;
2
(ho1) z+xy+2x

(%12) expr2: 3*x + bxy - z - 1;



Chapter 12: Polynomials 105

(ho2) -z+5y+3x-1
(%13) expr3: z°2 + x - y°2 + 5;
2 2
(%03) z -y +x+5
(%14) eliminate ([expr3, expr2, exprll, [y, zl);
8 7 6 5 4

(%04) [7425 x - 1170 x + 1299 x + 12076 x + 22887 x

3 2
- 5164 x - 1291 x + 7688 x + 15376]

ezged (p-1, p-2, p_3, ...) Function
Returns a list whose first element is the g.c.d of the polynomials p_1, p-2, p-3, ... and
whose remaining elements are the polynomials divided by the g.c.d. This always uses the
ezgcd algorithm.

facexpand Option variable
Default value: true

facexpand controls whether the irreducible factors returned by factor are in expanded
(the default) or recursive (normal CRE) form.

factcomb (expr) Function
Tries to combine the coefficients of factorials in expr with the factorials themselves by
converting, for example, (n + 1)*n! into (n + 1)!.

sumsplitfact if set to false will cause minfactorial to be applied after a factcomb.

factor (expr) Function
Factors the expression expr, containing any number of variables or functions, into factors
irreducible over the integers. factor (expr, p) factors expr over the field of integers with
an element adjoined whose minimum polynomial is p.

factorflag if false suppresses the factoring of integer factors of rational expressions.

dontfactor may be set to a list of variables with respect to which factoring is not to
occur. (It is initially empty). Factoring also will not take place with respect to any
variables which are less important (using the variable ordering assumed for CRE form)
than those on the dontfactor list.

savefactors if true causes the factors of an expression which is a product of factors
to be saved by certain functions in order to speed up later factorizations of expressions
containing some of the same factors.

berlefact if false then the Kronecker factoring algorithm will be used otherwise the
Berlekamp algorithm, which is the default, will be used.

intfaclim is the largest divisor which will be tried when factoring a bignum integer. If set
to false (this is the case when the user calls factor explicitly), or if the integer is a fixnum
(i.e. fits in one machine word), complete factorization of the integer will be attempted.
The user’s setting of intfaclim is used for internal calls to factor. Thus, intfaclim
may be reset to prevent Maxima from taking an inordinately long time factoring large

integers.

Examples:
(%i1) factor (2763 - 1);

2
(%ol) 7 73 127 337 92737 649657
(%12) factor (-8*y - 4xx + z"2x(2xy + x));
(%02) Qy+x)(z-2) (z+2)
(513) -1 - 2xx - X"2 + y™2 + 2%x*xy"2 + X"2%y"2;
2 2 2 2 2

(%03) X y +2xy +y -x -2x-1



106 Maxima Manual

(%i4) block ([dontfactor: [x]], factor (%/36/(1 + 2%y + y~2)));
2
(x +2x+1) (y -1

(%hod) e
36 (y + 1)
(%1i5) factor (1 + %e”(3x*x));
X 2 x X

(%05) (he + 1) (ke - %e + 1)
(%i6) factor (1 + x74, a"2 - 2);

2 2
(%06) (x —ax+1) (x +ax+1)
(%17) factor (-y~2%z"2 - x*z"2 + x"2%y"2 + x73);

2
(%o7) - (y +x) (z-3x (z+x
(%18) (2 + x)/(@B + x)/(b + x)/(c + x)72;
x + 2

(%08) e

(x+3) (x+Db) (x+c)
(%19) ratsimp (%) ;
4 3
(%09) (x +2)/(x + (2 c+Db+ 3) x

2 2 2 2
+(c + 2b+6) c+3b)x + ((b+3)c +6bc)x+3bc)
(%110) partfrac (%, x);

2 4 3

(%010) - (¢ -4 c-b+6)/((c +(-2Db-6)c

2 2 2 2
+ (b +12b+9) c +(-6Db -18b) c+9b) (x+ c))

c -2
2 2
(c +(-b-3)c+3Db) (x+c)
b -2
+ _________________________________________________
2 2 3 2

(b-3)c +(18-6Db)c+9b-27) (x+ 3)
(%111) map (’factor, %);
2
c -4c-Db+6 c -2
23—
2 2 2

(c-3) (¢c-Db) x+o0) (c - 3) (c -b) (x+c¢)



Chapter 12: Polynomials 107

(b-13) (c-Db) (x+Db) (b-3) (c -3 (x+23)
(%112) ratsimp ((x°5 - 1)/(x - 1));

4 3 2
(%o12) X +x +x +x+1
(%i13) subst (a, x, %);

4 3 2
(%013) a +a +a +a+1
(%i14) factor (%th(2), %);

2 3 3 2

(%o014) x-a) x-a) x-a) x+a +a +a+1)
(%i15) factor (1 + x712);
4 8 4
(%015) x +1) (x -x +1)
(%i16) factor (1 + x799);
2 6 3
(ho16) (x + 1) (x -x+1) (x -x + 1)

10 9 8 7 6 5 4 3 2

(x -x +x -x +%x -x +x -x +x -x+1)

(x + x - x - x + x + x - x - x - X +x +x

factorflag Option variable
Default value: false

When factorflag is false, suppresses the factoring of integer factors of rational expres-

sions.
factorout (expr, x_1, x.2, ...) Function
Rearranges the sum expr into a sum of terms of the form £ (x_1, x_2, ...)*g where g is

a product of expressions not containing any x_i and £ is factored.

factorsum (expr) Function
Tries to group terms in factors of expr which are sums into groups of terms such that their
sum is factorable. factorsum can recover the result of expand ((x + y)~"2 + (z + w) "2)
but it can’t recover expand ((x + 1)"2 + (x + y) "2) because the terms have variables in
common.

Example:
(%i1) expand ((x + D*((u + v)"2 + ax(w + 2)72));
2 2 2 2
(ol) axz +az +2awxz+2awz+aw xX+VvV X

2 2 2 2
+2uvx+u x+aw +v +2uv+au
(%i2) factorsum (%);
2 2
(%02) x+1) (@az+w + (v+u)

fasttimes (p_1, p_2) Function
Returns the product of the polynomials p_1 and p_2 by using a special algorithm for
multiplication of polynomials. p_1 and p_2 should be multivariate, dense, and nearly the



108 Maxima Manual

same size. Classical multiplication is of order n_1 n_2 where n_1 is the degree of p_1 and
n_2 is the degree of p_2. fasttimes is of order max (n_1, n_2)"1.585.

fullratsimp (expr) Function
fullratsimp repeatedly applies ratsimp followed by non-rational simplification to an
expression until no further change occurs, and returns the result.

When non-rational expressions are involved, one call to ratsimp followed as is usual by
non-rational ("general") simplification may not be sufficient to return a simplified result.
Sometimes, more than one such call may be necessary. fullratsimp makes this process

convenient.
fullratsimp (expr, x_1, ..., x_n) takes one or more arguments similar to ratsimp and
rat.
Example:
(%i1) expr: (x~(a/2) + 1) 2*x(x"(a/2) - 1)°2/(x"a - 1);
a/2 2  a/2 2
(x - & + 1)
(o)  mmmmmmmm e
a
x -1
(%12) ratsimp (expr);
2 a a
X -2x +1
(02>  mmmmmmee e
a
x -1
(%1i3) fullratsimp (expr);
a
(%03) x -1
(%14) rat (expr);
a/2 4 a/2 2
x ) -2 ) +1
(hod)/R/  mmmmmmmmmmmm—m
a
x -1
fullratsubst (a, b, c) Function

is the same as ratsubst except that it calls itself recursively on its result until that result
stops changing. This function is useful when the replacement expression and the replaced
expression have one or more variables in common.

fullratsubst will also accept its arguments in the format of lratsubst. That is, the
first argument may be a single substitution equation or a list of such equations, while the
second argument is the expression being processed.
load ("1lrats") loads fullratsubst and lratsubst.
Examples:
(%i1) load ("1lrats")$
e subst can carry out multiple substitutions. lratsubst is analogous to subst.
(%i2) subst ([a = Db, c =d], a + c);
(ho2) d +b
(%i3) lratsubst ([a"2 = b, c"2 = d], (a + e)xcx(a + c));
(%03) (d+ac)e+ad+bc
e If only one substitution is desired, then a single equation may be given as first argu-
ment.
(%i4) lratsubst (a”2 = b, a"3);
(%o4) ab



Chapter 12: Polynomials 109

e fullratsubst is equivalent to ratsubst except that it recurses until its result stops

changing.
(%1i5) ratsubst (b*xa, a~2, a~3);
2
(%05) a b
(%i6) fullratsubst (b*xa, a~2, a"3);
2
(%06) ab

e fullratsubst also accepts a list of equations or a single equation as first argument.
(%1i7) fullratsubst ([a"2 = b, b™2 = ¢, ¢c"2 = a], a"3x*b*c);

(%oT) b

(%1i8) fullratsubst (a"2 = b*a, a"3);
2

(%08) ab

e fullratsubst may cause an indefinite recursion.
(%19) errcatch (fullratsubst (b*a~2, a~2, a~3));

**x — Lisp stack overflow. RESET

ged (p-1, p-2, x_1, ...) Function

Returns the greatest common divisor of p_1 and p_2. The flag gcd determines which
algorithm is employed. Setting gcd to ez, eez, subres, red, or spmod selects the ezgcd,
New eez gcd, subresultant prs, reduced, or modular algorithm, respectively. If gcd false
then GCD(pl,p2,var) will always return 1 for all var. Many functions (e.g. ratsimp,
factor, etc.) cause ged’s to be taken implicitly. For homogeneous polynomials it is
recommended that gcd equal to subres be used. To take the gcd when an algebraic is
present, e.g. GCD(X"2-2*SQRT(2)*X+2,X-SQRT(2)); , algebraic must be true and
gcd must not be ez. subres is a new algorithm, and people who have been using the red
setting should probably change it to subres.

The gcd flag, default: subres, if false will also prevent the greatest common divisor from
being taken when expressions are converted to canonical rational expression (CRE) form.
This will sometimes speed the calculation if gcds are not required.

gcdex (f, g) Function
gedex (f, g, x) Function
Returns a list [a, b, ul where u is the greatest common divisor (gcd) of f and g, and u
is equal to a f + b g. The arguments f and g should be univariate polynomials, or else
polynomials in x a supplied main variable since we need to be in a principal ideal domain
for this to work. The gcd means the ged regarding f and g as univariate polynomials with
coeflicients being rational functions in the other variables.

gcdex implements the Euclidean algorithm, where we have a sequence of L[i]: [a[i],
bl[i], r[i]] which are all perpendicular to [f, g, -1] and the next one is built as if q
= quotient (r[i]l/r[i+1]) then L[i+2]: L[i] - q L[i+1], and it terminates at L[i+1]
when the remainder r[i+2] is zero.

(%i1) gedex (x72 + 1, x73 + 4);

2
x +4x-1 x+ 4
(%o1) /R/ [- - , - , 1]
17 17
(hi2) % . [x"2 + 1, x°3 + 4, -1];
(ho2) /R/ 0

Note that the ged in the following is 1 since we work in k(y) [x], not the y+1 we would
expect in k [y, x].
(%11) gecdex (xx(y + 1), y"°2 - 1, x);
1



110 Maxima Manual

(ho1) /R/ o, -——-- , 1]

gcfactor (n) Function
Factors the Gaussian integer n over the Gaussian integers, i.e., numbers of the form a +
b %i where a and b are rational integers (i.e., ordinary integers). Factors are normalized
by making a and b non-negative.

gfactor (expr) Function
Factors the polynomial expr over the Gaussian integers (that is, the integers with the
imaginary unit %i adjoined). This is like factor (expr, a~2+1) where a is %i.

Example:
(%11) gfactor (x74 - 1);
(hol) x -1 x+1) x-%) (x+ %D
gfactorsum (expr) Function

is similar to factorsum but applies gfactor instead of factor.

hipow (expr, x) Function
Returns the highest explicit exponent of x in expr. x may be a variable or a general
expression. If x does not appear in expr, hipow returns 0.

hipow does not consider expressions equivalent to expr. In particular, hipow does not
expand expr, so hipow (expr, x) and hipow (expand (expr, x)) may yield different re-

sults.
Examples:
(%11) hipow (y~3 * x"2 + x * y~4, x);
(%01) 2
(%12) hipow ((x + y)~5, x);
(%02) 1
(%13) hipow (expand ((x + y)~5), x);
(%03) 5
(%14) hipow ((x + y)°5, x + y);
(%o4) 5
(%15) hipow (expand ((x + y)75), x + y);
(%05) 0
intfaclim Option variable

Default value: 1000
intfaclim is the largest divisor which will be tried when factoring a bignum integer.

When intfaclim is false (this is the case when the user calls factor explicitly), or if
the integer is a fixnum (i.e., fits in one machine word), factors of any size are considered.
intfaclim is set to false when factors are computed in divsum, totient, and primep.

Internal calls to factor respect the user-specified value of intfaclim. Setting intfaclim
to a smaller value may reduce the time spent factoring large integers.

keepfloat Option variable
Default value: false

When keepfloat is true, prevents floating point numbers from being rationalized when
expressions which contain them are converted to canonical rational expression (CRE)
form.



Chapter 12: Polynomials 111

Iratsubst (L, expr) Function
is analogous to subst (L, expr) except that it uses ratsubst instead of subst.

The first argument of lratsubst is an equation or a list of equations identical in format
to that accepted by subst. The substitutions are made in the order given by the list of
equations, that is, from left to right.

load ("lrats") loads fullratsubst and lratsubst.
Examples:
(%1i1) load ("lrats")$
e subst can carry out multiple substitutions. lratsubst is analogous to subst.
(%i2) subst ([a =Db, c =4d], a + c);

(ho2) d+b
(%i3) lratsubst ([a"2 = b, c"2 = d], (a + e)*c*x(a + c));
(%03) (d+ac)e+ad+bc
e If only one substitution is desired, then a single equation may be given as first argu-
ment.
(%i4) lratsubst (a”2 = b, a"3);
(ho4d) ab
modulus Option variable

Default value: false

When modulus is a positive number p, operations on rational numbers (as returned by rat
and related functions) are carried out modulo p, using the so-called "balanced" modulus
system in which n modulo p is defined as an integer k in [-(p-1)/2, ..., 0, ..., (p-
1)/2] when p is odd, or [-(p/2-1), ..., 0, ...., p/2] when p is even, such that a
p + k equals n for some integer a.

If expr is already in canonical rational expression (CRE) form when modulus is reset, then
you may need to re-rat expr, e.g., expr: rat (ratdisrep (expr)), in order to get correct
results.

Typically modulus is set to a prime number. If modulus is set to a positive non-prime
integer, this setting is accepted, but a warning message is displayed. Maxima will allow
zero or a negative integer to be assigned to modulus, although it is not clear if that has
any useful consequences.

num (expr) Function
Returns the numerator of expr if it is a ratio. If expr is not a ratio, expr is returned.

num evaluates its argument.

polydecomp (p, x) Function
Decomposes the polynomial p in the variable x into the functional composition of poly-
nomials in x. polydecomp returns a list [p_1, ..., p_n] such that

lambda ([x], p_1) (lambda ([x], p_2) (... (lambda ([x], p_n) (x)) ...))
is equal to p. The degree of p_i is greater than 1 for i less than n.
Such a decomposition is not unique.
Examples:
(%1i1) polydecomp (x7210, x);
7 5 3 2

(%ho1) x, x,x, x]
(%12) p : expand (subst (x"3 - x - 1, x, x"2 - a));
6 4 3 2
(%ho2) X -2x -2x +x +2zx-a+1
(%13) polydecomp (p, x);
2 3
(%03) [x -a, x -x-1]
The following function composes L = [e_1, ..., e_n] as functions in x; it is the inverse

of polydecomp:



112 Maxima Manual

compose (L, x) :=
block ([r : x], for e in L do r : subst (e, x, ), r) $

Re-express above example using compose:

(%13) polydecomp (compose ([x"2 - a, x"3 - x - 1], x), x);

2 3
(%03) [x -a, x -x-1]
Note that though compose (polydecomp (p, x), x) always returns p (unexpanded),
polydecomp (compose ([p_1, ..., p_nl, x), x) does not necessarily return [p_1, ...,
p-n]:
(%14) polydecomp (compose ([x"2 + 2*x + 3, x72], x), x);
2 2
(%o04) [x +2, x + 1]
(%15) polydecomp (compose ([x"2 + x + 1, x"2 + x + 1], x), x);
2 2
x +3 x +5
(%05) [-————- , —————— , 2 x + 1]
4 2
quotient (p_1, p_2) Function
quotient (p_1, p_2, x_1, ..., x_n) Function

Returns the polynomial p_1 divided by the polynomial p_2. The arguments x_1, ..., x.n
are interpreted as in ratvars.

quotient returns the first element of the two-element list returned by divide.

rat (expr) Function

rat (expr, x_1, ..., x_n) Function
Converts expr to canonical rational expression (CRE) form by expanding and combining
all terms over a common denominator and cancelling out the greatest common divisor of
the numerator and denominator, as well as converting floating point numbers to rational
numbers within a tolerance of ratepsilon. The variables are ordered according to the
x_1, ..., x_n, if specified, as in ratvars.

rat does not generally simplify functions other than addition +, subtraction -, multiplica-
tion *, division /, and exponentiation to an integer power, whereas ratsimp does handle
those cases. Note that atoms (numbers and variables) in CRE form are not the same as
they are in the general form. For example, rat (x) - x yields rat (0) which has a different
internal representation than 0.

When ratfac is true, rat yields a partially factored form for CRE. During rational
operations the expression is maintained as fully factored as possible without an actual call
to the factor package. This should always save space and may save some time in some
computations. The numerator and denominator are still made relatively prime (e.g. rat
((x"2-1)"4/(x+1)72) yields (x - 1)74 (x + 1)"2), but the factors within each part
may not be relatively prime.

ratprint if false suppresses the printout of the message informing the user of the con-
version of floating point numbers to rational numbers.

keepfloat if true prevents floating point numbers from being converted to rational num-
bers.

See also ratexpand and ratsimp.

Examples:
(%1i1) ((x - 2*y)"4/(x"2 - 4*xy~2)"2 + D)*(y + a)*(2*xy + x) /(4*xy~2 + x72);
4
x-27y
(y+a) 2y + x) (————————--—- + 1)
2 2 2
x -47y)

(ho1)  mmmmmmmmmmmmmmm e



Chapter 12: Polynomials 113

2 2
4y +x
(%12) rat (%, y, a, x);
2a+2y
(ho2)/R/ - mmmmmmm-
x+ 2y
ratalgdenom Option variable

Default value: true

When ratalgdenom is true, allows rationalization of denominators with respect to radicals
to take effect. ratalgdenom has an effect only when canonical rational expressions (CRE)
are used in algebraic mode.

ratcoef (expr, x, n) Function

ratcoef (expr, x) Function
Returns the coefficient of the expression x~n in the expression expr. If omitted, n is
assumed to be 1.

The return value is free (except possibly in a non-rational sense) of the variables in x. If
no coefficient of this type exists, 0 is returned.

ratcoef expands and rationally simplifies its first argument and thus it may pro-
duce answers different from those of coeff which is purely syntactic. Thus RAT-
COEF((X+1)/Y+X,X) returns (Y+1)/Y whereas coeff returns 1.

ratcoef (expr, x, 0), viewing expr as a sum, returns a sum of those terms which do not
contain x. Therefore if x occurs to any negative powers, ratcoef should not be used.

Since expr is rationally simplified before it is examined, coefficients may not appear quite
the way they were envisioned.

Example:
(%il1) s: a*xx + b*x + 5%
(%i2) ratcoef (s, a + b);
(%02) X

ratdenom (expr) Function
Returns the denominator of expr, after coercing expr to a canonical rational expression
(CRE). The return value is a CRE.

expr is coerced to a CRE by rat if it is not already a CRE. This conversion may change
the form of expr by putting all terms over a common denominator.

denom is similar, but returns an ordinary expression instead of a CRE. Also, denom does
not attempt to place all terms over a common denominator, and thus some expressions
which are considered ratios by ratdenom are not considered ratios by denom.

ratdenomdivide Option variable
Default value: true

When ratdenomdivide is true, ratexpand expands a ratio in which the numerator is
a sum into a sum of ratios, all having a common denominator. Otherwise, ratexpand
collapses a sum of ratios into a single ratio, the numerator of which is the sum of the
numerators of each ratio.

Examples:
(%i1) expr: (x"2 + x + 1)/(y"2 + 7);
2
x +x+1
(bot) — mmmm—————
2
y o+ 7

(%i2) ratdenomdivide: true$
(%13) ratexpand (expr);



114 Maxima Manual

ho3) - + mees + mmmmes

y +7 y +7 'y +7
(%i4) ratdenomdivide: false$
(%15) ratexpand (expr);

2
Xx +x+1
%05) e
2
y +7
(%i6) expr2: a~2/(b"2 + 3) + b/(b"2 + 3);
2
b a
(o)  mmmm—=  om——_——
2 2

(%17) ratexpand (expr2);

(ko —mm=

ratdiff (expr, x) Function
Differentiates the rational expression expr with respect to x. expr must be a ratio of
polynomials or a polynomial in x. The argument x may be a variable or a subexpression
of expr.

The result is equivalent to diff, although perhaps in a different form. ratdiff may be
faster than diff, for rational expressions.

ratdiff returns a canonical rational expression (CRE) if expr is a CRE. Otherwise,
ratdiff returns a general expression.

ratdiff considers only the dependence of expr on x, and ignores any dependencies estab-
lished by depends.

Example:
(%11) expr: (4*x"3 + 10*x - 11)/(x"5 + 5);
3
4x + 10 x - 11
(hot)  mmmmmmmmm—m————
5
x +5

(%i2) ratdiff (expr, x);

(%02) e

X + 10 x + 25
(%13) expr: f(x)°3 - £(x)°2 + 7;

3 2
(%03) f (x) -f (x)+7
(%i4) ratdiff (expr, f(x));
2
(%04) 3f x) -2 £

(%15) expr: (a + b)"3 + (a + b)"2;
3 2



Chapter 12: Polynomials 115

(%05) (b +a) + (b+ a)
(%16) ratdiff (expr, a + b);
2 2
(%06) 3b +(6a+2)b+3a +2a
ratdisrep (expr) Function
Returns its argument as a general expression. If expr is a general expression, it is returned
unchanged.

Typically ratdisrep is called to convert a canonical rational expression (CRE) into a
general expression. This is sometimes convenient if one wishes to stop the "contagion",
or use rational functions in non-rational contexts.

See also totaldisrep.

ratepsilon Option variable
Default value: 2.0e-8

ratepsilon is the tolerance used in the conversion of floating point numbers to rational

numbers.
ratexpand (expr) Function
ratexpand Option variable

Expands expr by multiplying out products of sums and exponentiated sums, combining
fractions over a common denominator, cancelling the greatest common divisor of the
numerator and denominator, then splitting the numerator (if a sum) into its respective
terms divided by the denominator.

The return value of ratexpand is a general expression, even if expr is a canonical rational
expression (CRE).

The switch ratexpand if true will cause CRE expressions to be fully expanded when they
are converted back to general form or displayed, while if it is false then they will be put
into a recursive form. See also ratsimp.

When ratdenomdivide is true, ratexpand expands a ratio in which the numerator is
a sum into a sum of ratios, all having a common denominator. Otherwise, ratexpand
collapses a sum of ratios into a single ratio, the numerator of which is the sum of the
numerators of each ratio.

When keepfloat is true, prevents floating point numbers from being rationalized when
expressions which contain them are converted to canonical rational expression (CRE)

form.
Examples:
(%1i1) ratexpand ((2*x - 3xy)~3);
3 2 2 3
(ho1) -27Ty +5B4xy -36x y+8x
(%12) expr: (x - 1)/(x + 1)°2 + 1/(x - 1);
x -1 1
(o2 e + -
2 x-1
(x + 1)
(%13) expand (expr);
X 1 1
(%03) = mmmmmmmmmmee o e + ————-
2 2 x -1

x +2x+1 x +2x+1
(%14) ratexpand (expr);

(hod)  mmmmmmmmmmmm— R



116 Maxima Manual

ratfac Option variable
Default value: false

When ratfac is true, canonical rational expressions (CRE) are manipulated in a partially
factored form.

During rational operations the expression is maintained as fully factored as possible with-
out calling factor. This should always save space and may save time in some computa-
tions. The numerator and denominator are made relatively prime, for example rat ((x~2
- 1)74/(x + 1)72) yields (x - 1)74 (x + 1) ~2), but the factors within each part may not
be relatively prime.

In the ctensr (Component Tensor Manipulation) package, Ricci, Einstein, Riemann, and
Weyl tensors and the scalar curvature are factored automatically when ratfac is true.
ratfac should only be set for cases where the tensorial components are known to consist
of few terms.

The ratfac and ratweight schemes are incompatible and may not both be used at the
same time.

ratnumer (expr) Function
Returns the numerator of expr, after coercing expr to a canonical rational expression

(CRE). The return value is a CRE.

expr is coerced to a CRE by rat if it is not already a CRE. This conversion may change
the form of expr by putting all terms over a common denominator.

num is similar, but returns an ordinary expression instead of a CRE. Also, num does not
attempt to place all terms over a common denominator, and thus some expressions which
are considered ratios by ratnumer are not considered ratios by num.

ratnump (expr) Function
Returns true if expr is a literal integer or ratio of literal integers, otherwise false.

ratp (expr) Function
Returns true if expr is a canonical rational expression (CRE) or extended CRE, otherwise
false.

CRE are created by rat and related functions. Extended CRE are created by taylor and
related functions.

ratprint Option variable
Default value: true

When ratprint is true, a message informing the user of the conversion of floating point
numbers to rational numbers is displayed.

ratsimp (expr) Function

ratsimp (expr, x_1, ..., x_n) Function
Simplifies the expression expr and all of its subexpressions, including the arguments to
non-rational functions. The result is returned as the quotient of two polynomials in a
recursive form, that is, the coefficients of the main variable are polynomials in the other
variables. Variables may include non-rational functions (e.g., sin (x"2 + 1)) and the
arguments to any such functions are also rationally simplified.

ratsimp (expr, x_1, ..., x_n) enables rational simplification with the specification of
variable ordering as in ratvars.

When ratsimpexpons is true, ratsimp is applied to the exponents of expressions during
simplification.

See also ratexpand. Note that ratsimp is affected by some of the flags which affect
ratexpand.

Examples:



Chapter 12: Polynomials 117

Chit)

(o)

(%hi2)

(%o2)

(%i3)

(%03)

(%hi4)
(%hod)

(%i5)

(%05)

ratsimpexpons

sin (x/(x"2 + x)) = exp ((log(x) + 1)72 - log(x)~2);

2 2
X (log(x) + 1) - log (x)
sin(------ ) = Ye
2
X o+ X
ratsimp (%);
1 2
sin(----- ) = e x
x+1
((x - 1)7(3/2) - (x + D*sqrt(x - 1))/sqre((x - D*(x + 1));
3/2
x -1 - sqrt(x - 1) (x + 1)

sqre((x - 1) (x + 1))
ratsimp (%);
2 sqrt(x - 1)

sqrt(x - 1)
x"(a + 1/a), ratsimpexpons: true;

Option variable

Default value: false

When ratsimpexpons is true, ratsimp is applied to the exponents of expressions during
simplification.

ratsubst (a, b, ¢) Function
Substitutes a for b in ¢ and returns the resulting expression. b may be a sum, product,

power, etc.

ratsubst knows something of the meaning of expressions whereas subst does a purely
syntactic substitution. Thus subst (a, x +y, x +y + z) returns x +y + z whereas
ratsubst returns z + a.

When radsubstflag is true, ratsubst makes substitutions for radicals in expressions
which don’t explicitly contain them.

Examples:

(hit)

(Yho1)
(hi2)

(%o2)
(%i3)

(%03)
(%hid)

(%ho4)
(%i5)
(%hi6)
(%06)

ratsubst (a, x*y~2, x74xy~3 + x"4*y~8);
3 4
ax y+a
cos(x)"4 + cos(x)"3 + cos(x)"2 + cos(x) + 1;
4 3 2
cos (x) + cos (x) + cos (x) + cos(x) + 1
ratsubst (1 - sin(x)"2, cos(x)"2, %);
4 2 2
sin (x) - 3 sin (x) + cos(x) (2 - sin (x)) + 3
ratsubst (1 - cos(x)"2, sin(x)"2, sin(x)"4);
4 2
cos (x) - 2 cos (x) + 1
radsubstflag: false$
ratsubst (u, sqrt(x), x);
x



118 Maxima Manual

(%17) radsubstflag: true$
(%i8) ratsubst (u, sqrt(x), x);

2
(%08) u
ratvars (x_1, ..., x_n) Function
ratvars () Function
ratvars System variable
Declares main variables x_1, ..., x_n for rational expressions. x_n, if present in a rational

expression, is considered the main variable. Otherwise, x_[n-1] is considered the main
variable if present, and so on through the preceding variables to x_1, which is considered
the main variable only if none of the succeeding variables are present.

If a variable in a rational expression is not present in the ratvars list, it is given a lower
priority than x_I.

The arguments to ratvars can be either variables or non-rational functions such as
sin(x).

The variable ratvars is a list of the arguments of the function ratvars when it was called
most recently. Each call to the function ratvars resets the list. ratvars () clears the

list.
ratweight (x_1, w_1, ..., x_n, w_n) Function
ratweight () Function

Assigns a weight w_i to the variable x_i. This causes a term to be replaced by 0 if its
weight exceeds the value of the variable ratwtlvl (default yields no truncation). The
weight of a term is the sum of the products of the weight of a variable in the term times
its power. For example, the weight of 3 x_1"2 x_2 is 2 w_1 + w_2. Truncation according
to ratwtlvl is carried out only when multiplying or exponentiating canonical rational
expressions (CRE).

ratweight () returns the cumulative list of weight assignments.

Note: The ratfac and ratweight schemes are incompatible and may not both be used
at the same time.

Examples:
(%i1) ratweight (a, 1, b, 1);
(%o1) [a, 1, b, 1]

(%12) exprl: rat(a + b + 1)$
(%13) expri1~2;
2 2
(%03) /R/ b +(2a+2 b+a +2a+1
(%i4) ratwtlvl: 1%
(%15) exprl~2;
(%05)/R/ 2b+2a+1

ratweights System variable
Default value: []

ratweights is the list of weights assigned by ratweight. The list is cumulative: each call
to ratweight places additional items in the list.

kill (ratweights) and save (ratweights) both work as expected.

ratwtlvl Option variable
Default value: false

ratwtlvl is used in combination with the ratweight function to control the truncation
of canonical rational expressions (CRE). For the default value of false, no truncation
occurs.



Chapter 12: Polynomials 119

remainder (p_1, p_2) Function

remainder (p_1, p-2, x_1, ..., x_n) Function
Returns the remainder of the polynomial p_1 divided by the polynomial p_2. The argu-
ments x_1, ..., x_n are interpreted as in ratvars.

remainder returns the second element of the two-element list returned by divide.

resultant (p_1, p_2, x) Function

resultant Variable
Computes the resultant of the two polynomials p_1 and p-2, eliminating the variable x.
The resultant is a determinant of the coefficients of x in p_1 and p_2, which equals zero if
and only if p_1 and p_2 have a non-constant factor in common.

If p_1 or p_2 can be factored, it may be desirable to call factor before calling resultant.

The variable resultant controls which algorithm will be used to compute the resultant.
subres for subresultant prs, mod for modular resultant algorithm, and red for reduced prs.
On most problems subres should be best. On some large degree univariate or bivariate
problems mod may be better.

The function bezout takes the same arguments as resultant and returns a matrix. The
determinant of the return value is the desired resultant.

savefactors Option variable
Default value: false

When savefactors is true, causes the factors of an expression which is a product of fac-
tors to be saved by certain functions in order to speed up later factorizations of expressions
containing some of the same factors.

sqfr (expr) Function
is similar to factor except that the polynomial factors are "square-free." That is, they
have factors only of degree one. This algorithm, which is also used by the first stage of
factor, utilizes the fact that a polynomial has in common with its n’th derivative all
its factors of degree greater than n. Thus by taking greatest common divisors with the
polynomial of the derivatives with respect to each variable in the polynomial, all factors
of degree greater than 1 can be found.

Example:
(%11) sqfr (4xx"4 + 4%x"3 - 3%x72 - 4*x - 1);
2 2
(hol) Qx+1) & -1
tellrat (p-1, ..., p-n) Function
tellrat () Function
Adds to the ring of algebraic integers known to Maxima the elements which are the
solutions of the polynomials p_1, ..., p_n. Each argument p_i is a polynomial with integer
coeflicients.

tellrat (x) effectively means substitute 0 for x in rational functions.
tellrat () returns a list of the current substitutions.

algebraic must be set to true in order for the simplification of algebraic integers to take
effect.

Maxima initially knows about the imaginary unit %i and all roots of integers.
There is a command untellrat which takes kernels and removes tellrat properties.

When tellrat’ing a multivariate polynomial, e.g., tellrat (x~2 - y~2), there would be
an ambiguity as to whether to substitute y~2 for x~2 or vice versa. Maxima picks a
particular ordering, but if the user wants to specify which, e.g. tellrat (y"2 =x"2)
provides a syntax which says replace y~2 by x~2.

Examples:



120 Maxima Manual

(%i1) 10x(%i + 1)/hi + 37(1/3));
10 (%i + 1)

(Yot) — mmmmm—————=
1/3
%+ 3
(%12) ev (ratdisrep (rat(%)), algebraic);
2/3 1/3 2/3 1/3
(%02) (4 3 -23 -4) %i+ 23 +4 3 -2
(%i3) tellrat (1 + a + a"2);
2
(%03) [a + a + 1]
(hid) 1/(a*xsqrt(2) - 1) + a/(sqrt(3) + sqrt(2));
1 a
(h0d) e +

sqrt(2) a - 1 sqrt(3) + sqrt(2)
(%i5) ev (ratdisrep (rat(%)), algebraic);
(7 sqrt(3) - 10 sqrt(2) + 2) a - 2 sqrt(2) - 1

(%0B)  mmmm e e
7
(%i6) tellrat (y~2 = x72);
2 2 2
(%06) [y - x,a +a+1]
totaldisrep (expr) Function

Converts every subexpression of expr from canonical rational expressions (CRE) to general
form and returns the result. If expr is itself in CRE form then totaldisrep is identical
to ratdisrep.

totaldisrep may be useful for ratdisrepping expressions such as equations, lists, matrices,
etc., which have some subexpressions in CRE form.

untellrat (x_1, ..., x.n) Function
Removes tellrat properties from x_1, ..., x_n.



Chapter 13: Constants

13

13.1

%e

false

inf

Constants

Definitions for Constants

- the base of natural logarithms, e, is represented in Maxima as %e.

- the Boolean constant, false. (NIL in Lisp)

- real positive infinity.

infinity

minf

%pi

true

- complex infinity.

- real minus infinity.

"pi" is represented in Maxima as %pi.

- the Boolean constant, true. (T in Lisp)

121

Constant

Constant

Constant

Constant

Constant

Constant

Constant



122 Maxima Manual



Chapter 14: Logarithms 123

14 Logarithms

14.1 Definitions for Logarithms

%e_to_numlog Option variable
Default value: false

When true, r some rational number, and x some expression, %e” (r*log(x)) will be
simplified into x"r . It should be noted that the radcan command also does this trans-
formation, and more complicated transformations of this ilk as well. The logcontract
command "contracts" expressions containing log.

li [s] (2) Function
Represents the polylogarithm function of order s and argument z, defined by the infinite
series

inf
==== X
\ z
Li (z) = > -
s / S
==== k
k=1

1i [1] is - log (1 - z). 1i [2] and 1i [3] are the dilogarithm and trilogarithm func-
tions, respectively.

When the order is 1, the polylogarithm simplifies to - 1og (1 - z), which in turn simplifies
to a numerical value if z is a real or complex floating point number or the numer evaluation
flag is present.

When the order is 2 or 3, the polylogarithm simplifies to a numerical value if z is a real
floating point number or the numer evaluation flag is present.

Examples:
(%i1) assume (x > 0);
(hol) [x > 0]
(%12) integrate ((log (1 - t)) / t, t, 0, x);
(%02) - 1i %)
2
(%1i3) 1i [2] (7);
(%03) 1i (7)
2
(%id4) 1i [2] (7), numer;
(%hod) 1.24827317833392 - 6.113257021832577 %i
(%i5) 1i [3] (7);
(%05) 1i (7)
3

(%i6) 1i [2] (7), numer;

(%06) 1.24827317833392 - 6.113257021832577 %i
(%i7) L : makelist (i / 4.0, i, 0, 8);

(%o7) [0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0]
(%i8) map (lambda ([x], 1i [2] (x)), L);

(%08) [0, .2676526384986274, .5822405249432515,
.9784693966661848, 1.64493407, 2.190177004178597

- .7010261407036192 %i, 2.374395264042415
1.273806203464065 %i, 2.448686757245154
1.758084846201883 %i, 2.467401098097648

- 2.177586087815347 %i]

(%i9) map (lambda ([x], 1i [3] (x)), L);



124 Maxima Manual

(%09) [0, .2584613953442624, 0.537213192678042,
.8444258046482203, 1.2020569, 1.642866878950322
- .07821473130035025 %i, 2.060877505514697

- .2582419849982037 %i, 2.433418896388322

- .4919260182322965 %i, 2.762071904015935

- .7546938285978846 7%i]

log (x) Function
Represents the natural (base e) logarithm of x.

Maxima does not have a built-in function for the base 10 logarithm or other bases.
log10(x) :=log(x) / log(10) is a useful definition.

Simplification and evaluation of logarithms is governed by several global flags:

logexpand - causes log(a"b) to become bxlog(a). If it is set to all, log(axb) will
also simplify to log(a)+log(b). If it is set to super, then log(a/b) will also simplify to
log(a)-log(b) for rational numbers a/b, a#l. (log(1/b), for b integer, always simplifies. )
If it is set to false, all of these simplifications will be turned off.

logsimp - if false then no simplification of %e to a power containing log’s is done.

lognumer - if true then negative floating point arguments to log will always be converted
to their absolute value before the log is taken. If numer is also true, then negative integer
arguments to log will also be converted to their absolute value.

lognegint - if true implements the rule log(-n) -> log(n)+%i*}pi for n a positive
integer.

%e_to_numlog - when true, r some rational number, and x some expression,
%he” (rxlog(x)) will be simplified into x“r . It should be noted that the radcan command
also does this transformation, and more complicated transformations of this ilk as well.
The logcontract command "contracts" expressions containing log.

logabs Option variable
Default value: false

When doing indefinite integration where logs are generated, e.g. integrate(1/x,x), the
answer is given in terms of log(abs(...)) if logabs is true, but in terms of log(...) if
logabs is false. For definite integration, the logabs:true setting is used, because here
"evaluation" of the indefinite integral at the endpoints is often needed.

logarc Option variable
Default value: false

If true will cause the inverse circular and hyperbolic functions to be converted into log-
arithmic form. logarc(exp) will cause this conversion for a particular expression exp
without setting the switch or having to re-evaluate the expression with ev.

logconcoeffp Option variable
Default value: false

Controls which coefficients are contracted when using logcontract. It may be set
to the name of a predicate function of one argument. E.g. if you like to generate
SQRTSs, you can do logconcoeffp:’logconfun$ logconfun(m) :=featurep(m,integer)
or ratnump(m)$ . Then logcontract (1/2xlog(x)); will give log(sqrt(x)).

logcontract (expr) Function
Recursively scans the expression expr, transforming subexpressions of the form
al*log(bl) + a2*xlog(b2) + c into log(ratsimp(bl~al * b27a2)) + ¢
(%11) 2x(axlog(x) + 2xaxlog(y))$
(%12) logcontract(%);
2 4
(%02) a log(x y )



Chapter 14: Logarithms 125

If you do declare(n,integer); then logcontract(2*a*n*xlog(x)); gives
axlog(x~(2#n)). The coefficients that "contract" in this manner are those such as
the 2 and the n here which satisfy featurep(coeff,integer). The user can control
which coefficients are contracted by setting the option logconcoeffp to the name of a
predicate function of one argument. K.g. if you like to generate SQRTSs, you can do
logconcoeffp:’logconfun$ logconfun(m) :=featurep(m,integer) or ratnump(m)$
Then logcontract (1/2xlog(x)); will give log(sqrt(x)).

logexpand Option variable
Default value: true

Causes log(a”b) to become bxlog(a). If it is set to all, log(a*b) will also simplify to
log(a)+log(b). If it is set to super, then log(a/b) will also simplify to log(a)-1log(b)
for rational numbers a/b, a#l. (log(1/b), for integer b, always simplifies.) If it is set to
false, all of these simplifications will be turned off.

lognegint Option variable
Default value: false

If true implements the rule log(-n) -> log(n)+%ix%pi for n a positive integer.

lognumer Option variable
Default value: false

If true then negative floating point arguments to log will always be converted to their ab-
solute value before the log is taken. If numer is also true, then negative integer arguments
to log will also be converted to their absolute value.

logsimp Option variable
Default value: true

If false then no simplification of %e to a power containing log’s is done.

plog (x) Function
Represents the principal branch of the complex-valued natural logarithm with -%pi <
carg(x) <= +%pi .



126 Maxima Manual



Chapter 15: Trigonometric 127

15 Trigonometric

15.1 Introduction to Trigonometric

Maxima has many trigonometric functions defined. Not all trigonometric identities are pro-
grammed, but it is possible for the user to add many of them using the pattern matching
capabilities of the system. The trigonometric functions defined in Maxima are: acos, acosh,
acot, acoth, acsc, acsch, asec, asech, asin, asinh, atan, atanh, cos, cosh, cot, coth,
csc, csch, sec, sech, sin, sinh, tan, and tanh. There are a number of commands especially
for handling trigonometric functions, see trigexpand, trigreduce, and the switch trigsign.
Two share packages extend the simplification rules built into Maxima, ntrig and atrigl. Do
describe (command) for details.

15.2 Definitions for Trigonometric

acos (x) Function
- Arc Cosine.
acosh (x) Function

- Hyperbolic Arc Cosine.

acot (x) Function
- Arc Cotangent.

acoth (x) Function
- Hyperbolic Arc Cotangent.

acsc (x) Function
- Arc Cosecant.

acsch (x) Function
- Hyperbolic Arc Cosecant.

asec (x) Function
- Arc Secant.
asech (x) Function

- Hyperbolic Arc Secant.

asin (x) Function
- Arc Sine.
asinh (x) Function

- Hyperbolic Arc Sine.

atan (x) Function
- Arc Tangent.

atan2 (y, x) Function
- yields the value of atan(y/x) in the interval -%pi to %pi.

atanh (x) Function
- Hyperbolic Arc Tangent.



128 Maxima Manual

atrigl Package
The atrigl package contains several additional simplification rules for inverse trigono-
metric functions. Together with rules already known to Maxima, the following angles are
fully implemented: 0, %pi/6, %pi/4, %pi/3, and %pi/2. Corresponding angles in the other
three quadrants are also available. Do load(atrigl); to use them.

cos (x) Function
- Cosine.
cosh (x) Function

- Hyperbolic Cosine.

cot (x) Function
- Cotangent.
coth (x) Function

- Hyperbolic Cotangent.

csc (x) Function
- Cosecant.
csch (x) Function

- Hyperbolic Cosecant.

halfangles Option variable
Default value: false

When halfangles is true, half-angles are simplified away.

ntrig Package
The ntrig package contains a set of simplification rules that are used to simplify trigono-
metric function whose arguments are of the form f(n %pi/10) where f is any of the
functions sin, cos, tan, csc, sec and cot.

sec (x) Function
- Secant.
sech (x) Function

- Hyperbolic Secant.

sin (x) Function
- Sine.

sinh (x) Function
- Hyperbolic Sine.

tan (x) Function
- Tangent.
tanh (x) Function

- Hyperbolic Tangent.



Chapter 15: Trigonometric 129

trigexpand (expr) Function
Expands trigonometric and hyperbolic functions of sums of angles and of multiple angles
occurring in expr. For best results, expr should be expanded. To enhance user control of
simplification, this function expands only one level at a time, expanding sums of angles
or multiple angles. To obtain full expansion into sines and cosines immediately, set the
switch trigexpand: true.

trigexpand is governed by the following global flags:

trigexpand
If true causes expansion of all expressions containing sin’s and cos’s occurring
subsequently.

halfangles
If true causes half-angles to be simplified away.

trigexpandplus
Controls the "sum" rule for trigexpand, expansion of sums (e.g. sin(x + y))
will take place only if trigexpandplus is true.

trigexpandtimes
Controls the "product" rule for trigexpand, expansion of products (e.g.
sin(2 x)) will take place only if trigexpandtimes is true.

Examples:
(%11) x+sin(3#*x)/sin(x),trigexpand=true,expand;
2 2
(ho1) - sin (x) + 3 cos (x) + x
(%12) trigexpand(sin(10*x+y));
(%02) cos(10 x) sin(y) + sin(10 x) cos(y)
trigexpandplus Option variable

Default value: true

trigexpandplus controls the "sum" rule for trigexpand. Thus, when the trigexpand
command is used or the trigexpand switch set to true, expansion of sums (e.g. sin(x+y))
will take place only if trigexpandplus is true.

trigexpandtimes Option variable
Default value: true

trigexpandtimes controls the "product" rule for trigexpand. Thus, when the
trigexpand command is used or the trigexpand switch set to true, expansion of
products (e.g. sin(2*x)) will take place only if trigexpandtimes is true.

triginverses Option variable
Default value: all

triginverses controls the simplification of the composition of trigonometric and hyper-
bolic functions with their inverse functions.

If all, both e.g. atan(tan(x)) and tan(atan(x)) simplify to x.
If true, the arcfun(fun(x)) simplification is turned off.
If false, both the arcfun(fun(x)) and fun(arcfun(x)) simplifications are turned off.

trigreduce (expr, x) Function

trigreduce (expr) Function
Combines products and powers of trigonometric and hyperbolic sin’s and cos’s of x into
those of multiples of x. It also tries to eliminate these functions when they occur in
denominators. If x is omitted then all variables in expr are used.

See also poissimp.



130

Maxima Manual

(%1i1) trigreduce(-sin(x)"2+3*cos(x) "2+x);
cos(2 x) cos(2 x) 1 1
(o)  mmm——— + 3 (———————- +-) +x - -

The trigonometric simplification routines will use declared information in some simple
cases. Declarations about variables are used as follows, e.g.

(%11) declare(j, integer, e, even, o, odd)$
(%12) sin(x + (e + 1/2)*Ypi);

(%02) cos (x)

(%13) sin(x + (o + 1/2)x%pi);

(%03) - cos(x)

trigsign Option variable

Default value: true

When trigsign is true, it permits simplification of negative arguments to trigonometric
functions. E.g., sin(-x) will become -sin(x) only if trigsign is true.

trigsimp (expr) Function

Employs the identities sin(z)?* + cos(z)*> = 1 and cosh(x)? — sinh(z)* = 1 to simplify
expressions containing tan, sec, etc., to sin, cos, sinh, cosh.
trigreduce, ratsimp, and radcan may be able to further simplify the result.

demo ("trgsmp.dem") displays some examples of trigsimp.

trigrat (expr) Function

Gives a canonical simplifyed quasilinear form of a trigonometrical expression; expr is a
rational fraction of several sin, cos or tan, the arguments of them are linear forms in
some variables (or kernels) and %pi/n (n integer) with integer coefficients. The result is a
simplified fraction with numerator and denominator linear in sin and cos. Thus trigrat
linearize always when it is possible.

(%11) trigrat(sin(3*a)/sin(a+%pi/3));
(%o1) sqrt(3) sin(2 a) + cos(2 a) - 1

The following example is taken from Davenport, Siret, and Tournier, Calcul Formel, Mas-
son (or in English, Addison-Wesley), section 1.5.5, Morley theorem.
(%i1l) c: %pi/3 - a - b;
%pi
(%hol) -b-a+ -
3
(%i2) bc: sin(a)*sin(3*c)/sin(a+b);
sin(a) sin(3 b + 3 a)
(%02) e
sin(b + a)
(%1i3) ba: bc, c=a, a=c$
(%i4) ac2: ba"2 + bc"2 - 2xbc*baxcos(b);

2 2
sin (a) sin (3 b + 3 a)
(%od) =
2
sin (b + a)
%pi
2 sin(a) sin(3 a) cos(b) sin(b + a - -—-) sin(3 b + 3 a)

3



Chapter 15: Trigonometric

%pi
sin(a - ---) sin(b + a)
3
2 2 Ypi
sin (3 a) sin (b + a - ——-)
3
+ ———————————————————————————
2 hpi
sin (a - ---)
3

(%15) trigrat (ac2);
(%05) - (sqrt(3) sin(4 b + 4 a) - cos(4 b + 4 a)

2 sqrt(3) sin(4 b + 2 a) + 2 cos(4 b + 2 a)

2 sqrt(3) sin(2 b + 4 a) + 2 cos(2 b + 4 a)

+

+

+

9)/4

4 sqrt(3) sin(2 b + 2 a) - 8 cos(2b +2a) -4 cos(2b -2 a)
sqrt(3) sin(4 b) - cos(4 b) - 2 sqrt(3) sin(2 b) + 10 cos(2 b)

sqrt(3) sin(4 a) - cos(4 a) - 2 sqrt(3) sin(2 a) + 10 cos(2 a)

131



132 Maxima Manual



Chapter 16: Special Functions 133

16 Special Functions

16.1 Introduction to Special Functions

16.2 specint

hypgeo is a package for handling Laplace transforms of special functions. hyp is a package
for handling generalized Hypergeometric functions.

specint attempts to compute the definite integral (over the range from zero to infinity) of
an expression containing special functions. When the integrand contains a factor exp (-s t),
the result is a Laplace transform.

The syntax is as follows:
specint (exp (-s*t) * expr, t);
where t is the variable of integration and expr is an expression containing special functions.

If specint cannot compute the integral, the return value may contain various Lisp symbols,
including other-defint-to-follow-negtest, other-lt-exponential-to-follow, product-
of-y-with-nofract-indices, etc.; this is a bug.

Special function notation follows:

bessel_j (index, expr) Bessel function, 1st kind

bessel_y (index, expr) Bessel function, 2nd kind

bessel_i (index, expr) Modified Bessel function, 1st kind

bessel_k (index, expr) Modified Bessel function, 2nd kind

%he[n] (z) Hermite polynomial (Nota bene: he, not h. See A&S 22.!
hplu,vl (2) Legendre function

wqlu,v] (2) Legendre function, 2nd kind

hstruve[n] (z) Struve H function

lstruve[n] (z) Struve L function

htlp,ql (L1, [J, expr) Generalized Hypergeometric function

gamma () Gamma function

gammagreek(a,z) Incomplete gamma function

gammaincomplete(a,z) Tail of incomplete gamma function

slommel

Ymlu,k] (=) Whittaker function, 1st kind

Ywlu,k] (2) Whittaker function, 2nd kind

erfc (z2) Complement of the erf function

ei (2) Exponential integral (7)

kelliptic (z) Complete elliptic integral of the first kind (K)
%d [n] (z) Parabolic cylinder function

demo ("hypgeo") displays several examples of Laplace transforms computed by specint.

This is a work in progress. Some of the function names may change.

16.3 Definitions for Special Functions

airy (x) Function
The Airy function Ai. If the argument x is a number, the numerical value of airy (x) is
returned. Otherwise, an unevaluated expression airy (x) is returned.

The Airy equation diff (y(x), x, 2) - x y(x) = 0 has two linearly independent solu-
tions, named ai and bi. This equation is very popular as an approximation to more
complicated problems in many mathematical physics settings.

load ("airy") loads the functions ai, bi, dai, and dbi.



134 Maxima Manual

The airy package contains routines to compute ai and bi and their derivatives dai and
dbi. The result is a floating point number if the argument is a number, and an unevaluated
expression otherwise.

An error occurs if the argument is large enough to cause an overflow in the exponentials,
or a loss of accuracy in sin or cos. This makes the range of validity about -2800 to 10~38
for ai and dai, and -2800 to 25 for bi and dbi.

These derivative rules are known to Maxima:
e diff (ai(x), x) yields dai (x),
o diff (dai(x), x) yields x ai(x),

diff (bi(x), x) yields dbi(x),

diff (dbi(x), x) yields x bi(x).

Function values are computed from the convergent Taylor series for abs (x) < 3, and from
the asymptotic expansions for x < =3 or x > 3 as needed. This results in only very minor
numerical discrepancies at x = 3 and x = -3. For details, see Abramowitz and Stegun,
Handbook of Mathematical Functions, Section 10.4 and Table 10.11.

ev (taylor (ai(x), x, 0, 9), infeval) yields a floating point Taylor expansions of the
function ai. A similar expression can be constructed for bi.

airy_ai (x) Function
The Airy function Ai, as defined in Abramowitz and Stegun, Handbook of Mathematical
Functions, Section 10.4.

The Airy equation diff (y(x), x, 2) - x y(x) =0 has two linearly independent solu-
tions, y = Ai(x) and y = Bi(x). The derivative diff (airy_ai(x), x) is airy_dai(x).

If the argument x is a real or complex floating point number, the numerical value of
airy_ai is returned when possible.

See also airy_bi, airy_dai, airy_dbi.

airy_dai (x) Function
The derivative of the Airy function Ai airy_ai(x).
See airy_ai.

airy_bi (x) Function
The Airy function Bi, as defined in Abramowitz and Stegun, Handbook of Mathematical
Functions, Section 10.4, is the second solution of the Airy equation diff (y(x), x, 2) -
x y(x) = 0.

If the argument x is a real or complex floating point number, the numerical value of
airy_bi is returned when possible. In other cases the unevaluated expression is returned.

The derivative diff (airy_bi(x), x) is airy_dbi(x).
See airy_ai, airy_dbi.

airy_dbi (x) Function
The derivative of the Airy Bi function airy_bi(x).
See airy_ai and airy_bi.

asympa Function
asympa is a package for asymptotic analysis. The package contains simplification functions
for asymptotic analysis, including the “big O” and “little 0” functions that are widely used
in complexity analysis and numerical analysis.

load ("asympa") loads this package.

bessel (z, a) Function
The Bessel function of the first kind.

This function is deprecated. Write bessel_j (z, a) instead.



Chapter 16: Special Functions 135

bessel_j (v, z) Function
The Bessel function of the first kind of order v and argument z.
bessel_j computes the array besselarray such that besselarray [i] = bessel_j [i +
v - int(v)] (2) for i from zero to int(v).
bessel_j is defined as

= (D) ()

Zk!f‘(v—i—k—i—l)

k=0

although the infinite series is not used for computations.

bessel_y (v, z) Function
The Bessel function of the second kind of order v and argument z.

bessel_y computes the array besselarray such that besselarray [i] = bessel_y [i +
v - int(v)] (2) for i from zero to int(v).
bessel_y is defined as

cos (mv) J,(z) — J_(2)
sin (7w v)

when v is not an integer. When v is an integer n, the limit as v approaches n is taken.

bessel.i (v, z) Function
The modified Bessel function of the first kind of order v and argument z.

bessel_i computes the array besselarray such that besselarray [i] = bessel_i [i +
v - int(v)] (2) for i from zero to int(v).

bessel_i is defined as

%) 1 Py v+2k
Zk!r(v+k+1) (2)

k=0
although the infinite series is not used for computations.

bessel_k (v, z) Function
The modified Bessel function of the second kind of order v and argument z.

bessel_k computes the array besselarray such that besselarray [i] = bessel_k [i +
v - int(v)] (z) for i from zero to int(v).

bessel_k is defined as
mese(mv) (I-,(z) — I,(2))

2
when v is not an integer. If v is an integer n, then the limit as v approaches n is taken.

besselexpand Option variable
Default value: false
Controls expansion of the Bessel functions when the order is half of an odd integer. In
this case, the Bessel functions can be expanded in terms of other elementary functions.
When besselexpand is true, the Bessel function is expanded.
(%11) besselexpand: false$
(%12) bessel_j (3/2, z);
3
(%ho2) bessel_j(-, z)
2
(%13) besselexpand: true$
(%1i4) bessel_j (3/2, z);
2 z sin(z) cos(z)
(%o4) sqrt(-—-) (-==--= - —————- )
hpi 2 z



136 Maxima Manual

jo (x) Function
The Bessel function of the first kind of order 0.
This function is deprecated. Write bessel_j (0, x) instead.

Jj1 (x) Function
The Bessel function of the first kind of order 1.
This function is deprecated. Write bessel_j (1, x) instead.

jn (x, n) Function
The Bessel function of the first kind of order n.
This function is deprecated. Write bessel_j (n, x) instead.

i0 (x) Function
The modified Bessel function of the first kind of order 0.
This function is deprecated. Write bessel_i (0, x) instead.

il (x) Function
The modified Bessel function of the first kind of order 1.
This function is deprecated. Write bessel_i (1, x) instead.

beta (x, y) Function
The beta function, defined as gamma (x) gamma(y)/gamma(x + y).

gamma (x) Function
The gamma function.

See also makegamma.
The variable gammalim controls simplification of the gamma function.
The Euler-Mascheroni constant is %gamma.

gammalim Option variable
Default value: 1000000

gammalim controls simplification of the gamma function for integral and rational number
arguments. If the absolute value of the argument is not greater than gammalim, then
simplification will occur. Note that the factlim switch controls simplification of the
result of gamma of an integer argument as well.

intopois (a) Function
Converts a into a Poisson encoding.

makefact (expr) Function
Transforms instances of binomial, gamma, and beta functions in expr into factorials.

See also makegamma.

makegamma (expr) Function
Transforms instances of binomial, factorial, and beta functions in expr into gamma func-
tions.

See also makefact.

numfactor (expr) Function
Returns the numerical factor multiplying the expression expr, which should be a single
term.

content returns the greatest common divisor (ged) of all terms in a sum.



Chapter 16: Special Functions 137

(%i1) gamma (7/2);
15 sqrt (%pi)

(%o  mmmmmmm——
8
(%i2) numfactor (%);
15
(%02) --
8
outofpois (a) Function

Converts a from Poisson encoding to general representation. If a is not in Poisson form,
outofpois carries out the conversion, i.e., the return value is outofpois (intopois (a)).
This function is thus a canonical simplifier for sums of powers of sine and cosine terms of
a particular type.

poisdiff (a, b) Function
Differentiates a with respect to b. b must occur only in the trig arguments or only in the
coefficients.

poisexpt (a, b) Function

Functionally identical to intopois (a~bh). b must be a positive integer.

poisint (a, b) Function
Integrates in a similarly restricted sense (to poisdiff). Non-periodic terms in b are
dropped if b is in the trig arguments.

poislim Option variable
Default value: 5
poislim determines the domain of the coefficients in the arguments of the trig functions.
The initial value of 5 corresponds to the interval [-27(5-1)+1,27(5-1)], or [-15,16], but it
can be set to [-27(n-1)+1, 2~ (n-1)].

poismap (series, sinfn, cosfn) Function
will map the functions sinfn on the sine terms and cosfn on the cosine terms of the Poisson
series given. sinfn and cosfn are functions of two arguments which are a coefficient and a
trigonometric part of a term in series respectively.

poisplus (a, b) Function
Is functionally identical to intopois (a + b).

poissimp (a) Function
Converts a into a Poisson series for a in general representation.

poisson Special symbol
The symbol /P/ follows the line label of Poisson series expressions.

poissubst (a, b, c) Function
Substitutes a for b in ¢. c¢ is a Poisson series.
(1) Where B is a variable u, v, w, x, y, or z, then a must be an expression linear in those
variables (e.g., 6%u + 4*v).
(2) Where b is other than those variables, then a must also be free of those variables, and
furthermore, free of sines or cosines.

poissubst (a, b, ¢, d, n) is a special type of substitution which operates on a and b as
in type (1) above, but where d is a Poisson series, expands cos(d) and sin(d) to order
n so as to provide the result of substituting a + d for b in ¢. The idea is that d is an
expansion in terms of a small parameter. For example, poissubst (u, v, cos(v), %e,
3) yields cos(u)*(1 - %e~2/2) - sin(u)*(%e - %e~3/6).



138 Maxima Manual

poistimes (a, b) Function
Is functionally identical to intopois (a*b).

poistrim () Function
is a reserved function name which (if the user has defined it) gets applied during Poisson
multiplication. It is a predicate function of 6 arguments which are the coefficients of the
u, v, ..., z in a term. Terms for which poistrim is true (for the coefficients of that term)
are eliminated during multiplication.

printpois (a) Function
Prints a Poisson series in a readable format. In common with outofpois, it will convert
a into a Poisson encoding first, if necessary.

psi (x) Function
psi [n](x) Function
The derivative of log (gamma (x)).
Maxima does not know how to compute a numerical value of psi. However, the function
bfpsi in the bffac package can compute numerical values.



Chapter 17: Elliptic Functions 139

17 Elliptic Functions

17.1 Introduction to Elliptic Functions and Integrals

Maxima includes support for Jacobian elliptic functions and for complete and incomplete el-
liptic integrals. This includes symbolic manipulation of these functions and numerical evaluation
as well. Definitions of these functions and many of their properties can by found in Abramowitz
and Stegun, Chapter 16-17. As much as possible, we use the definitions and relationships given
there.

In particular, all elliptic functions and integrals use the parameter m instead of the modulus
k or the modular angle «. This is one area where we differ from Abramowitz and Stegun who
use the modular angle for the elliptic functions. The following relationships are true:

m=k?

and
k =sino

The elliptic functions and integrals are primarily intended to support symbolic computation.
Therefore, most of derivatives of the functions and integrals are known. However, if floating-
point values are given, a floating-point result is returned.

Support for most of the other properties of elliptic functions and integrals other than deriva-
tives has not yet been written.

Some examples of elliptic functions:

(%i1) jacobi_sn (u, m);

(%01) jacobi_sn(u, m)

(%12) jacobi_sn (u, 1);

(%02) tanh (u)

(%13) jacobi_sn (u, 0);

(%03) sin(u)

(%14) diff (jacobi_sn (u, m), w);

(%04) jacobi_cn(u, m) jacobi_dn(u, m)

(%15) diff (jacobi_sn (u, m), m);
(%05) jacobi_cn(u, m) jacobi_dn(u, m)

elliptic_e(asin(jacobi_sn(u, m)), m)

uw- - )/ (2 m)
1 -m
2
jacobi_cn (u, m) jacobi_sn(u, m)
+ ————————————————————————————————
2 (1-m

Some examples of elliptic integrals:
(%11) elliptic_f (phi, m);

(%hol) elliptic_f (phi, m)
(%i2) elliptic_f (phi, 0);
(%ho2) phi
(%13) elliptic_f (phi, 1);
phi  Ypi
(%ho3) log(tan(-—- + ---))
2 4

(%14) elliptic_e (phi, 1);
(%ho4d) sin(phi)
(%i5) elliptic_e (phi, 0);



140

(%05) phi
(%i6) elliptic_kc (1/2);
1
(%o6) elliptic_kc(-)
2
(%17) makegamma (%) ;
21
gamma (-)
4

(hord — mmmmm————-
4 sqrt(%pi)
(%i8) diff (elliptic_f (phi, m), phi);

(%08  mmmmmmmmm

sqrt(1 - m sin (phi))
(%19) diff (elliptic_f (phi, m), m);

elliptic_e(phi, m) - (1 - m) elliptic_f(phi, m)
(ho9) (-——-—-——-—————m

cos(phi) sin(phi)

Maxima Manual

e /(2 (1 - m)

2
sqrt(1 - m sin (phi))

Support for elliptic functions and integrals was written by Raymond Toy. It is placed under
the terms of the General Public License (GPL) that governs the distribution of Maxima.

17.2 Definitions for Elliptic Functions

jacobi_sn (u, m)
The Jacobian elliptic function sn(u,m).

jacobi_cn (u, m)
The Jacobian elliptic function cn(u, m).

jacobi_dn (u, m)
The Jacobian elliptic function dn(u,m).

jacobi_ns (u, m)
The Jacobian elliptic function ns(u,m) = 1/sn(u, m).

Jjacobi_sc (u, m)
The Jacobian elliptic function sc(u, m) = sn(u, m)/cn(u, m).

jacobi_sd (u, m)
The Jacobian elliptic function sd(u, m) = sn(u, m)/dn(u, m).

jacobi_nc (u, m)
The Jacobian elliptic function nc(u,m) = 1/cen(u, m).

jacobi_cs (u, m)
The Jacobian elliptic function cs(u, m) = cn(u, m)/sn(u, m).

jacobi_cd (u, m)
The Jacobian elliptic function cd(u, m) = en(u, m)/dn(u, m).

Function

Function

Function

Function

Function

Function

Function

Function

Function



Chapter 17: Elliptic Functions

jacobi_nd (u, m)
The Jacobian elliptic function nc(u,m) = 1/en(u, m).

jacobi_ds (u, m)

The Jacobian elliptic function ds(u, m) = dn(u, m)/sn(u, m).

jacobi_dc (u, m)

The Jacobian elliptic function de(u, m) = dn(u, m)/cn(u, m).

inverse_jacobi_sn (u, m)

The inverse of the Jacobian elliptic function sn(u,m).

inverse_jacobi_cn (u, m)

The inverse of the Jacobian elliptic function en(u, m).

inverse_jacobi_dn (u, m)

The inverse of the Jacobian elliptic function dn(u,m).

inverse_jacobi_ns (u, m)

The inverse of the Jacobian elliptic function ns(u, m).

inverse_jacobi_sc (u, m)

The inverse of the Jacobian elliptic function sc(u, m).

inverse_jacobi_sd (u, m)

The inverse of the Jacobian elliptic function sd(u,m).

inverse_jacobi_nc (u, m)

The inverse of the Jacobian elliptic function ne(u, m).

inverse_jacobi_cs (u, m)

The inverse of the Jacobian elliptic function es(u, m).

inverse_jacobi_cd (u, m)

The inverse of the Jacobian elliptic function cd(u, m).

inverse_jacobi_nd (u, m)

The inverse of the Jacobian elliptic function ne(u, m).

inverse_jacobi_ds (u, m)

The inverse of the Jacobian elliptic function ds(u,m).

inverse_jacobi_dc (u, m)

The inverse of the Jacobian elliptic function dc(u, m).

141

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function

Function



142 Maxima Manual

17.3 Definitions for Elliptic Integrals

elliptic_f (phi, m) Function
The incomplete elliptic integral of the first kind, defined as

/¢ df
0 V1—msin®@
See also [elliptic_e], page 142 and [elliptic_kc|, page 142.

elliptic_e (phi, m) Function
The incomplete elliptic integral of the second kind, defined as

[
/ V1— m sin® 6d6
0

See also [elliptic_e], page 142 and [elliptic_ec], page 142.

elliptic_eu (u, m) Function
The incomplete elliptic integral of the second kind, defined as

v T /1 —mt?
/0 dn(v,m)dv:/o \/ T dt

This is related to elliptic, by

where 7 = sn(u, m)

E(u,m) = E(¢,m)

1

where ¢ = sin™ " sn(u, m) See also [elliptic_e|, page 142.

elliptic_pi (n, phi, m) Function
The incomplete elliptic integral of the third kind, defined as

¢ do
/0 (1 —nsin®0)v/1 —msin® @

Only the derivative with respect to phi is known by Maxima.

elliptic_kc (m) Function
The complete elliptic integral of the first kind, defined as

/3 do

0 V1—msin®6

For certain values of m, the value of the integral is known in terms of Gamma functions.
Use makegamma to evaluate them.

elliptic_ec (m) Function
The complete elliptic integral of the second kind, defined as

/E J1 — msin? 0d6
0

For certain values of m, the value of the integral is known in terms of Gamma functions.
Use makegamma to evaluate them.



Chapter 18: Limits 143

18 Limits

18.1 Definitions for Limits

lhospitallim Option variable
Default: 4
lhospitallim is the maximum number of times L’Hospital’s rule is used in 1imit. This
prevents infinite looping in cases like 1imit (cot(x)/csc(x), x, 0).

limit (expr, x, val, dir) Function
limit (expr, x, val) Function
limit (expr) Function

Computes the limit of expr as the real variable x approaches the value val from the
direction dir. dir may have the value plus for a limit from above, minus for a limit from
below, or may be omitted (implying a two-sided limit is to be computed).

limit uses the following special symbols: inf (positive infinity) and minf (negative in-
finity). On output it may also use und (undefined), ind (indefinite but bounded) and
infinity (complex infinity).

lhospitallim is the maximum number of times L.’Hospital’s rule is used in 1imit. This
prevents infinite looping in cases like 1imit (cot(x)/csc(x), x, 0).

tlimswitch when true will cause the limit package to use Taylor series when possible.
limsubst prevents limit from attempting substitutions on unknown forms. This is to
avoid bugs like limit (£ (n)/f(n+1), n, inf) giving 1. Setting limsubst to true will
allow such substitutions.

limit with one argument is often called upon to simplify constant expressions, for exam-
ple, limit (inf-1).

example (limit) displays some examples.

For the method see Wang, P., "Evaluation of Definite Integrals by Symbolic Manipula-
tion", Ph.D. thesis, MAC TR-92, October 1971.

limsubst Option variable
default value: false - prevents 1imit from attempting substitutions on unknown forms.
This is to avoid bugs like 1limit (£f(n)/f(n+1), n, inf) giving 1. Setting limsubst to
true will allow such substitutions.

tlimit (expr, x, val, dir) Function
tlimit (expr, x, val) Function
tlimit (expr) Function

Returns 1imit with tlimswitch set to true.

tlimswitch Option variable
Default value: false

When tlimswitch is true, it causes the limit package to use Taylor series when possible.



144 Maxima Manual



Chapter 19: Differentiation

19 Differentiation

19.1 Definitions for Differentiation

antid (expr, x, u(x))

145

Function

antidiff (expr, x, u(x))

Returns a two-element list, such that an antiderivative of expr with respect to x can be
constructed from the list. The expression expr may contain an unknown function u and
its derivatives.

Let L, a list of two elements, be the return value of antid. Then L[1] + ’integrate
(L[2], x) is an antiderivative of expr with respect to x.

When antid succeeds entirely, the second element of the return value is zero. Otherwise,
the second element is nonzero, and the first element is nonzero or zero. If antid cannot
make any progress, the first element is zero and the second nonzero.

load ("antid") loads this function. The antid package also defines the functions
nonzeroandfreeof and linear.

antid is related to antidiff as follows. Let L, a list of two elements, be the return value
of antid. Then the return value of antidiff is equal to L[1] + ’integrate (L[2], x)
where x is the variable of integration.

Examples:

(5hi1) load ("antid")$
(%12) expr: exp (z(x)) * diff (z(x), x) * y(x);

z(x) d
(%o2) y(x) %e (= (z(x)))
dx
(%13) al: antid (expr, x, z(x));
z(x) z(x) d
(%03) [y(x) %e , — he (—- (yxIN]
dx

(%i4) a2: antidiff (expr, x, z(x));

/

z(x) [ z&x) 4
I
]

(%04) y(x) Y%he -1 %e (-- (y(x))) dx
dx
/
(%i5) a2 - (first (al) + ’integrate (second (al), x));
(%05) 0
(%16) antid (expr, x, y(x));
z(x) d
(%06) [0, y(x) %e (= (zx))N]
dx
(%17) antidiff (expr, x, y(x));
/
[ z(x) d
(%o0T) I y(x) %e (-- (z(x))) dx
] dx
/

Returns an antiderivative of expr with respect to x. The expression expr may contain an
unknown function u and its derivatives.

When antidiff succeeds entirely, the resulting expression is free of integral signs (that is,
free of the integrate noun). Otherwise, antidiff returns an expression which is partly
or entirely within an integral sign. If antidiff cannot make any progress, the return
value is entirely within an integral sign.

Function



146 Maxima Manual

load ("antid") loads this function. The antid package also defines the functions
nonzeroandfreeof and linear.

antidiff is related to antid as follows. Let L, a list of two elements, be the return value
of antid. Then the return value of antidiff is equal to L[1] + ’integrate (L[2], x)
where x is the variable of integration.

Examples:

(5hi1l) load ("antid")$
(%12) expr: exp (z(x)) * diff (z(x), x) * y(x);

z(x) d
(%02) y(x) Y%he (-- (z(x)))
dx
(%13) al: antid (expr, x, z(x));
z(x) z(x) d
(%03) [y(x) %e , — he (- (yxIN]
dx

(%i4) a2: antidiff (expr, x, z(x));

/

z(x) [ z&x) 4
I
]

(%04) y(x) Y%he -1 %e (-- (y(x))) dx
dx
/
(%i5) a2 - (first (al) + ’integrate (second (al), x));
(%05) 0
(%16) antid (expr, x, y(x));
z(x) d
(%06) [0, y(x) %e (-- (z)NI]
dx
(%17) antidiff (expr, x, y(x));
/
[ z(x) d
(%oT) I y(x) %e (-- (z(x))) dx
] dx
/
atomgrad Property
atomgrad is the atomic gradient property of an expression. This property is assigned by
gradef.
atvalue (expr, [x.1 = a_1, ..., xxm = a_m], ¢) Function
atvalue (expr, x_.1 = a_l, c) Function

Assigns the value ¢ to expr at the point x = a. Typically boundary values are established
by this mechanism.

expr is a function evaluation, f(x_1, ..., xm), or a derivative, diff (f(x_1, ...,
xm), x_1, n_1, ..., x.n, n.m) in which the function arguments explicitly appear. n_i
is the order of differentiation with respect to x_i.

The point at which the atvalue is established is given by the list of equations [x_1 = a_1,
., x_m = a_m]. If there is a single variable x_1, the sole equation may be given without
enclosing it in a list.

printprops ([f1, f2, ...], atvalue) displays the atvalues of the functions f.1, f.2,

. as specified by calls to atvalue. printprops (f, atvalue) displays the atvalues of
one function f. printprops (all, atvalue) displays the atvalues of all functions for
which atvalues are defined.

The symbols @1, @2, ... represent the variables x_1, x_2, ... when atvalues are displayed.
atvalue evaluates its arguments. atvalue returns c, the atvalue.

Examples:



Chapter 19: Differentiation 147

(%11) atvalue (f(x,y), [x =0, y = 1], a~2);

2
(%o1) a
(%12) atvalue (’diff (f(x,y), x), x =0, 1 + y);
(%02) @2 + 1
(%13) printprops (all, atvalue);
1
d !
--- (f(e1, @2))! =02 + 1
de1 !
1¢1 = 0
2
£(0, 1) = a
(%03) done
(%14) diff (4*f(x,y)"2 - ulx,y)"2, x);
d d
(%04) 8 f(x, y) (—— (£(x, y¥)) - 2 ulx, y) (- (ulx, y)))
dx dx
(%i5) at (%, [x =0, y = 11);
|
2 d !
(%05) 16 a - 2 u(0, 1) (-- (ulx, y)! )
dx !
'x =0, y=1
cartan - Function

The exterior calculus of differential forms is a basic tool of differential geometry devel-
oped by Elie Cartan and has important applications in the theory of partial differential
equations. The cartan package implements the functions ext_diff and lie_diff, along
with the operators ~ (wedge product) and | (contraction of a form with a vector.) Type
demo (tensor) to see a brief description of these commands along with examples.

cartan was implemented by F.B. Estabrook and H.D. Wahlquist.

del (x) Function
del (x) represents the differential of the variable x.

diff returns an expression containing del if an independent variable is not specified. In
this case, the return value is the so-called "total differential".

Examples:

(%i1) diff (log (x));

del (x)
(hot) — mmm

b4
(%12) diff (exp (x*y));
Xy Xy
(ho2) x e del(y) + y %e del(x)
(%13) diff (x*xy*z);
(%03) x y del(z) + x z del(y) + y z del(x)
delta (t) Function

The Dirac Delta function.
Currently only laplace knows about the delta function.

Example:



148 Maxima Manual

(%i1) laplace (delta (t - a) * sin(b*t), t, s);
Is a positive, negative, or zero?

P
- as
(%o1) sin(a b) Y%e

dependencies System variable
Default value: []

dependencies is the list of atoms which have functional dependencies, assigned by
depends or gradef. The dependencies list is cumulative: each call to depends or gradef
appends additional items.

See depends and gradef.

depends (f.1, x_1, ..., fn, x_n) Function
Declares functional dependencies among variables for the purpose of computing deriva-
tives. In the absence of declared dependence, diff (£, x) yields zero. If depends (f, x)
is declared, diff (f, x) yields a symbolic derivative (that is, a diff noun).

Each argument .1, x_1, etc., can be the name of a variable or array, or a list of names.
Every element of f_i (perhaps just a single element) is declared to depend on every element
of x_i (perhaps just a single element). If some f.i is the name of an array or contains the
name of an array, all elements of the array depend on x_i.

diff recognizes indirect dependencies established by depends and applies the chain rule
in these cases.

remove (f, dependency) removes all dependencies declared for f.

depends returns a list of the dependencies established. The dependencies are appended
to the global variable dependencies. depends evaluates its arguments.

diff is the only Maxima command which recognizes dependencies established by depends.
Other functions (integrate, laplace, etc.) only recognize dependencies explicitly repre-
sented by their arguments. For example, integrate does not recognize the dependence
of £ on x unless explicitly represented as integrate (f(x), x).

(%11) depends ([f, gl, x);

(%o1) [f(x), g(x)]
(%i2) depends ([r, s], [u, v, wl);
(%02) [r(u, v, w), s(u, v, w)]
(%13) depends (u, t);
(%03) [u(t)]
(%i4) dependencies;
(%o04) &), gx), rCu, v, w), sCu, v, w), ult)]
(%i5) diff (r.s, u);
dr ds
(%05) -— . s +1r . ——
du du
(%i6) diff (r.s, t);
dr du ds du
(%o6) - — .s8+1r .- —-
du dt du dt

(%i7) remove (r, dependency);
(o) done
(%i8) diff (r.s, t);
ds du
(%08) r. - --
du dt



Chapter 19: Differentiation 149

derivabbrev Option variable
Default value: false

When derivabbrev is true, symbolic derivatives (that is, diff nouns) are displayed as
subscripts. Otherwise, derivatives are displayed in the Leibniz notation dy/dx.

derivdegree (expr, y, x) Function
Returns the highest degree of the derivative of the dependent variable y with respect to
the independent variable x occuring in expr.

Example:
(%i1) ’diff (y, x, 2) + ’diff (y, z, 3) + ’diff (y, x) * x°2;
3 2
dy dy 2 dy
(%o1) — + ==+ x --
3 2 dx
dz dx
(%1i2) derivdegree (%, y, x);
(%ho2) 2
derivlist (var_1, ..., var_k) Function
Causes only differentiations with respect to the indicated variables, within the ev com-
mand.
derivsubst Option variable

Default value: false

When derivsubst is true, a non-syntactic substitution such as subst (x, ’diff (y, t),
'diff (y, t, 2)) yields *diff (x, t).

diff (expr, x_1, n_1, ..., x_m, n_m) Function
diff (expr, x, n) Function
diff (expr, x) Function
diff (expr) Function

Returns the derivative or differential of expr with respect to some or all variables in expr.
diff (expr, x, n) returns the n’th derivative of expr with respect to x.

diff (expr, x_1, n_1, ..., x.m, n_m) returns the mixed partial derivative of expr with
respect to x_1, ..., x.m. It is equivalent to diff (... (diff (expr, x.m, n.m) ...),
x.1, n_.1).

diff (expr, x) returns the first derivative of expr with respect to the variable x.

diff (expr) returns the total differential of expr, that is, the sum of the derivatives of
expr with respect to each its variables times the differential del of each variable. No
further simplification of del is offered.

The noun form of diff is required in some contexts, such as stating a differential equation.
In these cases, diff may be quoted (as >diff) to yield the noun form instead of carrying
out the differentiation.

When derivabbrev is true, derivatives are displayed as subscripts. Otherwise, derivatives
are displayed in the Leibniz notation, dy/dx.

Examples:
(%1i1) diff (exp (£(x)), x, 2);
2
f(x) d f(x) d 2
(%o1) %e (——= (£(x))) + %e (= (£(x)))
2 dx
dx

(%i2) derivabbrev: true$
(%i3) ’integrate (f(x, y), y, g(x), h(x));
h(x)



150

diff

Maxima Manual

(%03) f(x, y) dy

N H /AN

g(x)
(%i4) diff (%, x);
h(x)

(%04) f(x, y) dy + £f(x, h(x)) h(x) - £(x, gx)) gx)

X X X

N H AN

g(x)
For the tensor package, the following modifications have been incorporated:

(1) The derivatives of any indexed objects in expr will have the variables x_i appended as
additional arguments. Then all the derivative indices will be sorted.

(2) The x_i may be integers from 1 up to the value of the variable dimension [default value:
4]. This will cause the differentiation to be carried out with respect to the x_i’th member
of the list coordinates which should be set to a list of the names of the coordinates,
e.g., [x, y, z, t]. If coordinates is bound to an atomic variable, then that variable
subscripted by x_i will be used for the variable of differentiation. This permits an array
of coordinate names or subscripted names like X[1], X[2], ... to be used. If coordinates
has not been assigned a value, then the variables will be treated as in (1) above.

Special symbol
When diff is present as an evflag in call to ev, all differentiations indicated in expr are
carried out.

dscalar (f) Function

Applies the scalar d’Alembertian to the scalar function f.
load ("ctensor") loads this function.

express (expr) Function

Expands differential operator nouns into expressions in terms of partial derivatives.
express recognizes the operators grad, div, curl, laplacian. express also expands
the cross product ~.

Symbolic derivatives (that is, diff nouns) in the return value of express may be evaluated

by including diff in the ev function call or command line. In this context, diff acts as
an evfun.

load ("vect") loads this function.
Examples:
(%i1) load ("vect")$
(%12) grad (x"2 + y~2 + z72);
2 2 2
(%o2) grad (z +y + x)

(%1i3) express () ;
d 2 2 2 d 2 2 2 d 2 2 2

(h03) [- (z +y +x), —(z +y +x), - (z +y +x)]
dx dy dz

(%i4) ev (%, diff);

(%o4) 2 x, 2y, 2z]

(%15) div ([x"2, y~2, z"2]);
2 2 2
(%05) div [x , vy, z ]



Chapter 19: Differentiation 151

(%i6) express (%) ;
d 2 d 2 d 2

(%06) —(z)+—=(y)+— (x)
dz dy dx
%i7) ev (%, diff);
(hoT) 2z +2y+2x
(%18) curl ([x"2, y~2, z"2]);
2 2 2
(%08) curl [x , vy, z ]

(%19) express (h);
d 2 d 2 d 2 d 2 d 2 d 2

(%09) [ (z) - —(G), — &) -—(2z), — () --—- ()]
dy dz dz dx dx dy
(%110) ev (%, diff);
(%010) [0, 0, 0]
(%111) laplacian (x7"2 * y~2 * z"2);
2 2 2
(hot1) laplacian (x y z )
(%i12) express (%) ;
2 2 2
d 2 2 2 d 2 2 2 d 2 2 2
($012) -—- (x y z) +-—(x y z)+-—(x vy z)
2 2 2
dz dy dx
(%i13) ev (%, diff);
2 2 2 2 2 2
(%013) 2y z +2x z +2x ¥y
(%114) [a, b, c] ~ [x, vy, z];
(%o14) [a, b, c] 7 [x, y, z]
(%i15) express (%);
(%o15) [bz-cy,cx-az, ay-Dbx]
gradef (f(x_1, ..., x.n), g_1, ..., g_m) Function
gradef (a, x, expr) Function
Defines the partial derivatives (i.e., the components of the gradient) of the function f or
variable a.
gradef (f(x_1, ..., xn), g1, ..., gm) defines df /dx_i as g_i, where g_i is an expres-

sion; g_i may be a function call, but not the name of a function. The number of partial
derivatives m may be less than the number of arguments n, in which case derivatives are
defined with respect to x_1 through x_m only.

gradef (a, x, expr) defines the derivative of variable a with respect to x as expr. This
also establishes the dependence of a on x (via depends (a, x)).

The first argument f(x_1, ..., x.n) or a is quoted, but the remaining arguments g_1, ...,
g-m are evaluated. gradef returns the function or variable for which the partial derivatives
are defined.

gradef can redefine the derivatives of Maxima’s built-in functions. For example, gradef
(sin(x), sqrt (1 - sin(x)~2)) redefines the derivative of sin.

gradef cannot define partial derivatives for a subscripted function.

printprops ([f1, ..., fn], gradef) displays the partial derivatives of the functions
f1, ..., f_n, as defined by gradef.
printprops ([a.n, ..., a_n], atomgrad) displays the partial derivatives of the variables

a_n, ..., a_n, as defined by gradef.

gradefs is the list of the functions for which partial derivatives have been defined by
gradef. gradefs does not include any variables for which partial derivatives have been
defined by gradef.



152 Maxima Manual

Gradients are needed when, for example, a function is not known explicitly but its first
derivatives are and it is desired to obtain higher order derivatives.

gradefs System variable
Default value: []

gradefs is the list of the functions for which partial derivatives have been defined by
gradef. gradefs does not include any variables for which partial derivatives have been
defined by gradef.

laplace (expr, t, s) Function
Attempts to compute the Laplace transform of expr with respect to the variable t and
transform parameter s. If laplace cannot find a solution, a noun ’laplace is returned.

laplace recognizes in expr the functions delta, exp, log, sin, cos, sinh, cosh, and erf,
as well as derivative, integrate, sum, and ilt. If some other functions are present,
laplace may not be able to compute the transform.

expr may also be a linear, constant coefficient differential equation in which case atvalue
of the dependent variable is used. The required atvalue may be supplied either before or
after the transform is computed. Since the initial conditions must be specified at zero, if
one has boundary conditions imposed elsewhere he can impose these on the general solu-
tion and eliminate the constants by solving the general solution for them and substituting
their values back.

laplace recognizes convolution integrals of the form integrate (f(x) * g(t - x), x, 0,
t); other kinds of convolutions are not recognized.

Functional relations must be explicitly represented in expr; implicit relations, established
by depends, are not recognized. That is, if f depends on x and y, £ (x, y) must appear

in expr.
See also ilt, the inverse Laplace transform.
Examples:
(%11) laplace (exp (2%t + a) * sin(t) * t, t, s);
a
%e (2 s - 4)
(o)  mmmmmmmm e

(s - 4s+5)
(%i2) laplace (’diff (f (x), %), x, S);

(%o2) s laplace(f(x), x, s) - £(0)
(%13) diff (diff (delta (t), t), t);
2
d
(%03) -—— (delta(t))
2
dt

(%i4) laplace (%, t, s);
|
d ! 2
(%od) - —— (delta(t))! + s - delta(0) s
dt !
't =0



Chapter 20: Integration 153

20 Integration

20.1 Introduction to Integration

Maxima has several routines for handling integration. The integrate function makes use of
most of them. There is also the antid package, which handles an unspecified function (and its
derivatives, of course). For numerical uses, there is the romberg function; an adaptave integrator
which uses the Newton-Cotes 8 panel quadrature rule, called quanc8; and a set of adaptive
integrators from Quadpack, named quad_qag, quad_gags, etc. Hypergeometric functions are
being worked on, see specint for details. Generally speaking, Maxima only handles integrals
which are integrable in terms of the "elementary functions" (rational functions, trigonometrics,
logs, exponentials, radicals, etc.) and a few extensions (error function, dilogarithm). It does not
handle integrals in terms of unknown functions such as g(x) and h(x).

20.2 Definitions for Integration

changevar (expr, f{x,y), y, x) Function
Makes the change of variable given by f(x,y) = 0 in all integrals occurring in expr with
integration with respect to x. The new variable is y.

(%1i1) assume(a > 0)$
(%12) ’integrate (Jex*sqrt(axy), y, 0, 4);

4
/
[ sqrt(a) sqrt(y)
(%02) I Y%e dy
]
/
0
(%13) changevar (%, y-z"2/a, z, y);
0
/
[ abs(z)
21 z he dz
]
/
- 2 sqrt(a)
(%03) Bt

An expression containing a noun form, such as the instances of > integrate above, may be
evaluated by ev with the nouns flag. For example, the expression returned by changevar
above may be evaluated by ev (%03, nouns).

changevar may also be used to changes in the indices of a sum or product. However, it
must be realized that when a change is made in a sum or product, this change must be a

shift, i.e., 1 = j+ ..., not a higher degree function. E.g.,
(%i4) sum (alil*x~(i-2), i, 0, inf);
inf
\ i-2
(%04) > a x
/ i
i=20

(%i5) changevar (%, i-2-n, n, 1i);
inf



154 Maxima Manual

\ n
(%05) > a X
/ n+ 2
n=-2
dblint (f, r, s, a, b) Function

A double-integral routine which was written in top-level Maxima and then translated
and compiled to machine code. Use load (dblint) to access this package. It uses the
Simpson’s rule method in both the x and y directions to calculate

/b /s(x)

[

(. f(x,y) dy dx
[

/a /r(x)

The function f must be a translated or compiled function of two variables, and r and s
must each be a translated or compiled function of one variable, while a and b must be
floating point numbers. The routine has two global variables which determine the number
of divisions of the x and y intervals: dblint_x and dblint_y, both of which are initially
10, and can be changed independently to other integer values (there are 2*dblint_x+1
points computed in the x direction, and 2*dblint_y+1 in the y direction). The routine
subdivides the X axis and then for each value of X it first computes r (x) and s(x); then the
Y axis between r(x) and s(x) is subdivided and the integral along the Y axis is performed
using Simpson’s rule; then the integral along the X axis is done using Simpson’s rule with
the function values being the Y-integrals. This procedure may be numerically unstable
for a great variety of reasons, but is reasonably fast: avoid using it on highly oscillatory
functions and functions with singularities (poles or branch points in the region). The Y
integrals depend on how far apart r(x) and s(x) are, so if the distance s(x) - r(x) varies
rapidly with X, there may be substantial errors arising from truncation with different step-
sizes in the various Y integrals. One can increase dblint_x and dblint_y in an effort
to improve the coverage of the region, at the expense of computation time. The function
values are not saved, so if the function is very time-consuming, you will have to wait for
re-computation if you change anything (sorry). It is required that the functions f, r, and
s be either translated or compiled prior to calling dblint. This will result in orders of
magnitude speed improvement over interpreted code in many cases!

demo (dblint) executes a demonstration of dblint applied to an example problem.

defint (expr, x, a, b) Function
Attempts to compute a definite integral. defint is called by integrate when limits of
integration are specified, i.e., when integrate is called as integrate (expr, x, a, b).
Thus from the user’s point of view, it is sufficient to call integrate.

defint returns a symbolic expression, either the computed integral or the noun form of

the integral. See quad_qag and related functions for numerical approximation of definite
integrals.

erf (x) Function
Represents the error function, whose derivative is: 2*exp(-x~2) /sqrt (%pi).

erfllag Option variable
Default value: true
When erfflag is false, prevents risch from introducing the erf function in the answer
if there were none in the integrand to begin with.

ilt (expr, t, s) Function
Computes the inverse Laplace transform of expr with respect to t and parameter s. expr
must be a ratio of polynomials whose denominator has only linear and quadratic factors.



Chapter 20: Integration 155

By using the functions laplace and ilt together with the solve or linsolve functions
the user can solve a single differential or convolution integral equation or a set of them.
(%i1) ’integrate (sinh(ax*x)*f(t-x), x, 0, t) + b*xf(t) = t**2;
t

2

(%o1) f(t - x) sinh(a x) dx + b f(t) =t

N H AN

0
(%i2) laplace (%, t, s);
a laplace(f(t), t, s) 2
(%02) b laplace(f(t), t, s) + ————————————————————— = -

s - a s
(%13) linsolve ([%], [’laplace(f(t), t, s)1);
(%03) [laplace(f(t), t, 8) = ———————————————————— ]
bs +(a-a b)s

(%i4) ilt (rhs (first (%)), s, t);
Is ab (ab-1) positive, negative, or zero?

pos;
sqrt(a b (a b - 1)) t
2 cosh(-———————————————————- ) 2
b at
(%04) = —=—————mm + ——————-
3 2 2 ab-1
a b -2a b+a
2
4
3 2 2
a b -2a b+a
integrate (expr, x) Function
integrate (expr, x, a, b) Function

Attempts to symbolically compute the integral of expr with respect to x. integrate
(expr, x) is an indefinite integral, while integrate (expr, x, a, b) is a definite integral,
with limits of integration a and b. The limits should not contain x, although integrate
does not enforce this restriction. a need not be less than b. If b is equal to a, integrate
returns zero.

See quad_qgag and related functions for numerical approximation of definite integrals. See
residue for computation of residues (complex integration). See antid for an alternative
means of computing indefinite integrals.

The integral (an expression free of integrate) is returned if integrate succeeds. Other-
wise the return value is the noun form of the integral (the quoted operator ’integrate)
or an expression containing one or more noun forms. The noun form of integrate is
displayed with an integral sign.

In some circumstances it is useful to construct a noun form by hand, by quoting integrate
with a single quote, e.g., >integrate (expr, x). For example, the integral may depend on
some parameters which are not yet computed. The noun may be applied to its arguments
by ev (i, nouns) where i is the noun form of interest.

integrate handles definite integrals separately from indefinite, and employs a range of
heuristics to handle each case. Special cases of definite integrals include limits of inte-



156

Maxima Manual

gration equal to zero or infinity (inf or minf), trigonometric functions with limits of
integration equal to zero and %pi or 2 %pi, rational functions, integrals related to the def-
initions of the beta and psi functions, and some logarithmic and trigonometric integrals.
Processing rational functions may include computation of residues. If an applicable special
case is not found, an attempt will be made to compute the indefinite integral and evaluate
it at the limits of integration. This may include taking a limit as a limit of integration
goes to infinity or negative infinity; see also 1defint.

Special cases of indefinite integrals include trigonometric functions, exponential and loga-
rithmic functions, and rational functions. integrate may also make use of a short table
of elementary integrals.

integrate may carry out a change of variable if the integrand has the form f(g(x)) *
diff(g(x), x). integrate attempts to find a subexpression g(x) such that the derivative
of g(x) divides the integrand. This search may make use of derivatives defined by the
gradef function. See also changevar and antid.

If none of the preceding heuristics find the indefinite integral, the Risch algorithm is
executed. The flag risch may be set as an evflag, in a call to ev or on the command
line, e.g., ev (integrate (expr, x), risch) or integrate (expr, x), risch. If risch
is present, integrate calls the risch function without attempting heuristics first. See
also risch.

integrate works only with functional relations represented explicitly with the f(x) no-
tation. integrate does not respect implicit dependencies established by the depends
function.

integrate may need to know some property of a parameter in the integrand. integrate
will first consult the assume database, and, if the variable of interest is not there,
integrate will ask the user. Depending on the question, suitable responses are yes;
Or no;, Or pos;, zero;, Or neg;.

integrate is not, by default, declared to be linear. See declare and linear.
integrate attempts integration by parts only in a few special cases.
Examples:
e Elementary indefinite and definite integrals.
(%1i1) integrate (sin(x)~3, x);

3
cos (x)
(o) === - cos(x)
3
(%12) integrate (x/ sqrt (b"2 - x72), x);
2 2
(ho2) - sqrt(b - x )
(%13) integrate (cos(x)"2 * exp(x), x, 0, %pi);
hpi
3 %e 3
(o3> mmmmm—— - -
5 5
(%i4) integrate (x°2 * exp(-x"2), x, minf, inf);
sqrt (%pi)
(fot) -
2

e Use of assume and interactive query.
(%i1) assume (a > 1)$
(%12) integrate (x*x*a/(x+1)**(5/2), x, 0, inf);
2 a+ 2
Is -—————- an integer?

no;



Chapter 20: Integration 157

Is 2 a - 3 positive, negative, or zero?

neg;
3

(%02) beta(a + 1, - - a)
2

e Change of variable. There are two changes of variable in this example: one using
a derivative established by gradef, and one using the derivation diff (r(x)) of an
unspecified function r(x).

(%13) gradef (q(x), sin(x**2));

(%03) q(x)
(%14) diff (log (q (r (x))), x);
d 2
(- (r(x))) sin(r (x))
dx
(hod)  mmmmmmmmmmmmmeee
q(r(x))

(%i5) integrate (%, x);
(%05) log(q(r(x)))

e Return value contains the ’integrate noun form. In this example, Maxima can
extract one factor of the denominator of a rational function, but cannot factor the
remainder or otherwise find its integral. grind shows the noun form ’integrate
in the result. See also integrate_use_rootsof for more on integrals of rational

functions.
(%11) expand ((x-4) * (x"3+2*x+1));
4 3 2
(%o1) X - 4x +2x -7x-4
(%12) integrate (1/%, x);
/ 2
[x +4x + 18
I ————————— dx
] 3

log(x - 4) /x +2x+1
(67—

(%i3) grind (%) ;
log(x-4)/73-(’integrate ((x"2+4*x+18) / (x"3+2*x+1) ,x)) /73$
e Defining a function in terms of an integral. The body of a function is not evaluated
when the function is defined. Thus the body of £_1 in this example contains the noun

form of integrate. The double-single-quotes operator >’ causes the integral to be
evaluated, and the result becomes the body of £_2.

(%i1) f_1 (a) := integrate (x73, x, 1, a);

3
(%o1) f_1(a) := integrate(x , x, 1, a)
(%i2) ev (£f_1 (7), nouns);
(%ho2) 600
(%i3) /* Note parentheses around integrate(...) here */
f_2 (a) := ’’(integrate (x73, x, 1, a));

4

a 1
(%03) f_2(a) = —— - -

4 4

%id) £_2 (7);
(%o4) 600



158

integration_constant_counter

integrate_use_rootsof

ldefint (expr, x, a, b)

Maxima Manual

Default value: 0

integration_constant_counter is a counter which is updated each time a constant
of integration (named by Maxima, e.g., integrationconstantl) is introduced into an
expression by indefinite integration of an equation.

Default value: false

When integrate_use_rootsof is true and the denominator of a rational function cannot
be factored, integrate returns the integral in a form which is a sum over the roots (not
yet known) of the denominator.

For example, with integrate_use_rootsof set to false, integrate returns an unsolved
integral of a rational function in noun form:

(%11) integrate_use_rootsof: false$
(%12) integrate (1/(1+x+x75), x);

/ 2

[x -4x+5

I —————- dx 2x +1

] 3 2 2 5 atan(------- )

/x -x +1 log(x + x + 1) sqrt(3)
(ho2) ——mmmmmmm——m - +

7 14 7 sqrt(3)

Now we set the flag to be true and the unsolved part of the integral will be expressed as
a summation over the roots of the denominator of the rational function:

(%i3) integrate_use_rootsof: true$
(%14) integrate (1/(1+x+x"5), x);

==== 2
\ (hr4 - 4 Yrd + 5) log(x - %r4d)
> _______________________________
/ 2
==== 3 %rd - 2 Yrd
3 2
%r4 in rootsof(x - x + 1)
T
7
2x+1
2 5 atan(------- )
log(x + x + 1) sqrt(3)
-_— E,eEe—e——— e + _______________
14 7 sqrt(3)

Alternatively the user may compute the roots of the denominator separately, and then ex-
press the integrand in terms of these roots, e.g., 1/((x - a)*(x - b)*(x - ¢c)) or 1/((x72
- (a+b) *x + a*b)*(x - ¢)) if the denominator is a cubic polynomial. Sometimes this will
help Maxima obtain a more useful result.

Attempts to compute the definite integral of expr by using 1imit to evaluate the indefinite
integral of expr with respect to x at the upper limit b and at the lower limit a. If it fails
to compute the definite integral, 1defint returns an expression containing limits as noun
forms.

ldefint is not called from integrate, so executing ldefint (expr, x, a, b) may yield a
different result than integrate (expr, x, a, b). ldefint always uses the same method
to evaluate the definite integral, while integrate may employ various heuristics and may
recognize some special cases.

System variable

Option variable

Function



Chapter 20: Integration 159

potential (givengradient) Function

qq

The calculation makes use of the global variable potentialzeroloc[0] which must be
nonlist or of the form

[indeterminatej=expressionj, indeterminatek=expressionk, ...]

the former being equivalent to the nonlist expression for all right-hand sides in the latter.
The indicated right-hand sides are used as the lower limit of integration. The success of
the integrations may depend upon their values and order. potentialzeroloc is initially
set to 0.

Function

The package qq (which may be loaded with load ("qq")) contains a function quanc8
which can take either 3 or 4 arguments. The 3 arg version computes the integral of
the function specified as the first argument over the interval from lo to hi as in quanc8
(’function, lo, hi). The function name should be quoted. The 4 arg version will
compute the integral of the function or expression (first arg) with respect to the variable
(second arg) over the interval from lo to hi as in quanc8(<f(x) or expression in x>,
x, lo, hi). The method used is the Newton-Cotes 8th order polynomial quadrature, and
the routine is adaptive. It will thus spend time dividing the interval only when necessary
to achieve the error conditions specified by the global variables quanc8_relerr (default
value=1.0e-4) and quanc8_abserr (default value=1.0e-8) which give the relative error
test:

|integral (function) - computed value| < quanc8_relerr*|integral (function) |
and the absolute error test:
|integral (function) - computed value| < quanc8_abserr

printfile ("qq.usg") yields additional information.

quanc8 (expr, a, b) Function

An adaptive integrator. Demonstration and usage files are provided. The method is to
use Newton-Cotes 8-panel quadrature rule, hence the function name quanc8, available in
3 or 4 arg versions. Absolute and relative error checks are used. To use it do load ("qq").
See also qq.

residue (expr, z, z_0) Function

Computes the residue in the complex plane of the expression expr when the variable z
assumes the value z_0. The residue is the coefficient of (z - z_0) ~(-1) in the Laurent
series for expr.
(%i1) residue (s/(s**2+a*%*2), s, a*%i);
1
(%o1) -
2
(%1i2) residue (sin(a*xx)/x**4, x, 0);

(%o2) - -

risch (expr, x) Function

Integrates expr with respect to x using the transcendental case of the Risch algorithm.
(The algebraic case of the Risch algorithm has not been implemented.) This currently
handles the cases of nested exponentials and logarithms which the main part of integrate
can’t do. integrate will automatically apply risch if given these cases.

erfflag, if false, prevents risch from introducing the erf function in the answer if
there were none in the integrand to begin with.

(%i1) risch (x"2*xerf(x), x);



160 Maxima Manual
3 2 - X
hpi x erf(x) + (sqrt(fpi) x + sqrt(kpi)) %e
(%01)  mmmmm
3 %pi
(%i2) diff(%, x), ratsimp;
2
(h02) x erf(x)
romberg (expr, x, a, b) Function
romberg (expr, a, b) Function

Romberg integration. There are two ways to use this function. The first is an inefficient
way like the definite integral version of integrate: romberg (<integrand>, <variable
of integration>, <lower limit>, <upper limit>).

Examples:

(%1i1) showtime: true$

(%12) romberg (sin(y), y, O, %pi);

Evaluation took 0.00 seconds (0.01 elapsed) using 25.293 KB.
(%02) 2.000000016288042

(%1i3) 1/((x-1)"2+1/100) + 1/((x-2)"2+1/1000) + 1/((x-3)"2+1/200)$
(%id) £(x) = 7°%$

(%15) rombergtol: le-6$

(%16) rombergit: 15$

(%1i7) romberg (£(x), x, -5, 5);

Evaluation took 11.97 seconds (12.21 elapsed) using 12.423 MB.
(%) 173.6730736617464

The second is an efficient way that is used as follows:

romberg (<function name>, <lower limit>, <upper limit>);

Continuing the above example, we have:

(%i8) f(x) := (mode_declare ([function(f), x], float), ’’(%th(5)))$
(%i9) translate(f);

(%09) [£]

(%110) romberg (f, -5, 5);

Evaluation took 3.51 seconds (3.86 elapsed) using 6.641 MB.

(%010) 173.6730736617464

The first argument must be a translated or compiled function. (If it is compiled it must
be declared to return a flonum.) If the first argument is not already translated, romberg
will not attempt to translate it but will give an error.

The accuracy of the integration is governed by the global variables rombergtol (default
value 1.E-4) and rombergit (default value 11). romberg will return a result if the rela-
tive difference in successive approximations is less than rombergtol. It will try halving
the stepsize rombergit times before it gives up. The number of iterations and function
evaluations which romberg will do is governed by rombergabs and rombergmin.

romberg may be called recursively and thus can do double and triple integrals.
Example:

(%i1) assume (x > 0)$
(%12) integrate (integrate (x*xy/(x+y), y, 0, x/2), %, 1, 3)$
(%i3) radcan (%);
26 log(3) - 26 log(2) - 13
(%03) -

(%i4) % ,numer;

(%o4) .8193023963959073

(%1i5) define_variable (x, 0.0, float, "Global variable in function F")$
(%i6) £(y) (mode_declare (y, float), x*y/(x+y))$

(%1i7) gx) romberg (’f, 0, x/2)$



Chapter 20: Integration 161

(%i8) romberg (g, 1, 3);
(%08) .8193022864324522

The advantage with this way is that the function f can be used for other purposes, like
plotting. The disadvantage is that you have to think up a name for both the function £
and its free variable x. Or, without the global:

(%11) g_1(x) := (mode_declare (x, float), romberg (x*xy/(x+y), y, 0, x/2))$
(%12) romberg (g_1, 1, 3);
(%02) .8193022864324522

The advantage here is shortness.

(%13) q (a, b) := romberg (romberg (x*y/(x+y), y, 0, x/2), x, a, b)$
(%14) q (1, 3);
(%o4) .8193022864324522

It is even shorter this way, and the variables do not need to be declared because they
are in the context of romberg. Use of romberg for multiple integrals can have great
disadvantages, though. The amount of extra calculation needed because of the geometric
information thrown away by expressing multiple integrals this way can be incredible. The
user should be sure to understand and use the rombergtol and rombergit switches.

rombergabs Option variable
Default value: 0.0

Assuming that successive estimates produced by romberg are y[0], y[1], y[2], etc., then
romberg will return after n iterations if (roughly speaking)

(abs(y[nl-y[n-1]) <= rombergabs or
abs(y[n]l-y[n-11)/(if y[n]=0.0 then 1.0 else y[n]) <= rombergtol)

is true. (The condition on the number of iterations given by rombergmin must also be
satisfied.) Thus if rombergabs is 0.0 (the default) you just get the relative error test. The
usefulness of the additional variable comes when you want to perform an integral, where
the dominant contribution comes from a small region. Then you can do the integral over
the small dominant region first, using the relative accuracy check, followed by the integral
over the rest of the region using the absolute accuracy check.

Example: Suppose you want to compute
’integrate (exp(-x), x, 0, 50)

(numerically) with a relative accuracy of 1 part in 10000000. Define the function. n is a
counter, so we can see how many function evaluations were needed. First of all try doing
the whole integral at once.

(%11) £(x) := (mode_declare (n, integer, x, float), n:n+l, exp(-x))$

(%i2) translate(f)$

Warning-> n is an undefined global variable.

(%13) block ([rombergtol: 1.e-6, romberabs: 0.0], n:0, romberg (f, 0, 50));

(%03) 1.000000000488271
(%i4) n;
(%ho4) 257

That approach required 257 function evaluations. Now do the integral intelligently, by
first doing ’integrate (exp(-x), x, 0, 10) and then setting rombergabs to 1.E-6 times
(this partial integral). This approach takes only 130 function evaluations.

(%15) block ([rombergtol: 1.e-6, rombergabs:0.0, sum:0.0],
n: 0, sum: romberg (f, 0, 10), rombergabs: sum*rombergtol, rombergtol:0.0,
sum + romberg (f, 10, 50));

(%05) 1.000000001234793
(%16) n;
(%06) 130

So if £(x) were a function that took a long time to compute, the second method would
be about 2 times quicker.



162 Maxima Manual

rombergit Option variable
Default value: 11

The accuracy of the romberg integration command is governed by the global variables
rombergtol and rombergit. romberg will return a result if the relative difference in suc-
cessive approximations is less than rombergtol. It will try halving the stepsize rombergit
times before it gives up.

rombergmin Option variable
Default value: 0

rombergmin governs the minimum number of function evaluations that romberg will make.
romberg will evaluate its first arg. at least 2~ (rombergmin+2)+1 times. This is useful for
integrating oscillatory functions, when the normal converge test might sometimes wrongly
pass.

rombergtol Option variable
Default value: le-4

The accuracy of the romberg integration command is governed by the global variables
rombergtol and rombergit. romberg will return a result if the relative difference in suc-
cessive approximations is less than rombergtol. It will try halving the stepsize rombergit
times before it gives up.

tldefint (expr, x, a, b) Function
Equivalent to 1defint with tlimswitch set to true.

quad_qag (f(x), x, a, b, key, epsrel, limit) Function
Numerically evaluate the integral

/ab f(x)dx

using a simple adaptive integrator.

The function to be integrated is f(x), with dependent variable x, and the function is to be
integrated between the limits a and b. key is the integrator to be used and should be an
integer between 1 and 6, inclusive. The value of key selects the order of the Gauss-Kronrod
integration rule.

The numerical integration is done adaptively by subdividing the integration region into
sub-intervals until the desired accuracy is achieved.

The optional arguments epsrel and limit are the desired relative error and the maximum
number of subintervals, respectively. epsrel defaults to 1le-8 and limit is 200.

quad_qgag returns a list of four elements:
an approximation to the integral,
the estimated absolute error of the approximation,
the number integrand evaluations,

an error code.
The error code (fourth element of the return value) can have the values:
0 if no problems were encountered;
1 if too many sub-intervals were done;
2 if excessive roundoff error is detected;
3 if extremely bad integrand behavior occurs;
6 if the input is invalid.

Examples:



Chapter 20: Integration 163

(%i1) quad_qag (x~(1/2)*log(1/x), x, 0, 1, 3);
(%hol) [.4444444444492108, 3.1700968502883E-9, 961, O]
(%12) integrate (x~(1/2)*log(1/x), x, 0, 1);
4
(%02) -
9

quad_qags (f(x), x, a, b, epsrel, limit) Function
Numerically integrate the given function using adaptive quadrature with extrapolation.
The function to be integrated is f(x), with dependent variable x, and the function is to be
integrated between the limits a and b.

The optional arguments epsrel and limit are the desired relative error and the maximum
number of subintervals, respectively. epsrel defaults to 1e-8 and limit is 200.

quad_qgags returns a list of four elements:
an approximation to the integral,
the estimated absolute error of the approximation,
the number integrand evaluations,

an error code.
The error code (fourth element of the return value) can have the values:
no problems were encountered;
too many sub-intervals were done;

excessive roundoff error is detected;

0
1
2
3 extremely bad integrand behavior occurs;
4 failed to converge

5 integral is probably divergent or slowly convergent
6 if the input is invalid.

Examples:

(%1i1) quad_qgags (x~(1/2)*log(1l/x), x, 0 ,1);
(%o1) [.4444444444444448, 1.11022302462516E-15, 315, 0]

Note that quad_qgags is more accurate and efficient than quad_qag for this integrand.

quad_qagi (f(x), x, a, inftype, epsrel, limit) Function
Numerically evaluate one of the following integrals

/aoo f(x)dx
/O:f(:r)dar

/Z f(x)dx

using the Quadpack QAGI routine. The function to be integrated is f(x), with dependent
variable x, and the function is to be integrated over an infinite range.

The parameter inftype determines the integration interval as follows:
inf The interval is from a to positive infinity.
minf The interval is from negative infinity to a.

both The interval is the entire real line.



164 Maxima Manual

The optional arguments epsrel and limit are the desired relative error and the maximum
number of subintervals, respectively. epsrel defaults to 1le-8 and limit is 200.

quad_qgagi returns a list of four elements:
an approximation to the integral,
the estimated absolute error of the approximation,
the number integrand evaluations,

an error code.
The error code (fourth element of the return value) can have the values:
no problems were encountered;
too many sub-intervals were done;

excessive roundoff error is detected;

failed to converge

0

1

2

3 extremely bad integrand behavior occurs;

4

5 integral is probably divergent or slowly convergent
6

if the input is invalid.

Examples:
(%11) quad_qagi (x"2*exp(-4*x), x, 0, inf);
(%hol) [0.03125, 2.95916102995002E-11, 105, 0]
(%12) integrate (x"2%exp(-4*x), x, 0, inf);
1
(%o2) --
32

quad_qawc (f(x), x, ¢, a, b, epsrel, limit) Function
Numerically compute the Cauchy principal value of

" f(2)

0« T—C

dx

using the Quadpack QAWC routine. The function to be integrated is f(x)/(x - ¢), with
dependent variable x, and the function is to be integrated over the interval a to b.

The optional arguments epsrel and limit are the desired relative error and the maximum
number of subintervals, respectively. epsrel defaults to 1le-8 and limit is 200.

quad_qgawc returns a list of four elements:
an approximation to the integral,
the estimated absolute error of the approximation,
the number integrand evaluations,

an error code.
The error code (fourth element of the return value) can have the values:
0 no problems were encountered;
1 too many sub-intervals were done;
2 excessive roundoff error is detected;
3 extremely bad integrand behavior occurs;
6 if the input is invalid.

Examples:



Chapter 20: Integration 165

(%11) quad_qgawc (27 (-5)*((x-1)"2+4~(-5))"(-1), x, 2, 0, 5);

(%hol) [- 3.130120337415925, 1.306830140249558E-8, 495, 0]

(%12) integrate (2~ (-alpha)*(((x-1)"2 + 4~ (-alpha))*(x-2))"(-1), %, 0, 5);
Principal Value

alpha
alpha 9 4 9
4 log(-———=———————- + mmmmmm - )
alpha alpha
64 4 +4 64 4 + 4
G I
alpha
2 4 + 2
3 alpha 3 alpha
2 alpha/2 2 alpha/2
2 4 atan(4 4 ) 24 atan(4 ) alpha
ettt )/2
alpha alpha
2 4 + 2 2 4 + 2
(%13) ev (%, alpha=5, numer);
(%03) - 3.130120337415917
quad_qawf (f(x), x, a, omega, trig, epsabs, limit, maxpl, limlst) Function

Numerically compute the a Fourier-type integral using the Quadpack QAWF routine. The
integral is

/aoo f(@)w(z)dx

The weight function w is selected by trig:
cos w(x) = cos(omegax)
sin w(z) = sin(omegazx)

The optional arguments are:

epsabs Desired absolute error of approximation. Default is 1d-10.

limit Size of internal work array. (limit - limlst)/2 is the maximum number of
subintervals to use. Default is 200.

maxpl Maximum number of Chebyshev moments. Must be greater than 0. Default
is 100.

limlst Upper bound on the number of cycles. Must be greater than or equal to 3.

Default is 10.

epsabs and limit are the desired relative error and the maximum number of subintervals,
respectively. epsrel defaults to le-8 and limit is 200.
quad_qgawf returns a list of four elements:

an approximation to the integral,

the estimated absolute error of the approximation,

the number integrand evaluations,

an error code.
The error code (fourth element of the return value) can have the values:
0 no problems were encountered;

1 too many sub-intervals were done;



166 Maxima Manual

2 excessive roundoff error is detected;

3 extremely bad integrand behavior occurs;
6 if the input is invalid.

Examples:

(%11) quad_qgawf (exp(-x~2), x, 0, 1, ’cos);
(%o1) [.6901942235215714, 2.84846300257552E-11, 215, 0]
(%i2) integrate (exp(-x"2)*cos(x), x, 0, inf);

- 1/4
he sqrt (%pi)
(%02) e
2
(%i3) ev (%, numer);
(%03) .6901942235215714
quad_qawo (f(x), x, a, b, omega, trig, epsabs, limit, maxpl, limlst) Function

Numerically compute the integral using the Quadpack QAWO routine:

/ab f(@)w(z)dr

The weight function w is selected by trig:

cos w(z) = cos(omegazx)

sin w(z) = sin(omegaz)

The optional arguments are:

epsabs Desired absolute error of approximation. Default is 1d-10.

limit Size of internal work array. (limit - limlst)/2 is the maximum number of
subintervals to use. Default is 200.

maxpl Maximum number of Chebyshev moments. Must be greater than 0. Default
is 100.
limlst Upper bound on the number of cycles. Must be greater than or equal to 3.

Default is 10.

epsabs and limit are the desired relative error and the maximum number of subintervals,
respectively. epsrel defaults to le-8 and limit is 200.

quad_qgawo returns a list of four elements:
an approximation to the integral,
the estimated absolute error of the approximation,
the number integrand evaluations,

an error code.
The error code (fourth element of the return value) can have the values:
0 no problems were encountered;
1 too many sub-intervals were done;
2 excessive roundoff error is detected;
3 extremely bad integrand behavior occurs;
6 if the input is invalid.

Examples:



Chapter 20: Integration 167

(%11) quad_qgawo (x~(-1/2)*exp(-2"(-2)*x), x, 1d-8, 20*%272, 1, cos);

(%hol) [1.376043389877692, 4.72710759424899E-11, 765, 0]
(%12) rectform (integrate (x~(-1/2)*exp(-2~(-alpha)*x) * cos(x), x, 0, inf));
alpha/2 - 1/2 2 alpha

sqrt (kpi) 2 sqrt (sqrt (2 +1) + 1)

(%02)  mmmmmmmm
2 alpha
sqrt (2 + 1)
(%i3) ev (%, alpha=2, numer);
(%03) 1.376043390090716
quad_qaws (f(x), x, a, b, alfa, beta, wfun, epsabs, limit) Function

Numerically compute the integral using the Quadpack QAWS routine:

/ab f(z)w(z)dx

The weight function w is selected by wfun:
1 w(r) = (x — a)®lfa(b — z)’eta
2 w(z) = (x—a)*lfa(b
3 w(z) = (x —a)*lfa(db
2 w(z) = (x —a)*lfa(db

The optional arguments are:

— x)betalog(x — a)
— x)betalog(b — x)
— x)betalog(x — a)log(b — x)

epsabs Desired absolute error of approximation. Default is 1d-10.

limit Size of internal work array. (limit - limlst)/2 is the maximum number of
subintervals to use. Default is 200.

epsabs and limit are the desired relative error and the maximum number of subintervals,
respectively. epsrel defaults to 1le-8 and limit is 200.
quad_qgaws returns a list of four elements:

an approximation to the integral,

the estimated absolute error of the approximation,

the number integrand evaluations,

an error code.

The error code (fourth element of the return value) can have the values:

0 no problems were encountered;

1 too many sub-intervals were done;

2 excessive roundoff error is detected;

3 extremely bad integrand behavior occurs;

6 if the input is invalid.

Examples:
(%11) quad_qgaws (1/(x+1+2°(-4)), %, -1, 1, -0.5, -0.5, 1);
(%o1) [8.750097361672832, 1.24321522715422E-10, 170, 0]
(%12) integrate ((1-x*x)~(-1/2)/(x+1+2"(-alpha)), x, -1, 1);

alpha

Is 4 2 - 1 positive, negative, or zero?
pos;

alpha alpha
2 %pi 2 sqrt(2 2 + 1)



168 Maxima Manual

(%02) e

(%i3) ev (%, alpha=4, numer);
(%03) 8.750097361672829



Chapter 21: Equations 169

21 Equations

21.1 Definitions for Equations

Yornum_list System variable
Default value: []

%rnum_list is the list of variables introduced in solutions by algsys. %r variables are
added to %rnum_list in the order they are created. This is convenient for doing substi-
tutions into the solution later on. It’s recommended to use this list rather than doing
concat (’%r, j).

algexact Option variable
Default value: false

algexact affects the behavior of algsys as follows:

If algexact is true, algsys always calls solve and then uses realroots on solve’s
failures.

If algexact is false, solve is called only if the eliminant was not univariate, or if it was
a quadratic or biquadratic.

Thus algexact: true doesn’t guarantee only exact solutions, just that algsys will first
try as hard as it can to give exact solutions, and only yield approximations when all else

fails.
algsys ([expr_1, ..., expr_m], [x_1, ..., x_n]) Function
algsys ([eqn-1, ..., eqn_m], [x_1, ..., x_n]) Function
Solves the simultaneous polynomials expr_1, ..., expr_m or polynomial equations eqn_I,
..., eqn_m for the variables x_1, ..., x_n. An expression expr is equivalent to an equation

expr = 0. There may be more equations than variables or vice versa.

algsys returns a list of solutions, with each solution given as a list of equations stating
values of the variables x_1, ..., x_n which satisfy the system of equations. If algsys cannot
find a solution, an empty list [] is returned.

The symbols %r1, %r2, ..., are introduced as needed to represent arbitrary parameters in
the solution; these variables are also appended to the list %rnum_list.

The method is as follows:
(1) First the equations are factored and split into subsystems.

(2) For each subsystem S_i, an equation E and a variable x are selected. The variable is
chosen to have lowest nonzero degree. Then the resultant of E and E_j with respect to
x is computed for each of the remaining equations E_j in the subsystem S_i. This yields
a new subsystem S_i’ in one fewer variables, as x has been eliminated. The process now
returns to (1).

(3) Eventually, a subsystem consisting of a single equation is obtained. If the equation
is multivariate and no approximations in the form of floating point numbers have been
introduced, then solve is called to find an exact solution.

In some cases, solve is not be able to find a solution, or if it does the solution may be a
very large expression.

If the equation is univariate and is either linear, quadratic, or biquadratic, then again
solve is called if no approximations have been introduced. If approximations have been
introduced or the equation is not univariate and neither linear, quadratic, or biquadratic,
then if the switch realonly is true, the function realroots is called to find the real-
valued solutions. If realonly is false, then allroots is called which looks for real and
complex-valued solutions.

If algsys produces a solution which has fewer significant digits than required, the user
can change the value of algepsilon to a higher value.

If algexact is set to true, solve will always be called.



170 Maxima Manual

(4) Finally, the solutions obtained in step (3) are substituted into previous levels and the
solution process returns to (1).

When algsys encounters a multivariate equation which contains floating point approxi-
mations (usually due to its failing to find exact solutions at an earlier stage), then it does
not attempt to apply exact methods to such equations and instead prints the message:
"algsys cannot solve - system too complicated."

Interactions with radcan can produce large or complicated expressions. In that case, it
may be possible to isolate parts of the result with pickapart or reveal.

Occasionally, radcan may introduce an imaginary unit %i into a solution which is actually
real-valued.

Examples:

(hi1) el: 2xx*x(1 - al) - 2*%(x - 1)*a2;
(%hol) 2 (1 -al) x-2a2 (x-1)
(%i2) e2: a2 - ail;
(ho2) a2 - al
(%13) e3: al*x(-y - x"2 + 1);

2
(%03) al (-y-x + 1)
(%14) ed: a2x(y - (x - 1)72);

2

(%o4) a2 (y - (x - 1))

(%i5) algsys ([el, e2, e3, e4], [x, y, al, a2]);
(%05) [[x =0, y = Y%rl, al = 0, a2 = 0],

(%hi6) el: x°2 - y~2;

2 2
(%06) X -y
(5i7) e2: -1 - y + 2%xy"2 - x + x"2;
2 2
(hoT) 2y -y+x -x-1
(%hi8) algsys ([el, e2], [x, yl);
1 1
(%o8) [[x = = —====== , y = s 1,
sqrt (3) sqrt (3)
1 1 1
[x = ——————- e I, xk=--,y=--1, x=1, y = 1]]
sqrt (3) sqrt (3) 3 3
allroots (expr) Function
allroots (eqn) Function

Computes numerical approximations of the real and complex roots of the polynomial expr
or polynomial equation eqn of one variable.

The flag polyfactor when true causes allroots to factor the polynomial over the real
numbers if the polynomial is real, or over the complex numbers, if the polynomial is
complex.

allroots may give inaccurate results in case of multiple roots. If the polynomial is
real, allroots (%i*p)) may yield more accurate approximations than allroots (p), as
allroots invokes a different algorithm in that case.

allroots rejects non-polynomials. It requires that the numerator after rat’ing should be
a polynomial, and it requires that the denominator be at most a complex number. As
a result of this allroots will always return an equivalent (but factored) expression, if
polyfactor is true.



Chapter 21: Equations

171

For complex polynomials an algorithm by Jenkins and Traub is used (Algorithm 419,
Comm. ACM, vol. 15, (1972), p. 97). For real polynomials the algorithm used is due to
Jenkins (Algorithm 493, ACM TOMS, vol. 1, (1975), p.178).

Examples:

(%11) egn: (1 + 2%x)73 = 13.5%x(1 + x"5);

(%o1
(%i2
(%ho2

X

X
(%i3

3 5
) (2x+1) =135 (x + 1)
) soln: allroots (eqn);
) [x = .8296749902129361, x = - 1.015755543828121,

.9659625152196369 %i - .4069597231924075,

- .9659625152196369 %i - .4069597231924075, x = 1.0]
) for e in soln

do (e2: subst (e, eqn), disp (expand (lhs(e2) - rhs(e2))));

- 3.5527136788005E-15
- 5.32907051820075E-15
4.44089209850063E-15 i - 4.88498130835069E-15
- 4.44089209850063E-15 %i - 4.88498130835069E-15

3.5527136788005E-15

(%03) done

(%i4) polyfactor: true$

(%15) allroots (eqn);

(%h05) - 13.5 (x - 1.0) (x - .8296749902129361)

(x

2
+ 1.015755543828121) (x + .8139194463848151 x

+ 1.098699797110288)

backsubst
Default va

lue: true

Option variable

When backsubst is false, prevents back substitution after the equations have been tri-
angularized. This may be helpful in very big problems where back substitution would
cause the generation of extremely large expressions.

breakup

Default value: true
When breakup is true, solve expresses solutions of cubic and quartic equations in terms
of common subexpressions, which are assigned to intermediate expression labels (%t1, %t2,
etc.). Otherwise, common subexpressions are not identified.

breakup:
Examples:

true has an effect only when programmode is false.

(%1i1) programmode: false$
(%1i2) breakup: true$
(%13) solve (x°3 + x72 - 1);

sqrt(23) 25 1/3

(%t3) (—=mm-m-m- + =)

6 sqrt(3) 54

Option variable



172 Maxima Manual

Solution:
sqrt(3) %i 1
sqrt(3) %»i 1 2 2 1
(%t4) x = (- —————————— - =) Yt3 + ———mm————————— - _
2 2 9 %t3 3
sqrt(3) %i 1
sqrt(3) »i 1 2 2 1
(%t5) x = (-———=—————- - =) Yt3 + e - _
2 2 9 %t3 3
1 1
(%t6) X = Yt3 + ————— - -
9 %t3 3
(%06) [%t4, %t5, %t6]

(%16) breakup: false$
(%i7) solve (x"3 + x"2 - 1);

1

3

Function

Solution:
sqrt(3) %1 1
2 2 sqrt (23) 25 1/3
(Wt7) x = ————————————m I + -=)
sqrt (23) 25 1/3 6 sqrt(3) 54
9 (————-——-- + =)
6 sqrt(3) 54
sqrt(3) %i 1
(= === - -) - -
2 2
sqrt (23) 25 1/3 sqrt(3) %i 1
(ht8) x = (-——-—---- + =) (=== - -)
6 sqrt(3) 54 2 2
sqrt(3) %i 1
2 2
+ ______________________
sqrt (23) 25 1/3
I + =)
6 sqrt(3) 54
sqrt (23) 25 1/3 1 1
(ht9) x = (-=—=——-—- + =) + oo - -
6 sqrt(3) 54 sqrt (23) 25 1/3 3
9 (————-——- + —-)
6 sqrt(3) 54
(%09) (%t7, %t8, %t9]
dimension (eqn)
dimension (eqn_1, ..., eqn_n)

Function

dimen is a package for dimensional analysis. load ("dimen") loads this package. demo

("dimen") displays a short demonstration.



Chapter 21: Equations 173

dispflag Option variable
Default value: true
If set to false within a block will inhibit the display of output generated by the solve
functions called from within the block. Termination of the block with a dollar sign, $,
sets dispflag to false.

funcsolve (eqn, g(t)) Function
Returns [g(t) = ...] or [], depending on whether or not there exists a rational function
g (t) satisfying eqn, which must be a first order, linear polynomial in (for this case) g (t)
and g(t+1)

(%1i1) egn: (n + D*f(n) - (o + D*f(a + 1)/(a+ 1) = (n - 1)/(n + 2);
(n+3) f(n+1) n-1
(hol) (n+1) f(@) - === = ————-
n+1 n + 2
(%12) funcsolve (eqn, f(n));

Dependent equations eliminated: (4 3)

(%02) f(n) = -
(n+1) (n+2)
Warning: this is a very rudimentary implementation — many safety checks and obvious
generalizations are missing.

globalsolve Option variable
Default value: false

When globalsolve is true, solved-for variables are assigned the solution values found by
linsolve, and by solve when solving two or more linear equations.

When globalsolve is false, solutions found by linsolve and by solve when solving
two or more linear equations are expressed as equations, and the solved-for variables are
not assigned.

When solving anything other than two or more linear equations, solve ignores
globalsolve. Other functions which solve equations (e.g., algsys) always ignore
globalsolve.

Examples:

(%11) globalsolve: true$
(%i2) solve ([x + 3%y = 2, 2%x - y = 5], [x, y1);

Solution
17
(%t2) X @ -
7
1
(%t3) y - -
"
(%03) [[%t2, »t3]1]
(%i3) x;
17
(%03) -
7
(%id) y;
1
(%04) - -
7

(%15) globalsolve: false$



174 Maxima Manual

(%i6) kill (x, y)$
(%i7) solve ([x + 3*y = 2, 2xx - y = 5], [x, yl);
Solution

he7) X = -

(%t8) y=--

(%08) [[%t7, %t8l]
(%18) x;

(%08) b'e
(%19) v;

(%09) v

ieqn (ie, unk, tech, n, guess) Function
inteqn is a package for solving integral equations. load ("inteqn") loads this package.
ie is the integral equation; unk is the unknown function; tech is the technique to be
tried from those given above (tech = first means: try the first technique which finds
a solution; tech = all means: try all applicable techniques); n is the maximum number
of terms to take for taylor, neumann, firstkindseries, or fredseries (it is also the
maximum depth of recursion for the differentiation method); guess is the initial guess for
neumann or firstkindseries.
Default values for the 2nd thru 5th parameters are:
unk: p(x), where p is the first function encountered in an integrand which is unknown
to Maxima and x is the variable which occurs as an argument to the first occurrence of
p found outside of an integral in the case of secondkind equations, or is the only other
variable besides the variable of integration in firstkind equations. If the attempt to
search for x fails, the user will be asked to supply the independent variable.
tech: first
n: 1
guess: none which will cause neumann and firstkindseries to use f(x) as an initial
guess.

ieqnprint Option variable
Default value: true
iegnprint governs the behavior of the result returned by the ieqn command. When
ieqnprint is false, the lists returned by the ieqn function are of the form

[solution, technique used, nterms, flag]

where flag is absent if the solution is exact.

Otherwise, it is the word approximate or incomplete corresponding to an inexact or non-
closed form solution, respectively. If a series method was used, nterms gives the number of

terms taken (which could be less than the n given to ieqn if an error prevented generation
of further terms).

lhs (expr) Function
Returns the left-hand side (that is, the first argument) of the expression expr, when the
operator of expr is one of the relational operators < <= = # equal notequal >= >, one of
the assignment operators := ::= : ::, or a user-defined binary infix operator, as declared
by infix.
When expr is an atom or its operator is something other than the ones listed above, 1hs
returns expr.

See also rhs.
Examples:



Chapter 21: Equations 175

(%i1) e: aa + bb = cc;

(%o1) bb + aa = cc
(%i2) 1lhs (e);
(%02) bb + aa
(%i3) rhs (e);
(%03) cc
(%i4) [1hs (aa < bb), lhs (aa <= bb), lhs (aa >= bb), lhs (aa > bb)];
(%04) [aa, aa, aa, aal
(%15) [lhs (aa = bb), lhs (aa # bb), lhs (equal (aa, bb)), lhs (notequal (aa, bl
(%05) [aa, aa, aa, aa]
(%i6) el: ’(foo(x) := 2%*x);
(%06) foo(x) := 2 x
(%17) e2: ’(bar(y) ::= 3x%y);
(%hoT) bar(y) ::= 3y
(%i8) e3: " (x : y);
(%08) X 1y
(%19) ed: (x :: y);
(%09) X ity
(%i10) [1hs (el), 1lhs (e2), 1lhs (e3), lhs (ed)];
(%010) [foo(x), bar(y), x, x]
(%i11) dinfix ("]1[");
(%o11) 1t
(%i12) 1hs (aa ][ bb);
(%012) aa
linsolve ([expr_1, ..., expr_m], [x_1, ..., x_n]) Function

Solves the list of simultaneous linear equations for the list of variables. The expressions
must each be polynomials in the variables and may be equations.

When globalsolve is true, each solved-for variable is bound to its value in the solution
of the equations.

When backsubst is false, linsolve does not carry out back substitution after the equa-
tions have been triangularized. This may be necessary in very big problems where back
substitution would cause the generation of extremely large expressions.

When linsolve_params is true, linsolve also generates the %r symbols used to represent
arbitrary parameters described in the manual under algsys. Otherwise, linsolve solves
an under-determined system of equations with some variables expressed in terms of others.

When programmode is false, linsolve displays the solution with intermediate expression
(%t) labels, and returns the list of labels.

(%i1) el: x + z = y;

(ho1) z+x=y
(%12) e2: 2*axx - y = 2xa”2;

2
(ho2) 2ax-y=2a
(%13) e3: y - 2%z = 2;
(%03) y-2z-=2
(%14) [globalsolve: false, programmode: true];
(%04) [false, true]
(%15) linsolve ([el, e2, e3], [x, y, zl);
(%05) [x=a+1,y=2a, z=a- 1]
(%16) [globalsolve: false, programmode: false];
(%06) [false, falsel
(%17) linsolve ([el, e2, e3], [x, y, zl);
Solution

7 z=a-1



176 Maxima Manual

(%t8) y=2a

(5t9) x=a+1

(%09) [%t7, %t8, %t9]

(%19) *°%;

(%09) [z=a-1,y=2a, x=a + 1]

(%110) [globalsolve: true, programmode: false];

(%010) [true, false]

(%111) linsolve ([el, e2, e3], [x, vy, zl);

Solution

(%t11) z:a-1

(ht12) y:2a

(%t13) x :a+1

(%ho13) [%t11, %t12, %t13]

(5i13) ’7%;

(%013) [z :a-1,y:2a, x:a+1]

(%i14) [x, y, z];

(%ho14) [a+1, 2 a, a- 1]

(%115) [globalsolve: true, programmode: true];

(%015) [true, true]

(%116) linsolve ([el, e2, e3], ’[x, y, z]);

(%o016) [x :a+1,y:2a, z:a-1]

%i17) [x, y, zl;

(%o17) [a+1, 2 a, a- 1]
linsolvewarn Option variable

Default value: true

When linsolvewarn is true, linsolve prints a message "Dependent equations elimi-
nated".

linsolve_params Option variable
Default value: true

When linsolve_params is true, linsolve also generates the %r symbols used to represent
arbitrary parameters described in the manual under algsys. Otherwise, linsolve solves
an under-determined system of equations with some variables expressed in terms of others.

multiplicities System variable
Default value: not_set_yet

multiplicities is set to a list of the multiplicities of the individual solutions returned
by solve or realroots.

nroots (p, low, high) Function

Returns the number of real roots of the real univariate polynomial p in the half-open
interval (low, high]. The endpoints of the interval may be minf or inf. infinity and plus
infinity.
nroots uses the method of Sturm sequences.

(%1i1) p: x710 - 2*x"4 + 1/2%

(%12) nroots (p, -6, 9.1);

(%02) 4

nthroot (p, n) Function
where p is a polynomial with integer coefficients and n is a positive integer returns q, a
polynomial over the integers, such that q"n=p or prints an error message indicating that
p is not a perfect nth power. This routine is much faster than factor or even sqfr.



Chapter 21: Equations 177

programmode Option variable
Default value: true

When programmode is true, solve, realroots, allroots, and linsolve return solutions
as elements in a list. (Except when backsubst is set to false, in which case programmode:
false is assumed.)

When programmode is false, solve, etc. create intermediate expression labels %t1, t2,
etc., and assign the solutions to them.

realonly Option variable
Default value: false

When realonly is true, algsys returns only those solutions which are free of %i.

realroots (poly, bound) Function

Finds all of the real roots of the real univariate polynomial poly within a tolerance of bound
which, if less than 1, causes all integral roots to be found exactly. The parameter bound
may be arbitrarily small in order to achieve any desired accuracy. The first argument may
also be an equation. realroots sets multiplicities, useful in case of multiple roots.
realroots (p) is equivalent to realroots (p, rootsepsilon). rootsepsilon is a real
number used to establish the confidence interval for the roots. Do example (realroots)
for an example.

rhs (expr) Function
Returns the right-hand side (that is, the second argument) of the expression expr, when
the operator of expr is one of the relational operators < <= = # equal notequal >= >,
one of the assignment operators := ::=: :: or a user-defined binary infix operator, as
declared by infix.

When expr is an atom or its operator is something other than the ones listed above, rhs
returns 0.

See also lhs.
Examples:

(%i1) e: aa + bb = cc;

(%o1) bb + aa = cc

(%i2) 1hs (e);

(%02) bb + aa

(%13) rhs (e);

(%03) cc

(%i4) [rhs (aa < bb), rhs (aa <= bb), rhs (aa >= bb), rhs (aa > bb)];

(%hod) [bb, bb, bb, bb]

(%i5) [rhs (aa = bb), rhs (aa # bb), rhs (equal (aa, bb)), rhs (notequal (aa, bl
(%05) [bb, bb, bb, bbl

(%i6) el: ’(foo(x) := 2%*x);
(%06) foo(x)
(%i7) e2: ’(bar(y) ::= 3%y);
(%o07) bar(y)
(%i8) e3: *(x : y);

(%08) X :y

(%19) ed: " (x :: y);

(%09) X iy

(%110) [rhs (el), rhs (e2), rhs (e3), rhs (ed)];
(%010) 2 x, 3y, 7y, vl

(%i11) infix ("1[");

(%o11) 1t

(%i12) rhs (aa ][ bb);

(%012) bb

2 x

3y



178 Maxima Manual

rootsconmode Option variable
Default value: true

rootsconmode governs the behavior of the rootscontract command. See rootscontract
for details.

rootscontract (expr) Function
Converts products of roots into roots of products. For example, rootscontract
(sqrt(x)*y~(3/2)) yields sqrt (x*y~3).
When radexpand is true and domain is real, rootscontract converts abs into sqrt,
e.g., rootscontract (abs(x)*sqrt(y)) yields sqrt (x~2x*y).
There is an option rootsconmode affecting rootscontract as follows:

Problem Value of Result of applying
rootsconmode rootscontract
x~(1/2)*xy~(3/2) false (x*xy~3)~(1/2)
x~(1/2)*y~(1/4) false x~(1/2)*y~(1/4)
x7(1/2)*xy~(1/4) true (xxy~(1/2))~(1/2)
x~(1/2)*y~(1/3) true x"(1/2)*y~(1/3)
x~(1/2)xy~(1/4) all (x"2%y)~(1/4)
x~(1/2)*y~(1/3) all (x"3xy~2)~(1/6)

When rootsconmode is false, rootscontract contracts only with respect to rational
number exponents whose denominators are the same. The key to the rootsconmode:
true examples is simply that 2 divides into 4 but not into 3. rootsconmode: all involves
taking the least common multiple of the denominators of the exponents.
rootscontract uses ratsimp in a manner similar to logcontract.
Examples:

(%i1) rootsconmode: false$

(%i2) rootscontract (x~(1/2)xy~(3/2));

3

(%02) sqrt(x y )

(%i3) rootscontract (x~(1/2)*y~(1/4));
1/4

(%03) sqrt(x) y

(%i4) rootsconmode: true$
(%15) rootscontract (x~(1/2)*y~(1/4));

(%05) sqrt (x sqrt(y))

(%16) rootscontract (x~(1/2)xy~(1/3));
1/3

(%06) sqrt(x) y

(%i7) rootsconmode: all$
(%1i8) rootscontract (x~(1/2)*y~(1/4));

2 1/4

(%08) x v
(%19) rootscontract (x~(1/2)*y~(1/3));
3 21/6

(%09) (x y)

(%110) rootsconmode: false$
(%1i11) rootscontract (sqrt(sqrt(x) + sqrt(l + x))
*sqrt(sqrt (1 + x) - sqrt(x)));
(%o11) 1
(%112) rootsconmode: true$
(%113) rootscontract (sqrt(5 + sqrt(5)) - 57(1/4)*sqrt(l + sqrt(5)));
(%ho13) 0

rootsepsilon Option variable
Default value: 1.0e-7



Chapter 21: Equations 179

rootsepsilon is the tolerance which establishes the confidence interval for the roots found
by the realroots function.

solve (expr, x) Function
solve (expr) Function
solve ([eqn_1, ..., eqn_n|, [x_1, ..., x_n]) Function

Solves the algebraic equation expr for the variable x and returns a list of solution equations
in x. If expr is not an equation, the equation expr = 0 is assumed in its place. x may be a
function (e.g. £(x)), or other non-atomic expression except a sum or product. x may be
omitted if expr contains only one variable. expr may be a rational expression, and may
contain trigonometric functions, exponentials, etc.

The following method is used:

Let E be the expression and X be the variable. If E is linear in X then it is trivially solved
for X. Otherwise if E is of the form A*X"N + B then the result is (-B/A) ~1/N) times the
N’th roots of unity.

If E is not linear in X then the ged of the exponents of X in E (say N) is divided into the
exponents and the multiplicity of the roots is multiplied by N. Then solve is called again
on the result. If E factors then solve is called on each of the factors. Finally solve will
use the quadratic, cubic, or quartic formulas where necessary.

In the case where E is a polynomial in some function of the variable to be solved for, say
F(X), then it is first solved for F(X) (call the result C), then the equation F(X)=C can be
solved for X provided the inverse of the function F is known.

breakup if false will cause solve to express the solutions of cubic or quartic equations
as single expressions rather than as made up of several common subexpressions which is
the default.

multiplicities - will be set to a list of the multiplicities of the individual solutions
returned by solve, realroots, or allroots. Try apropos (solve) for the switches
which affect solve. describe may then by used on the individual switch names if their
purpose is not clear.

solve ([eqn_1, ..., eqn-n], [x_-1, ..., x-n]) solves a system of simultaneous (linear
or non-linear) polynomial equations by calling linsolve or algsys and returns a list of
the solution lists in the variables. In the case of linsolve this list would contain a single
list of solutions. It takes two lists as arguments. The first list represents the equations to
be solved; the second list is a list of the unknowns to be determined. If the total number
of variables in the equations is equal to the number of equations, the second argument-
list may be omitted. For linear systems if the given equations are not compatible, the
message inconsistent will be displayed (see the solve_inconsistent_error switch); if
no unique solution exists, then singular will be displayed.

When programmode is false, solve displays solutions with intermediate expression (%t)
labels, and returns the list of labels.

When globalsolve is true and the problem is to solve two or more linear equations, each
solved-for variable is bound to its value in the solution of the equations.

Examples:
(%1i1) solve (asin (cos (3*x))*x(f(x) - 1), x);

SOLVE is using arc-trig functions to get a solution.
Some solutions will be lost.

%pi
(%o1) [x = ——, f(x) = 1]
6
(%1i2) ev (solve (5°f(x) = 125, f(x)), solveradcan);
log(125)
(%02) [f(x) = ———————- ]
log(5)

(%13) [4*x"2 - y°2 = 12, xxy - x = 2];
2 2



180

(%03) Ax -y =12, xy - x = 2]
(%14) solve (%, [x, y1);
(hod) [[x =2, y=2], [x

.5202594388652008 %1

.1331240357358706, y = .0767837852378778

3.608003221870287 %i], [x = - .5202594388652008 %i

.1331240357358706, y = 3.608003221870287 %i

+ .0767837852378778], [x = - 1.733751846381093,
y = - .1535675710019696]]
(%1i5) solve (1 + a*x + x73, x);
3
sqrt(3) %i 1 sqrt(4 a +27) 11/3
(%05) [x = (- ———==———— - I -)
2 2 6 sqrt(3) 2
sqrt(3) %i 1
(== - -) a
2 2
e , X =
3
sqrt(4 a + 27) 11/3
3 (m=———————= - -)
6 sqrt(3) 2
3
sqrt(3) %i 1 sqrt(4 a + 27) 11/3
(=== - =) (=== - -)
2 2 6 sqrt(3) 2
sqrt(3) %i 1
(- === - -) a
2 2
e , x =
3
sqrt(4 a + 27) 11/3
3 (- - -)
6 sqrt(3) 2
3
sqrt(4 a + 27) 11/3 a
(- - -) bt ]
6 sqrt(3) 2 3
sqrt(4 a + 27) 11/3
3 (m————————— - -)
6 sqrt(3) 2
(%i6) solve (x73 - 1);
sqrt(3) %i - 1 sqrt(3) %i + 1
(%06) [x = —————————————- , X = - mommm————————— , X =
2 2
(%i7) solve (x°6 - 1);
sqrt(3) %i + 1 sqrt(3) %i - 1

(ho?) [x = ———==mmmmm—- D S , x = -1,

Maxima Manual



Chapter 21: Equations 181

2 2
sqrt(3) %i + 1 sqrt(3) %i - 1
X = - ———————— , X = = —————————————— , x = 1]
2 2
(%i8) ev (x76 - 1, %[11);
6
(sqrt(3) %i + 1)
(%08)  mmmmmmmmm e -1
64
(%19) expand (%);
(%09) 0
(%i10) x72 - 1;
2
(%ho10) x -1
(%i11) solve (%, x);
(%ho11) [x =-1, x = 1]
(%112) ev (%th(2), %[11);
(%012) 0
solvedecomposes Option variable

Default value: true
When solvedecomposes is true, solve calls polydecomp if asked to solve polynomials.

solveexplicit Option variable
Default value: false

When solveexplicit is true, inhibits solve from returning implicit solutions, that is,
solutions of the form F(x) = 0 where F is some function.

solvefactors Option variable
Default value: true

When solvefactors is false, solve does not try to factor the expression. The false
setting may be desired in some cases where factoring is not necessary.

solvenullwarn Option variable
Default value: true

When solvenullwarn is true, solve prints a warning message if called with either a null
equation list or a null variable list. For example, solve ([], [1) would print two warning
messages and return [].

solveradcan Option variable
Default value: false

When solveradcan is true, solve calls radcan which makes solve slower but will allow
certain problems containing exponentials and logarithms to be solved.

solvetrigwarn Option variable
Default value: true

When solvetrigwarn is true, solve may print a message saying that it is using inverse
trigonometric functions to solve the equation, and thereby losing solutions.

solve_inconsistent_error Option variable
Default value: true

When solve_inconsistent_error is true, solve and linsolve give an error if the
equations to be solved are inconsistent.

If false, solve and linsolve return an empty list [] if the equations are inconsistent.
Example:



182 Maxima Manual

(%i1) solve_inconsistent_error: true$

(%i2) solve ([a + b =1, a+ b =2], [a, bl);

Inconsistent equations: (2)

-- an error. Quitting. To debug this try debugmode(true);
(%13) solve_inconsistent_error: false$

(%i4) solve ([a+ b =1, a + b =2], [a, bl);

(%o4) (]



Chapter 22: Differential Equations 183

22 Differential Equations

22.1 Definitions for Differential Equations

bc2 (solution, xvall, yvall, xval2, yval2) Function
Solves boundary value problem for second order differential equation. Here: solution is a
general solution to the equation, as found by ode2, xvall is an equation for the independent
variable in the form x = x0, and yvall is an equation for the dependent variable in the
form y = y0. The xval2 and yval2 are equations for these variables at another point. See
ode2 for example of usage.

desolve (eqn, x) Function
desolve ([eqn_1, ..., eqn_n|, [x_1, ..., x_n]) Function
The function dsolve solves systems of linear ordinary differential equations using Laplace
transform. Here the eqn’s are differential equations in the dependent variables x_1, ...,
x_n. The functional relationships must be explicitly indicated in both the equations and
the variables. For example
’diff(f,x,2)=sin(x)+’diff (g,x);
'diff (f,x)+x"2-£=2%’diff (g,x,2);
is not the proper format. The correct way is:
’diff (£ (x),x,2)=sin(x)+’diff (g(x),x);
2diff (£ (x),x)+x"2-f=2%’diff (g(x),x,2);
The call is then desolve([%03,%04], [£f(x),g(x)]1); .
If initial conditions at 0 are known, they should be supplied before calling desolve by
using atvalue.

(%1i1) ’diff(f(x),x)="diff (g(x),x)+sin(x);

d d
(hol) -— (f(x)) = —— (gx)) + sin(x)
dx dx
(%12) ’diff(g(x),x,2)="diff (f(x),x)-cos(x);
2
d d
(%02) -—- (g(x)) = —— (£(x)) - cos(x)
2 dx
dx
(%13) atvalue(’diff(g(x),x),x=0,a);
(%03) a
(%i4) atvalue(f(x),x=0,1);
(%04) 1
(%i5) desolve([%o1,%02], [f(x),g(x)1);
X

(h08) [f(x) =a e -a+ 1, gx) =

X
cos(x) + a e - a+ g(0) - 1]
(%i6) [%ol,%02],%05,diff;
b b b x
(%06) [a%e =a%e , a%e - cos(x) =a e - cos(x)]

If desolve cannot obtain a solution, it returns false.

icl (solution, xval, yval) Function
Solves initial value problem for first order differential equation. Here: solution is a general
solution to the equation, as found by ode2, xval is an equation for the independent variable



184

ic2 (solution, xval, yval, dval)

ode2 (eqn, dvar, ivar)

Maxima Manual

in the form x = x0, and yval is an equation for the dependent variable in the form y = y0.
See ode2 for example of usage.

Solves initial value problem for second order differential equation. Here: solution is a
general solution to the equation, as found by ode2, xval is an equation for the independent
variable in the form x = x0, yval is an equation for the dependent variable in the form y
= y0, and dval is an equation for the derivative of the dependent variable with respect to
independent variable evaluated at the point xval. See ode2 for example of usage.

The function ode2 solves ordinary differential equations of first or second order. It takes
three arguments: an ODE eqn, the dependent variable dvar, and the independent variable
ivar. When successful, it returns either an explicit or implicit solution for the dependent
variable. Y%c is used to represent the constant in the case of first order equations, and
%k1 and %k2 the constants for second order equations. If ode2 cannot obtain a solution
for whatever reason, it returns false, after perhaps printing out an error message. The
methods implemented for first order equations in the order in which they are tested are:
linear, separable, exact - perhaps requiring an integrating factor, homogeneous, Bernoulli’s
equation, and a generalized homogeneous method. For second order: constant coefficient,
exact, linear homogeneous with non-constant coefficients which can be transformed to
constant coefficient, the Euler or equidimensional equation, the method of variation of
parameters, and equations which are free of either the independent or of the dependent
variable so that they can be reduced to two first order linear equations to be solved se-
quentially. In the course of solving ODEs, several variables are set purely for informational
purposes: method denotes the method of solution used e.g. linear, intfactor denotes
any integrating factor used, odeindex denotes the index for Bernoulli’s method or for the
generalized homogeneous method, and yp denotes the particular solution for the variation
of parameters technique.

In order to solve initial value problems (IVPs) and boundary value problems (BVPs), the
routine ic1 is available for first order equations, and ic2 and bc2 for second order IVPs
and BVPs, respectively.

Example:
(hi1) x~2%°diff(y,x) + 3*y*x = sin(x)/x;
2 dy sin(x)
(%01) X -- 4+ 3 x y = —————-
dx X

(%hi2) ode2(%,y,x);
%c - cos(x)
(%02) y = ——————————

(%13) ic1(%o2,x=%pi,y=0);
cos(x) + 1

(%03) T —
3
b
(%i4) ’diff(y,x,2) + y*’diff(y,x)"3 = 0;
2
dy dy 3
(%04) ——— 4+ y (=) =0
2 dx
dx
(%i5) ode2(%,y,x);
3
y +6 %kly

(%05) ———————————— = x + %k2

Function

Function



Chapter 22: Differential Equations 185

6
(%i6) ratsimp(ic2(%05,x=0,y=0,’diff(y,x)=2));

(%06) e _ - x

Co7) mmmmmme— = x - -



186 Maxima Manual



Chapter 23: Numerical 187

23 Numerical

23.1 Introduction to Numerical

23.2 Fourier packages

The fft package comprises functions for the numerical (not symbolic) computation of the
fast Fourier transform. load ("fft") loads this package. See fft.

The fourie package comprises functions for the symbolic computation of Fourier series. load
("fourie") loads this package. There are functions in the fourie package to calculate Fourier
integral coefficients and some functions for manipulation of expressions. See Definitions for
Fourier Series.

23.3 Definitions for Numerical

polartorect (magnitude_array, phase_array) Function
Translates complex values of the form r %e”~(%i t) to the form a + b %i. load ("fft")
loads this function into Maxima. See also fft.

The magnitude and phase, r and t, are taken from magnitude_array and phase_array,
respectively. The original values of the input arrays are replaced by the real and imaginary
parts, a and b, on return. The outputs are calculated as

a: r cos (t)
b: r sin (t)

The input arrays must be the same size and 1-dimensional. The array size need not be a
power of 2.

polartorect is the inverse function of recttopolar.

recttopolar (real_array, imaginary_array) Function
Translates complex values of the form a + b %i to the form r %e~(%i t). load ("fft")
loads this function into Maxima. See also fft.

The real and imaginary parts, a and b, are taken from real array and imaginary_array,
respectively. The original values of the input arrays are replaced by the magnitude and
angle, r and t, on return. The outputs are calculated as

r: sqrt ("2 + b"2)
t: atan2 (b, a)

The computed angle is in the range -%pi to %pi.

The input arrays must be the same size and 1-dimensional. The array size need not be a
power of 2.

recttopolar is the inverse function of polartorect.

ift (real_array, imaginary_array) Function
Fast inverse discrete Fourier transform. load ("fft") loads this function into Maxima.

ift carries out the inverse complex fast Fourier transform on 1-dimensional floating point
arrays. The inverse transform is defined as

x[j1: sum (y[j] exp (+2 %i %pi j k¥ / n), k, 0, n-1)

See £ft for more details.



188 Maxima Manual

fft (real_array, imaginary_array) Function

ift (real_array, imaginary_array) Function

recttopolar (real_array, imaginary_array) Function

polartorect (magnitude_array, phase_array) Function
Fast Fourier transform and related functions. load ("fft") loads these functions into
Maxima.

fft and ift carry out the complex fast Fourier transform and inverse transform, respec-
tively, on 1-dimensional floating point arrays. The size of imaginary_array must equal the
size of real_array.

fft and ift operate in-place. That is, on return from f£ft or ift, the original content of
the input arrays is replaced by the output. The fillarray function can make a copy of
an array, should it be necessary.

The discrete Fourier transform and inverse transform are defined as follows. Let x be the
original data, with

x[i]: real_array[i] + %i imaginary_array[i]
Let y be the transformed data. The forward and inverse transforms are
y[k]: (1/n) sum (x[j] exp (-2 %i %pi j k¥ / n), j, 0, n-1)

x[j]: sum (y[j] exp (+2 %1 %pi j k¥ / n), k, 0, n-1)
Suitable arrays can be allocated by the array function. For example:
array (my_array, float, n-1)$

declares a 1-dimensional array with n elements, indexed from 0 through n-1 inclusive. The
number of elements n must be equal to 2"m for some m.

fft can be applied to real data (imaginary array all zeros) to obtain sine and cosine coef-
ficients. After calling £ft, the sine and cosine coefficients, say a and b, can be calculated
as

al0]: real_array[0]

b[0]: O
and

aljl: real_array[j] + real_array[n-j]

bl[j]l: imaginary_array[j] - imaginary_array[n-j]
for j equal to 1 through n/2-1, and

aln/2]: real_array[n/2]

b[n/2]: 0
recttopolar translates complex values of the form a + b %i to the form r %e” (%1 t). See
recttopolar.

polartorect translates complex values of the form r %e” (%1 t) to the form a + b %i. See
polartorect.

demo ("fft") displays a demonstration of the fft package.

fortindent Option variable
Default value: 0

fortindent controls the left margin indentation of expressions printed out by the fortran
command. 0 gives normal printout (i.e., 6 spaces), and positive values will causes the
expressions to be printed farther to the right.

fortran (expr) Function
Prints expr as a Fortran statement. The output line is indented with spaces. If the line is
too long, fortran prints continuation lines. fortran prints the exponentiation operator
~ as x*, and prints a complex number a + b %i in the form (a,b).

expr may be an equation. If so, fortran prints an assignment statement, assigning the
right-hand side of the equation to the left-hand side. In particular, if the right-hand side
of expr is the name of a matrix, then fortran prints an assignment statement for each
element of the matrix.



Chapter 23: Numerical 189

If expr is not something recognized by fortran, the expression is printed in grind format
without complaint. fortran does not know about lists, arrays, or functions.

fortindent controls the left margin of the printed lines. 0 is the normal margin (i.e.,
indented 6 spaces). Increasing fortindent causes expressions to be printed further to the
right.

When fortspaces is true, fortran fills out each printed line with spaces to 80 columns.

fortran evaluates its arguments; quoting an argument defeats evaluation. fortran always
returns done.

Examples:

(%1i1) expr: (a + b)~123
(%12) fortran (expr);
(b+a) **12
(%o2) done
(%13) fortran (’x=expr);
x = (bt+a)**12
(%03) done
(%14) fortran (’x=expand (expr));
X = b**x12+12%a*xb**x11+66%a*x*2xb*x*x10+220%a**3*xbx*9+495*a**x4*xb*x*8+792
1 *axk5kbk*k7+924*%a**6*xb**6+792%a*x*x7*xb*x*x5+495xa*x*x8xb*x*x4+220*a*x*x9*b
2 *%3+66%a*xx10xb*x*x2+12%a*x*x11xb+a*x*x12

(%o4) done
(%i5) fortran (’x=7+5%i);

x = (7,5)
(%05) done

(%i6) fortran (’°x=[1,2,3,4]);
x = [1,2,3,4]
(%06) done
%i7) £(x) := x°2%
(%i8) fortran (f);
f
(%08) done

fortspaces Option variable
Default value: false

When fortspaces is true, fortran fills out each printed line with spaces to 80 columns.

horner (expr, x) Function

horner (expr) Function
Returns a rearranged representation of expr as in Horner’s rule, using x as the main
variable if it is specified. x may be omitted in which case the main variable of the canonical
rational expression form of expr is used.

horner sometimes improves stability if expr is to be numerically evaluated. It is also
useful if Maxima is used to generate programs to be run in Fortran. See also stringout.

(%11) expr: 1le-155%x"2 - 5.5%x + 5.2e155;

2
(%o1) 1.0E-155 x - 5.5 x + 5.2E+155
(%12) expr2: horner (%, x), keepfloat: true;
(%o2) (1.0E-155 x - 5.5) x + 5.2E+155

(%1i3) ev (expr, x=1e155);
Maxima encountered a Lisp error:

floating point overflow

Automatically continuing.
To reenable the Lisp debugger set *debugger-hook* to nil.



190 Maxima Manual

(%14) ev (expr2, x=1elbb);

(%04) 7.0E+154
find_root (f(x), x, a, b) Function
find_root (f, a, b) Function

Finds the zero of function f as variable x varies over the range [a, b]. The function
must have a different sign at each endpoint. If this condition is not met, the action of
the function is governed by find_root_error. If find_root_error is true then an error
occurs, otherwise the value of find_root_error is returned (thus for plotting find_root_
error might be set to 0.0). Otherwise (given that Maxima can evaluate the first argument
in the specified range, and that it is continuous) find_root is guaranteed to come up with
the zero (or one of them if there is more than one zero). The accuracy of find_root is
governed by find_root_abs and find_root_rel which must be non-negative floating
point numbers. find_root will stop when the first arg evaluates to something less than
or equal to find_root_abs or if successive approximants to the root differ by no more
than find_root_rel * <one of the approximants>. The default values of find_root_
abs and find_root_rel are 0.0 so find_root gets as good an answer as is possible with
the single precision arithmetic we have. The first arg may be an equation. The order of
the last two args is irrelevant. Thus

x/2, x, hpi, 0.1);

find_root (sin(x)
is equivalent to

find_root (sin(x) x/2, x, 0.1, %pi);
The method used is a binary search in the range specified by the last two args. When it

thinks the function is close enough to being linear, it starts using linear interpolation.

Examples:

(hil) f(x) := sin(x) - x/2;

X
(%o1) f(x) := sin(x) - -

2
(%12) find_root (sin(x) - x/2, x, 0.1, %pi);
(%ho2) 1.895494267033981
(%13) find_root (sin(x) = x/2, x, 0.1, %pi);
(%03) 1.895494267033981
(%14) find_root (£(x), x, 0.1, %pi);
(%04) 1.895494267033981
(%15) find_root (£, 0.1, %pi);
(%05) 1.895494267033981

find_root_abs Option variable

Default value: 0.0

find_root_abs is the accuracy of the find_root command is governed by find_root_
abs and find_root_rel which must be non-negative floating point numbers. find_root
will stop when the first arg evaluates to something less than or equal to find_root_abs or
if successive approximants to the root differ by no more than find_root_rel * <one of
the approximants>. The default values of find_root_abs and find_root_rel are 0.0
so find_root gets as good an answer as is possible with the single precision arithmetic
we have.

find_root_error Option variable
Default value: true

find_root_error governs the behavior of find_root. When find_root is called, it
determines whether or not the function to be solved satisfies the condition that the values
of the function at the endpoints of the interpolation interval are opposite in sign. If they
are of opposite sign, the interpolation proceeds. If they are of like sign, and find_root_
error is true, then an error is signaled. If they are of like sign and find_root_error is
not true, the value of find_root_error is returned. Thus for plotting, find_root_error
might be set to 0.0.



Chapter 23: Numerical 191

find_root_rel Option variable
Default value: 0.0

find_root_rel is the accuracy of the find_root command is governed by find_root_
abs and find_root_rel which must be non-negative floating point numbers. find_root
will stop when the first arg evaluates to something less than or equal to find_root_abs or
if successive approximants to the root differ by no more than find_root_rel * <one of
the approximants>. The default values of find_root_abs and find_root_rel are 0.0
so find_root gets as good an answer as is possible with the single precision arithmetic
we have.

23.4 Definitions for Fourier Series

equalp (x, y) Function
Returns true if equal (x, y) otherwise false (doesn’t give an error message like equal
(x, y) would do in this case).

remfun (f, expr) Function
remfun (f, expr, x) Function
remfun (f, expr) replaces all occurrences of f (arg) by arg in expr.
remfun (f, expr, x) replaces all occurrences of f (arg) by arg in expr only if arg contains
the variable x.

funp (£, expr) Function
funp (f, expr, x) Function
funp (f, expr) returns true if expr contains the function f.
funp (f, expr, x) returns true if expr contains the function f and the variable x is
somewhere in the argument of one of the instances of f.

absint (f, x, halfplane) Function
absint (f, x) Function
absint (f, x, a, b) Function

absint (f, x, halfplane) returns the indefinite integral of f with respect to x in the given
halfplane (pos, neg, or both). f may contain expressions of the form abs (x), abs (sin
(x)), abs (a) * exp (-abs (b) * abs (x)).

absint (f, x) is equivalent to absint (f, x, pos).

absint (f, x, a, b) returns the definite integral of f with respect to x from a to b. f
may include absolute values.

fourier (f, x, p) Function
Returns a list of the Fourier coefficients of f (x) defined on the interval [-%pi, %pil.

foursimp (I) Function
Simplifies sin (n %pi) to 0 if sinnpiflag is true and cos (n %pi) to (-1)"n if
cosnpiflag is true.

sinnpiflag Option variable
Default value: true
See foursimp.

cosnpiflag Option variable
Default value: true

See foursimp.

fourexpand (I, x, p, limit) Function
Constructs and returns the Fourier series from the list of Fourier coefficients I up through
limit terms (limit may be inf). x and p have same meaning as in fourier.



192 Maxima Manual

fourcos (f, x, p) Function
Returns the Fourier cosine coefficients for f (x) defined on [0, %pi].

foursin (f, x, p) Function
Returns the Fourier sine coefficients for f(x) defined on [0, %pi].

totalfourier (f, x, p) Function
Returns fourexpand (foursimp (fourier (f, x, p)), x, p, ’inf).

fourint (f, x) Function
Constructs and returns a list of the Fourier integral coefficients of f (x) defined on [minf,
inf].

fourintcos (f, x) Function

Returns the Fourier cosine integral coefficients for f(x) on [0, inf].

fourintsin (f, x) Function
Returns the Fourier sine integral coefficients for f (x) on [0, inf].



Chapter 24: Statistics 193

24 Statistics

24.1 Definitions for Statistics

gauss (mean, sd) Function
Returns a random floating point number from a normal distribution with mean mean and
standard deviation sd.



194 Maxima Manual



Chapter 25: Arrays and Tables 195

25 Arrays and Tables

25.1 Definitions for Arrays and Tables

array (name, dim_1, ..., dim_n) Function
array (name, type, dim_1, ..., dim_n) Function
array ([name_1, ..., name_m|, dim_1, ..., dim_n) Function

Creates an n-dimensional array. n may be less than or equal to 5. The subscripts for the
i’th dimension are the integers running from 0 to dim_i.

array (name, dim_1, ..., dim_n) creates a general array.

array (name, type, dim_1, ..., dim_n) creates an array, with elements of a specified
type. type can be fixnum for integers of limited size or flonum for floating-point numbers.

array ([name_1, ..., name.m], dim_1, ..., dim_n) creates m arrays, all of the same
dimensions.

If the user assigns to a subscripted variable before declaring the corresponding array,
an undeclared array is created. Undeclared arrays, otherwise known as hashed arrays
(because hash coding is done on the subscripts), are more general than declared arrays.
The user does not declare their maximum size, and they grow dynamically by hashing
as more elements are assigned values. The subscripts of undeclared arrays need not even
be numbers. However, unless an array is rather sparse, it is probably more efficient to
declare it when possible than to leave it undeclared. The array function can be used to
transform an undeclared array into a declared array.

arrayapply (A, [i_1, ..., i_n]) Function
Evaluates A [i_1, ..., i_.n], where A is an array and i_1, ..., i_n are integers.

This is reminiscent of apply, except the first argument is an array instead of a function.

arrayinfo (A) Function
Returns a list of information about the array A. For hashed arrays it returns a list of
hashed, the number of subscripts, and the subscripts of every element which has a value.
For declared arrays it returns a list of declared, the number of subscripts, and the bounds
that were given the the array function when it was called on A. Do example (arrayinfo) ;
for an example.

arraymake (name, [i_1, ..., i_n]) Function
Returns the expression name [i_1, ..., i_n].

This is reminiscent of funmake, except the return value is an unevaluated array reference
instead of an unevaluated function call.

arrays System variable
Default value: []

arrays is a list of all the arrays that have been allocated, both declared and undeclared.

See also array, arrayapply, arrayinfo, arraymake, fillarray, listarray, and
rearray.

bashindices (expr) Function
Transforms the expression expr by giving each summation and product a unique index.
This gives changevar greater precision when it is working with summations or products.
The form of the unique index is jnumber. The quantity number is determined by referring
to gensumnum, which can be changed by the user. For example, gensumnum:0$ resets it.



196 Maxima Manual

fillarray (A, B) Function
Fills array A from B, which is a list or an array.

If A is a floating-point (integer) array then B should be either a list of floating-point
(integer) numbers or another floating-point (integer) array.

If the dimensions of the arrays are different A is filled in row-major order. If there are
not enough elements in B the last element is used to fill out the rest of A. If there are too
many the remaining ones are thrown away.

fillarray returns its first argument.

listarray (A) Function
Returns a list of the elements of a declared or hashed array A. The order is row-major.
Elements which are not yet defined are represented by #####.

make_array (type, dim_1, ..., dim_n) Function
Creates and returns a Lisp array. type may be any, flonum, fixnum, hashed or
functional. There are n indices, and the i’th index runs from 0 to dim_i — 1.

The advantage of make_array over array is that the return value doesn’t have a name,
and once a pointer to it goes away, it will also go away. For example, if y: make_array
(...) then y points to an object which takes up space, but after y: false, y no longer
points to that object, so the object can be garbage collected.

y: make_array (’functional, ’f, ’hashed, 1) - the second argument to make_array
in this case is the function to call to calculate array elements, and the rest of the arguments
are passed recursively to make_array to generate the "memory" for the array function
object.

rearray (A, dim_1, ..., dim_n) Function
Changes the dimensions of an array. The new array will be filled with the elements of the
old one in row-major order. If the old array was too small, the remaining elements are
filled with false, 0.0 or 0, depending on the type of the array. The type of the array
cannot be changed.

remarray (A_1, ..., A_n) Function
remarray (all) Function
Removes arrays and array associated functions and frees the storage occupied.

remarray (all) removes all items in the global list arrays.

It may be necessary to use this function if it is desired to redefine the values in a hashed
array.

remarray returns the list of arrays removed.

subvar (x, i) Function
Evaluates the subscripted expression x [i].

subvar evaluates its arguments.
arraymake (x, [i] constructs the expression x[i], but does not evaluate it.
Examples:

(%i1) x : foo $

(hi2) i : 3 $

(%i3) subvar (x, i);

(%03) foo
3

(%i4) foo : [aa, bb, cc, dd, eel$

(%i5) subvar (x, i);
(%05) cc



Chapter 25: Arrays and Tables 197

(%i6) arraymake (x, [i]);

(%06) foo
3
CRiT) 2%
(%o0T) cc
use_fast_arrays Option variable

- if true then only two types of arrays are recognized.

1) The art-q array (t in Common Lisp) which may have several dimensions indexed by
integers, and may hold any Lisp or Maxima object as an entry. To construct such an array,
enter a:make_array(any,3,4); then a will have as value, an array with twelve slots, and
the indexing is zero based.

2) The Hash_table array which is the default type of array created if one does b[x+1] :y~2
(and b is not already an array, a list, or a matrix — if it were one of these an error would
be caused since x+1 would not be a valid subscript for an art-q array, a list or a matrix).
Its indices (also known as keys) may be any object. It only takes one key at a time
(b[x+1,ul :y would ignore the u). Referencing is done by b[x+1] ==> y~2. Of course the
key may be a list, e.g. b[[x+1,ul]:y would be valid. This is incompatible with the old
Maxima hash arrays, but saves consing.

An advantage of storing the arrays as values of the symbol is that the usual conventions
about local variables of a function apply to arrays as well. The Hash_table type also uses
less consing and is more efficient than the old type of Maxima hashar. To obtain consistent
behaviour in translated and compiled code set translate_fast_arrays to be true.



198 Maxima Manual



Chapter 26: Matrices and Linear Algebra 199

26 Matrices and Linear Algebra

26.1 Introduction to Matrices and Linear Algebra

26.1.1 Dot

The operator . represents noncommutative multiplication and scalar product. When the
operands are l-column or l-row matrices a and b, the expression a.b is equivalent to sum
(a[il*b[il, i, 1, length(a)). If a and b are not complex, this is the scalar product,
also called the inner product or dot product, of a and b. The scalar product is defined as
conjugate(a).b when a and b are complex; innerproduct in the eigen package provides the
complex scalar product.

When the operands are more general matrices, the product is the matrix product a and b.
The number of rows of b must equal the number of columns of a, and the result has number of
rows equal to the number of rows of a and number of columns equal to the number of columns
of b.

To distinguish . as an arithmetic operator from the decimal point in a floating point number,
it may be necessary to leave spaces on either side. For example, 5.e3 is 5000.0 but 5 . e3is 5
times e3.

There are several flags which govern the simplification of expressions involving ., namely dot,
dotOnscsimp, dotOsimp, dotlsimp, dotassoc, dotconstrules, dotdistrib, dotexptsimp,
dotident, and dotscrules.

26.1.2 Vectors

vect is a package of functions for vector analysis. load ("vect") loads this package, and
demo ("vect") displays a demonstration.

The vector analysis package can combine and simplify symbolic expressions including dot
products and cross products, together with the gradient, divergence, curl, and Laplacian oper-
ators. The distribution of these operators over sums or products is governed by several flags,
as are various other expansions, including expansion into components in any specific orthogonal
coordinate systems. There are also functions for deriving the scalar or vector potential of a field.

The vect package contains these functions: vectorsimp, scalefactors, express,
potential, and vectorpotential.

Warning: the vect package declares the dot operator . to be a commutative operator.

26.1.3 eigen

The package eigen contains several functions devoted to the symbolic computation of eigen-
values and eigenvectors. Maxima loads the package automatically if one of the functions
eigenvalues or eigenvectors is invoked. The package may be loaded explicitly as load
("eigen").

demo ("eigen") displays a demonstration of the capabilities of this package. batch
("eigen") executes the same demonstration, but without the user prompt between successive
computations.

The functions in the eigen package are innerproduct, unitvector, columnvector,
gramschmidt, eigenvalues, eigenvectors, uniteigenvectors, and similaritytransform.

26.2 Definitions for Matrices and Linear Algebra

addcol (M, list_1, ..., list_n) Function
Appends the column(s) given by the one or more lists (or matrices) onto the matrix M.



200 Maxima Manual

addrow (M, list_1, ..., list_n) Function
Appends the row(s) given by the one or more lists (or matrices) onto the matrix M.

adjoint (M) Function
Returns the adjoint of the matrix M. The adjoint matrix is the transpose of the matrix of
cofactors of M.

augcoefmatrix ([eqn-1, ..., eqn-m], [x_1, ..., x_n]) Function
Returns the augmented coefficient matrix for the variables x_1, ..., x_n of the system of
linear equations eqn_1, ..., eqn_m. This is the coefficient matrix with a column adjoined
for the constant terms in each equation (i.e., those terms not dependent upon x_I, ...,
x_n).
(%1i1) m: [2*xx - (a - 1)*y = 5xb, c + b*y + axx = 0]$
(%12) augcoefmatrix (m, [x, yl);
[2 1-a -5D

(%02) L
L

a b C

charpoly (M, x) Function
Returns the characteristic polynomial for the matrix M with respect to variable x. That
is, determinant (M - diagmatrix (length (M), x)).

(%i1) a: matrix ([3, 11, [2, 4]1);

[3 1]
(%o1) [ ]

[2 4]
(%12) expand (charpoly (a, lambda));

2

(%02) lambda - 7 lambda + 10
(%13) (programmode: true, solve (%));
(%03) [lambda = 5, lambda = 2]
(%id) matrix ([x1], [x21);

[ x11]
(%04) [ ]

[ x2 1]

(%i5) ev (a . % - lambdax%, %th(2)[11);
[ x2 - 2 x1 ]
(%05) [ ]
[ 2 x1 - x2 ]
(%i6) %[1, 11 = 0;

(%06) x2 - 2x1 =0
(%i7) %272 + x1°2 = 1;
2 2

(hoT) x2 +x1 =1
(%i8) solve ([%th(2), %1, [x1, x21);

1 2
(%08) [[x1 = - ——————- , X2 = - ——————- 1,

sqrt(5) sqrt(5)
1 2
[x1 = ——————- , X2 = ——————- 1]
sqrt(5) sqrt(5)
coefmatrix ([eqn_1, ..., eqn_m], [x_1, ..., x_n]) Function
Returns the coefficient matrix for the variables x_1, ..., x_n of the system of linear equations

eqn_1, ..., eqn_m.



Chapter 26: Matrices and Linear Algebra 201

(%i1) coefmatrix([2*x-(a-1)*y+5*b = 0, bxy+axx = 3], [x,y]);

[2 1-a]
(o) [ ]
[ a b ]
col (M, i) Function

Returns the i’th column of the matrix M. The return value is a matrix.

columnvector (L) Function
covect (L) Function
Returns a matrix of one column and length (L) rows, containing the elements of the list
L.

covect is a synonym for columnvector.
load ("eigen") loads this function.

This is useful if you want to use parts of the outputs of the functions in this package in
matrix calculations.

Example:

(%11) load ("eigen")$
Warning - you are redefining the Macsyma function eigenvalues
Warning - you are redefining the Macsyma function eigenvectors
(%1i2) columnvector ([aa, bb, cc, dd]l);

[ aa ]

[ ]

bb

(%o2)

[ T e B e W s W |
(oD (@]
Q. (@]
[ T Y W [y '

conjugate (x) Function
Returns the complex conjugate of x.

(%1i1) declare ([aa, bb], real, cc, complex, ii, imaginary);

(ho1) done
(%12) conjugate (aa + bbx*%i);

(%02) aa - %i bb
(%13) conjugate (cc);

(%03) conjugate(cc)
(%14) conjugate (ii);

(%o4) - ii
(%15) conjugate (xx + yy);

(%05) conjugate(yy) + conjugate(xx)

copymatrix (M) Function
Returns a copy of the matrix M. This is the only way to make a copy aside from copying
M element by element.

Note that an assignment of one matrix to another, as in m2: m1, does not copy m1. An
assignment m2 [i,j]: x or setelmx (x, i, j, m2 also modifies m1 [i,j]. Creating a
copy with copymatrix and then using assignment creates a separate, modified copy.



202 Maxima Manual

determinant (M) Function
Computes the determinant of M by a method similar to Gaussian elimination.

The form of the result depends upon the setting of the switch ratmx.

There is a special routine for computing sparse determinants which is called when the
switches ratmx and sparse are both true.

detout Option variable
Default value: false

When detout is true, the determinant of a matrix whose inverse is computed is factored
out of the inverse.

For this switch to have an effect doallmxops and doscmxops should be false (see their
descriptions). Alternatively this switch can be given to ev which causes the other two to
be set correctly.

Example:
(%i1) m: matrix ([a, bl, [c, d]);
[a b]
(%o1) [ ]
[c d]
(%12) detout: true$
(%13) doallmxops: false$
(%14) doscmxops: false$
(%1i5) invert (m);
[ 4d -b]
[ ]
[-c a ]
(o)  mmmmmmmm—
ad-bc
diagmatrix (n, x) Function

Returns a diagonal matrix of size n by n with the diagonal elements all equal to x.
diagmatrix (n, 1) returns an identity matrix (same as ident (n)).

n must evaluate to an integer, otherwise diagmatrix complains with an error message.

x can be any kind of expression, including another matrix. If x is a matrix, it is not
copied; all diagonal elements refer to the same instance, x.

doallmxops Option variable
Default value: true

When doallmxops is true, all operations relating to matrices are carried out. When
it is false then the setting of the individual dot switches govern which operations are
performed.

domxexpt Option variable
Default value: true

When domxexpt is true, a matrix exponential, exp (M) where M is a matrix, is in-
terpreted as a matrix with element [i,j equal to exp (m[i,j]). Otherwise exp (M)
evaluates to exp (ev(M).

domxexpt affects all expressions of the form base”power where base is an expression
assumed scalar or constant, and power is a list or matrix.

Example:
(%i1) m: matrix ([1, %il, [a+b, %pil);
[ 1 %]
(%01) [ ]
[b+a Y%pi]l

(%i2) domxexpt: false$



Chapter 26: Matrices and Linear Algebra 203

(%i3) (1 - c)’m;

[ 1 i ]
[ ]
[b+a %pil
(%03) 1 -0
(%i4) domxexpt: true$
(%hi8) (1 - c)"m;
[ o]
L 1-c 1-0 ]
(%05) [ ]
[ b+ a %pi ]
[ (1-0) 1-0 ]
domxmxops Option variable

Default value: true

When domxmxops is true, all matrix-matrix or matrix-list operations are carried out (but
not scalar-matrix operations); if this switch is false such operations are not carried out.

domxnctimes Option variable
Default value: false

When domxnctimes is true, non-commutative products of matrices are carried out.

dontfactor Option variable
Default value: []

dontfactor may be set to a list of variables with respect to which factoring is not to
occur. (The list is initially empty.) Factoring also will not take place with respect to any
variables which are less important, according the variable ordering assumed for canonical
rational expression (CRE) form, than those on the dontfactor list.

doscmxops Option variable
Default value: false

When doscmxops is true, scalar-matrix operations are carried out.

doscmxplus Option variable
Default value: false

When doscmxplus is true, scalar-matrix operations yield a matrix result. This switch is
not subsumed under doallmxops.

dotOnscsimp Option variable
Default value: true

When dotOnscsimp is true, a non-commutative product of zero and a nonscalar term is
simplified to a commutative product.

dotOsimp Option variable
Default value: true

When dotOsimp is true, a non-commutative product of zero and a scalar term is simplified
to a commutative product.

dotlsimp Option variable
Default value: true

When dot1simp is true, a non-commutative product of one and another term is simplified
to a commutative product.

dotassoc Option variable
Default value: true

When dotassoc is true, an expression (A.B).C simplifies to A. (B.C).



204 Maxima Manual

dotconstrules Option variable
Default value: true

When dotconstrules is true, a non-commutative product of a constant and another
term is simplified to a commutative product. Turning on this flag effectively turns on
dotOsimp, dotOnscsimp, and dotlsimp as well.

dotdistrib Option variable
Default value: false

When dotdistrib is true, an expression A. (B + C) simplifies to A.B + A.C.

dotexptsimp Option variable
Default value: true

When dotexptsimp is true, an expression A.A simplifies to A~"2.

dotident Option variable
Default value: 1

dotident is the value returned by X~~0.

dotscrules Option variable
Default value: false

When dotscrules is true, an expression A.SC or SC.A simplifies to SCxA and A. (SC*B)
simplifies to SC*(A.B).

echelon (M) Function
Returns the echelon form of the matrix M, as produced by Gaussian elimination. The
echelon form is computed from M by elementary row operations such that the first non-
zero element in each row in the resulting matrix is one and the column elements under
the first one in each row are all zero.

triangularize also carries out Gaussian elimination, but it does not normalize the leading
non-zero element in each row.

lu_factor and cholesky are other functions which yield triangularized matrices.
(%i1) M: matrix ([3, 7, aa, bbl, [-1, 8, 5, 2], [9, 2, 11, 4]1);

[ 3 7 aa bb]
[ ]
(%hol) [-1 8 5 2 ]
[ ]
[ 9 2 11 4 ]
(%i2) echelon (M);
[1 -8 -5 -2 ]
[ ]
[ 28 11 ]
o 1 -- -- ]
(%02) [ 37 37 ]
[ ]
[ 37 bb - 119 ]
[0 0 1 —mmmmmmm— ]
[ 37 aa - 313 ]
eigenvalues (M) Function
eivals (M) Function

Returns a list of two lists containing the eigenvalues of the matrix M. The first sublist of
the return value is the list of eigenvalues of the matrix, and the second sublist is the list
of the multiplicities of the eigenvalues in the corresponding order.

eivals is a synonym for eigenvalues.



Chapter 26: Matrices and Linear Algebra 205

eigenvalues calls the function solve to find the roots of the characteristic polynomial
of the matrix. Sometimes solve may not be able to find the roots of the polynomial;
in that case some other functions in this package (except innerproduct, unitvector,
columnvector and gramschmidt) will not work.

In some cases the eigenvalues found by solve may be complicated expressions. (This may
happen when solve returns a not-so-obviously real expression for an eigenvalue which
is known to be real.) It may be possible to simplify the eigenvalues using some other
functions.

The package eigen.mac is loaded automatically when eigenvalues or eigenvectors is
referenced. If eigen.mac is not already loaded, load ("eigen") loads it. After loading,
all functions and variables in the package are available.

eigenvectors (M) Function

eivects (M) Function
takes a matrix M as its argument and returns a list of lists the first sublist of which is
the output of eigenvalues and the other sublists of which are the eigenvectors of the
matrix corresponding to those eigenvalues respectively. The calculated eigenvectors and
the unit eigenvectors of the matrix are the right eigenvectors and the right unit eigenvectors
respectively.

eivects is a synonym for eigenvectors.

The package eigen.mac is loaded automatically when eigenvalues or eigenvectors is
referenced. If eigen.mac is not already loaded, load ("eigen") loads it. After loading,
all functions and variables in the package are available.

The flags that affect this function are:

nondiagonalizable is set to true or false depending on whether the matrix is nondi-
agonalizable or diagonalizable after eigenvectors returns.

hermitianmatrix when true, causes the degenerate eigenvectors of the Hermitian matrix
to be orthogonalized using the Gram-Schmidt algorithm.

knowneigvals when true causes the eigen package to assume the eigenvalues of the ma-
trix are known to the user and stored under the global name listeigvals. listeigvals
should be set to a list similar to the output eigenvalues.

The function algsys is used here to solve for the eigenvectors. Sometimes if the eigenvalues
are messy, algsys may not be able to find a solution. In some cases, it may be possible
to simplify the eigenvalues by first finding them using eigenvalues command and then
using other functions to reduce them to something simpler. Following simplification,
eigenvectors can be called again with the knowneigvals flag set to true.

ematrix (m, n, x, i, j) Function
Returns an m by n matrix, all elements of which are zero except for the [i, j] element
which is x.

entermatrix (m, n) Function

Returns an m by n matrix, reading the elements interactively.

If n is equal to m, Maxima prompts for the type of the matrix (diagonal, symmetric, anti-
symmetric, or general) and for each element. Each response is terminated by a semicolon
; or dollar sign $.

If n is not equal to m, Maxima prompts for each element.

The elements may be any expressions, which are evaluated. entermatrix evaluates its
arguments.
(%i1) n: 3$

(%1i2) m: entermatrix (n, n)$

Is the matrix 1. Diagonal 2. Symmetric 3. Antisymmetric 4. General
Answer 1, 2, 3 or 4 :

1$



206 Maxima Manual

Row 1 Column 1:
(a+b) "n$

Row 2 Column 2:
(a+b) " (n+1)$
Row 3 Column 3:
(atb) " (n+2)$

Matrix entered.

(%i3) m;
[ 3 ]
[ (b + a) 0 0 ]
[ ]
(%03) [ 4 ]
[ 0 (b + a) 0 ]
[ ]
[ 5 1]
[ 0 0 (b + a) ]
genmatrix (a, i-2, j_2, i1, j_1) Function
genmatrix (a, i.2, j_2, i_1) Function
genmatrix (a, i.2, j_2) Function

Returns a matrix generated from a, taking element ali_1,j_1] as the upper-left element
and ali-2,j_2] as the lower-right element of the matrix. Here a is an array (created by
array but not by make_array) or an array function. (An array function is created like
other functions with := or define, but arguments are enclosed in square brackets instead
of parentheses.)

If j_1 is omitted, it is assumed equal to i_I. If both j_I and i_1 are omitted, both are
assumed equal to 1.

If a selected element i,j of the array is undefined, the matrix will contain a symbolic
element ali,j].

(%i1) nli,jl := 1/@GE+j-1D$

(%12) genmatrix (h, 3, 3);

[ 1]
[1 - -1
[ 3]
[ ]
[1 1 1]
(%02) [- - -1
[ 2 4 ]
[ ]
[1 1 1]
[- - -1
[3 4 5]
(%13) array (a, fixnum, 2, 2)$
(%i4) al1,1]: %e$
(%i5) al2,2]: %pi$
(%16) kill (al1,2], al2,11)$
(%17) genmatrix (a, 2, 2);
[ %e a ]
[ 1, 2]
(%oT) [ ]
[ a %pi ]
[ 2,1 ]



Chapter 26: Matrices and Linear Algebra 207

gramschmidt (x) Function
gschmit (x) Function
Carries out the Gram-Schmidt orthogonalization algorithm on x, which is either a matrix
or a list of lists. x is not modified by gramschmidt.
If x is a matrix, the algorithm is applied to the rows of x. If x is a list of lists, the algorithm
is applied to the sublists, which must have equal numbers of elements. In either case, the
return value is a list of lists, the sublists of which are orthogonal and span the same space
as x. If the dimension of the span of x is less than the number of rows or sublists, some
sublists of the return value are zero.
factor is called at each stage of the algorithm to simplify intermediate results. As a
consequence, the return value may contain factored integers.

gschmit (note spelling) is a synonym for gramschmidt.
load ("eigen") loads this function.
Example:
(%11) load ("eigen")$
Warning - you are redefining the Macsyma function eigenvalues

Warning - you are redefining the Macsyma function eigenvectors
(%i2) x: matrix ([1, 2, 3], [9, 18, 30], [12, 48, 60]);

[1 2 3 ]
[ ]
(%02) [ 9 18 30 ]
[ ]
[ 12 48 60 1
(%i3) y: gramschmidt (x);
2 2 4 3
3 3 35 2 3 2 3
(%03) [I1, 2, 3], [- -, - ——, -=--1, [- ---——-, ——--, 011
27 7 27 5 5

(%14) i: innerproduct$
(kib) [1i (y[11, y[2D), i (y[2], y[3]), i (y[(3], y[1D];
(%05) [0, 0, 0]

hach (a, b, m, n, I) Function
hach is an implementation of Hacijan’s linear programming algorithm.

load ("kach") loads this function. demo ("kach") executes a demonstration of this func-
tion.

ident (n) Function
Returns an n by n identity matrix.

innerproduct (x, y) Function
inprod (x, y) Function
Returns the inner product (also called the scalar product or dot product) of x and y, which
are lists of equal length, or both 1-column or 1-row matrices of equal length. The return
value is conjugate (x) . y, where . is the noncommutative multiplication operator.
load ("eigen") loads this function.

inprod is a synonym for innerproduct.

invert (M) Function
Returns the inverse of the matrix M. The inverse is computed by the adjoint method.

This allows a user to compute the inverse of a matrix with bfloat entries or polynomials
with floating pt. coefficients without converting to cre-form.

Cofactors are computed by the determinant function, so if ratmx is false the inverse is
computed without changing the representation of the elements.

The current implementation is inefficient for matrices of high order.



208 Maxima Manual
When detout is true, the determinant is factored out of the inverse.
The elements of the inverse are not automatically expanded. If M has polynomial elements,
better appearing output can be generated by expand (invert (m)), detout. If it is
desirable to then divide through by the determinant this can be accomplished by xthru
(%) or alternatively from scratch by
expand (adjoint (m)) / expand (determinant (m))
invert (m) := adjoint (m) / determinant (m)
See "~ (noncommutative exponent) for another method of inverting a matrix.
Imxchar Option variable
Default value: [
lmxchar is the character displayed as the left delimiter of a matrix. See also rmxchar.
Example:
(%i1) lmxchar: "|"$
(%12) matrix ([a, b, c], [d, e, f]1, [g, h, il);
| a b c]
| ]
(%ho2) | 4 e f]
| ]
l g h i]
matrix (row_1I, ..., row_n) Function
Returns a rectangular matrix which has the rows row_1, ..., row_n. Each row is a list of
expressions. All rows must be the same length.
The operations + (addition), - (subtraction), * (multiplication), and / (division), are

carried out element by element when the operands are two matrices, a scalar and a matrix,
or a matrix and a scalar. The operation ~ (exponentiation, equivalently **) is carried out
element by element if the operands are a scalar and a matrix or a matrix and a scalar,
but not if the operands are two matrices. All operations are normally carried out in full,
including . (noncommutative multiplication).

Matrix multiplication is represented by the noncommutative multiplication operator ..
The corresponding noncommutative exponentiation operator is ~~. For a matrix A, A. A
= A~"2 and A~"-1 is the inverse of A, if it exists.

There are switches for controlling simplification of expressions involving dot and matrix-list
operations. These are doallmxops, domxexpt domxmxops, doscmxops, and doscmxplus.

There are additional options which are related to matrices. These are: 1mxchar, rmxchar,
ratmx, listarith, detout, scalarmatrix, and sparse.

There are a number of functions which take matrices as arguments or yield matrices as
return values. See eigenvalues, eigenvectors, determinant, charpoly, genmatrix,
addcol, addrow, copymatrix, transpose, echelon, and rank.

Examples:
e Construction of matrices from lists.
(%i1) x: matrix ([17, 31, [-8, 11]);

[ 17 3 1]
(%o1) [ ]
[ -8 11 ]

(%12) y: matrix ([%pi, %el, [a, bl);
[ %pi %e ]
(%02) [ ]
[ a b

—_

e Addition, element by element.
(hi3) x + y;
[ %pi + 17 %e + 3]
(%03) [ ]
[ a-38 b+ 11 ]



Chapter 26: Matrices and Linear Algebra 209

e Subtraction, element by element.
(%id) x - y;
[ 17 - Y%pi 3 - %e ]
(%ho4d) [ ]
[-a-38 11 - b ]
e Multiplication, element by element.
(%i8) x * y;
[ 17 Y%pi 3 %e ]
(%05) [ ]
[-8a 11b]
e Division, element by element.

(%i6) x / vy;

[ 17 -11]
[ -——— 3 %e ]
[ %pi ]
(%06) [ ]
[ 8 11 ]
[ - - - ]
[ a b ]

Matrix to a scalar exponent, element by element.
(%i7) x ~© 3;

[ 4913 27 ]

(%oT) [ ]

[ - 512 1331 ]

Scalar base to a matrix exponent, element by element.
(%i8) exp(y);

[ %pi %e ]
[ %e %e 1]
(%08) [ ]
[ a b 1
[ %e %e ]

Matrix base to a matrix exponent. This is not carried out element by element.
(%19) x " y;

[ %pi ‘%e ]

[ ]

[ a b 1]
[17 3 ]
(%09) [ ]
[ -8 11 ]

e Noncommutative matrix multiplication.
(%110) x . y;
[3a+ 17 %pi 3 b+ 17 %e ]
(%010) [ ]
[11 a-8%i 11 b - 8 %e ]
(Fi11l) y . x;
[ 17 %pi - 8 %e 3 %pi + 11 %e ]
(%o11) [ ]
[ 17a-8b 11b+3a 1]
e Noncommutative matrix exponentiation. A scalar base b to a matrix power M is
carried out element by element and so b™"m is the same as b™m.
(%i12) x =~ 3;
[ 3833 1719 ]
(%o12) [ ]
[ - 4584 395 ]



210 Maxima Manual

(hi13) %e ~~ y;

[
L
(%013) L
L
L

he he ]
e A matrix raised to a -1 exponent with noncommutative exponentiation is the matrix
inverse, if it exists.

(%i14) x ~° -1;

[ 11 3 ]
[ - -]
[ 211 211 ]
(%o14) C ]
[ 8 17 ]
[-— -— 1
[ 211 211 1]
(%i15) x . (x °° -1);
[1 01
(%ho15) L ]
[0 1]
matrixmap (f, M) Function
Returns a matrix with element i, j equal to f (M [i,j]).
See also map, fullmap, fullmapl, and apply.
matrixp (expr) Function

Returns true if expr is a matrix, otherwise false.

matrix_element_add
Default value: +

Option variable

matrix_element_add is the operation invoked in place of addition in a matrix multiplica-
tion. matrix_element_add can be assigned any n-ary operator (that is, a function which
handles any number of arguments). The assigned value may be the name of an operator
enclosed in quote marks, the name of a function, or a lambda expression.

See also matrix_element_mult and matrix_element_transpose.

Example:

(%i1) matrix_element_add: "*"$

(%i2) matrix_element_mult: "~"$

(%i3) aa: matrix ([a, b, cl, [d, e, f1);
[a b c]

(%o3) [ ]
[d e f]

(%i4) bb: matrix ([u, v, wl, [x, y, z]);
[u v w]

(%o4) [ ]
[x vy z]

(%i5) aa . transpose (bb);

[ v v w x vy z]
[a D ¢ a b c ]
(%05) [ ]
[ vw v w x y z]
[d e f d e f ]

matrix_element_mult
Default value: *

Option variable



Chapter 26: Matrices and Linear Algebra 211

matrix_element_mult is the operation invoked in place of multiplication in a matrix
multiplication. matrix_element_mult can be assigned any binary operator. The assigned
value may be the name of an operator enclosed in quote marks, the name of a function,
or a lambda expression.
The dot operator . is a useful choice in some contexts.
See also matrix_element_add and matrix_element_transpose.
Example:

(%11) matrix_element_add: lambda ([[x]], sqrt (apply ("+", x)))$

(%12) matrix_element_mult: lambda ([x, y], (x - y)~"2)$

(%1i3) [a, b, c] . [x, y, z];

2 2 2
(%03) sqrt((c = 2z) + (b -y) + (a - x) )
(%i4) aa: matrix ([a, b, c], [d, e, f1);
[a b c]
(%o04) [ ]
[d e f]

(%i5) bb: matrix ([u, v, wl, [x, y, z1);
[u v w]

(%05) [ ]
[x vy z]
(%i6) aa . transpose (bb);
L 2 2 2 1]
[ sgrt((c - w) + (b -v) + (a-w )]
(%06) Col 1 =1[ ]
[ 2 2 2 ]

[ sqrt((f - w) + (e -v) + (d-uw )]

2 2 2 1]

sqrt((c - z) + (b -y) + (a-x)) 1]
]

2 2 2 ]

sqre((f - z) + (e -y) + (d-x)) ]

Col 2 =

L I I e I e N |

matrix_element_transpose Option variable
Default value: false

matrix_element_transpose is the operation applied to each element of a matrix when it
is transposed. matrix_element_mult can be assigned any unary operator. The assigned
value may be the name of an operator enclosed in quote marks, the name of a function,
or a lambda expression.

When matrix_element_transpose equals transpose, the transpose function is applied
to every element. When matrix_element_transpose equals nonscalars, the transpose
function is applied to every nonscalar element. If some element is an atom, the nonscalars
option applies transpose only if the atom is declared nonscalar, while the transpose
option always applies transpose.

The default value, false, means no operation is applied.

See also matrix_element_add and matrix_element_mult.

Examples:

(%i1) declare (a, nonscalar)$
(%12) transpose ([a, b]l);

[ transpose(a) ]
(%02) L ]

[ b ]
(%13) matrix_element_transpose: nonscalars$
(%14) transpose ([a, b]l);

[ transpose(a) ]



212 Maxima Manual

(%o4) [ ]
[ b ]
(%15) matrix_element_transpose: transpose$
(%i6) transpose ([a, bl);
[ transpose(a) ]
(%06) [ ]
[ transpose(b) ]
(%17) matrix_element_transpose: lambda ([x], realpart(x) - %i*imagpart(x))$
(%i8) m: matrix ([1 + 5*%i, 3 - 2x%il, [7*%i, 111);
[5% +1 3-27Y%i]
(%08) [ ]
[ 7 Wi 11 ]
(%19) transpose (m);
[1-57%1 -7 %1
(%09) [ ]
[ 2% +3 11 ]

mattrace (M) Function
Returns the trace (that is, the sum of the elements on the main diagonal) of the square
matrix M.

mattrace is called by ncharpoly, an alternative to Maxima’s charpoly.
load ("nchrpl") loads this function.

minor (M, i, j) Function
Returns the i, j minor of the matrix M. That is, M with row i and column j removed.

ncexpt (a, b) Function
If a non-commutative exponential expression is too wide to be displayed as a™~b it appears
as ncexpt (a,b).
ncexpt is not the name of a function or operator; the name only appears in output, and
is not recognized in input.

ncharpoly (M, x) Function
Returns the characteristic polynomial of the matrix M with respect to x. This is an
alternative to Maxima’s charpoly.

ncharpoly works by computing traces of powers of the given matrix, which are known
to be equal to sums of powers of the roots of the characteristic polynomial. From these
quantities the symmetric functions of the roots can be calculated, which are nothing more
than the coefficients of the characteristic polynomial. charpoly works by forming the
determinant of x * ident [n] - a. Thus ncharpoly wins, for example, in the case of
large dense matrices filled with integers, since it avoids polynomial arithmetic altogether.

load ("nchrpl") loads this file.

newdet (M, n) Function
Computes the determinant of the matrix or array M by the Johnson-Gentleman tree minor
algorithm. The argument n is the order; it is optional if M is a matrix.

nonscalar Declaration
Makes atoms behave as does a list or matrix with respect to the dot operator.

nonscalarp (expr) Function
Returns true if expr is a non-scalar, i.e., it contains atoms declared as non-scalars, lists,
or matrices.

permanent (M, n) Function
Computes the permanent of the matrix M. A permanent is like a determinant but with
no sign changes.



Chapter 26: Matrices and Linear Algebra 213

rank (M) Function
Computes the rank of the matrix M. That is, the order of the largest non-singular subde-
terminant of M.

rank may return the wrong answer if it cannot determine that a matrix element that is
equivalent to zero is indeed so.

ratmx Option variable
Default value: false

When ratmx is false, determinant and matrix addition, subtraction, and multiplication
are performed in the representation of the matrix elements and cause the result of matrix
inversion to be left in general representation.

When ratmx is true, the 4 operations mentioned above are performed in CRE form and
the result of matrix inverse is in CRE form. Note that this may cause the elements to be
expanded (depending on the setting of ratfac) which might not always be desired.

row (M, i) Function
Returns the i’th row of the matrix M. The return value is a matrix.

scalarmatrixp Option variable
Default value: true

When scalarmatrixp is true, then whenever a 1 x 1 matrix is produced as a result of
computing the dot product of matrices it is simplified to a scalar, namely the sole element
of the matrix.

When scalarmatrixp is all, then all 1 x 1 matrices are simplified to scalars.
When scalarmatrixp is false, 1 x 1 matrices are not simplified to scalars.

scalefactors (coordinatetransform) Function

Here coordinatetransform evaluates to the form [[expressionl, expression2, ...|, indetermi-
natel, indeterminat2, ...|, where indeterminatel, indeterminate2, etc. are the curvilinear
coordinate variables and where a set of rectangular Cartesian components is given in terms
of the curvilinear coordinates by [expressionl, expression2, ...]. coordinates is set to the
vector [indeterminatel, indeterminate2,...], and dimension is set to the length of this vec-
tor. SF[1], SF[2], ..., SF[DIMENSION] are set to the coordinate scale factors, and sfprod
is set to the product of these scale factors. Initially, coordinates is [X, Y, Z|, dimension
is 3, and SF[1]=SF[2]=SF[3]=SFPROD=1, corresponding to 3-dimensional rectangular
Cartesian coordinates. To expand an expression into physical components in the current
coordinate system, there is a function with usage of the form

setelmx (x, i, j, M) Function
Assigns x to the (i, j)'th element of the matrix M, and returns the altered matrix.
M [i, jl: x has the same effect, but returns x instead of M.

similaritytransform (M) Function

simtran (M) Function
similaritytransform computes a similarity transform of the matrix M. It returns a
list which is the output of the uniteigenvectors command. In addition if the flag
nondiagonalizable is false two global matrices leftmatrix and rightmatrix are com-
puted. These matrices have the property that leftmatrix . M . rightmatrix is a di-
agonal matrix with the eigenvalues of M on the diagonal. If nondiagonalizable is true
the left and right matrices are not computed.

If the flag hermitianmatrix is true then leftmatrix is the complex conjugate of the
transpose of rightmatrix. Otherwise leftmatrix is the inverse of rightmatrix.
rightmatrix is the matrix the columns of which are the unit eigenvectors of M.
The other flags (see eigenvalues and eigenvectors) have the same effects since
similaritytransform calls the other functions in the package in order to be able to
form rightmatrix.

load ("eigen") loads this function.

simtran is a synonym for similaritytransform.



214 Maxima Manual

sparse Option variable
Default value: false

When sparse is true, and if ratmx is true, then determinant will use special routines
for computing sparse determinants.

submatrix (i_1, ..., im, M, j_1, ..., j-n) Function

submatrix (i_1, ..., im, M) Function

submatrix (M, j_1, ..., j_n) Function
Returns a new matrix composed of the matrix M with rows i_1, ..., i_m deleted, and
columns j_1, ..., j_n deleted.

transpose (M) Function

Returns the transpose of M.
If M is a matrix, the return value is another matrix N such that N[i,j] = M[j,1].

Otherwise M is a list, and the return value is a matrix N of length (m) rows and 1
column, such that N[i,1] = M[i].

triangularize (M) Function
Returns the upper triangular form of the matrix M, as produced by Gaussian elimination.
The return value is the same as echelon, except that the leading nonzero coefficient in
each row is not normalized to 1.

lu_factor and cholesky are other functions which yield triangularized matrices.
(%i1) M: matrix ([3, 7, aa, bbl, [-1, 8, 5, 2], [9, 2, 11, 4]);

[ 3 7 aa bb]
L ]
(%o1) [-1 8 5 2 ]
L ]
[ 9 2 11 4 1]
(%12) triangularize (M);
[ -1 8 5 2 ]
L ]
(%02) [ O - 74 - 56 - 22 ]
C ]
[ o 0 626 - 74 aa 238 - 74 bb ]
uniteigenvectors (M) Function
ueivects (M) Function

Computes unit eigenvectors of the matrix M. The return value is a list of lists, the first
sublist of which is the output of the eigenvalues command, and the other sublists of which
are the unit eigenvectors of the matrix corresponding to those eigenvalues respectively.

The flags mentioned in the description of the eigenvectors command have the same
effects in this one as well.

When knowneigvects is true, the eigen package assumes that the eigenvectors of the
matrix are known to the user and are stored under the global name listeigvects.
listeigvects should be set to a list similar to the output of the eigenvectors com-
mand.

If knowneigvects is set to true and the list of eigenvectors is given the setting of the
flag nondiagonalizable may not be correct. If that is the case please set it to the
correct value. The author assumes that the user knows what he is doing and will not
try to diagonalize a matrix the eigenvectors of which do not span the vector space of the
appropriate dimension.

load ("eigen") loads this function.

ueivects is a synonym for uniteigenvectors.



Chapter 26: Matrices and Linear Algebra 215

unitvector (x) Function
uvect (x) Function
Returns x/norm(x); this is a unit vector in the same direction as x.

load ("eigen") loads this function.

uvect is a synonym for unitvector.

vectorsimp (expr) Function
Applies simplifications and expansions according to the following global flags:

expandall, expanddot, expanddotplus, expandcross, expandcrossplus,
expandcrosscross, expandgrad, expandgradplus, expandgradprod, expanddiv,
expanddivplus, expanddivprod, expandcurl, expandcurlplus, expandcurlcurl,
expandlaplacian, expandlaplacianplus, and expandlaplacianprod.

All these flags have default value false. The plus suffix refers to employing additivity or
distributivity. The prod suffix refers to the expansion for an operand that is any kind of
product.

expandCcrosscross

Simplifies p (¢ ) to (p.r) * ¢ — (p.q) * 7.
expandcurlcurl

Simplifies curlcurlp to graddivp + divgradp.

expandlaplaciantodivgrad
Simplifies laplacianp to divgradp.

expandcross
Enables expandcrossplus and expandcrosscross
expandplus
Enables expanddotplus, expandcrossplus, expandgradplus,

expanddivplus, expandcurlplus, and expandlaplacianplus.

expandprod
Enables expandgradprod, expanddivprod, and expandlaplacianprod.

These flags have all been declared evflag.

vect_cross Option variable
Default value: false

When vect_cross is true, it allows DIFF(X~Y,T) to work where ~ is defined in
SHARE;VECT (where VECT_CROSS is set to true, anyway.)

zeromatrix (m, n) Function
Returns an m by n matrix, all elements of which are zero.

Special symbol
" Special symbol
[ and ] mark the beginning and end, respectively, of a list.

[ and ] also enclose the subscripts of a list, array, hash array, or array function.

Examples:

(%i1) x: [a, b, cl;

(%hol) [a, b, c]
(%12) x[3];

(%02) c
(%13) array (y, fixnum, 3);

(%03) y
(%i4) yl[21: %pi;

(%ho4d) %ipi
(%i5) yl[2];



216

(%05)
(%hi6)
(%06)
ChiT)
(hoT)
(%18)

(%08)

(%i9)
(%09)

z[’foo]:

z[’fool;

glk] :

gl[10];

’bar;

1/(k"2+1);

hpi
bar

bar

Maxima Manual



Chapter 27: Affine 217

27 Affine

27.1 Definitions for Affine

fast_linsolve ([expr_1, ..., expr-m]|, [x_1, ..., x_n]) Function
Solves the simultaneous linear equations expr_1, ..., expr_m for the variables x_1, ..., x_n.
Each expr_i may be an equation or a general expression; if given as a general expression,
it is treated as an equation of the form expr_i = 0.

The return value is a list of equations of the form [x.1 = a_1, ..., x.n = a_n] where a_I,
..., a_n are all free of x_1, ..., x_n.

fast_linsolve is faster than linsolve for system of equations which are sparse.

grobner_basis ([expr_1, ..., expr_m]) Function
Returns a Groebner basis for the equations expr_1, ..., expr-m. The function polysimp
can then be used to simplify other functions relative to the equations.

grobner_basis ([3*x"2+1, y*x])$

polysimp (y~2%x + x"3%9 + 2) ==> -3%x + 2
polysimp(£) yields O if and only if f is in the ideal generated by expr_1, ..., expr_m, that

is, if and only if f is a polynomial combination of the elements of expr_1, ..., expr_m.
set_up_dot_simplifications (eqns, check_through_degree) Function
set_up_dot_simplifications (eqns) Function

The eqns are polynomial equations in non commutative variables. The value of current_
variables is the list of variables used for computing degrees. The equations must be
homogeneous, in order for the procedure to terminate.

If you have checked overlapping simplifications in dot_simplifications above the degree
of £, then the following is true: dotsimp (f) yields 0 if and only if f is in the ideal generated
by the equations, i.e., if and only if f is a polynomial combination of the elements of the
equations.

The degree is that returned by nc_degree. This in turn is influenced by the weights of
individual variables.

declare_weight (x_1, w_1, ..., x_n, w_n) Function
Assigns weights w_1, ..., w_n to x_1, ..., x_n, respectively. These are the weights used in
computing nc_degree.

nc_degree (p) Function
Returns the degree of a noncommutative polynomial p. See declare_weights.

dotsimp (f) Function
Returns 0 if and only if f is in the ideal generated by the equations, i.e., if and only if
is a polynomial combination of the elements of the equations.

fast_central_elements ([x_1, ..., x_n], n) Function
If set_up_dot_simplifications has been previously done, finds the central polynomials
in the variables x_1, ..., x_n in the given degree, n.

For example:

set_up_dot_simplifications ([y.x + x.yl, 3);
fast_central_elements ([x, y], 2);
ly.yv, x.x];



218 Maxima Manual

check_overlaps (n, add_-to_simps) Function
Checks the overlaps thru degree n, making sure that you have sufficient simplification
rules in each degree, for dotsimp to work correctly. This process can be speeded up if you
know before hand what the dimension of the space of monomials is. If it is of finite global
dimension, then hilbert should be used. If you don’t know the monomial dimensions,
do not specify a rank_function. An optional third argument reset, false says don’t
bother to query about resetting things.

mono ([x_1, ..., x_n], n) Function
Returns the list of independent monomials relative to the current dot simplifications of
degree n in the variables x_1, ..., x_n.

monomial_dimensions (n) Function

Compute the Hilbert series through degree n for the current algebra.

extract_linear_equations ([p_1, ..., p_n, [m_1, ..., m_n]) Function
Makes a list of the coefficients of the noncommutative polynomials p_1, ..., p_n of the
noncommutative monomials m_1, ..., m_n. The coefficients should be scalars. Use 1list_

nc_monomials to build the list of monomials.

list_nc_monomials ([p_1, ..., p_n]) Function

list_nc_monomials (p) Function
Returns a list of the non commutative monomials occurring in a polynomial p or a list of
polynomials p_1, ..., p_n.

all_dotsimp_denoms Option variable
Default value: false

When all_dotsimp_denoms is a list, the denominators encountered by dotsimp are ap-
pended to the list. all_dotsimp_denoms may be initialized to an empty list [] before
calling dotsimp.

By default, denominators are not collected by dotsimp.



Chapter 28: itensor 219

28 itensor

28.1 Introduction to itensor

Maxima implements symbolic tensor manipulation of two distinct types: component tensor
manipulation (ctensor package) and indicial tensor manipulation (itensor package).

Nota bene: Please see the note on 'new tensor notation’ below.

Component tensor manipulation means that geometrical tensor objects are represented as
arrays or matrices. Tensor operations such as contraction or covariant differentiation are carried
out by actually summing over repeated (dummy) indices with do statements. That is, one
explicitly performs operations on the appropriate tensor components stored in an array or matrix.

Indicial tensor manipulation is implemented by representing tensors as functions of their
covariant, contravariant and derivative indices. Tensor operations such as contraction or co-
variant differentiation are performed by manipulating the indices themselves rather than the
components to which they correspond.

These two approaches to the treatment of differential, algebraic and analytic processes in
the context of Riemannian geometry have various advantages and disadvantages which reveal
themselves only through the particular nature and difficulty of the user’s problem. However,
one should keep in mind the following characteristics of the two implementations:

The representation of tensors and tensor operations explicitly in terms of their components
makes ctensor easy to use. Specification of the metric and the computation of the induced
tensors and invariants is straightforward. Although all of Maxima’s powerful simplification
capacity is at hand, a complex metric with intricate functional and coordinate dependencies can
easily lead to expressions whose size is excessive and whose structure is hidden. In addition,
many calculations involve intermediate expressions which swell causing programs to terminate
before completion. Through experience, a user can avoid many of these difficulties.

Because of the special way in which tensors and tensor operations are represented in terms
of symbolic operations on their indices, expressions which in the component representation
would be unmanageable can sometimes be greatly simplified by using the special routines for
symmetrical objects in itensor. In this way the structure of a large expression may be more
transparent. On the other hand, because of the the special indicial representation in itensor, in
some cases the user may find difficulty with the specification of the metric, function definition,
and the evaluation of differentiated "indexed" objects.

28.1.1 New tensor notation

Until now, the itensor package in Maxima has used a notation that sometimes led to
incorrect index ordering. Consider the following, for instance:

(%12) imetric(g);

(%02) done
(%13) ishow(g([1,[j,k1)*g([],[1,1])*a([i,j]1,[1))$

il jk
(%t3) g g a

ij
(%i4) ishow(contract(%))$
k1

(%t4) a

This result is incorrect unless a happens to be a symmetric tensor. The reason why this
happens is that although itensor correctly maintains the order within the set of covariant and
contravariant indices, once an index is raised or lowered, its position relative to the other set of
indices is lost.

To avoid this problem, a new notation has been developed that remains fully compatible
with the existing notation and can be used interchangeably. In this notation, contravariant
indices are inserted in the appropriate positions in the covariant index list, but with a minus



220 Maxima Manual

sign prepended. Functions like contract and ishow are now aware of this new index notation
and can process tensors appropriately.

In this new notation, the previous example yields a correct result:

(%15) ishow(g([-j,-k],[1)*g([-i,-11,[1)*a([i,3],[1))%

il ik
(%t5) g a g
1]
(%i6) ishow(contract(%))$
1k
(%t6) a

Presently, the only code that makes use of this notation is the 1c2kdt function. Through
this notation, it achieves consistent results as it applies the metric tensor to resolve Levi-Civita
symbols without resorting to numeric indices.

Since this code is brand new, it probably contains bugs. While it has been tested to make sure
that it doesn’t break anything using the "old" tensor notation, there is a considerable chance
that "new" tensors will fail to interoperate with certain functions or features. These bugs will
be fixed as they are encountered... until then, caveat emptor!

28.1.2 Indicial tensor manipulation

The indicial tensor manipulation package may be loaded by load(itensor). Demos are also
available: try demo(tensor).

In itensor a tensor is represented as an "indexed object" . This is a function of 3 groups
of indices which represent the covariant, contravariant and derivative indices. The covariant
indices are specified by a list as the first argument to the indexed object, and the contravariant
indices by a list as the second argument. If the indexed object lacks either of these groups of
indices then the empty list [] is given as the corresponding argument. Thus, g([a,b], [c])
represents an indexed object called g which has two covariant indices (a,b), one contravariant
index (c) and no derivative indices.

The derivative indices, if they are present, are appended as additional arguments to the
symbolic function representing the tensor. They can be explicitly specified by the user or be
created in the process of differentiation with respect to some coordinate variable. Since ordinary
differentiation is commutative, the derivative indices are sorted alphanumerically, unless iframe_
flag is set to true, indicating that a frame metric is being used. This canonical ordering
makes it possible for Maxima to recognize that, for example, t([a], [b],1i,j) is the same as
t([al, [b],j,1). Differentiation of an indexed object with respect to some coordinate whose
index does not appear as an argument to the indexed object would normally yield zero. This
is because Maxima would not know that the tensor represented by the indexed object might
depend implicitly on the corresponding coordinate. By modifying the existing Maxima function
diff in itensor, Maxima now assumes that all indexed objects depend on any variable of
differentiation unless otherwise stated. This makes it possible for the summation convention
to be extended to derivative indices. It should be noted that itensor does not possess the
capabilities of raising derivative indices, and so they are always treated as covariant.

The following functions are available in the tensor package for manipulating indexed objects.
At present, with respect to the simplification routines, it is assumed that indexed objects do
not by default possess symmetry properties. This can be overridden by setting the variable
allsym[false] to true, which will result in treating all indexed objects completely symmetric
in their lists of covariant indices and symmetric in their lists of contravariant indices.

The itensor package generally treats tensors as opaque objects. Tensorial equations are
manipulated based on algebraic rules, specifically symmetry and contraction rules. In addition,
the itensor package understands covariant differentiation, curvature, and torsion. Calculations
can be performed relative to a metric of moving frame, depending on the setting of the iframe_
flag variable.

A sample session below demonstrates how to load the itensor package, specify the name of
the metric, and perform some simple calculations.

(%i1) load(itensor);



Chapter 28: itensor

(%01)
(%i2)
(%02)
(%i3)
(%i4)
(%t4)
(%1i5)
(%t5)
(%i6)
(%06)
(%i7)
(%t7)

(%i8)
(%t8)

(%19)
(%t9)

(%1i10)
(%t10)
(hit1)
(ht11)
(hi12)

(%t12)

(%i13)
(%o013)
(%i14)
(%t14)
(%i15)
(%t15)
(%i1eé)

(%t16)

/share/tensor/itensor.lisp
imetric(g);
done
components(g([i,jl,[1),p([i,j],[1)*e(],[1))$
ishow(g([k,1],[1))$
ep
k1
ishow(diff (v([i], [1),t))$
0
depends (v,t) ;
[v(t)]
ishow(diff (v([i],[1),t))$

ishow(idiff (v([i],[1),j))$

ishow(extdiff (v([i],[1),j))$

ishow(liediff (v,w([i], [1)))$
%3 %3
v w + v W
i,%3 ,i %3
ishow(covdiff (v([il,[1),j))$

ishow(ev(%,ichr2))$
%4 h5

v - g v (ep te P -ep

i,j %4 i %5,1 ,i j Y5

+ e P

iframe_flag:true;
true
ishow(covdiff(v([i]l,[1),j))$
%6
v - v icc2
i,j %6 ij
ishow(ev(%,icc2))$
%6
v - v ifc2
i, %6 ij
ishow(radcan(ev(%,ifc2,ifc1)))$
%6 %8 %6 %8
- (ifg v ifb + ifg v ifb

%6  j %8 i %6 i %8

- ifg

221

)/2

)/2



222 Maxima Manual

(%117) ishow(canform(s([i,j],[1)-s([j,11)))$
(%t17) s - s
ij G
(%i18) decsym(s,2,0, [sym(all)], [1);
(%018) done
(%119) ishow(canform(s([i,j],[1)-s([j,11)))$
(%t19) 0
(%120) ishow(canform(a([i,j],[1)+a([j,i1)))$
(%t20) a + a
ji i]
(%i21) decsym(a,2,0, [anti(all)], [1);
(%ho21) done
(%122) ishow(canform(a([i,jl,[1)+a([j,i1)))$
(ht22) 0

28.2 Definitions for itensor
28.2.1 Managing indexed objects

entertensor (name) Function
is a function which, by prompting, allows one to create an indexed object called name
with any number of tensorial and derivative indices. Either a single index or a list of
indices (which may be null) is acceptable input (see the example under covdiff).

changename (old, new, expr) Function
will change the name of all indexed objects called old to new in expr. old may be either
a symbol or a list of the form [name, m, n] in which case only those indexed objects
called name with m covariant and n contravariant indices will be renamed to new.

listoftens Function
Lists all tensors in a tensorial expression, complete with their indices. E.g.,

(%i6) ishow(a(l[i,jl, [k]1)*b([ul, [1,v)+c(lx,y], [1)*d([],[1)*e)$

k
(%t6) dec + a b
Xy ij u,v
(%i7) ishow(listoftens(%))$
k
Gt [a ,Db ,c , dl

ishow (expr) Function
displays expr with the indexed objects in it shown having their covariant indices as sub-
scripts and contravariant indices as superscripts. The derivative indices are displayed as
subscripts, separated from the covariant indices by a comma (see the examples throughout
this document).

indices (expr) Function
Returns a list of two elements. The first is a list of the free indices in expr (those that
occur only once). The second is the list of the dummy indices in expr (those that occur
exactly twice) as the following example demonstrates.

(%i1) load(itensor);



Chapter 28: itensor 223

(%ho1) /share/tensor/itensor.lisp

(%i2) ishow(a([i,jl,[k,1],m,n)*b([k,o0],[j,m,p],q,r))$
k1l jmp

(ht2) a b

ijmn ko,qr
(%13) indices(%);
(%03) (f1, p, i, n, o, q, rl, [k, j, ml]

A tensor product containing the same index more than twice is syntactically illegal.
indices attempts to deal with these expressions in a reasonable manner; however, when
it is called to operate upon such an illegal expression, its behavior should be considered

undefined.
rename (expr) Function
rename (expr, count) Function

Returns an expression equivalent to expr but with the dummy indices in each term chosen
from the set [%1, %2,...], if the optional second argument is omitted. Otherwise, the
dummy indices are indexed beginning at the value of count. Each dummy index in a
product will be different. For a sum, rename will operate upon each term in the sum
resetting the counter with each term. In this way rename can serve as a tensorial simplifier.
In addition, the indices will be sorted alphanumerically (if allsym is true) with respect to
covariant or contravariant indices depending upon the value of flipflag. If flipflag is
false then the indices will be renamed according to the order of the contravariant indices.
If flipflag is true the renaming will occur according to the order of the covariant indices
It often happens that the combined effect of the two renamings will reduce an expression
more than either one by itself.

(%i1) load(itensor);

(%o1) /share/tensor/itensor.lisp
(%12) allsym:true;
(%ho2) true

(%13) g([1, [%4,%51)*g (L[], [%6,%7]1)*ichr2([%1,%4], [%3])*
ichr2([%2,%3], [ul)*ichr2([%5,%6], [%1]1)*xichr2([%7,r], [%2]1)~-

g(1, [%4,%51)xg (0], [%6,%7]1)*xichr2([%1,%2], [ul )*

ichr2([%3,%5], [%11)*ichr2([%4,%6] , [%3]1)*ichr2([%7,r], [%2]) ,noeval$
(%1i4) expr:ishow(%)$

W4 %5 %6 hT 53 u 1 %2
(%td) g g ichr2 ichr2 ichr2 ichr2
YA A w2 %3 %5 %6 VAR
W %5 %6 KT u Al 3 h2
- g g ichr2 ichr2 ichr2 ichr2
%1 %2 %3 Wb W4 %6 VAGES
(%15) flipflag:true;
(%05) true
(%16) ishow(rename (expr))$
h2 %5 %6 KT Y2 u %1 %3
(%t6) g g ichr2 ichr2 ichr2 ichr2
%1 %2 W3 %4 %5 %6 YAGES
W %5 %6 hT u 3! 3 h2
- g g ichr2 ichr2 ichr2 ichr2
%1 %2 h3 %4 %5 %6 VGRS

(%i7) flipflag:false;
(hoT) false
(%i8) rename(%th(2));



224 Maxima Manual

(%08) 0
(%19) ishow(rename(expr))$
hl %2 k3 h4 55 6 W7 u
(%t9) g g ichr2 ichr2 ichr2 ichr2
1 %6 h2 w3 W4 T hS W7

w1 h2 3 %4 %6 %5 W7 u
- g g ichr2 ichr2 ichr2 ichr2
h1 %3 h2 %6 W T W5 hT

flipflag Option variable
Default: false. If false then the indices will be renamed according to the order of the
contravariant indices, otherwise according to the order of the covariant indices.

If flipflag is false then rename forms a list of the contravariant indices as they are
encountered from left to right (if true then of the covariant indices). The first dummy
index in the list is renamed to %1, the next to %2, etc. Then sorting occurs after the
rename-ing (see the example under rename).

defcon (tensor_1) Function

defcon (tensor_1, tensor_2, tensor-3) Function
gives tensor_1 the property that the contraction of a product of tensor_1 and tensor_2 re-
sults in tensor_3 with the appropriate indices. If only one argument, tensor_1, is given, then
the contraction of the product of tensor_1 with any indexed object having the appropriate
indices (say my_tensor) will yield an indexed object with that name, i.e. my_tensor, and
with a new set of indices reflecting the contractions performed. For example, if imetric:g,
then defcon(g) will implement the raising and lowering of indices through contraction
with the metric tensor. More than one defcon can be given for the same indexed object;
the latest one given which applies in a particular contraction will be used. contractions
is a list of those indexed objects which have been given contraction properties with defcon.

remcon (tensor_1, ..., tensor_n) Function
remcon (all) Function
removes all the contraction properties from the tensor_1, ..., tensor_n). remcon(all)

removes all contraction properties from all indexed objects.

contract (expr) Function
Carries out the tensorial contractions in expr which may be any combination of sums
and products. This function uses the information given to the defcon function. For best
results, expr should be fully expanded. ratexpand is the fastest way to expand products
and powers of sums if there are no variables in the denominators of the terms. The gcd
switch should be false if GCD cancellations are unnecessary.

indexed_tensor (tensor) Function
Must be executed before assigning components to a tensor for which a built in value
already exists as with ichrl, ichr2, icurvature. See the example under icurvature.

components (tensor, expr) Function

permits one to assign an indicial value to an expression expr giving the values of the
components of tensor. These are automatically substituted for the tensor whenever it
occurs with all of its indices. The tensor must be of the form t([...],[...]) where
either list may be empty. expr can be any indexed expression involving other objects with
the same free indices as tensor. When used to assign values to the metric tensor wherein
the components contain dummy indices one must be careful to define these indices to
avoid the generation of multiple dummy indices. Removal of this assignment is given to
the function remcomps.



Chapter 28: itensor 225

It is important to keep in mind that components cares only about the valence of a tensor,
not about any particular index ordering. Thus assigning components to, say, x([i,-
j1, 1), x([-j,1],[1), or x([1i],[j]1) all produce the same result, namely components
being assigned to a tensor named x with valence (1,1).

Components can be assigned to an indexed expression in four ways, two of which involve
the use of the components command:

1) As an indexed expression. For instance:

(%i2) components(g([1,[1,j1),e([1, i) *p (1, 1IN
(%i3) ishow(g([1,[i,j1))$

i3]
(%t3) e p

2) As a matrix:

(%16) components(g([i,jl,[1),1g);

(%06) done
(%i7) ishow(g([i,j]1,[1))$

ht7) g

(%18) g([3,31,[1);

(%08) 1
(%19) g([4,4],[1);

(%09) -1

3) As a function. You can use a Maxima function to specify the components of a tensor
based on its indices. For instance, the following code assigns kdelta to h if h has the same
number of covariant and contravariant indices and no derivative indices, and g otherwise:

(%i4) h(11,12,[13]):=if length(l1)=length(12) and length(13)=0
then kdelta(l1,12) else apply(g,append([11,12], 13))$
(%1i5) ishow(h([il,[j1))$

J
(%t5) kdelta
i
(%16) ishow(h([i,jl,[k],1))$
k
(%t6) g
ij,1

4) Using Maxima’s pattern matching capabilities, specifically the defrule and applybi
commands:

(%i1) load(itensor);

(%o1) /share/tensor/itensor.lisp
(%12) matchdeclare(l1l,listp);
(%ho2) done

(%1i3) defrule(r1l,m(11,[1),(il:idummy(),
g([11[1],11021], (1) *q([i1], [1)*e (L1, [L111)))$

(%14) defrule(r2,m([],11),(il:idummy(),
w([],[11[1],11[2]]1)*e([i1], [1)*q([], [111)))$

(%15) ishow(m([i,n], [1)*m([],[i,m]))$

im



226 Maxima Manual

(%t5) m m

(%16) ishow(rename (applybl(%,r1,r2)))$
% %2 A3 m
(%ht6) e q W q e g
% %2 %3 n

remcomps (tensor) Function
Unbinds all values from tensor which were assigned with the components function.

showcomps (tensor) Function
Shows component assignments of a tensor, as made using the components command. This
function can be particularly useful when a matrix is assigned to an indicial tensor using
components, as demonstrated by the following example:

(%i1) load(ctensor);

(%o1) /share/tensor/ctensor.mac
(%i2) load(itensor);
(%02) /share/tensor/itensor.lisp

(%1i3) lg:matrix([sqrt(x/(r-2#*m)),0,0,0],[0,r,0,0],
[0,0,sin(theta)*r,0], [0,0,0,sqrt ((r-2*m)/r)]);

[ T ]
[ sqrt(-—----- ) 0 0 0 ]
[ r-2m ]
[ ]
L 0 r 0 0 ]
(%03) [ ]
[ 0 0 r sin(theta) 0 1
[ ]
[ r-2m |
[ 0 0 0 sqrt (-—----- ) ]
[ T ]
(%i4) components(g([i,jl1,[1),1g);
(%04) done
(%15) showcomps(g([i,jl,[1));
[ T ]
[ sqrt(-—---—-—- ) 0 0 0 ]
[ r-2m ]
[ ]
[ 0 T 0 0 ]
(%t5) g = [ ]
ij [ 0 0 r sin(theta) 0 ]
[ ]
[ r-2m ]
[ 0 0 0 sqrt (-——---- ) 1]
[ r ]
(%05) false

The showcomps command can also display components of a tensor of rank higher than 2.

idummy () Function
Increments icounter and returns as its value an index of the form %n where n is a positive
integer. This guarantees that dummy indices which are needed in forming expressions will
not conflict with indices already in use (see the example under indices).



Chapter 28: itensor 227

idummyx Option variable
Default value: %

Is the prefix for dummy indices (see the example under indices).

icounter Option variable
Default value: 1

Determines the numerical suffix to be used in generating the next dummy index in the
tensor package. The prefix is determined by the option idummy (default: %).

kdelta (L1, L2) Function
is the generalized Kronecker delta function defined in the itensor package with L1 the
list of covariant indices and L2 the list of contravariant indices. kdelta([i], [j]) returns
the ordinary Kronecker delta. The command ev(expr,kdelta) causes the evaluation of
an expression containing kdelta([], [1) to the dimension of the manifold.

In what amounts to an abuse of this notation, itensor also allows kdelta to have 2 covari-
ant and no contravariant, or 2 contravariant and no covariant indices, in effect providing
a co(ntra)variant "unit matrix" capability. This is strictly considered a programming aid
and not meant to imply that kdelta([i,j],[]) is a valid tensorial object.

kdels (L1, L2) Function
Symmetricized Kronecker delta, used in some calculations. For instance:

(%i1) load(itensor);

(%o1) /share/tensor/itensor.lisp
(5i2) kdelta([1,2],[2,11);
(%02) -1
(%13) kdels([1,2]1,[2,11);
(%03) 1
(%i4) ishow(kdelta([a,bl,[c,d]))$
C d d c
(htd) kdelta kdelta - kdelta kdelta
a b a b
(%i4) ishow(kdels([a,b]l,[c,d]))$
C d d c
(htd) kdelta kdelta + kdelta kdelta
a b a b
levi_civita (L) Function

is the permutation (or Levi-Civita) tensor which yields 1 if the list L consists of an even
permutation of integers, -1 if it consists of an odd permutation, and 0 if some indices in L
are repeated.

lc2kdt (expr) Function
Simplifies expressions containing the Levi-Civita symbol, converting these to Kronecker-
delta expressions when possible. The main difference between this function and simply
evaluating the Levi-Civita symbol is that direct evaluation often results in Kronecker
expressions containing numerical indices. This is often undesirable as it prevents further
simplification. The 1c2kdt function avoids this problem, yielding expressions that are
more easily simplified with rename or contract.

(%i1) load(itensor);

(%o1) /share/tensor/itensor.lisp
(%12) expr:ishow(’levi_civita([],[i,j]1)*’levi_civita([k,1],[1)*a([j],[k]1))$
ij k

(%t2) levi_civita a levi_civita



228 Maxima Manual

j k 1
(%13) ishow(ev(expr,levi_civita))$
ij k 12
(ht3) kdelta a kdelta
12 ] k 1
(%i4) ishow(ev(%,kdelta))$
i J J i k
(%t4) (kdelta kdelta - kdelta kdelta ) a
1 2 1 2 j
1 2 2 1
(kdelta kdelta - kdelta kdelta )
k 1 k 1
(%15) ishow(1lc2kdt (expr))$
k i i  k j i
(%t5) a kdelta kdelta - a kdelta kdelta
' k 1 k 1
(%16) ishow(contract (expand(%)))$
i i
(%t6) a - a kdelta
1 1

The 1c2kdt function sometimes makes use of the metric tensor. If the metric tensor was
not defined previously with imetric, this results in an error.

(%i7) expr:ishow(’levi_civita([]l,[i,j])*’levi_civita([], [k,11)*a([j,k],[1))$
i] k 1
(ht7) levi_civita levi_civita a
ik
(%18) ishow(lc2kdt (expr))$
Maxima encountered a Lisp error:

Error in $IMETRIC [or a callee]:
$IMETRIC [or a callee] requires less than two arguments.

Automatically continuing.
To reenable the Lisp debugger set *debugger-hook* to nil.
(%19) imetric(g);

(h09) done
(%110) ishow(1lc2kdt(expr))$
%3 i kK Y4 j 1 %3 i 1 % ] k
(%t10) (g kdelta g kdelta - g kdelta g kdelta ) a
%3 Yz h3 M ik
(%i11) ishow(contract(expand(%)))$
11 11

(%t11) a -ag

lc_1 Function

Simplification rule used for expressions containing the unevaluated Levi-Civita symbol
(levi_civita). Along with lc_u, it can be used to simplify many expressions more
efficiently than the evaluation of levi_civita. For example:

(%i1) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%12) elil:ishow(’levi_civita([i,j,k],[1)*a([],[1])*a([],[jIN$



Chapter 28: itensor 229

1]

(%t2) a a levi_civita

ijk
(%13) el2:ishow(’levi_civita([],[i,j,k])*a([i]l)*a([jl1))$

ijk

(%t3) levi_civita a a

i
(%14) ishow(canform(contract(expand(applybl(ell,lc_1,1c_u)))))$
(%t4) 0
(%15) ishow(canform(contract(expand(applybl(el2,1c_1,1c_u)))))$
(%t5) 0

Ic_u Function

Simplification rule used for expressions containing the unevaluated Levi-Civita symbol
(levi_civita). Along with lc_u, it can be used to simplify many expressions more
efficiently than the evaluation of levi_civita. For details, see 1c_1.

canten (expr) Function
Simplifies expr by renaming (see rename) and permuting dummy indices. rename is re-
stricted to sums of tensor products in which no derivatives are present. As such it is
limited and should only be used if canform is not capable of carrying out the required
simplification.

The canten function returns a mathematically correct result only if its argument is an
expression that is fully symmetric in its indices. For this reason, canten returns an error
if allsym is not set to true.

concan (expr) Function
Similar to canten but also performs index contraction.

28.2.2 Tensor symmetries

allsym Option variable
Default: false. if true then all indexed objects are assumed symmetric in all of their
covariant and contravariant indices. If false then no symmetries of any kind are assumed
in these indices. Derivative indices are always taken to be symmetric unless iframe_flag
is set to true.

decsym (tensor, m, n, [cov_1, cov_2, ...], [contr_1, contr_2, ...]) Function

Declares symmetry properties for tensor of m covariant and n contravariant indices. The
cov_i and contr_i are pseudofunctions expressing symmetry relations among the covari-
ant and contravariant indices respectively. These are of the form symoper (index_1, in-
dex_2,...) where symoper is one of sym, anti or cyc and the index_i are integers indi-
cating the position of the index in the tensor. This will declare tensor to be symmetric,
antisymmetric or cyclic respectively in the index_i. symoper(all) is also an allowable
form which indicates all indices obey the symmetry condition. For example, given an
object b with 5 covariant indices, decsym(b,5,3, [sym(1,2),anti(3,4)], [cyc(all)])
declares b symmetric in its first and second and antisymmetric in its third and fourth
covariant indices, and cyclic in all of its contravariant indices. Either list of symmetry
declarations may be null. The function which performs the simplifications is canform as
the example below illustrates.

(%1i1) load(itensor);

(%o1) /share/tensor/itensor.lisp

(%12) expr:contract(expand(a([il,j1,k1],[]1)*kdels([i,j,k],[i1,j1,k1]1)))$
(%13) ishow(expr)$



230 Maxima Manual

(ht3) a + a + a + a + a + a
kji kij jki jik ikj ijk
(%i4) decsym(a,3,0, [sym(all)], [1);

(%04) done
(%15) ishow(canform(expr))$
(%t5) 6 a
ijk
(%16) remsym(a,3,0);
(%06) done
(%i7) decsym(a,3,0, [anti(all)], [1);
(%o0T) done
(%18) ishow(canform(expr))$
(%t8) 0
(%19) remsym(a,3,0);
(%09) done
(%110) decsym(a,3,0, [cyc(all)], [1);
(%010) done
(%i11) ishow(canform(expr))$
(%t11) 3 a + 3 a
ik j ijk
(%i12) dispsym(a,3,0);
(%ho12) [[cyc, [[1, 2, 311, [1]1]
remsym (tensor, m, n) Function

Removes all symmetry properties from tensor which has m covariant indices and n con-
travariant indices.

canform (expr) Function

Simplifies expr by renaming dummy indices and reordering all indices as dictated by
symmetry conditions imposed on them. If allsym is true then all indices are assumed
symmetric, otherwise symmetry information provided by decsym declarations will be used.
The dummy indices are renamed in the same manner as in the rename function. When
canform is applied to a large expression the calculation may take a considerable amount
of time. This time can be shortened by calling rename on the expression first. Also see
the example under decsym. Note: canform may not be able to reduce an expression
completely to its simplest form although it will always return a mathematically correct
result.

28.2.3 Indicial tensor calculus

diff (expr, v_1, [n_1, [v_2, n_2] ...]) Function

is the usual Maxima differentiation function which has been expanded in its abilities for
itensor. It takes the derivative of expr with respect to v_1 n_1 times, with respect to v_2
n_2 times, etc. For the tensor package, the function has been modified so that the v_i may
be integers from 1 up to the value of the variable dim. This will cause the differentiation to
be carried out with respect to the v_ith member of the list vect_coords. If vect_coords
is bound to an atomic variable, then that variable subscripted by v_i will be used for
the variable of differentiation. This permits an array of coordinate names or subscripted
names like x[1], x[2], ... to be used.

idiff (expr, v_1, [n_1, [v_2, n_2] ...]) Function
Indicial differentiation. Unlike diff, which differentiates with respect to an independent
variable, idiff) can be used to differentiate with respect to a coordinate. For an indexed
object, this amounts to appending the v_i as derivative indices. Subsequently, derivative
indices will be sorted, unless iframe_flag is set to true.



Chapter 28: itensor 231

idiff can also differentiate the determinant of the metric tensor. Thus, if
imetric has been bound to G then idiff(determinant(g),k) will return
2xdeterminant (g)*ichr2([%i,k], [%i]) where the dummy index %i is chosen
appropriately.

liediff (v, ten) Function
Computes the Lie-derivative of the tensorial expression ten with respect to the vector field
v. ten should be any indexed tensor expression; v should be the name (without indices)
of a vector field. For example:

(%i1) load(itensor);

(%o1) /share/tensor/itensor.lisp
(%i2) ishow(liediff(v,a([i,j],[1)*b([],[k],1)))$

k h2 2 h2
(ht2) b (v a +v  a +v  a )

»1 i3,%2 ,j i %2 i %23

%1k ok %k
+ (v b -b v +v b ) a
sh1 1 1,01 S U
rediff (ten) Function

Evaluates all occurrences of the idiff command in the tensorial expression ten.

undiff (expr) Function
Returns an expression equivalent to expr but with all derivatives of indexed objects re-
placed by the noun form of the idiff function. Its arguments would yield that indexed
object if the differentiation were carried out. This is useful when it is desired to replace
a differentiated indexed object with some function definition resulting in expr and then
carry out the differentiation by saying ev(expr, idiff).

evundiff (expr) Function
Equivalent to the execution of undiff, followed by ev and rediff.

The point of this operation is to easily evalute expressions that cannot be directly evaluated
in derivative form. For instance, the following causes an error:

(%i1) load(itensor);

(%o1) /share/tensor/itensor.lisp

(%12) icurvature([i,j,k],[1],m);

Maxima encountered a Lisp error:

Error in $ICURVATURE [or a callee]:
$ICURVATURE [or a callee] requires less than three arguments.

Automatically continuing.
To reenable the Lisp debugger set *debugger-hook* to nil.

However, if icurvature is entered in noun form, it can be evaluated using evundiff:
(%1i3) ishow(’icurvature([i,j,k],[1],m))$

1
(%t3) icurvature
ijk,m
(%i4) ishow(evundiff(%))$
1 1 %1 1 %1
(%t4) - ichr2 - ichr2 ichr2 - ichr2 ichr?2

ik,jm %1 ] ik,m %1 j,m ik



232 Maxima Manual

1 1 Al 1 Al
+ ichr2 + ichr2 ichr2 + ichr2 ichr2
ij,km hl k ij,m %1 k,m ij
Note: In earlier versions of Maxima, derivative forms of the Christoffel-symbols also could
not be evaluated. This has been fixed now, so evundiff is no longer necessary for expres-
sions like this:

(%15) imetric(g);

(%o5) done
(%i6) ishow(ichr2([i,j],[k]1,1))$
k %3
g (g - g +g )
j 3,11 ij,h31 i%3,51
(Yt6) —=mmmmmmmmmmm e
2
k %3
g (g -g tg )
1 j %3,1 ij,%3 i %3,]
+ ___________________________________
2
flush (expr, tensor_1, tensor_2, ...) Function

Set to zero, in expr, all occurrences of the tensor_i that have no derivative indices.

flushd (expr, tensor_1, tensor_2, ...) Function
Set to zero, in expr, all occurrences of the tensor_i that have derivative indices.

flushnd (expr, tensor, n) Function

Set to zero, in expr, all occurrences of the differentiated object tensor that have n or more
derivative indices as the following example demonstrates.

(%i1) load(itensor);

(o) /share/tensor/itensor.lisp
(%i2) ishow(a([il, [J,r],k,r)+a([i],[j,r,s],k,r,s))$
Jr jres
(ht2) a + a
i,k r i,k r s
(%i3) ishow(flushnd(%,a,3))$
Jr
(%ht3) a
i,k r
coord (tensor_1, tensor.2, ...) Function

Gives tensor_i the coordinate differentiation property that the derivative of contravariant
vector whose name is one of the tensor_i yields a Kronecker delta. For example, if coord (x)
has been done then idiff (x([1,[i]),j) gives kdelta([i],[j]). coord is a list of all
indexed objects having this property.

remcoord (tensor_1, tensor_2, ...) Function

remcoord (all) Function
Removes the coordinate differentiation property from the tensor_i that was established
by the function coord. remcoord(all) removes this property from all indexed objects.

makebox (expr) Function
Display expr in the same manner as show; however, any tensor d’Alembertian occurring
in expr will be indicated using the symbol []. For example, [1p([m], [n]) represents
g(ll,[i,j1)*p([m], [n],i,3).



Chapter 28: itensor 233

conmetderiv (expr, tensor) Function
Simplifies expressions containing ordinary derivatives of both covariant and contravariant
forms of the metric tensor (the current restriction). For example, conmetderiv can relate
the derivative of the contravariant metric tensor with the Christoffel symbols as seen from
the following:

(%i1) load(itensor);
(%hol) /share/tensor/itensor.lisp
(%i2) ishow(g([],[a,b]l,c))$

ab
(ht2) g
,C
(%13) ishow(conmetderiv(%,g))$
%1 Db a »l a b
(%ht3) -g ichr2 -g ichr2
W c W oc
simpmetderiv (expr) Function
simpmetderiv (expr|, stop]) Function

Simplifies expressions containing products of the derivatives of the metric tensor. Specif-
ically, simpmetderiv recognizes two identities:

ab ab ab a
g g tg &g =(g g ) = (kdelta) =0
,d Dbc bc,d bc ,d c ,d
hence
ab ab
g & =-8g &g
,d bc bc,d
and
ab ab
g g =g g
,j ab,i ,i ab,j

which follows from the symmetries of the Christoffel symbols.

The simpmetderiv function takes one optional parameter which, when present, causes
the function to stop after the first successful substitution in a product expression. The
simpmetderiv function also makes use of the global variable flipflag which determines
how to apply a “canonical” ordering to the product indices.

Put together, these capabilities can be used to achieve powerful simplifications that are
difficult or impossible to accomplish otherwise. This is demonstrated through the following
example that explicitly uses the partial simplification features of simpmetderiv to obtain
a contractible expression:

(%i1) load(itensor);

(hot) /share/tensor/itensor.lisp

(%12) imetric(g);

(%02) done

(%13) ishow(g([], [a,b])*g([], [b,c])*g([a,b], [],d)*g([b,c],[1,e))$
ab bc

(%t3) g g g g

ab,d bc,e



234 Maxima Manual

(%i4) ishow(canform(%))$

errexpl has improper indices
-- an error. Quitting. To debug this try debugmode(true);
(%15) ishow(simpmetderiv(%))$

ab bc
(%t5) g g g g
ab,d bc,e
(%16) flipflag:not flipflag;
(%06) true
(%i7) ishow(simpmetderiv(%th(2)))$
ab bec
%htT) g g g g

,d ,e ab bc
(%18) flipflag:not flipflag;

(%08) false
(%19) ishow(simpmetderiv(%th(2),stop))$
ab bc
(%t9) -g g g g

,€ ab,d bc
(%110) ishow(contract(%))$

(%t10) -g g
,e c b,d

See also weyl.dem for an example that uses simpmetderiv and conmetderiv together to
simplify contractions of the Weyl tensor.

flushlderiv (expr, tensor) Function
Set to zero, in expr, all occurrences of tensor that have exactly one derivative index.

28.2.4 Tensors in curved spaces

imetric (g) Function
imetric System variable
Specifies the metric by assigning the variable imetric:g in addition, the con-
traction properties of the metric g are set up by executing the commands
defcon(g) ,defcon(g,g,kdelta). The variable imetric (unbound by default), is bound
to the metric, assigned by the imetric(g) command.

idim (n) Function
Sets the dimensions of the metric. Also initializes the antisymmetry properties of the
Levi-Civita symbols for the given dimension.

ichrl ([, j, k]) Function
Yields the Christoffel symbol of the first kind via the definition
(g +g -g )/2 .
ik, j jk, i ij,k
To evaluate the Christoffel symbols for a particular metric, the variable imetric must be
assigned a name as in the example under chr2.

ichr2 ([i, j], [k]) Function
Yields the Christoffel symbol of the second kind defined by the relation
ks
ichr2([i,jl,[k]) =g (g +tg -g )/2

is, ] js,1 ij,s



Chapter 28: itensor 235

icurvature ([, j, k], [h]) Function
Yields the Riemann curvature tensor in terms of the Christoffel symbols of the second
kind (ichr2). The following notation is used:

h h h %1 h
icurvature = - ichr2 - ichr2 ichr2 + ichr2
ijk ik,j %l ik ij,k
h Al
+ ichr?2 ichr?2
"k ij
covdiff (expr, v_1, v.2, ...) Function

Yields the covariant derivative of expr with respect to the variables v_i in terms of the
Christoffel symbols of the second kind (ichr2). In order to evaluate these, one should use
ev(expr,ichr2).

(%i1) load(itensor);

(%o1) /share/tensor/itensor.lisp

(%i2) entertensor()$

Enter tensor name: a;

Enter a list of the covariant indices: [i,j];
Enter a list of the contravariant indices: [k];
Enter a list of the derivative indices: [];

k
(%t2) a
i]
(%13) ishow(covdiff(%,s))$
k %1 k %1 k k %1
(%t3) - a ichr2 - a ichr2 + a + ichr2 a
i %l is %] is ij,s “1s ij
(%i4) imetric:g;
(%04) g
(%i5) ishow(ev(%th(2),ichr2))$
WAk
g a (g -8 + g )
i%1 s %4,j j s,%4 j %4,s
(hth) - —————————————————————
2
%l %3k
g a (g -8 +g )
YA s %3,1 is,%h3 i %3,s
2
k %2 %1
g a (g - g +g )
ij s %h2,% %1 s,%2 w1 %2,s k
b + a
2 ij,s
(%ie6)
lorentz_gauge (expr) Function

Imposes the Lorentz condition by substituting 0 for all indexed objects in expr that have
a derivative index identical to a contravariant index.

igeodesic_coords (expr, name) Function
Causes undifferentiated Christoffel symbols and first derivatives of the metric tensor vanish
in expr. The name in the igeodesic_coords function refers to the metric name (if it



236 Maxima Manual

appears in expr) while the connection coefficients must be called with the names ichri
and/or ichr2. The following example demonstrates the verification of the cyclic identity
satisfied by the Riemann curvature tensor using the igeodesic_coords function.

(%1i1) load(itensor);

(%o1) /share/tensor/itensor.lisp
(%12) ishow(icurvature([r,s,t],[ul))$
u u %1 u u %1
(5t2) - ichr2 - ichr2 ichr2 + ichr2 + ichr2 ichr2
rt,s %1 s rt rs,t %1t T s
(%13) ishow(igeodesic_coords(%,ichr2))$
u u
(%t3) ichr2 - ichr2
r s,t rt,s

(%14) ishow(igeodesic_coords(icurvature([r,s,t], [u]),ichr2)+
igeodesic_coords(icurvature([s,t,r], [ul),ichr2)+
igeodesic_coords (icurvature([t,r,s], [ul),ichr2))$

u u u u u
(%t4) - ichr2 + ichr2 + ichr?2 - ichr?2 - ichr2
t s,r t r,s s t,r s r,t r t,s
u
+ ichr?2
rs,t

(%1i5) canform(%);
(%05) 0

28.2.5 Moving frames

Maxima now has the ability to perform calculations using moving frames. These can be
orthonormal frames (tetrads, vielbeins) or an arbitrary frame.

To use frames, you must first set iframe_flag to true. This causes the Christoffel-symbols,
ichrl and ichr2, to be replaced by the more general frame connection coefficients iccl and
icc2 in calculations. Speficially, the behavior of covdiff and icurvature is changed.

The frame is defined by two tensors: the inverse frame field (ifri, the dual basis tetrad), and
the frame metric ifg. The frame metric is the identity matrix for orthonormal frames, or the
Lorentz metric for orthonormal frames in Minkowski spacetime. The inverse frame field defines
the frame base (unit vectors). Contraction properties are defined for the frame field and the
frame metric.

When iframe_flag is true, many itensor expressions use the frame metric ifg instead of
the metric defined by imetric for raising and lowerind indices.

IMPORTANT: Setting the variable iframe_flag to true does NOT undefine the contraction
properties of a metric defined by a call to defcon or imetric. If a frame field is used, it is best
to define the metric by assigning its name to the variable imetric and NOT invoke the imetric
function.

Maxima uses these two tensors to define the frame coefficients (ifc1 and ifc2) which form
part of the connection coefficients (iccl and icc2), as the following example demonstrates:

(%i1) load(itensor);

(ho1) /share/tensor/itensor.lisp
(%12) iframe_flag:true;
(ho2) true
(%i3) ishow(covdiff(v([],[1]),j))$
i i Al

(%t3) v+ icc2 v



Chapter 28: itensor 237

»J YA
(%i4) ishow(ev(%,icc2))$
Al i i i
(%t4) v (ifc2 + ichr2 ) + v
hlj %l j »J
(%1i5) ishow(ev(%,ifc2))$
%1 i %2
v ifg (ifb - ifb + ifb )
j %2 % %2 Wl j w13 %2 i
(4th) mmmmmmmmmmmemmm e + v
2 2]
(%i6) ishow(ifb([a,b,c]))$
%5 Y2
(%t6) ifr ifr  (ifri - ifri )
a b c %4,%5 c %5,%4

An alternate method is used to compute the frame bracket (ifb) if the iframe_bracket_form
flag is set to false:

(%18) block([iframe_bracket_form:false],ishow(ifb([a,b,c])))$
YA %6 %6 YA

(%t8) (ifr ifr - ifr ifr ) ifri
a b, %7 a,ht b c %6

iframes () Function
Since in this version of Maxima, contraction identities for ifr and ifri are always defined,
as is the frame bracket (ifb), this function does nothing.

ifb Variable
The frame bracket. The contribution of the frame metric to the connection coefficients is
expressed using the frame bracket:

- ifb + ifb + ifb

The frame bracket itself is defined in terms of the frame field and frame metric. Two
alternate methods of computation are used depending on the value of frame_bracket_
form. If true (the default) or if the itorsion_flag is true:

d e f
ifb = ifr ifr (ifri - ifri - ifri itr )
abc b C ad,e a e,d a f d e
Otherwise:
e d d e
ifb = (ifr ifr - ifr ifr ) ifri
abc b c,e b,e c ad
iccl Variable

Connection coefficients of the first kind. In itensor, defined as



238

icc2

ifcl

ifc2

ifr

ifri

ifgi

Maxima Manual

iccl = ichril - ikti1 - inmcil
abc abc abc abc

In this expression, if iframe_flag is true, the Christoffel-symbol ichrl is replaced with
the frame connection coefficient ifcl. If itorsion_flag is false, ikt1 will be omitted.
It is also omitted if a frame base is used, as the torsion is already calculated as part of the
frame bracket. Lastly, of inonmet_flag is false, inmcl will not be present.

Variable
Connection coefficients of the second kind. In itensor, defined as

c c C c
icc?2 = ichr2 - ikt2 - inmc?2
ab ab ab ab

In this expression, if iframe_flag is true, the Christoffel-symbol ichr2 is replaced with
the frame connection coefficient ifc2. If itorsion_flag is false, ikt2 will be omitted.
It is also omitted if a frame base is used, as the torsion is already calculated as part of the
frame bracket. Lastly, of inonmet_flag is false, inmc2 will not be present.

Variable
Frame coefficient of the first kind (also known as Ricci-rotation coefficients.) This tensor

represents the contribution of the frame metric to the connection coefficient of the first
kind. Defined as:

Variable
Frame coefficient of the first kind. This tensor represents the contribution of the frame
metric to the connection coefficient of the first kind. Defined as a permutation of the
frame bracket (ifb) with the appropriate indices raised and lowered as necessary:

c cd
ifc2 = ifg ifcl
ab abd

Variable
The frame field. Contracts with the inverse frame field (ifri) to form the frame metric

(ifg).

Variable
The inverse frame field. Specifies the frame base (dual basis vectors). Along with the
frame metric, it forms the basis of all calculations based on frames.

Variable
The frame metric. Defaults to kdelta, but can be changed using components.

Variable
The inverse frame metric. Contracts with the frame metric (ifg) to kdelta.



Chapter 28: itensor 239

iframe_bracket_form Option variable
Default value: true

Specifies how the frame bracket (ifb) is computed.

28.2.6 Torsion and nonmetricity

Maxima can now take into account torsion and nonmetricity. When the flag itorsion_flag
is set to true, the contribution of torsion is added to the connection coefficients. Similarly, when
the flag inonmet_flag is true, nonmetricity components are included.

inm Variable
The nonmetricity vector. Conformal nonmetricity is defined through the covariant deriva-
tive of the metric tensor. Normally zero, the metric tensor’s covariant derivative will
evaluate to the following when inonmet_flag is set to true:

g =- g inm
ij;k ij  k
inmcl Variable

Covariant permutation of the nonmetricity vector components. Defined as

g inm - inm g - g inm

(Substitute ifg in place of g if a frame metric is used.)

inmc2 Variable
Contravariant permutation of the nonmetricity vector components. Used in the connection
coefficients if inonmet_flag is true. Defined as:

C C cd
-inm kdelta - kdelta inm + g inm g

(Substitute ifg in place of g if a frame metric is used.)

iktl Variable
Covariant permutation of the torsion tensor (also known as contorsion). Defined as:

(Substitute ifg in place of g if a frame metric is used.)

ikt2 Variable
Contravariant permutation of the torsion tensor (also known as contorsion). Defined as:



240 Maxima Manual

C cd
ikt2 =g ikt1
ab abd

(Substitute ifg in place of g if a frame metric is used.)

itr Variable
The torsion tensor. For a metric with torsion, repeated covariant differentiation on a
scalar function will not commute, as demonstrated by the following example:

(%i1) load(itensor);

(o) /share/tensor/itensor.lisp
(%12) imetric:g;
(%ho2)

g
(%13) covdiff(covdiff (£([1,[1),1),j)-covdiff(covdiff(£([1,[1),]),1)$
(%i4) ishow(%)$

Yz %2
(%htd) f ichr2 - f ichr2
s ik ji ,h2 ij
(%1i5) canform(%);
(%05) 0
(%16) itorsion_flag:true;
(%06) true

(%17) covdiff (covdiff (£([1,[1),1),j)-covdiff (covdiff(£([1,[1),]),1)$
(%i8) ishow(%)$

%8 %6
(%t8) f icc2 - f icc2 - f + f
VAS ji , %6 ij ,j i ;i
(%19) ishow(canform(%))$
Al Al
(%t9) f icc2 - f ice2
> hl ji , hl ij
(%110) ishow(canform(ev(%,icc2)))$
%1l %1l
(%t10) f ikt2 - f ikt2
%1 i A ji
(%i11) ishow(canform(ev(%,ikt2)))$
%2 %l %2 %
(ht11) f g ikt1 - f g ikt1
, %2 il LU joiut
(%112) ishow(factor(canform(rename (expand(ev(%,ikt1))))))$
%3 h2 %1 %1
f g g (itr - itr )
,h3 %2 W1 ji ij
(ht12) e
2
(%113) decsym(itr,2,1, [anti(all)], [1);
(%013) done
(%114) defcon(g,g,kdelta);
(%014) done

(%115) subst(g,nounify(g),%th(3))$
(%1i16) ishow(canform(contract(%)))$
%1
(ht16) - f itr
VAl ij



Chapter 28: itensor 241

28.2.7 Exterior algebra

The itensor package can perform operations on totally antisymmetric covariant tensor fields.
A totally antisymmetric tensor field of rank (0,L) corresponds with a differential L-form. On
these objects, a multiplication operation known as the exterior product, or wedge product, is
defined.

Unfortunately, not all authors agree on the definition of the wedge product. Some authors
prefer a definition that corresponds with the notion of antisymmetrization: in these works, the
wedge product of two vector fields, for instance, would be defined as

aa -aa
ij ji
a /\a = —————-
i ] 2
More generally, the product of a p-form and a g-form would be defined as
1 kl..kp 11..1q
A /\ B = ————-- D A B
il..ip ji..jq  (p*q)! il..ip ji..jq ki..kp 11..1q

where D stands for the Kronecker-delta.

Other authors, however, prefer a “geometric” definition that corresponds with the notion of
the volume element:
a /Na =aa -aa
i j ij ji
and, in the general case
1 ki..kp 11..1q
A /\ B = ——-—- D A B
il..ip jl..jqg p! q! il..ip jl..jqg ki..kp 11..1q
Since itensor is a tensor algebra package, the first of these two definitions appears to be
the more natural one. Many applications, however, utilize the second definition. To resolve
this dilemma, a flag has been implemented that controls the behavior of the wedge product: if
igeowedge_flag is false (the default), the first, "tensorial" definition is used, otherwise the
second, "geometric" definition will be applied.
nen Operator
The wedge product operator is denoted by the tilde ~. This is a binary operator. Its argu-
ments should be expressions involving scalars, covariant tensors of rank one, or covariant
tensors of rank 1 that have been declared antisymmetric in all covariant indices.

The behavior of the wedge product operator is controlled by the igeowedge_flag flag, as
in the following example:

(%1i1) load(itensor);

(%o1) /share/tensor/itensor.lisp

(%i2) ishow(a([i])"b([j1))$

1] 1]
G2 e
2
(%13) decsym(a,2,0, [anti(all)], [1);
(%03) done
(%14) ishow(a([i,jl)"b([k]1))$

a b +b a - a b
/A2
(%i5) igeowedge_flag:true;

(%05) true
(%i6) ishow(a([i]l)"b([jIN)$



242 Maxima Manual

(%t6) a b -b a

(%17) ishow(a([i,jl1)"b([kI))$
e a b +b a - a b
ij k i jk ik j

" | n Operator
The vertical bar | denotes the "contraction with a vector" binary operation. When a
totally antisymmetric covariant tensor is contracted with a contravariant vector, the result
is the same regardless which index was used for the contraction. Thus, it is possible to
define the contraction operation in an index-free manner.

In the itensor package, contraction with a vector is always carried out with respect to
the first index in the literal sorting order. This ensures better simplification of expressions
involving the | operator. For instance:

(%1i1) load(itensor);

(%o1) /share/tensor/itensor.lisp
(%12) decsym(a,2,0, [anti(all)], [1);
(ho2) done
(%13) ishow(a([i,jl,[1)Iv)$

Al
(%t3) v a

AR

(%i4) ishow(a([j,il,[1)Iv)$

Al
(ht4) -v a

]
Note that it is essential that the tensors used with the | operator be declared totally
antisymmetric in their covariant indices. Otherwise, the results will be incorrect.

extdiff (expr, i) Function
Computes the exterior derivative of expr with respect to the index i. The exterior deriva-
tive is formally defined as the wedge product of the partial derivative operator and a
differential form. As such, this operation is also controlled by the setting of igeowedge_
flag. For instance:

(%11) load(itensor);
(%o1) /share/tensor/itensor.lisp
(%i2) ishow(extdiff(v([i]),j))$

v - v
Jj,1i i,j
Ge2) s
2
(%13) decsym(a,2,0, [anti(all)], [1);
(h03) done
(%i4) ishow(extdiff(a([i,jl),k))$
a - a + a
j k,1 ik,j ij,k
(t4d) e
3
(%15) igeowedge_flag:true;
(%05) true
(%1i6) ishow(extdiff(v([i]),j))$
(%ht6) v - v
j,1 i,j

(%17) ishow(extdiff(a([i,j]1),k))$
VAYS) a - a + a
j k,1 ik,j ij,k



Chapter 28: itensor

hodge (expr)

Compute the Hodge-dual of expr. For instance:

Chit)
(o)
(%hi2)
(%o2)
(%i3)
(%03)
(%hid)
(%hod)
(%i5)

(%i6)
(%t6)

ChiT)

k™)

(%18)

(%t8)

(%19)

load(itensor);
/share/tensor/itensor.lisp
imetric(g);
done
idim(4);
done
icounter:100;

100
decsym(4A,3,0, [anti(all)], [1)$

ishow(A([i,j,k],[0))$
A
ijk
ishow(canform(hodge (%)))$
Wl K2 K3 %4
levi_civita g A
%1 %102 %2 %3 %4

6
ishow(canform(hodge (%)))$
W%2 %3 %8 e S U8 %7
levi_civita levi_civita g g
%1 %106 %2

g g A

%3 %108 %4 %8 %5 %6 %7
1c2kdt (%) $

(%110) %,kdelta$

(%i11) ishow(canform(contract(expand(%))))$

ht11)

igeowedge_flag

- A
%106 %107 %108

243

Function

%107
/6

Option variable

Default value: false

Controls the behavior of the wedge product and exterior derivative. When set to false
(the default), the notion of differential forms will correspond with that of a totally anti-
symmetric covariant tensor field. When set to true, differential forms will agree with the
notion of the volume element.

28.2.8 Exporting TeX expressions

The itensor package provides limited support for exporting tensor expressions to TeX. Since
itensor expressions appear as function calls, the regular Maxima tex command will not produce
the expected output. You can try instead the tentex command, which attempts to translate
tensor expressions into appropriately indexed TeX objects.

tentex (expr)

Function

To use the tentex function, you must first load tentex, as in the following example:

(hit)
(Yho1)

load(itensor);
/share/tensor/itensor.lisp



244

Maxima Manual

(%i2) load(tentex);

(%ho2) /share/tensor/tentex.lisp
(%13) idummyx:m;
(%03) m
(%14) ishow(icurvature([j,k,1]1,[i]1))$
ml i ml i i i
(%t4) ichr2 ichr2 - ichr2 ichr2 - ichr2 + ichr2
j k mi 1 ! mi k j 1,k i k,1

(%15) tentex(%)$
$$\Gamma_{j\,k}"{m_1}\,\Gamma_{1\,m_1}"{i}-\Gamma_{j\,1} " {m_13}\,
\Gamma_{k\,m_1}"{i}-\Gamma_<{j\,1,k}"{i}+\Gamma_{j\,k,1}"{i}$$

Note the use of the idummyx assignment, to avoid the appearance of the percent sign in
the TeX expression, which may lead to compile errors.

NB: This version of the tentex function is somewhat experimental.

28.2.9 Interfacing with ctensor

The itensor package has the ability to generate Maxima code that can then be executed in
the context of the ctensor package. The function that performs this task is ic_convert.

ic_convert (eqn) Function

Converts the itensor equation eqn to a ctensor assignment statement. Implied sums
over dummy indices are made explicit while indexed objects are transformed into arrays
(the array subscripts are in the order of covariant followed by contravariant indices of
the indexed objects). The derivative of an indexed object will be replaced by the noun
form of diff taken with respect to ct_coords subscripted by the derivative index. The
Christoffel symbols ichrl and ichr2 will be translated to 1cs and mcs, respectively and if
metricconvert is true then all occurrences of the metric with two covariant (contravari-
ant) indices will be renamed to 1g (ug). In addition, do loops will be introduced summing
over all free indices so that the transformed assignment statement can be evaluated by
just doing ev. The following examples demonstrate the features of this function.

(%i1) load(itensor);

(ho1) /share/tensor/itensor.lisp

(%i2) eqn:ishow(t([i,j], [k])=£([1, [1)*g([1,m], [1)*a([], [m],j)*b([i], [1,k]1))$
k m 1k

(%t2) t =fa b g
ij ,j 1 1m

(%13) ic_convert(eqn);
(%03) for i thru dim do (for j thru dim

do (for k thru dim do t : f sum(sum(diff(a , ct_coords ) b
i, j, k m j i, 1,k

g , 1, 1, dim), m, 1, dim)))

1, m
(%i4) imetric(g);
(%04) done
(%i5) metricconvert:true;
(%05) true

(%16) ic_convert(eqn);
(%06) for i thru dim do (for j thru dim

do (for k thru dim do t : f sum(sum(diff(a , ct_coords ) b
i, j, k m j i, 1, k

1g , 1, 1, dim), m, 1, dim)))



Chapter 28: itensor 245

1, m

28.2.10 Reserved words

The following Maxima words are used by the itensor package internally and should not be
redefined:

Keyword Comments

indices2() Internal version of indices()

conti Lists contravariant indices

covi Lists covariant indices of a indexed object
deri Lists derivative indices of an indexed object
name Returns the name of an indexed object
concan

irpmon

1cO

_1c2kdtO

_lcprod

_extlc



246 Maxima Manual



Chapter 29: ctensor 247

29 ctensor

29.1 Introduction to ctensor

ctensor is a component tensor manipulation package. To use the ctensor package, type
load(ctensor). To begin an interactive session with ctensor, type csetup(). You are first
asked to specify the dimension of the manifold. If the dimension is 2, 3 or 4 then the list of
coordinates defaults to [x,y], [x,y,z] or [x,y,z,t] respectively. These names may be changed
by assigning a new list of coordinates to the variable ct_coords (described below) and the user
is queried about this. Care must be taken to avoid the coordinate names conflicting with other
object definitions.

Next, the user enters the metric either directly or from a file by specifying its ordinal position.
The metric is stored in the matrix 1g. Finally, the metric inverse is computed and stored in the
matrix ug. One has the option of carrying out all calculations in a power series.

A sample protocol is begun below for the static, spherically symmetric metric (standard
coordinates) which will be applied to the problem of deriving Einstein’s vacuum equations (which
lead to the Schwarzschild solution) as an example. Many of the functions in ctensor will be
displayed for the standard metric as examples.

(%i1) load(ctensor);

(%hol) /share/tensor/ctensor.mac

(%i2) csetup();

Enter the dimension of the coordinate system:
4;

Do you wish to change the coordinate names?
n;

Do you want to

1. Enter a new metric?

2. Enter a metric from a file?

3. Approximate a metric with a Taylor series?
13

Is the matrix 1. Diagonal 2. Symmetric 3. Antisymmetric 4. General
Answer 1, 2, 3 or 4
1

Row 1 Column 1:

a;

Row 2 Column 2:
x"2;

Row 3 Column 3:
x"2xsin(y) "2;

Row 4 Column 4:

_d;

Matrix entered.
Enter functional dependencies with the DEPENDS function or ’N’ if none
depends([a,d] ,x);
Do you wish to see the metric?
Y
a o0 0 0

L T B s B e M |
o
o]
N
o
o
[ T T T |



248

(%o2)

(%i3)

(%t3)

(%ht4)

(%t5)

(%t6)

Gt

(%t8)

(%t9)

(%t10)

(%t11)

(holl)

christof (mcs) ;

[ 2 ]
[0 O x sin (y) 0 1
[ ]
LO O 0 -d]
done
a
X
mcs = -—=
1, 1, 2 a
mcs = -
1, 2, 2 x
mcs = -
1, 3, 3 X
d
b q
mcs = —-—
1, 4,4 24d
mcs = - -
2, 2, a
cos(y)
mcs 0= —————=
2, 3, 3 sin(y)
2
x sin (y)
mcs = - ————————
3, 3,1 a
= - cos(y) sin(y)
3, 3, 2
d
X
mcs = -—=
4, 4, 2 a

29.2 Definitions for ctensor

29.2.1 Initialization and setup

csetup ()

Maxima Manual

Function

A function in the ctensor (component tensor) package which initializes the package and
allows the user to enter a metric interactively. See ctensor for more details.



Chapter 29: ctensor 249

cmetric (dis) Function

cmetric () Function
A function in the ctensor (component tensor) package that computes the metric inverse
and sets up the package for further calculations.

If cframe_flag is false, the function computes the inverse metric ug from the (user-
defined) matrix 1g. The metric determinant is also computed and stored in the variable
gdet. Furthermore, the package determines if the metric is diagonal and sets the value of
diagmetric accordingly. If the optional argument dis is present and not equal to false,
the user is prompted to see the metric inverse.

If cframe_flag is true, the function expects that the values of fri (the inverse frame
matrix) and 1fg (the frame metric) are defined. From these, the frame matrix fr and the
inverse frame metric ufg are computed.

ct_coordsys (coordinate_system, extra_arg) Function
ct_coordsys (coordinate_system) Function
Sets up a predefined coordinate system and metric. The argument coordinate_system can
be one of the following symbols:

SYMBOL Dim Coordinates Description/comments
cartesian2d 2 [x,yl Cartesian 2D coordinate system
polar 2 [r,phi] Polar coordinate system
elliptic 2 [u,v] Elliptic coordinate system
confocalelliptic 2 [u,v] Confocal elliptic coordinates
bipolar 2 [u,v] Bipolar coordinate system
parabolic 2 [u,v] Parabolic coordinate system
cartesian3d 3 [x,y,z] Cartesian 3D coordinate system
polarcylindrical 3 [r,theta,z] Polar 2D with cylindrical z
ellipticcylindrical 3 [u,v,z] Elliptic 2D with cylindrical z
confocalellipsoidal 3 [u,v,w] Confocal ellipsoidal
bipolarcylindrical 3 [u,v,z] Bipolar 2D with cylindrical z
paraboliccylindrical 3 [u,v,z] Parabolic 2D with cylindrical z
paraboloidal 3 [u,v,phi] Paraboloidal coordinates
conical 3 [u,v,w] Conical coordinates

toroidal 3 [u,v,phi] Toroidal coordinates

spherical 3 [r,theta,phi] Spherical coordinate system
oblatespheroidal 3 [u,v,phi] Oblate spheroidal coordinates
oblatespheroidalsqrt 3 [u,v,phil

prolatespheroidal 3 [u,v,phi] Prolate spheroidal coordinates
prolatespheroidalsqrt 3 [u,v,phi]

ellipsoidal 3 [r,theta,phi] Ellipsoidal coordinates
cartesianédd 4 [x,y,z,t] Cartesian 4D coordinate system
spherical4d 4 [r,theta,eta,phi] Spherical 4D coordinate system
exteriorschwarzschild 4 [t,r,theta,phi] Schwarzschild metric
interiorschwarzschild 4 [t,z,u,v] Interior Schwarzschild metric
kerr_newman 4 [t,r,theta,phi] Charged axially symmetric metric

coordinate_system can also be a list of transformation functions, followed by a list
containing the coordinate variables. For instance, you can specify a spherical metric as
follows:

(%i1) load(ctensor);

(%o1) /share/tensor/ctensor.mac

(%12) ct_coordsys([r*cos(theta)*cos(phi),r*cos(theta)*sin(phi),
r*sin(theta), [r,theta,phil]);

(%02) done



250 Maxima Manual

(%13) lg:trigsimp(lg);

[1 O 0 ]
[ ]
[ 2 ]

(%03) [0 r 0 ]
[ ]
[ 2 2 ]
[0 0 «r cos (theta) ]

(%i4) ct_coords;

(%hod) [r, theta, phi]

(%i5) dim;

(%05) 3

Transformation functions can also be used when cframe_flag is true:

(%i1) load(ctensor);

(%o1) /share/tensor/ctensor.mac
(%12) cframe_flag:true;
(%02) true

(%13) ct_coordsys([r*cos(theta)*cos(phi),r*cos(theta)*sin(phi),
r*sin(theta), [r,theta,phil]);

(%ho3) done
(%i4) fri;
[ cos(phi) cos(theta) - cos(phi) r sin(theta) - sin(phi) r cos(theta)
[
(%04) [ sin(phi) cos(theta) - sin(phi) r sin(theta) cos(phi) r cos(theta)
[
[ sin(theta) r cos(theta) 0
(%i5) cmetric();
(%05) false
(%16) lg:trigsimp(lg);
[1 0 0 ]
A ]
[ 2 ]
(%ho86) [0 r 0 ]
[ ]
L 2 2 ]
L0 0O r cos (theta) ]

The optional argument extra_arg can be any one of the following:
cylindrical tells ct_coordsys to attach an additional cylindrical coordinate.

minkowski tells ct_coordsys to attach an additional coordinate with negative metric
signature.

all tells ct_coordsys to call cmetric and christof (false) after setting up the metric.

If the global variable verbose is set to true, ct_coordsys displays the values of dim,
ct_coords, and either 1g or 1fg and fri, depending on the value of cframe_flag.

init_ctensor () Function
Initializes the ctensor package.

The init_ctensor function reinitializes the ctensor package. It removes all arrays and
matrices used by ctensor, resets all flags, resets dim to 4, and resets the frame metric to
the Lorentz-frame.



Chapter 29: ctensor 251

29.2.2 The tensors of curved space

The main purpose of the ctensor package is to compute the tensors of curved space(time),
most notably the tensors used in general relativity.

When a metric base is used, ctensor can compute the following tensors:

lg -- ug
\ \
lcs -- mcs -- ric -- uric
\ \ \
\ tracer - ein -- lein
\
riem —- lriem —-- weyl
\

uriem

ctensor can also work using moving frames. When cframe_flag is set to true, the following
tensors can be calculated:

1fg -- ufg
\
fri —— fr -- 1lcs -- mcs —- lriem -- ric -- uric
\ I\ \ \
lg —- ug | weyl tracer - ein -- lein
I\
| riem
I
\uriem
christof (dis) Function

A function in the ctensor (component tensor) package. It computes the Christoffel sym-
bols of both kinds. The argument dis determines which results are to be immediately
displayed. The Christoffel symbols of the first and second kinds are stored in the arrays
lcs[i,j,k] and mecs([i,j,k] respectively and defined to be symmetric in the first two
indices. If the argument to christof is 1lcs or mcs then the unique non-zero values of
lcs[i,j,k] or mes[i,j,k], respectively, will be displayed. If the argument is all then
the unique non-zero values of lcs[i,j,k] and mcs[i,j,k] will be displayed. If the ar-
gument is false then the display of the elements will not occur. The array elements
mcs[i,j,k] are defined in such a manner that the final index is contravariant.

ricci (dis) Function
A function in the ctensor (component tensor) package. ricci computes the covariant
(symmetric) components ric[i,j] of the Ricci tensor. If the argument dis is true, then
the non-zero components are displayed.

uricci (dis) Function
This function first computes the covariant components ric[i,j] of the Ricci tensor.
Then the mixed Ricci tensor is computed using the contravariant metric tensor. If the
value of the argument dis is true, then these mixed components, uric[i,j] (the index
i is covariant and the index j is contravariant), will be displayed directly. Otherwise,
ricci(false) will simply compute the entries of the array uric[i,j] without displaying
the results.

scurvature () Function
Returns the scalar curvature (obtained by contracting the Ricci tensor) of the Riemannian
manifold with the given metric.



252 Maxima Manual

einstein (dis) Function
A function in the ctensor (component tensor) package. einstein computes the mixed
Einstein tensor after the Christoffel symbols and Ricci tensor have been obtained (with the
functions christof and ricci). If the argument dis is true, then the non-zero values of
the mixed Einstein tensor ein[i, j] will be displayed where j is the contravariant index.
The variable rateinstein will cause the rational simplification on these components. If
ratfac is true then the components will also be factored.

leinstein (dis) Function
Covariant Einstein-tensor. leinstein stores the values of the covariant Einstein tensor
in the array lein. The covariant Einstein-tensor is computed from the mixed Einstein
tensor ein by multiplying it with the metric tensor. If the argument dis is true, then the
non-zero values of the covariant Einstein tensor are displayed.

riemann (dis) Function
A function in the ctensor (component tensor) package. riemann computes the Riemann
curvature tensor from the given metric and the corresponding Christoffel symbols. The
following index conventions are used:

1 21 21 21 _m 21 _m
R[i,j,k,l] = R = l - I + | I - | |

ijk i,k ik, j mk ij mj ik
This notation is consistent with the notation used by the itensor package and its
icurvature function. If the optional argument dis is true, the non-zero components
riem[i,j,k,1] will be displayed. As with the Einstein tensor, various switches set by the
user control the simplification of the components of the Riemann tensor. If ratriemann
is true, then rational simplification will be done. If ratfac is true then each of the
components will also be factored.

If the variable cframe_flag is false, the Riemann tensor is computed directly from the
Christoffel-symbols. If cframe_flag is false, the covariant Riemann-tensor is computed
first from the frame field coefficients.

Iriemann (dis) Function
Covariant Riemann-tensor (lriem[]).

Computes the covariant Riemann-tensor as the array lriem. If the argument dis is true,
unique nonzero values are displayed.

If the variable cframe_flag is true, the covariant Riemann tensor is computed directly
from the frame field coefficients. Otherwise, the (3,1) Riemann tensor is computed first.

For information on index ordering, see riemann.

uriemann (dis) Function
Computes the contravariant components of the Riemann curvature tensor as array ele-
ments uriem[i,j,k,1]. These are displayed if dis is true.

rinvariant () Function
Forms the Kretchmann-invariant (kinvariant) obtained by contracting the tensors

lriem[i,j,k,1]*uriem[i,j,k,1].

This object is not automatically simplified since it can be very large.

weyl (dis) Function
Computes the Weyl conformal tensor. If the argument dis is true, the non-zero com-
ponents weyl[i,j,k,1] will be displayed to the user. Otherwise, these components will
simply be computed and stored. If the switch ratweyl is set to true, then the components
will be rationally simplified; if ratfac is true then the results will be factored as well.



Chapter 29: ctensor 253

29.2.3 Taylor series expansion

The ctensor package has the ability to truncate results by assuming that they are Taylor-
series approximations. This behavior is controlled by the ctayswitch variable; when set to true,
ctensor makes use internally of the function ctaylor when simplifying results.

The ctaylor function is invoked by the following ctensor functions:

Function Comments
christof()  For mcs only
ricci()

uricci()

einstein()

riemann()

weyl()

checkdiv()

ctaylor () Function
The ctaylor function truncates its argument by converting it to a Taylor-series using
taylor, and then calling ratdisrep. This has the combined effect of dropping terms
higher order in the expansion variable ctayvar. The order of terms that should be dropped
is defined by ctaypov; the point around which the series expansion is carried out is
specified in ctaypt.

As an example, consider a simple metric that is a perturbation of the Minkowski metric.
Without further restrictions, even a diagonal metric produces expressions for the Einstein
tensor that are far too complex:

(%i1) load(ctensor);

(%o1) /share/tensor/ctensor.mac
(%i2) ratfac:true;
(%02) true
(%13) derivabbrev:true;
(%03) true
(%i4) ct_coords:[t,r,theta,phil;
(%o4) [t, r, theta, phil
(%15) lg:matrix([-1,0,0,0],[0,1,0,0],[0,0,r"2,0],[0,0,0,r " 2*sin(theta)"2]);
[-1 0 O 0 ]
[ ]
[ 0O 1 0 0 ]
[ ]
(%05) [ 2 ]
[ O 0 r 0 ]
[ ]
[ 2 2 ]
[ 0O 0 O r sin (theta) ]
(%16) h:matrix([h11,0,0,0],[ 0,01,[0,0,h33,0],[0,0,0,h44]);

—
-
o

0
[ 0 0 1]
L ]
[ O h22 0 0 1
(%06) [ ]
[ O 0 h33 0 1]
[ ]
I 1
(%17) depends(1,r);

(%07) [1(x)]
(%18) 1lg:1lg+l*h;



254 Maxima Manual

[ h11 1 - 1 0 0 0 ]
[ ]
[ 0 h22 1 + 1 0 0 ]
[ ]

(%08) [ 2 ]
[ 0 0 r + h33 1 0 ]
[ ]
[ 2 2 ]
[ 0 0 0 r sin (theta) + h44 1 ]

(%19) cmetric(false);

(%09) done

(%1i10) einstein(false);

(%010) done

(%111) ntermst(ein);
[[1, 11, 62]

[[1, 21, O]

[[1, 31, O]

[[1, 41, 0]

[[2, 1], 0]

[[2, 2], 24]

[[2, 3], O]

[[2, 4], O]

(3, 11, ol

(L3, 21, ol

[[3, 31, 46]

[[3, 41, 0]

[[4, 11, O]

[[4, 2], 0]

[[4, 3], 0]

[[4, 4], 46]

(ho12) done

However, if we recompute this example as an approximation that is linear in the variable
1, we get much simpler expressions:

(%114) ctayswitch:true;

(ho14) true
(%115) ctayvar:1;

(%015) 1

(%116) ctaypov:1;

(%016) 1

(%117) ctaypt:0;

(%o17) 0

(%118) christof(false);

(%018) done
(%119) ricci(false);

(%019) done
(%120) einstein(false);

(%020) done
(%i21) ntermst(ein);

[[1, 11, 6]

[[1, 2], O]

[[1, 3], O]

[[1, 4], 0]

[[2, 1], O]

[[2, 21, 13]



Chapter 29: ctensor 255

[[2, 3], 2]
[[2, 4], O]
[[3, 11, 0]
[[3, 21, 2]
(3, 31, 9]
[[3, 41, 0]
[([4, 11, ol
[([4, 21, o]
[[4, 31, 0]
[[4, 41, 9]
(%o21) done
(%122) ratsimp(ein[1,1]);
2 2 4 2 2
(%022) - (((h11 h22 - h11 ) (1) r -2 K331 r ) sin (theta)
T rr

2 2 4 2
- 2nh44 1 r - h33 h44 (1 ) )/(4 r sin (theta))
rr r

This capability can be useful, for instance, when working in the weak field limit far from
a gravitational source.

29.2.4 Frame fields

When the variable cframe_flag is set to true, the ctensor package performs its calculations
using a moving frame.

frame_bracket (fr, fri, diagframe) Function
The frame bracket (fb[]).

Computes the frame bracket according to the following definition:

C C C d e
ifb = ( ifri - ifri ) ifr ifr
ab d,e e,d a b

29.2.5 Algebraic classification

A new feature (as of November, 2004) of ctensor is its ability to compute the Petrov classi-
fication of a 4-dimensional spacetime metric. For a demonstration of this capability, see the file
share/tensor/petrov.dem.

nptetrad () Function
Computes a Newman-Penrose null tetrad (np) and its raised-index counterpart (npi). See
petrov for an example.

The null tetrad is constructed on the assumption that a four-diemensional orthonormal
frame metric with metric signature (-,++,+) is being used. The components of the null
tetrad are related to the inverse frame matrix as follows:

(fri + fri ) / sqrt(2)
1 1 2

np

(fri - fri ) / sqrt(2)
2 1 2

np



256 Maxima Manual

(fri + %i fri ) / sqrt(2)
3 3 4

np

(fri - %i fri ) / sqrt(2)
4 3 4

np

psi (dis) Function
Computes the five Newman-Penrose coefficients psi[0]...psi[4]. If psi is set to true,
the coefficients are displayed. See petrov for an example.

These coefficients are computed from the Weyl-tensor in a coordinate base. If a frame
base is used, the Weyl-tensor is first converted to a coordinate base, which can be a
computationally expensive procedure. For this reason, in some cases it may be more
advantageous to use a coordinate base in the first place before the Weyl tensor is computed.
Note however, that constructing a Newman-Penrose null tetrad requires a frame base.
Therefore, a meaningful computation sequence may begin with a frame base, which is then
used to compute 1g (computed automatically by cmetric and then ug. At this point, you
can switch back to a coordinate base by setting cframe_flag to false before beginning to
compute the Christoffel symbols. Changing to a frame base at a later stage could yield
inconsistent results, as you may end up with a mixed bag of tensors, some computed in a
frame base, some in a coordinate base, with no means to distinguish between the two.

petrov () Function
Computes the Petrov classification of the metric characterized by psi[0]...psi[4].

For example, the following demonstrates how to obtain the Petrov-classification of the
Kerr metric:

(%i1) load(ctensor);

(%hol) /share/tensor/ctensor.mac

(%12) (cframe_flag:true,gcd:spmod,ctrgsimp:true,ratfac:true);
(%02) true

(%13) ct_coordsys(exteriorschwarzschild,all);

(%03) done

(%i4) ug:invert(lg)$

(%15) weyl(false);

(%05) done
(%i6) nptetrad(true);
(%t6) np =
[ sqrt(r - 2 m) sqrt(r)
[ mmmmmmmmmmmmmmm e 0 0

[ sqrt(2) sqrt(r) sqrt(2) sqrt(r - 2 m)

[ sqrt(r - 2 m) sqrt (r)

R e 0 0

[ sqrt(2) sqrt(r) sqrt(2) sqrt(r - 2 m)

[

[ r %i r sin(theta)

[ 0 0  mmmmmmm mmmmeee

[ sqrt (2) sqrt(2)

[

[ r %i r sin(theta)

[ 0 o - -

[ sqrt(2) sqrt(2)
sqrt (r) sqrt(r - 2 m)

(%t7) npi = matrix([- -----------——-m——- ; TTTTmmmmmm—mees , 0, 0],



Chapter 29: ctensor 257

sqrt(2) sqrt(r - 2 m) sqrt(2) sqrt(r)

sqrt(r) sqrt(r - 2 m)
- ) T TTTTTmmm—————— , 0, 0],
sqrt(2) sqrt(r - 2 m) sqrt(2) sqrt(r)
1 hi
[O, O, _____________________________ ] ’

1 hi
(0, 0, ——=————-- , T TTTTTTTTm—————————— D
sqrt(2) r sqrt(2) r sin(theta)
(hoT) done
(%17) psi(true);
(%t8) psi =0
0
(%t9) psi =0
1
m
(%t10) psi = --
2 3
r
(ht11) psi =0
3
(ht12) psi =0
4
(ho12) done
(%112) petrov();
(%012) D

The Petrov classification function is based on the algorithm published in "Classifying
geometries in general relativity: III Classification in practice" by Pollney, Skea, and
d’'Inverno, Class. Quant. Grav. 17 2885-2902 (2000). Except for some simple test cases,
the implementation is untested as of December 19, 2004, and is likely to contain errors.

29.2.6 Torsion and nonmetricity

ctensor has the ability to compute and include torsion and nonmetricity coefficients in the
connection coefficients.

The torsion coeflicients are calculated from a user-supplied tensor tr, which should be a
rank (2,1) tensor. From this, the torsion coefficients kt are computed according to the following
formulae:



258 Maxima Manual

kt =g kt
ij ijm

Note that only the mixed-index tensor is calculated and stored in the array kt.

The nonmetricity coefficients are calculated from the user-supplied nonmetricity vector nm.
From this, the nonmetricity coeflicients nmc are computed as follows:

where D stands for the Kronecker-delta.

When ctorsion_flag is set to true, the values of kt are substracted from the mixed-indexed
connection coefficients computed by christof and stored in mcs. Similarly, if cnonmet_flag is
set to true, the values of nmc are substracted from the mixed-indexed connection coefficients.

If necessary, christof calls the functions contortion and nonmetricity in order to compute
kt and nm.

contortion (tr) Function
Computes the (2,1) contortion coefficients from the torsion tensor tr.

nonmetricity (nm) Function
Computes the (2,1) nonmetricity coefficients from the nonmetricity vector nm.

29.2.7 Miscellaneous features

ctransform (M) Function
A function in the ctensor (component tensor) package which will perform a coordinate
transformation upon an arbitrary square symmetric matrix M. The user must input the
functions which define the transformation. (Formerly called transform.)

findde (A, n) Function
returns a list of the unique differential equations (expressions) corresponding to the ele-
ments of the n dimensional square array A. Presently, n may be 2 or 3. deindex is a global
list containing the indices of A corresponding to these unique differential equations. For
the Einstein tensor (ein), which is a two dimensional array, if computed for the metric in
the example below, findde gives the following independent differential equations:

(%i1) load(ctensor);

(%o1) /share/tensor/ctensor.mac

(%12) derivabbrev:true;

(%02) true

(%i3) dim:4;

(%03) 4

(%i4) lg:matrix([a,0,0,0],[0,x72,0,0],[0,0,x 2*sin(y)"2,0],[0,0,0,-d]);
[a O 0 0 1]

(@}
o

o
o

(%ho4)

0 0 x sin (y) O

L T e T s B B s I s B s W
N
N

[ T TN TN S S T By S



Chapter 29: ctensor 259

(%1i5) depends([a,d],x);

cograd ()

(%05) [a(x), d(x)]
(%16) ct_coords: [x,y,z,t];
(%086) x, y, z, t]
(%i7) cmetric();
(%oT) done
(%18) einstein(false);
(%08) done
(%i9) findde(ein,?2);
2
(%09) [d x —-ad+d, 2add x-a(d) x-a dd x+2add
X X X X X X X
2 2
-2a d,a x+a - al
b4 b4
(%i10) deindex;
(%010) (r1, 11, [2, 21, [4, 4]1]
Function
Computes the covariant gradient of a scalar function allowing the user to choose the
corresponding vector name as the example under contragrad illustrates.
contragrad () Function
Computes the contravariant gradient of a scalar function allowing the user to choose the
corresponding vector name as the example below for the Schwarzschild metric illustrates:
(%11) load(ctensor);
(%o1) /share/tensor/ctensor.mac
(%i2) derivabbrev:true;
(%02) true
(%13) ct_coordsys(exteriorschwarzschild,all);
(%03) done
(%14) depends(f,r);
(%o4) [£(xr)]
(%i5) cograd(f,gl);
(%05) done
(%16) listarray(gl);
(%06) (o, £, 0, 0]
T
(%i7) contragrad(f,g2);
(%oT) done
(%18) listarray(g2);
f r-2f m
r T
(%08) [0, ————————————- , 0, 0]
T
Function

dscalar ()

computes the tensor d’Alembertian of the scalar function once dependencies have been
declared upon the function. For example:

(%i1) load(ctensor);

(%o1)

/share/tensor/ctensor.mac

(%i2) derivabbrev:true;



260 Maxima Manual

(%ho2) true
(%13) ct_coordsys(exteriorschwarzschild,all);
(%ho3) done
(%i4) depends(p,r);
(ho4) [p(r)]
(%15) factor(dscalar(p));
2
p r - 2mp r+2p r-2mp
rr rr r r
(%05) e
2
r
checkdiv () Function

computes the covariant divergence of the mixed second rank tensor (whose first index
must be covariant) by printing the corresponding n components of the vector field (the
divergence) where n = dim. If the argument to the function is g then the divergence of
the Einstein tensor will be formed and must be zero. In addition, the divergence (vector)
is given the array name div.

cgeodesic (dis) Function
A function in the ctensor (component tensor) package. cgeodesic computes the geodesic
equations of motion for a given metric. They are stored in the array geod[i]. If the
argument dis is true then these equations are displayed.

bdvac (f) Function
generates the covariant components of the vacuum field equations of the Brans- Dicke
gravitational theory. The scalar field is specified by the argument f, which should be a
(quoted) function name with functional dependencies, e.g., *p(x).

The components of the second rank covariant field tensor are represented by the array bd.

invariantl () Function
generates the mixed Euler- Lagrange tensor (field equations) for the invariant density of
R~2. The field equations are the components of an array named invli.

invariant2 () Function
e NOT YET IMPLEMENTED *#*

generates the mixed Euler- Lagrange tensor (field equations) for the invariant density of
ric[i,jl*uriem[i,j]. The field equations are the components of an array named inv2.

bimetric () Function
*** NOT YET IMPLEMENTED ***

generates the field equations of Rosen’s bimetric theory. The field equations are the
components of an array named rosen.

29.2.8 Utility functions

diagmatrixp (M) Function
Returns true if M is a diagonal matrix or (2D) array.

symmetricp (M) Function
Returns true if M is a symmetric matrix or (2D) array.



Chapter 29: ctensor 261

ntermst (f) Function
gives the user a quick picture of the "size" of the doubly subscripted tensor (array) f.
It prints two element lists where the second element corresponds to NTERMS of the
components specified by the first elements. In this way, it is possible to quickly find the
non-zero expressions and attempt simplification.

cdisplay (ten) Function
displays all the elements of the tensor ten, as represented by a multidimensional array.
Tensors of rank 0 and 1, as well as other types of variables, are displayed as with 1display.
Tensors of rank 2 are displayed as 2-dimensional matrices, while tensors of higher rank
are displayed as a list of 2-dimensional matrices. For instance, the Riemann-tensor of the
Schwarzschild metric can be viewed as:

(%i1) load(ctensor);

(%o1) /share/tensor/ctensor.mac
(%i2) ratfac:true;
(%02) true
(%13) ct_coordsys(exteriorschwarzschild,all);
(%03) done
(%i4) riemann(false);
(%o4) done
(%15) cdisplay(riem);
[ O 0 0 0
[
[ 2
[ 3m(r-2m m 2m
[0 - ———m——mmm + - = 0 0
[ 4 3 4
[ r T r
[
riem = [ m (r - 2 m)
1, 1 [0 o e 0
[ 4
[ r
[
[ m (r - 2 m)
[0 0 o @ ———————
[ 4
[ T
[ 2m (r - 2 m) ]
[0 - 0 01
[ 4 ]
[ r ]
riem = [ ]
1, 2 [ O 0 0 0]
[ ]
[0 0 0 01
[ ]
[ O 0 0 01
[ m (r - 2 m) ]
[0 O - ——————————~ 0 1]
[ 4 ]
[ r ]
riem = [ ]
1, 3 [0 O 0 0 ]
[ ]



Maxima Manual

262

| ~
“ g
I ~N
I
I I
g |
o o o I ~
| p
I
_ r L B e U e U e I s I e I e N e N e N e |
o o ~ 1 o o o o
=) _ I o o o o
N o o o o
| | ~ | ~
[N | I=S] | =l
I “ o o o o o o o |
[ | N I N
~ 1 | I
o o I | ~ | | | |
g | [ g g | o g | o o
| o o | ~ o I ~
_ P P P
g | | I N I N
o o o o I | “ | ~
o [a\ I ¥ o o
| ~ |
o o o o o o _ ~ o o o o
| “ o o o o
o o o o o o o o o o
| S [y N [y Ny N [y Ny Ny NN D S Sy S— ] m
I I I
I | N
< I (ap]
~i g | |
- I o o o -
~— - o\ 1" N
g (o] I ~ g
[0} g | [0}
- () I N -
~ - | ~ ~
~
| M-

| Ny IS [y NN Dy I Dy N Dy N Dy N Dy Uy Ny U gy N N NS S— |

Il
N

EN

N

riem



263

Chapter 29: ctensor

L I e I e Y e Y e Y e O e O e O e I e I e I e I e |

L T B I s I s B s W s W ~
| ~ +
“ =i 0 | L M W e T e W e W e B e W
“ AN L B W e W e T e W s W s B s B Lo B T e W s T e T e B B e o o (@] | “ = “ 0
| | o o o o o o o o [ ] o o A (@)
=i L ° ° = | _
“ ~ o o o o o o o o [\l
I N o o o (@)
| ~ o o o o o o g 1 N o o (@] o o
o o o o
o o o o o g 1 N o o o o o g 1 N
L L L L © | © © o o o o
o o (@)
M M e e e e e e L e
g 1 H
o o o — N o o o Il
L - - ! <
™ ™ [ S N T Y T TN T T S S R B
Il =i g N
0] [} ] (98]
< - — =]
~ ~ (90] Q
-~ o
mQ QO’ ~
[0} g
- (0]
~ -
g

0



264

Maxima Manual

[ ]
riem = [ 0 0 0 01
4, 1 [ ]
[ 2 ]
[ m sin (theta) ]
R 0 0 0]
[ r ]
[0 0 0 0]
[ ]
[ O 0 0 01
[ ]
riem =[O0 0 0 0]
4, 2 [ ]
[ 2 ]
[ m sin (theta) ]
[0 ——————- 0 01
[ r ]
[0 O 0 0 1]
[ ]
[0 O 0 0 1]
[ ]
riem =[0 0 0 0 ]
4,3 [ ]
[ 2 ]
[ 2 m sin (theta) ]
[0 0 = =mmmmmmmmmmmmmm 0]
[ r ]
[ 2
[ m sin (theta)
[ - ——————- 0 0 0
[ r
[
[ 2
[ m sin (theta)
riem = [ 0 - e 0 0
4, 4 [ r
[
[ 2
[ 2 m sin (theta)
[ 0 o @ - 0
[ r
[
[ 0 0 0 0
(%05) done
deleten (L, n) Function

Returns a new list consisting of L with the n’th element deleted.

29.2.9 Variables used by ctensor

| N Ry I Ry NN Dy Iy Uy Ny U N N N N AN N N N S



Chapter 29: ctensor 265

dim Option variable
Default value: 4

An option in the ctensor (component tensor) package. dim is the dimension of the
manifold with the default 4. The command dim: n will reset the dimension to any other
value n.

diagmetric Option variable
Default value: false

An option in the ctensor (component tensor) package. If diagmetric is true special
routines compute all geometrical objects (which contain the metric tensor explicitly) by
taking into consideration the diagonality of the metric. Reduced run times will, of course,
result. Note: this option is set automatically by csetup if a diagonal metric is specified.

ctrgsimp Option variable
Causes trigonometric simplifications to be used when tensors are computed. Presently,
ctrgsimp affects only computations involving a moving frame.

cframe_flag Option variable
Causes computations to be performed relative to a moving frame as opposed to a holo-
nomic metric. The frame is defined by the inverse frame array fri and the frame metric
1fg. For computations using a Cartesian frame, 1fg should be the unit matrix of the ap-
propriate dimension; for computations in a Lorentz frame, 1fg should have the appropriate
signature.

ctorsion_flag Option variable
Causes the contortion tensor to be included in the computation of the connection coef-
ficients. The contortion tensor itself is computed by contortion from the user-supplied
tensor tr.

cnonmet_flag Option variable
Causes the nonmetricity coefficients to be included in the computation of the connection
coefficients. The nonmetricity coefficients are computed from the user-supplied nonmetric-
ity vector nm by the function nonmetricity.

ctayswitch Option variable
If set to true, causes some ctensor computations to be carried out using Taylor-series
expansions. Presently, christof, ricci, uricci, einstein, and weyl take into account
this setting.

ctayvar Option variable
Variable used for Taylor-series expansion if ctayswitch is set to true.

ctaypov Option variable
Maximum power used in Taylor-series expansion when ctayswitch is set to true.

ctaypt Option variable
Point around which Taylor-series expansion is carried out when ctayswitch is set to true.

gdet System variable
The determinant of the metric tensor 1g. Computed by cmetric when cframe_flag is
set to false.

ratchristof Option variable
Causes rational simplification to be applied by christof.



266 Maxima Manual

rateinstein Option variable
Default value: true

If true rational simplification will be performed on the non-zero components of Einstein
tensors; if ratfac is true then the components will also be factored.

ratriemann Option variable
Default value: true
One of the switches which controls simplification of Riemann tensors; if true, then rational
simplification will be done; if ratfac is true then each of the components will also be
factored.

ratweyl Option variable
Default value: true

If true, this switch causes the weyl function to apply rational simplification to the values
of the Weyl tensor. If ratfac is true, then the components will also be factored.

lfg Variable
The covariant frame metric. By default, it is initialized to the 4-dimensional Lorentz frame
with signature (+,+,+,-). Used when cframe_flag is true.

ufg Variable
The inverse frame metric. Computed from 1fg when cmetric is called while cframe_flag
is set to true.

riem Variable
The (3,1) Riemann tensor. Computed when the function riemann is invoked. For infor-
mation about index ordering, see the description of riemann.

if cframe_flag is true, riem is computed from the covariant Riemann-tensor lriem.

Iriem Variable
The covariant Riemann tensor. Computed by lriemann.

uriem Variable
The contravariant Riemann tensor. Computed by uriemann.

ric Variable
The mixed Ricci-tensor. Computed by ricci.

uric Variable
The contravariant Ricci-tensor. Computed by uricci.

lg Variable
The metric tensor. This tensor must be specified (as a dim by dim matrix) before other
computations can be performed.

ug Variable
The inverse of the metric tensor. Computed by cmetric.

weyl Variable
The Weyl tensor. Computed by weyl.

fb Variable

Frame bracket coefficients, as computed by frame_bracket.

kinvariant Variable
The Kretchmann invariant. Computed by rinvariant.



Chapter 29: ctensor 267

np Variable
A Newman-Penrose null tetrad. Computed by nptetrad.

npi Variable
The raised-index Newman-Penrose null tetrad. Computed by nptetrad. Defined as ug.np.
The product np.transpose (npi) is constant:

(%139) trigsimp(np.transpose(npi));

[ o -1 0 0]
[ ]
[-1 0 0 01
(%039) L ]
[ O 0 0 1]
[ ]
[ O 0 1 01
tr Variable

User-supplied rank-3 tensor representing torsion. Used by contortion.

kt Variable

The contortion tensor, computed from tr by contortion.

nm Variable
User-supplied nonmetricity vector. Used by nonmetricity.

nmec Variable
The nonmetricity coefficients, computed from nm by nonmetricity.

tensorkill System variable
Variable indicating if the tensor package has been initialized. Set and used by csetup,
reset by init_ctensor.

ct_coords Option variable
Default value: []
An option in the ctensor (component tensor) package. ct_coords contains a list of
coordinates. While normally defined when the function csetup is called, one may redefine
the coordinates with the assignment ct_coords: [j1, j2, ..., jn] where the j’s are the
new coordinate names. See also csetup.

29.2.10 Reserved names

The following names are used internally by the ctensor package and should not be redefined:

Name Description

_1gO Evaluates to 1lfg if frame metric used, lg otherwise
_ug() Evaluates to ufg if frame metric used, ug otherwise
cleanup() Removes items drom the deindex list

contract4() Used by psi()

filemet () Used by csetup() when reading the metric from a file
findde1 () Used by findde()

findde2() Used by findde()

findde3() Used by findde()

kdelt () Kronecker-delta (not generalized)

newnmet () Used by csetup() for setting up a metric interactively
setflags() Used by init_ctensor()

readvalue ()

resimp()



268

sermet ()
txyzsum ()
tmetric()
triemann()
tricci()
trrc()
yespQ)

29.2.11 Changes

Maxima Manual

Used by csetup() for entering a metric as Taylor-series

Frame metric, used by cmetric() when cframe_flag:true
Riemann-tensor in frame base, used when cframe_flag:true
Ricci-tensor in frame base, used when cframe_flag:true
Ricci rotation coefficients, used by christof ()

In November, 2004, the ctensor package was extensively rewritten. Many functions and
variables have been renamed in order to make the package compatible with the commercial
version of Macsyma.

New Name

01ld Name

Description

ctaylor ()
lgeod[]
ein[]
ric[]
ricci()
ctaypov
cgeodesic()
ct_coords
ctayvar
lriem[]
uriemann()
ratriemann
uric[]
uricci()
cmetric()
ctaypt
ctayswitch
csetup()
ctransform()
uriem[]
weyl[]

DLGTAYLOR()
EM

G[]

LR[]
LRICCICOM()
MINP
MOTION
OMEGA
PARAM

R[]

RAISERIEMANN ()

RATRIEMAN
RICCI[]
RICCICOM()
SETMETRIC()
TAYPT
TAYSWITCH
TSETUP ()

TTRANSFORM()

UR[]
Wil

Taylor-series expansion of an expression
Geodesic equations

Mixed Einstein-tensor

Mixed Ricci-tensor

Compute the mixed Ricci-tensor

Maximum power in Taylor-series expansion
Compute geodesic equations

Metric coordinates

Taylor-series expansion variable
Covariant Riemann-tensor

Compute the contravariant Riemann-tensor
Rational simplification of the Riemann-tensor
Contravariant Ricci-tensor

Compute the contravariant Ricci-tensor
Set up the metric

Point for Taylor-series expansion
Taylor-series setting switch

Start interactive setup session
Interactive coordinate transformation
Contravariant Riemann-tensor

(3,1) Weyl-tensor



Chapter 30: atensor 269

30 atensor

30.1 Introduction to atensor

atensor is an algebraic tensor manipulation package. To use atensor, type load(atensor),
followed by a call to the init_atensor function.

The essence of atensor is a set of simplification rules for the noncommutative (dot) product
operator ("."). atensor recognizes several algebra types; the corresponding simplification rules
are put into effect when the init_atensor function is called.

The capabilities of atensor can be demonstrated by defining the algebra of quaternions as
a Clifford-algebra C1(0,2) with two basis vectors. The three quaternionic imaginary units are
then the two basis vectors and their product, i.e.:

i=v j=v k=v . v
1 2 1 2

Although the atensor package has a built-in definition for the quaternion algebra, it is not
used in this example, in which we endeavour to build the quaternion multiplication table as a
matrix:

(%i1) load(atensor);

(%o1) /share/tensor/atensor.mac
(%i2) init_atensor(clifford,0,0,2);
(%02) done
(%1i3) atensimp(v[1].v[1]1);
(%03) -1
(%14) atensimp((v[1].v[2]).(v[1].v[2]));
(%04) -1
(%15) q:zeromatrix(4,4);
[0 O O 01
[ ]
[LO O O 0]
(%05) [ ]
[LO O O 0]
[ ]
[LO 0O O 0]
(%i6) ql1,11:1;
(%06) 1
(%17) for i thru adim do q[1,i+1]:qli+1,1]:v[i];
(%oT) done
(%18) ql1,4]1:ql4,1]:v([1].v[2];
(%08) v .V
1 2

(%19) for i from 2 thru 4 do for j from 2 thru 4 do
qli,j]:atensimp(qli,1].q[1,31);

(%09) done

(%i10) q;
[ 1 v v v v ]
L 1 2 1 2 ]
[ ]
[ v -1 v v - v ]
L 1 1 2 2 ]

(%010) [ ]
[ v - v v -1 v ]
[ 2 1 2 1 ]
[ ]
[ v v v -v -1 ]



270 Maxima Manual

[ 1 2 2 1 ]

atensor recognizes as base vectors indexed symbols, where the symbol is that stored in
asymbol and the index runs between 1 and adim. For indexed symbols, and indexed symbols
only, the bilinear forms sf, af, and av are evaluated. The evaluation substitutes the value of
aform[i,j] in place of fun(v[i],v[j]) where v represents the value of asymbol and fun is
either af or sf; or, it substitutes v[aform[i, j]] in place of av(v[i],v[j]).

Needless to say, the functions sf, af and av can be redefined.

When the atensor package is loaded, the following flags are set:

dotscrules:true;
dotdistrib:true;
dotexptsimp:false;
If you wish to experiment with a nonassociative algebra, you may also consider setting

dotassoc to false. In this case, however, atensimp will not always be able to obtain the
desired simplifications.

30.2 Definitions for atensor

init_atensor (alg_type, opt_dims) Function
init_atensor (alg_type) Function

Initializes the atensor package with the specified algebra type. alg_type can be one of
the following:

universal: The universal algebra has no commutation rules.
grassmann: The Grassman algebra is defined by the commutation relation u.v+v.u=0.

clifford: The Clifford algebra is defined by the commutation relation u.v+v.u=-
2xsf (u,v) where sf is a symmetric scalar-valued function. For this algebra, opt_dims
can be up to three nonnegative integers, representing the number of positive, degenerate,
and negative dimensions of the algebra, respectively. If any opt_dims values are supplied,
atensor will configure the values of adim and aform appropriately. Otherwise, adim will
default to 0 and aform will not be defined.

symmetric: The symmetric algebra is defined by the commutation relation u.v-v.u=0.

symplectic: The symplectic algebra is defined by the commutation relation u.v-
v.u=2*af (u,v) where af is an antisymmetric scalar-valued function. For the symplectic
algebra, opt_dims can be up to two nonnegative integers, representing the nondegenerate
and degenerate dimensions, respectively. If any opt_dims values are supplied, atensor
will configure the values of adim and aform appropriately. Otherwise, adim will default
to 0 and aform will not be defined.

lie_envelop: The algebra of the Lie envelope is defined by the commutation relation
u.v-v.u=2*av(u,v) where av is an antisymmetric function.

The init_atensor function also recognizes several predefined algebra types:

complex implements the algebra of complex numbers as the Clifford algebra C1(0,1). The
call init_atensor (complex) is equivalent to init_atensor(clifford,0,0,1).

quaternion implements the algebra of quaternions. The call init_atensor(quaternion)
is equivalent to init_atensor(clifford,0,0,2).

pauli implements the algebra of Pauli-spinors as the Clifford-algebra C1(3,0). A call to
init_atensor(pauli) is equivalent to init_atensor(clifford,3).

dirac implements the algebra of Dirac-spinors as the Clifford-algebra CI(3,1). A call to
init_atensor(dirac) is equivalent to init_atensor(clifford,3,0,1).

atensimp (expr) Function

Simplifies an algebraic tensor expression expr according to the rules configured by a call
to init_atensor. Simplification includes recursive application of commutation relations
and resolving calls to sf, af, and av where applicable. A safeguard is used to ensure that
the function always terminates, even for complex expressions.



Chapter 30: atensor 271

alg_type Function
The algebra type. Valid values are universal, grassmann, clifford, symmetric,
symplectic and lie_envelop.

adim Variable
Default value: 0

The dimensionality of the algebra. atensor uses the value of adim to determine if an
indexed object is a valid base vector. See abasep.

aform Variable
Default value: ident(3)

Default values for the bilinear forms sf, af, and av. The default is the identity matrix
ident (3).

asymbol Variable
Default value: v

The symbol for base vectors..

sf (u, v) Function
A symmetric scalar function that is used in commutation relations. The default imple-
mentation checks if both arguments are base vectors using abasep and if that is the case,
substitutes the corresponding value from the matrix aform.

af (u, v) Function
An antisymmetric scalar function that is used in commutation relations. The default
implementation checks if both arguments are base vectors using abasep and if that is the
case, substitutes the corresponding value from the matrix aform.

av (u, v) Function
An antisymmetric function that is used in commutation relations. The default implemen-
tation checks if both arguments are base vectors using abasep and if that is the case,
substitutes the corresponding value from the matrix aform.
For instance:

(%i1) load(atensor);

(%o1) /share/tensor/atensor.mac

(%1i2) adim:3;

(%02) 3

(%i3) aform:matrix([0,3,-2],[-3,0,1]1,[2,-1,0]1);
[ O 3 -21
[ ]

(%03) [-3 0 1 ]
[ ]
[ 2 -1 0 1]

(%i4) asymbol:x;

(%04) x

(%iB) av(x[1],x[21);

(%05) x

3
abasep (v) Function

Checks if its argument is an atensor base vector. That is, if it is an indexed symbol, with
the symbol being the same as the value of asymbol, and the index having a numeric value
between 1 and adim.



272 Maxima Manual



Chapter 31: Series 273

31 Series

31.1 Introduction to Series

Maxima contains functions taylor and powerseries for finding the series of differentiable
functions. It also has tools such as nusum capable of finding the closed form of some series.
Operations such as addition and multiplication work as usual on series. This section presents
the global variables which control the expansion.

31.2 Definitions for Series

cauchysum Option variable
Default value: false

When multiplying together sums with inf as their upper limit, if sumexpand is true and
cauchysum is true then the Cauchy product will be used rather than the usual product.
In the Cauchy product the index of the inner summation is a function of the index of the
outer one rather than varying independently.

Example:

(%1i1) sumexpand: false$
(%1i2) cauchysum: false$
(%13) s: sum (£(i), i, O, inf) * sum (g(j), j, O, inf);

inf inf
\ \
(%03) ¢ > £(1)) > g(j)

S [N

.
]
(@]
.
]
o

(%1i4) sumexpand: true$
(%15) cauchysum: true$

(%i6) ’’s;
inf il
\ \
(%06) > > g(il - i2) £(i2)
/ /
i1 =012 =0
deftaylor (f.1(x_1), expr_1, ..., fn(x_n), expr_n) Function

For each function f_i of one variable x_i, deftaylor defines expr_i as the Taylor series about
zero. expr_i is typically a polynomial in x_i or a summation; more general expressions are
accepted by deftaylor without complaint.

powerseries (fii(x.i), x_i, 0) returns the series defined by deftaylor.

deftaylor returns a list of the functions f_1, ..., fn. deftaylor evaluates its arguments.
Example:
(%1i1) deftaylor (f(x), x"2 + sum(x"i/(27i*i!"2), i, 4, inf));
(%o1) [£]
(%12) powerseries (f(x), x, 0);
inf
\ X 2

(ho2) > mmm———o + x



274 Maxima Manual

/ i1 2
==== 2 il
il =4
(%i3) taylor (exp (sqrt (£(x))), x, 0, 4);
2 3 4
X 3073 x 12817 x
(%ho3)/T/ 1+ x+ =+ = + —mm——= + .
2 18432 307200
maxtayorder Option variable

Default value: true

When maxtayorder is true, then during algebraic manipulation of (truncated) Taylor
series, taylor tries to retain as many terms as are known to be correct.

niceindices (expr) Function

Renames the indices of sums and products in expr. niceindices attempts to re-
name each index to the value of niceindicespref[1], unless that name appears in
the summand or multiplicand, in which case niceindices tries the succeeding ele-
ments of niceindicespref in turn, until an unused variable is found. If the entire list

is exhausted, additional indices are constructed by appending integers to the value of
niceindicespref[1], e.g., 10, i1, 12, ....

niceindices returns an expression. niceindices evaluates its argument.

Example:
(%11) niceindicespref;
(%01) [i, j, k, 1, m, nl
(%12) product (sum (f (foo + i*j¥bar), foo, 1, inf), bar, 1, inf);
inf inf
J===\ ====
1 \
(%02) P! > f(bar i j + foo)
Il /
bar = 1 ====
foo =1
(%i3) niceindices (%);
inf inf
[===\ ====
PN
(%03) Lt > f(1j1+k)
I
1 =1 ====
k=1
niceindicespref Option variable

Default value: [i, j, k, 1, m, n]
niceindicespref is the list from which niceindices takes the names of indices for sums
and products.
The elements of niceindicespref are typically names of variables, although that is not
enforced by niceindices.
Example:

(%i1) niceindicespref: [p, q, r, s, t, ul$

(%12) product (sum (f (foo + ixj*bar), foo, 1, inf), bar, 1, inf);

inf inf
/=== ====
Lo \
(ho2) P > f(bar i j + foo)



Chapter 31: Series 275

I /
bar = 1 ====
foo =1
(%i3) niceindices (%);
inf inf
[===\ ====
AN
(%03) rroo> f(3 jq+p)
4
q=1====
p=1
nusum (expr, x, 1.0, i_1) Function

Carries out indefinite hypergeometric summation of expr with respect to x using a decision
procedure due to R.W. Gosper. expr and the result must be expressible as products of
integer powers, factorials, binomials, and rational functions.

The terms "definite" and "indefinite summation" are used analogously to "definite" and
"indefinite integration". To sum indefinitely means to give a symbolic result for the sum
over intervals of variable length, not just e.g. 0 to inf. Thus, since there is no formula for
the general partial sum of the binomial series, nusum can’t do it.

nusum and unsum know a little about sums and differences of finite products. See also
unsum.

Examples:

(%i1) nusum (n*n!, n, 0, n);

Dependent equations eliminated: (1)

(%o1) (n+ 1! -1
(%12) nusum (n"4*4°n/binomial(2*n,n), n, 0, n);
4 3 2 n
2 (n+1) (63n +112n +18n - 22 n + 3) 4 2
($02) ====—=—m e = e
693 binomial(2 n, n) 3117
(%i3) unsum (%, n);
4 n
n 4

2 R
binomial(2 n, n)
(%i4) unsum (prod (i"2, i, 1, n), n);
n-1

(hod) ( i) (m-1) (n+ 1)

(%i5) nusum (%, n, 1, n);

Dependent equations eliminated: (2 3)

n
/===
(I 2
(%05) rr i -1
o
i=1
pade (taylor_series, numer_deg_bound, denom_deg_bound) Function

Returns a list of all rational functions which have the given Taylor series expansion where
the sum of the degrees of the numerator and the denominator is less than or equal to the



276 Maxima Manual
truncation level of the power series, i.e. are "best" approximants, and which additionally
satisfy the specified degree bounds.
taylor_series is a univariate Taylor series. numer_deg_bound and denom_deg_bound are
positive integers specifying degree bounds on the numerator and denominator.
taylor_series can also be a Laurent series, and the degree bounds can be inf which
causes all rational functions whose total degree is less than or equal to the length of
the power series to be returned. Total degree is defined as numer_deg_bound + de-
nom_deg_bound. Length of a power series is defined as "truncation level" + 1 - min(0,
"order of series").

(%1i1) taylor (1 + x + x"2 + x73, x, 0, 3);
2 3
(ho1)/T/ 1+x+x +x + .
(%12) pade (%, 1, 1);
1
(%02) - -——- ]
x -1
(%13) t: taylor(-(83787*x~10 - 45552xx~9 - 187296*x"8
+ 387072%xx"7 + 86016*xx"6 - 1507328*x"5
+ 1966080*%x"4 + 4194304*x"3 - 25165824*x"2
+ 67108864%x - 134217728)
/134217728, x, 0, 10);
2 3 4 5 6 7
x 3x X 15 x 23 x 21 x 189 x
(h03)/T/ 1 = = + —=== = == = ——=—— 4 ————— =~ —
2 16 32 1024 2048 32768 65536
8 9 10
5853 x 2847 x 83787 x
+ —————— o — e +
4194304 8388608 134217728
(%i4) pade (t, 4, 4);
(%o4) (]
There is no rational function of degree 4 numerator/denominator, with this power series
expansion. You must in general have degree of the numerator and degree of the denomina-
tor adding up to at least the degree of the power series, in order to have enough unknown
coeflicients to solve.
(%15) pade (t, 5, 5);
5 4 3
(%05) [- (520256329 x - 96719020632 x - 489651410240 x
2
- 1619100813312 x - 2176885157888 x - 2386516803584)
5 4 3
/(47041365435 x + 381702613848 x + 1360678489152 x
2
+ 2856700692480 x + 3370143559680 x + 2386516803584)]
powerdisp Option variable

Default value: false

When powerdisp is true, a sum is displayed with its terms in order of increasing power.
Thus a polynomial is displayed as a truncated power series, with the constant term first
and the highest power last.

By default, terms of a sum are displayed in order of decreasing power.



Chapter 31: Series 277

powerseries (expr, x, a) Function
Returns the general form of the power series expansion for expr in the variable x about
the point a (which may be inf for infinity).
If powerseries is unable to expand expr, taylor may give the first several terms of the
series.
When verbose is true, powerseries prints progress messages.

(%i1) verbose: true$
(%12) powerseries (log(sin(x)/x), x, 0);
can’t expand

log(sin(x))
so we’ll try again after applying the rule:
d
/ —= (sin(x))
[ dx
log(sin(x)) = i ——————————- dx
1 sin(x)
/
in the first simplification we have returned:
/
L
i cot(x) dx - log(x)
]
/
inf
==== il 2 i1 2 i1
\ -1 2 bern(2 il1) x
> ______________________________
/ i1 (2 i1)!
i1 =1
(ho02)  mmmmmmmmm e
2
psexpand Option variable

Default value: false

When psexpand is true, an extended rational function expression is displayed fully ex-
panded. The switch ratexpand has the same effect.

When psexpand is false, a multivariate expression is displayed just as in the rational
function package.

When psexpand is multi, then terms with the same total degree in the variables are
grouped together.

revert (expr, x) Function
revert2 (expr, x, n) Function
These functions return the reversion of expr, a Taylor series about zero in the variable
x. revert returns a polynomial of degree equal to the highest power in expr. revert2
returns a polynomial of degree n, which may be greater than, equal to, or less than the
degree of expr.
load ("revert") loads these functions.
Examples:
(%1i1) load ("revert")$
(%1i2) t: taylor (exp(x) - 1, x, 0, 6);
2 3 4 5 6
X X X X X
(%02)/T/ X + == 4+ == + == + ——= + ——= 4+



278 Maxima Manual

2 6 24 120 720
(%i3) revert (t, x);
6 5 4 3 2
10x -12x +15x - 20x +30x -60%x
(%ho3)/R/ = ———m e
60
(%14) ratexpand (%) ;
6 5 4 3 2
X X x X X
(%o4) - —— = = =+ —— - — + X
6 5 4 3 2
(%i5) taylor (log(x+1), x, 0, 6);
2 3 4 5 6
x x X x x
(%05)/T/ X = == 4 == = —— 4 —— — —— 4
2 3 4 5 6
(%16) ratsimp (revert (t, x) - taylor (log(x+1), x, 0, 6));
(%06) 0
(hi7) revert2 (t, x, 4);

4 3 2
X X X
(hoT) - -+ - - -+ X
4 3 2
taylor (expr, x, a, n) Function
taylor (expr, [x_1, x_2, ...], a, n) Function
taylor (expr, [x, a, n, ‘asympl]) Function
taylor (expr, [x_1, x.2, ...], [a_1, a_2, ...], [n_-1, n_2, ...]) Function

taylor (expr, x, a, n) expands the expression expr in a truncated Taylor or Laurent
series in the variable x around the point a, containing terms through (x - a)“n.

If expr is of the form f(x)/g(x) and g(x) has no terms up to degree n then taylor
attempts to expand g(x) up to degree 2 n. If there are still no nonzero terms, taylor
doubles the degree of the expansion of g(x) so long as the degree of the expansion is less
than or equal to n 2 taylordepth.

taylor (expr, [x_1, x2, ...], a, n) returns a truncated power series of degree n in all
variables x_1, x_2, ... about the point (a, a, ...).

taylor (expr, [x_.1, a_1, n_11, [x.2, a_2, n_2], ...) returns a truncated power series
in the variables x_1, x_2, ... about the point (a_1, a_2, ...), truncated at n_1, n_2, ....
taylor (expr, [x_1, x2, ...], [a_l, a2, ...], [n_1, n_2, ...]) returns a truncated
power series in the variables x_1, x_2, ... about the point (a_1, a_2, ...), truncated at
n_l, n2 ..

taylor (expr, [x, a, n, ’asymp]) returns an expansion of expr in negative powers of x
- a. The highest order term is (x - a) ~-n.

When maxtayorder is true, then during algebraic manipulation of (truncated) Taylor
series, taylor tries to retain as many terms as are known to be correct.

When psexpand is true, an extended rational function expression is displayed fully ex-
panded. The switch ratexpand has the same effect. When psexpand is false, a multi-
variate expression is displayed just as in the rational function package. When psexpand
is multi, then terms with the same total degree in the variables are grouped together.
See also the taylor_logexpand switch for controlling expansion.

Examples:

(%11) taylor (sqrt (sin(x) + a*x + 1), x, 0, 3);
2 2
(a+1)x (a +2a+1)x

(%01)/T/ 1 + ——m—mmmmm —



Chapter 31: Series 279

2 8
3 2 3
(83a +9a +9a-1)x
e +
48
(%i2) %°2;
3
X
(%02)/T/ 1+ (@+1) x - -—+ .
6
(%13) taylor (sqrt (x + 1), x, 0, 5);
2 3 4 5
X X X 5 x 7 x
(%ho3)/T/ 1+ - = —— + == = ———— + ———— 4+ |

2 8 16 128 256
(%id) %~2;

(%o4)/T/ 1+ x + . .
(%i5) product ((1 + x"i)"2.5, i, 1, inf)/(1 + x72);
inf
/===
P 2.5
1 (x + 1)
Lo
i=1
(%oB) e
2
x + 1
(%16) ev (taylor(%, x, 0, 3), keepfloat);
2 3

(%086)/T/ 1 +2.5x+3.3765 x + 6.5625 x + .
(%17) taylor (1/log (x + 1), x, 0, 3);

2 3
1 1 X X 19 x
(%oT) /T/ R
X 2 12 24 720
(%18) taylor (cos(x) - sec(x), x, 0, B);
4
2 X
(%08)/T/ - X - =+ .
6
(%19) taylor ((cos(x) - sec(x))”3, x, 0, 5);
(%09)/T/ 0+ . . .
(%110) taylor (1/(cos(x) - sec(x))"3, x, 0, B);
2 4
1 1 11 347 6767 x 15377 x
(%010)/T/ = == 4+ === + ==m——— = e = e = e
6 4 2 15120 604800 7983360
X 2 x 120 x
+

(%111) taylor (sqrt (1 - k"2*sin(x)"2), x, 0, 6);
2 2 4 2 4
k x B3k -4k) x
(hot1)/T/ 1 - ———— = ————————————————
2 24



280 Maxima Manual

6 4 2 6
(45 k - 60k + 16 k ) x
- o ————— — — — — — — — —— — — — ————— —— — +
720
(%1i12) taylor ((x + 1)°n, x, 0, 4);
2 2 3 2 3
(n -mn) x (m -3n +2n)x
(h012)/T/ 1 + n x + ——————————= + mmmmmm oo
2 6
4 3 2 4
(n -6n +11n -6mn)x
e e +
24
(%113) taylor (sin (y + x), %, 0, 3, y, 0, 3);
3 2
y y
(ho13)/T/ y - —+ . . .+ A --—+...)x
6 2
3 2
y oy 2 1y 3
+(--+-—-+ .. )x +(-+-—-4+...)x +.
2 12 6 12
(%114) taylor (sin (y + x), [x, yl, 0, 3);
3 2 2 3
x +3yx +3y x+y
(%014)/T/ y + X = ————————————————————————— + .
6
(%115) taylor (1/sin (y + x), %, 0, 3, y, 0, 3);
1y 11 1 2
(%o15)/T/ -+ -+ . . .+ (-—+-+ . . D)x+(—+...)x
y 6 2 6 3
y y
1 3
+ (--—-+ .. ) x +.
4
y
(%116) taylor (1/sin (y + x), [x, yl, 0, 3);
3 2 2 3
1 x+y T7Tx +21yx +21y x+ 7y
(ho16)/T/ -———- + ————- Bt + .
x+y 6 360
taylordepth Option variable

Default value: 3

If there are still no nonzero terms, taylor doubles the degree of the expansion of g(x) so
long as the degree of the expansion is less than or equal to n 2" taylordepth.

taylorinfo (expr) Function
Returns information about the Taylor series expr. The return value is a list of lists.
Each list comprises the name of a variable, the point of expansion, and the degree of the
expansion.
taylorinfo returns false if expr is not a Taylor series.

Example:



Chapter 31: Series 281

(%1i1) taylor ((1 - y"2)/(1 - x), x, 0, 3, [y, a, infl);
2 2
(ho1)/T/ - (y-a) -2a(y-a + @ -a)

2 2
+(1-a -2a((y-a -(y-a)x

2 2 2
+(1-a -2a(y-a -(G-2a)x

2 2 3
+(1-a -2a(y-a -((-2a)x +.
(%12) taylorinfo(%);

(%02) [[y, a, inf], [x, 0, 3]]

taylorp (expr) Function
Returns true if expr is a Taylor series, and false otherwise.

taylor_logexpand Option variable
Default value: true

taylor_logexpand controls expansions of logarithms in taylor series.

When taylor_logexpand is true, all logarithms are expanded fully so that zero-
recognition problems involving logarithmic identities do not disturb the expansion pro-
cess. However, this scheme is not always mathematically correct since it ignores branch
information.

When taylor_logexpand is set to false, then the only expansion of logarithms that
occur is that necessary to obtain a formal power series.

taylor_order_coefficients Option variable
Default value: true

taylor_order_coefficients controls the ordering of coefficients in a Taylor series.

When taylor_order_coefficients is true, coefficients of taylor series are ordered
canonically.

taylor_simplifier (expr) Function
Simplifies coefficients of the power series expr. taylor calls this function.

taylor_truncate_polynomials Option variable
Default value: true

When taylor_truncate_polynomials is true, polynomials are truncated based upon the
input truncation levels.

Otherwise, polynomials input to taylor are considered to have infinite precison.

taytorat (expr) Function
Converts expr from taylor form to canonical rational expression (CRE) form. The effect
is the same as rat (ratdisrep (expr)), but faster.

trunc (expr) Function
Annotates the internal representation of the general expression expr so that it is displayed
as if its sums were truncated Taylor series. expr is not otherwise modified.

Example:
(%1i1) expr: x"2 + x + 1;

(%o1) x +x+1
(%i2) trunc (expr);



282 Maxima Manual

2

(%02) 1+x+x + .

(%13) is (expr = trunc (expr));

(%03) true

unsum (f, n) Function

Returns the first backward difference f (n) - f(n - 1). Thus unsum in a sense is the inverse
of sum.
See also nusum.
Examples:

(%i1) g(p) := p*4~"n/binomial (2*n,n);

n
p 4
(%o1) glp) = ———————mm————-

(%12) g(n~4);

(%02)  mmmmmmmm—e e

binomial(2 n, n)
(%i3) nusum (%, n, 0, n);

4 3 2 n
2 (n+1) (63n +112n +18n -22n + 3) 4 2
(%03) ———————————————————— e
693 binomial(2 n, n) 3117
(%i4) unsum (%, n);
4 n
n 4
(hod)  mmmmmm————
binomial(2 n, n)
verbose Option variable

Default value: false
When verbose is true, powerseries prints progress messages.



Chapter 32: Number Theory 283

32 Number Theory

32.1 Definitions for Number Theory

bern (n) Function
Returns the n’th Bernoulli number for integer n. Bernoulli numbers equal to zero are
suppressed if zerobern is false.

See also burn.

(%il1) zerobern: true$
(%i2) map (berm, [0, 1, 2, 3, 4, 5, 6, 7, 81);
1 1 1 1 1

(%02) t, - -,-,0, ---,0, —, 0, - -]
2 6 30 42 30
(%13) zerobern: false$
(%14) map (bern, [0, 1, 2, 3, 4, 5, 6, 7, 81);

1 1 1 5 691 7 3617 43867
(%od) [1, -

e e e e e e e ]

b b b b b b

6 30 66 2730 6 510 798

2
bernpoly (x, n) Function
Returns the n’th Bernoulli polynomial in the variable x.

bfzeta (s, n) Function
Returns the Riemann zeta function for the argument s. The return value is a big float
(bfloat); n is the number of digits in the return value.

load ("bffac") loads this function.

bfhzeta (s, h, n) Function
Returns the Hurwitz zeta function for the arguments s and h. The return value is a big
float (bfloat); n is the number of digits in the return value.
The Hurwitz zeta function is defined as
sum ((k+h)~-s, k, O, inf)
load ("bffac") loads this function.

binomial (x, y) Function
The binomial coefficient x!/(y! (x - y)!). If x and y are integers, then the numerical
value of the binomial coefficient is computed. If y, or x - y, is an integer, the binomial
coefficient is expressed as a polynomial.

Examples:
(%i1) binomial (11, 7);
(%01) 330
(%i2) 111 /70 / (11 - DY,
(%02) 330

(%13) binomial (x, 7);
(x-6) (x-58) x-4 x-3) x-2) x-1)x
(ho3) mmmm

(%i4) binomial (x + 7, x);
(x+1) (x+2) (x+3) (x+4) (x+5) (x+6) (x+7)
(04 = m e e

(%15) binomial (11, y);
(%05) binomial(11, y)



284 Maxima Manual

burn (n) Function
Returns the n’th Bernoulli number for integer n. burn may be more efficient than bern
for large, isolated n (perhaps n greater than 105 or so), as bern computes all the Bernoulli
numbers up to index n before returning.

burn exploits the observation that (rational) Bernoulli numbers can be approximated by
(transcendental) zetas with tolerable efficiency.

load ("bffac") loads this function.

cf (expr) Function
Converts expr into a continued fraction. expr is an expression comprising continued
fractions and square roots of integers. Operands in the expression may be combined with
arithmetic operators. Aside from continued fractions and square roots, factors in the
expression must be integer or rational numbers. Maxima does not know about operations
on continued fractions outside of cf.

cf evaluates its arguments after binding listarith to false. cf returns a continued
fraction, represented as a list.

A continued fraction a + 1/(b + 1/(c + ...)) is represented by the list [a, b, ¢, ...].
The list elements a, b, c, ... must evaluate to integers. expr may also contain sqrt (n)
where n is an integer. In this case cf will give as many terms of the continued fraction as
the value of the variable cflength times the period.

A continued fraction can be evaluated to a number by evaluating the arithmetic represen-
tation returned by cfdisrep. See also cfexpand for another way to evaluate a continued
fraction.

See also cfdisrep, cfexpand, and cflength.
Examples:
e expr is an expression comprising continued fractions and square roots of integers.
(%i1) cf ([5, 3, 11*[11, 9, 7] + [3, 71/[4, 3, 2]);

(%o1) [59, 17, 2, 1, 1, 1, 27]
(%12) cf ((3/17)*[1, -2, 5]1/sqrt(11) + (8/13));
(%02) o, 1, 1,1, 3, 2, 1, 4, 1, 9, 1, 9, 2]

e cflength controls how many periods of the continued fraction are computed for
algebraic, irrational numbers.

(%1i1) cflength: 1$

(%i2) cf ((1 + sqrt(5))/2);

(%o2) (1, 1, 1, 1, 2]

(%13) cflength: 2%

(%i4) cf ((1 + sqrt(5))/2);

(%o4) (4, 1, 1, 1,1, 1, 1, 2]

(%15) cflength: 3$

(%i6) cf ((1 + sqrt(5))/2);

(%06) (1, 1,1, 1, 1,1, 1,1, 1, 1, 2]
e A continued fraction can be evaluated by evaluating the arithmetic representation

returned by cfdisrep.

(%11) cflength: 3$

(%i2) cfdisrep (cf (sqrt (3)))$

(%1i3) ev (%, numer);

(%03) 1.731707317073171

e Maxima does not know about operations on continued fractions outside of cf.
(%i1) cf ([1,1,1,1,1,2] * 3);
(hol) (4, 1, 5, 2]
(%i2) cf ([1,1,1,1,1,2]) * 3;
(ho2) [3, 3, 3, 3, 3, 6]



Chapter 32: Number Theory 285

cfdisrep (list) Function
Constructs and returns an ordinary arithmetic expression of the form a + 1/(b + 1/(c +
...)) from the list representation of a continued fraction [a, b, ¢, ...].
(%i1) cf ([1, 2, -3] + [1, -2, 11);
(%o1) (1, 1, 1, 2]
(%i2) cfdisrep (%);
1
(ho2) 1+ -
1
1+ ————-
1
1+ -
2
cfexpand (x) Function

Returns a matrix of the numerators and denominators of the last (column 1) and next-
to-last (column 2) convergents of the continued fraction x.

(%i1) cf (rat (ev (%pi, numer)));

‘rat’ replaced 3.141592653589793 by 103993//33102 = 3.141592653011902
(hol) [3, 7, 15, 1, 292]
(%i2) cfexpand (%);
[ 103993 355 ]
(%02) [ ]
[ 33102 113 ]
(%13) %[1,11/%[2,1], numer;
(%03) 3.141592653011902

cflength Option variable
Default value: 1

cflength controls the number of terms of the continued fraction the function cf will give,
as the value cflength times the period. Thus the default is to give one period.

(%11) cflength: 1$

(%12) cf ((1 + sqrt(5))/2);

(%02) 1, 1, 1, 1, 2]

(%13) cflength: 2%

(%1i4) cf ((1 + sqrt(5))/2);

(%o4) (4, ¢, 1, 1,1, 1, 1, 2]
(%15) cflength: 3$

(%i6) cf ((1 + sqrt(5))/2);

(%06) (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2]

divsum (n, k) Function
divsum (n) Function
divsum (n, k) returns the sum of the divisors of n raised to the k’th power.

divsum (n) returns the sum of the divisors of n.
(%i1) divsum (12);

(%o1) 28
(%i2) 1 + 2 + 3 + 4 + 6 + 12;
(%02) 28
(%1i3) divsum (12, 2);

(%03) 210

(%id) 172 + 272 + 372 + 472 + 672 + 1272;
(%hod) 210



286 Maxima Manual

euler (n) Function
Returns the n’th Euler number for nonnegative integer n.

For the Euler-Mascheroni constant, see %gamma.

(%11) map (euler, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
(%hol) (1, 0, -1, 0, 5, 0, - 61, 0, 1385, 0, - 50521]

Y% gamma Constant
The Euler-Mascheroni constant, 0.5772156649015329 ...

factorial (x) Function
Represents the factorial function. Maxima treats factorial (x) the same as x!. See !.

fib (n) Function
Returns the n’th Fibonacci number. £ib(0) equal to 0 and £fib(1) equal to 1, and fib
(-n) equal to (1)~ (n + 1) * £fib(n).

After calling £ib, prevfib is equal to £ib (x - 1), the Fibonacci number preceding the
last one computed.

(%i1) map (fib, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
(ho1) o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

fibtophi (expr) Function
Expresses Fibonacci numbers in terms of the constant %phi, which is (1 + sqrt(5))/2,
approximately 1.61803399.

By default, Maxima does not know about %phi. After executing tellrat (%phi~2 - %phi
- 1) and algebraic: true, ratsimp can simplify some expressions containing %phi.

(%i1) fibtophi (fib (n));

n n
%phi - (1 - %phi)
(Jod)
2 J%phi - 1
(%i2) fib (n-1) + fib (n) - fib (n+1);
(%ho2) - fib(n + 1) + fib(n) + fib(n - 1)
(%i3) ratsimp (fibtophi (%));
(%03) 0
inrt (x, n) Function

Returns the integer n’th root of the absolute value of x.

(%i1) 1: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]%
(%i2) map (lambda ([al, inrt (107a, 3)), 1);
(ho2) [2, 4, 10, 21, 46, 100, 215, 464, 1000, 2154, 4641, 10000]

jacobi (p, q) Function
Returns the Jacobi symbol of p and q.

(%i1) 1: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]%
(%12) map (lambda ([al, jacobi (a, 9)), 1);
(ho2) (1, 1, 0,1, 1,0, 1,1, 0,1, 1, 0]

lem (expr_1, ..., expr_n) Function
Returns the least common multiple of its arguments. The arguments may be general
expressions as well as integers.

load ("functs") loads this function.



Chapter 32: Number Theory 287

minfactorial (expr) Function
Examines expr for occurrences of two factorials which differ by an integer. minfactorial
then turns one into a polynomial times the other.

(%i1) n'/(m+2)!;

n!
(hot) ===
(n + 2)!
(%i2) minfactorial (%);
1
(%ho2)  mmmmmmmmee e
(n+1) (n+2)
partfrac (expr, var) Function

Expands the expression expr in partial fractions with respect to the main variable var.
partfrac does a complete partial fraction decomposition. The algorithm employed is
based on the fact that the denominators of the partial fraction expansion (the factors of
the original denominator) are relatively prime. The numerators can be written as linear
combinations of denominators, and the expansion falls out.

(hi1) 1/(1+x)72 - 2/(1+x) + 2/(2+x);

2 2 1
(hotd) === = e + ———————
x + 2 x + 1 2
(x + 1)
(%1i2) ratsimp (%) ;
X
(%ho02) -
3 2

x +4x +5zx+2
(%i3) partfrac (%, x);

(%h03)  mmmmm = e + mmmmmms

primep (n) Function
Returns true if n is a prime, false if not.

qunit (n) Function
Returns the principal unit of the real quadratic number field sqrt (n) where n is an
integer, i.e., the element whose norm is unity. This amounts to solving Pell’s equation a~2

-nb"2=1
(%11) qunit (17);
(hol) sqrt(17) + 4
(%12) expand (% * (sqrt(17) - 4));
(ho2) 1
totient (n) Function

Returns the number of integers less than or equal to n which are relatively prime to n.

zerobern Option variable
Default value: true

When zerobern is false, bern excludes the Bernoulli numbers which are equal to zero.
See bern.



288 Maxima Manual

zeta (n) Function
Returns the Riemann zeta function if x is a negative integer, 0, 1, or a positive even
number, and returns a noun form zeta (n) for all other arguments, including rational
noninteger, floating point, and complex arguments.

See also bfzeta and zetalpi.
(%11) map (zeta, [-4, -3, -2, -1, 0, 1, 2, 3, 4, 5]);
2 4
1 1 1 Ypi Ypi
(%o1) [0, ---, 0, - ==, - -, inf, -—-——, zeta(3), ----, zeta(5)]
120 12 2 6 90

zeta%pi Option variable
Default value: true
When zetalpi is true, zeta returns an expression proportional to %pi~n for even integer
n. Otherwise, zeta returns a noun form zeta (n) for even integer n.

(%11) zetalpi: true$
(%i2) zeta (4);

%pi
(%02) -——-
90
(%1i3) zetalpi: false$
(%i4) =zeta (4);
(%hod) zeta(4)



Chapter 33: Symmetries 289

33 Symmetries

33.1 Definitions for Symmetries

comp2pui (n, I) Function
re’alise le passage des fonctions syme’triques comple‘tes, donnee’s dans la liste I, aux
fonctions syme’triques e’le’'mentaires de 0 a‘ n. Si la liste I contient moins de n+1 e’le’'ments
les valeurs formelles viennent la completer. Le premier e’le’'ment de la liste I donne le
cardinal de I'alphabet si il existe, sinon on le met e’gal a n.

(%i1) comp2pui (3, [4, gl);
2 2
(%o1) [4, g, 2h2 - g, 3h3 -gh2+g (g - 2 h2)]

cont2part (pc, Ivar) Function

rend le polyno~me partitionne’ associe’ a‘ la forme contracte’e pc dont les variables sont
dans Ivar.

(%11) pc: 2*xa”3*xb*x"4xy + x75;

3 4 5
(ho1) 2a bx y+x
(%1i2) cont2part (pc, [x, y1);
3
(%02) [[1, 5, 0], [2 a b, 4, 11]

Autres fonctions de changements de repre’sentations :

contract, explose, part2cont, partpol, tcontract, tpartpol.

contract (psym, Ivar) Function

rend une forme contracte’e (i.e. un mono“me par orbite sous laction du groupe
syme’trique) du polyno~me psym en les variables contenues dans la liste Ivar. La fonction
explose re’alise 'ope’ration inverse. La fonction tcontract teste en plus la syme’trie du
polyno~me.

(%11) psym: explose (2*a”3xbxx"4*y, [x, y, z]);

3 4 3 4 3 4 3 4
(Jol) 2a byz +2a bxz +2a by z+2a bzx z

3 4 3 4
+2a bxy +2a bx y
(%12) contract (psym, [x, y, z]);
3 4
(%ho2) 2a bx y

Autres fonctions de changements de repre’sentations :
cont2part, explose, part2cont, partpol, tcontract, tpartpol.

direct ([p-1, ..., p-n], y, f, [lvar_1, ..., Ivar_n]) Function
calcul 'image directe (voir M. GIUSTI, D. LAZARD et A. VALIBOUZE, ISSAC 1988,
Rome) associe’e a‘ la fonction f, en les listes de variables Ivar_1, ..., Ivar_n, et aux
polyno~mes p_I1, ..., p-n d’une variable y. l’arite’ de la fonction f est importante pour
le calcul. Ainsi, si 'expression de f ne depend pas d’une variable, non seulement il est
inutile de donner cette variable mais cela diminue conside’rablement lees calculs si on ne
le fait pas.

(%i1) direct ([z"2 - el*x z + e2, z°2 - fi1x z + f2],
z, bxv + axu, [[u, v], [a, bl]l);
2
(hol) y - el f1 y



290

Maxima Manual

2 2 2 2
-4e2f2- (el -2e2) (f1 -2 £2) +el f1
e
2
(%i2) ratsimp (%);
2 2 2
(%02) y —el fl y + (el -4 e2) f2 + e2 f1

(%13) ratsimp (direct ([z"3-el*z"2+e2*z-e3,z"2 - flx z + f2],
z, bxv + axu, [[u, v]l, [a, bl1));
6 5 2 2 2 4
(ho3) vy - 2el fly + ((2 el -6e2) f2 + (2 e2 + el ) f1) y

3 3 3
+ ((9e3 +5ele2-2el) fl f2 + (-2 e3 -2ele2) f1) y

2 2 4 2
+ ((9e2 -6¢el e2 +el) f2

2 2 2 2 4
+ (-9 el e3 -6e2 +3el e2) f1 f2 + (2 el e3 + e2 ) f1)

2 2 2 3 2
y + (((9 el -27e2) e3 +3 el e2 - el e2) fl f2

2 2 3 5
+ ((15e2 -2el ) e3 -el e2) f1 f2 -2e2e3 f1) y

2 3 3 2 2 3
+ (- 27 e3 + (18 el e2 -4 el ) e3 -4 e2 + el e2 ) f2

2 3 3 2 2
+ (27 e3 + (el -9 el e2) e3 + e2 ) f1 f2

2 4 2 6
+ (el e2 e3 - 9 e3 ) f1 £f2 + e3 f1

Recherche du polyno~me dont les racines sont les somme a+u ou a est racine de z°2 - el*
z + €2 et u est racine de z°2 - f1* z + {2

(%i1) ratsimp (direct ([z°2 - el* z + e2, z"2 - filx z + f2],
z, a+u, [[ul, [al]));
4 3 2
(%o1) y o+ (-2 f1 - 2 el) y o+ (2 f2 + f1 + 3 el f1 + 2 e2

2 2 2 2
+el )y + ((-2f1-2¢el) f2 - el f1 + (- 2 e2 - el ) f1

2 2 2
- 2ele2) y+£f2 + (el f1 -2 e2 +el ) f2 + e2 f1 + el e2 f1

2
+ e2

direct peut prendre deux drapeaux possibles : elementaires et puissances (valeur
par de’faut) qui permettent de de’composer les polyno~mes syme’triques apparaissant
dans ce calcul par les fonctions syme’triques e’le’'mentaires ou les fonctions puissances
respectivement.

Fonctions de sym utilis’ees dans cette fonction :



Chapter 33: Symmetries 291

multi_orbit (donc orbit), pui_direct, multi_elem (donc elem), multi_pui (donc
pui), pui2ele, ele2pui (si le drapeau direct est a‘ puissances).

ele2comp (m, I) Function
passe des fonctions syme’triques e’le’'mentaires aux fonctions comple‘tes. Similaire a‘
comp2ele et comp2pui.
Autres fonctions de changements de bases :
comp2ele, comp2pui, ele2pui, elem, mon2schur, multi_elem, multi_pui, pui,
puiZcomp, puiZele, puireduc, schur2comp.

ele2polynome (I, z) Function
donne le polyno“me en z dont les fonctions syme’triques e’le’mentaires des racines sont
dans la liste I. 1= [n, e_1, ..., e.n] ou' n est le degre’ du polyno~me et e_i la i-ie‘me

fonction syme’trique e’le’mentaire.
(%11) ele2polynome ([2, el, e2], z);

2
(%o1) z -elz + e2
(%12) polynome2ele (x°7 - 14%x75 + 56%x"3 - 56%x + 22, x);
(%ho02) [7, 0, - 14, 0, 56, 0, - 56, - 22]
(%13) ele2polynome ([7, O, -14, 0, 56, 0, -56, -22], x);
7 5 3
(%03) x - 14 x +56x -56x+ 22

La re’ciproque: polynome2ele (P, z)
Autres fonctions a‘ voir :
polynome2ele, pui2polynome.

ele2pui (m, I) Function
passe des fonctions syme’triques e’le’'mentaires aux fonctions comple‘tes. Similaire a‘
comp2ele et comp2pui.

Autres fonctions de changements de bases :

comp2ele, comp2pui, ele2comp, elem, mon2schur, multi_elem, multi_pui, pui,
puiZcomp, pui2ele, puireduc, schur2comp.

elem (ele, sym, Ivar) Function

de’compose le polyno~me syme’trique sym, en les variables contenues de la liste Ivar, par
les fonctions syme’triques e’le’'mentaires contenues dans la liste ele. Si le premier e’le’ment
de ele est donne’ ce sera le cardinal de ’alphabet sinon on prendra le degre’ du polyno~me
sym. Si il manque des valeurs a‘ la liste ele des valeurs formelles du type "ei" sont
rajoute’es. Le polyno~me sym peut etre donne’ sous 3 formes diffe’rentes : contracte’e
(elem doit alors valoir 1 sa valeur par de’faut), partitionne’e (elem doit alors valoir 3) ou
e’tendue (i.e. le polyno~me en entier) (elem doit alors valoir 2). L’utilsation de la fonction
pui se re’alise sur le me“me mode‘le.
Sur un alphabet de cardinal 3 avec el, la premie‘re fonction syme’trique e’le’'mentaire,
valant 7, le polyno~me syme’trique en 3 variables dont la forme contracte’e (ne de’pendant
ici que de deux de ses variables) est x"4-2*x*y se de’compose ainsi en les fonctions
syme’triques e’le’'mentaires :

(%11) elem ([3, 71, x~4 - 2*xxy, [x, y1);

(%01) 7 (e3 = 7 €2 + 7 (49 - e2)) + 21 &3

+ (-2 (49 - e2) - 2) e2
(%i2) ratsimp (%);
2
(%02) 28 e3 + 2 e2 - 198 e2 + 2401
Autres fonctions de changements de bases :
comp2ele, comp2pui, ele2comp, ele2pui, mon2schur, multi_elem, multi_pui, pui,
pui2comp, pui2ele, puireduc, schur2comp.



292 Maxima Manual

explose (pc, lvar) Function
rend le polyno~me syme’trique associe’ a‘ la forme contracte’e pc. La liste Ivar contient
les variables.

(%1i1) explose (axx + 1, [x, y, z1);
(ho1) az+ay+ax+1

Autres fonctions de changements de repre’sentations :
contract, cont2part, part2cont, partpol, tcontract, tpartpol.

kostka (part_1, part_2) Function
e’crite par P. ESPERET, calcule le nombre de Kostka associe’ aux partition part_1 et
part_2.
(%i1) kostka ([3, 3, 31, [2, 2, 2, 1, 1, 11);
(%01) 6
lgtreillis (n, m) Function

rend la liste des partitions de poids n et de longueur m.
(%i1) lgtreillis (4, 2);
(%o1) (s, 11, [2, 2]]

Voir e’galement : 1treillis, treillis et treinat.

ltreillis (n, m) Function
rend la liste des partitions de poids n et de longueur infe’rieure ou e’gale a‘ m.

(%1i1) ltreillis (4, 2);
Cho1) [[4, 0], [3, 11, [2, 2]1]

Voir e’galement : 1gtreillis, treillis et treinat.

mon2schur (I) Function

la liste I repre’sente la fonction de Schur S_I: Ona l = [i_1,i.2, ..., i_q] avec i_] <= .2 <=

. <= i_.q. La fonction de Schur est S_[i_1, i_2, ..., i_q| est le mineur de la matrice infinie
(h{i-j}) i >= 1, j >= 1 compose’ des q premie‘res lignes et des colonnes i_1 + 1, i.2 + 2,
., I.g+q.
On e’crit cette fonction de Schur en fonction des formes monomiales en utilisant les fonc-
tions treinat et kostka. La forme rendue est un polyno~me syme’trique dans une de ses
repre’sentations contracte’es avec les variables x_1, x 2, ....

(%i1) mon2schur ([1, 1, 1]);
(%o1) x1 x2 x3
(%i2) mon2schur ([3]);

2 3
(%02) x1 x2 x3 + x1 x2 + x1
(%1i3) mon2schur ([1, 2]);
2
(%03) 2 x1 x2 x3 + x1 %2

ce qui veut dire que pour 3 variables cela donne :

2 x1 x2 x3 + x172 x2 + x272 x1 + x172 x3 + x372 x1
+ x272 x3 + x372 x2

Autres fonctions de changements de bases :

comp2ele, comp2pui, ele2comp, ele2pui, elem, multi_elem, multi_pui, pui, pui2comp,
puiZ2ele, puireduc, schur2comp.

multi_elem (Lelem, multi_pc, l_var) Function
de’compose un polyno~me multi-syme’trique sous la forme multi-contracte’e multi_pc en
les groupes de variables contenue dans la liste de listes Ivar sur les groupes de fonctions
syme’triques e’le’'mentaires contenues dans I_elem.



Chapter 33: Symmetries 293

(%i1) multi_elem ([[2, el, e2], [2, f1, f2]], a*x + a"2 + x°3, [[x, yl, [a, bl]
3
(%o1) -2 f2+ f1 (f1 + el) - 3 el e2 + el
(%i2) ratsimp (%) ;
2 3
(%02) -2 f2+ fl + el f1 - 3 el e2 + el
Autres fonctions de changements de bases :
comp2ele, comp2pui, ele2comp, ele2pui, elem, mon2schur, multi_pui, pui, pui2comp,
pui2ele, puireduc, schur2comp.

multi_orbit (P, [lvar_1, Ivar_2, ..., Ivar_p]) Function
P est un polyno“me en ’ensemble des variables contenues dans les listes Ivar_1, Ivar_2,
..., Ivar_p. Cette fonction rame‘ne l'orbite du polyno“me P sous ’action du produit des
groupes syme’triques des ensembles de variables repre’sente’s par ces p listes.

(%i1) multi_orbit (a*x + bxy, [[x, yl, [a, bll);

(%o1) [by+ax, ay+bxl]
(%i2) multi_orbit (x + y + 2xa, [[x, y], [a, b, c]11);
(%02) [y+x+2c, y+x+2Db, y+x+2al

Voir e’'galement : orbit pour 'action d’un seul groupe syme’trique.

multi_pui Function
est a‘ la fonction pui ce que la fonction multi_elem est a‘ la fonction elem.

(%i1) multi_pui ([[2, p1l, p2], [2, t1, t2]], a*xx + a~2 + x°3, [[x, yl, [a, bl])

3
3 pl p2 pl
(hol) t2 + pl t1 + ——————= - ——-
2 2
multinomial (r, part) Function
ou‘ r est le poids de la partition part. Cette fonction rame‘ne le coefficient multinomial
associe’ : si les parts de la partitions part sont i_1, i_2, ..., i_k, le re’sultat de multinomial
est r!t/@i 1Y i20 ... ik!).
multsym (ppart_1, ppart_2, n) Function

re’alise le produit de deux polyno~mes syme’triques de n variables en ne travaillant
que modulo I'action du groupe syme’trique d’ordre n. Les polyno~mes sont dans leur
repre’sentation partitionne’e.
Soient les 2 polyno~mes syme’triques en x, y: 3*(x + y) + 2*xxy et 5%(x"2 + y~2) dont
les formes partitionne’es sont respectivement [[3, 1], [2, 1, 1]1] et [[5, 211, alors leur
produit sera donne’ par :

(%i1) multsym ([[3, 1], [2, 1, 111, [[5, 2171, 2);

(hot) ([10, 3, 1], [15, 3, 0], [15, 2, 1]]
soit 10* (x"3*y + y~3*x) + 15*(x"2xy + y~2*x) + 16%(x"3 + y~3).
Fonctions de changements de repre’sentations d’un polyno~me syme’trique :
contract, cont2part, explose, part2cont, partpol, tcontract, tpartpol.

orbit (P, Ivar) Function
calcul l'orbite du polyno™me P en les variables de la liste Ivar sous l’action du groupe
syme’trique de I’ensemble des variables contenues dans la liste Ivar.
(%i1) orbit (axx + bxy, [x, yl1);
(ho1) [ay+Dbx, by + ax]
(%12) orbit (2*x + x72, [x, y1);
2 2
(ho2) [y +2vy, x + 2 x]
Voir e’'galement : multi_orbit pour 'action d’un produit de groupes syme’triques sur un
polyno~me.



294 Maxima Manual

part2cont (ppart, lvar) Function

passe de la forme partitionne’e a‘ la forme contracte’e d’un polyno~me syme’trique. La
forme contracte’e est rendue avec les variables contenues dans Ivar.

(%i1) part2cont ([[2*a~3xb, 4, 111, [x, y1);

3 4

(ho1) 2a bx y
Autres fonctions de changements de repre’sentations :
contract, cont2part, explose, partpol, tcontract, tpartpol.

partpol (psym, Ivar) Function
psym est un polyno~me syme’trique en les variables de Ivar. Cette fonction rame‘ne sa
repre’sentation partitionne’e.
(%11) partpol (-ax(x + y) + 3xx*y, [x, yl);
(hol) (s, 1, 11, [- a, 1, 0]]
Autres fonctions de changements de repre’sentations :
contract, cont2part, explose, part2cont, tcontract, tpartpol.

permut (I) Function
rame‘ne la liste des permutations de la liste L

polynomez2ele (P, x) Function
donne la liste I = [n, e_1, ..., e.n] ou' n est le degre’ du polyno"me P en la variable x
et e_i la i-ieme fonction syme’trique e’le’'mentaire des racines de P.

(%11) polynome2ele (x°7 - 14xx"5 + B6%x"3 - 56%x + 22, x);

(%hol) [7, o, - 14, 0, 56, 0, - 56, - 22]

(%i2) ele2polynome ([7, O, -14, 0, 56, 0, -56, -22], x);
7 5 3

(%ho2) x - 14 x +56x -56zx+ 22

La re’ciproque : ele2polynome (I, x)

prodrac (I, k) Function
I est une liste contenant les fonctions syme’triques e’le’'mentaires sur un ensemble A.
prodrac rend le polyno~me dont les racines sont les produits k a‘ k des e’le’'ments de A.

pui (I, sym, Ivar) Function

de’compose le polyno~me syme’trique sym, en les variables contenues de la liste Ivar, par
les fonctions puissances contenues dans la liste I. Si le premier e’le’'ment de I est donne’ ce
sera le cardinal de I’alphabet sinon on prendra le degre’ du polyno~me sym. Si il manque
des valeurs a‘ la liste I, des valeurs formelles du type "pi" sont rajoute’es. Le polyno~me
sym peut etre donne’ sous 3 formes diffe’rentes : contracte’e (pui doit alors valoir 1 sa
valeur par de’faut), partitionne’e (pui doit alors valoir 3) ou e’tendue (i.e. le polyno~me
en entier) (pui doit alors valoir 2). La fonction elem s’utilise de la me~me manie‘re.

(%i1) pui;

(%o1) 1
(%i2) pui ([3, a, bl, uwrx*y*z, [x, y, z]);
2
a(a -b)u (ab-p3)u
(%ho2) s
6 3
(%13) ratsimp (%);
3

ho3) e

Autres fonctions de changements de bases :

comp2ele, comp2pui, ele2comp, ele2pui, elem, mon2schur, multi_elem, multi_pui,
pui2comp, pui2ele, puireduc, schur2comp.



Chapter 33: Symmetries 295

pui2comp (n, Ipui) Function
rend la liste des n premie‘res fonctions comple‘tes (avec en te~te le cardinal) en fonction
des fonctions puissance donne’es dans la liste Ipui. Si la liste Ipui est vide le cardinal est
N sinon c’est son premier e’le’'ment similaire a‘ comp2ele et comp2pui.

(%i1) pui2comp (2, [1);

2
p2 + pil
(%o1) 2, pt, ——————-- ]
2
(%12) pui2comp (3, [2, all);
2
al (p2 + al )
2 p3+ ————————————- + al p2
p2 + al 2
(%02) [2, al, —-—-—————- , T ]
2 3
(%i3) ratsimp (%) ;
2 3
p2 + al 2 p3+ 3 al p2 + al
(%03) [2, a1, —————-——- , TTmmmmm———m————————— ]
2 6

Autres fonctions de changements de bases :

comp2ele, comp2pui, ele2comp, ele2pui, elem, mon2schur, multi_elem, multi_pui,
pui, pui2ele, puireduc, schur2comp.

pui2ele (n, Ipui) Function
re’alise le passage des fonctions puissances aux fonctions syme’triques e’le’mentaires. Si le
drapeau pui2ele est girard, on re’cupe‘re la liste des fonctions syme’triques e’le’mentaires
de 1 a‘ n, et s’il est e€’gal a‘ close, la n-ie‘'me fonction syme’trique e’le’mentaire.
Autres fonctions de changements de bases :

comp2ele, comp2pui, ele2comp, ele2pui, elem, mon2schur, multi_elem, multi_pui,
pui, pui2comp, puireduc, schur2comp.

pui2polynome (x, Ipui) Function

calcul le polyno™me en x dont les fonctions puissances des racines sont donne’es dans la
liste Ipui.

(%11) pui;

(%hol) 1

(%1i2) kill(labels);

(%00) done

(%1i1) polynome2ele (x°3 - 4*x"2 + b*x - 1, x);

(%o1) (3, 4, 5, 1]

(%i2) ele2pui (3, %);

(%ho2) (3, 4, 6, 7]

(%i3) pui2polynome (x, %);

3 2
(%03) x -4x +5x-1

Autres fonctions a‘ voir : polynome2ele, ele2polynome.

pui_direct (orbite, [lvar_1, ..., Ivar_n], [d_1, d_2, ..., d_n]) Function
Soit f un polynome en n blocs de variables Ivar_1, ..., Ivar_n. Soit c_i le nombre de variables
dans Ivar_i . Et SC' le produit des n groupes syme’triques de degre’ c_1, ..., c.n. Ce groupe

agit naturellement sur f. La liste orbite est 'orbite, note’e SC(f), de la fonction f sous
l'action de SC. (Cette liste peut e”tre obtenue avec la fonction : multi_orbit). Les di
sont des entiers tels que c_1 <= d_1, ¢.2 <= d_2, ..., c.n <= d_n. Soit SD le produit des
groupes syme’triques S_d1 x S_-d2 x ... x S_dn.



296 Maxima Manual

La fonction pui_direct rame‘ne les n premie‘res fonctions puissances de SD (f) de’duites
des fonctions puissances de SC(f) ou‘ n est le cardinal de SD(f).

Le re’sultat est rendue sous forme multi-contracte’e par rapport a SD. i.e. on ne conserve
qu’un €e’le’'ment par orbite sous 'action de SD).

(%i1) 1: [[x, yl, [a, b1];

(%o1) [[x, yl, [a, bl]
(%12) pui_direct (multi_orbit (axx + bx*y, 1), 1, [2, 2]);
2 2
(ho2) [ax,4abxy+a x]
(%13) pui_direct (multi_orbit (a*xx + bxy, 1), 1, [3, 2]);
2 2 2 2 3 3

(%03) [2ax,4abxy+2a x,3a bx y+2a x,

2 2 2 2 3 3 4 4
12a b x y +4a bx y+2a x,

3 2 3 2 4 4 5 5
10a b x y +5a bx y+2a x,

3 3 3 3 4 2 4 2 5 5 6 6
40a b x y +156a b x y +6a bx y+2a x]
(%i4) pui_direct ([y + x + 2%c, y + x + 2%¥b, y + x + 2*al, [[x, y], [a, b, cl],
2 2
(hod) B3 x+2a,6xy+3x +4ax+4a,

2 3 2 2 3
9x y+12axy+3x +6ax +12a x+8al

puireduc (n, Ipui) Function
Ipui est une liste dont le premier e’le’ment est un entier m. puireduc donne les n premie‘res
fonctions puissances en fonction des m premie‘res.

(%i1) puireduc (3, [2]);

2
pl (p1 - p2)
(%o1) [2, pl, p2, pl p2 - ————————————- ]
2
(%12) ratsimp (%);
3
3 pl p2 - pl
(%02) (2, pl, p2, ————————————- ]
2
resolvante (P, x, f, [x_1, ..., x.d]) Function
calcule la re’solvante du polyno me P de la variable x et de degre’ n >= d par la fonction
f exprime’e en les variables x_1, ..., x_d. Il est important pour l'efficacite’ des calculs de ne
pas mettre dans la liste [x_1, ..., x_d] les variables n’intervenant pas dans la fonction

de transformation f.

Afin de rendre plus efficaces les calculs on peut mettre des drapeaux a‘ la variable
resolvante afin que des algorithmes ade’quates soient utilise’s :

Si la fonction f est unitaire :
e un polyno~me d’une variable,
e line’aire ,
e alterne’e,
[ ]

une somme de variables,

syme’trique en les variables qui apparaissent dans son expression,



Chapter 33: Symmetries 297

e un produit de variables,
e la fonction de la re’solvante de Cayley (utilisable qu’en degre’ 5)

(x1*%x2 + x2*x3 + x3*x4 + x4*x5 + xb*x1 -
(x1*x3 + x3*x5 + xb*x2 + x2*x4 + x4%*x1))"2

generale,

le drapeau de resolvante pourra e”tre respectivement :

e unitaire,
e lineaire,
e alternee,
e somme,

e produit,
e cayley,

e generale.

(%1i1) resolvante: unitaire$
(%1i2) resolvante (x°7 - 14*x"5 + 56*x"3 - B6*x + 22, x, x°3 - 1, [x]);

" resolvante unitaire " [7, 0, 28, 0, 168, 0, 1120, - 154, 7840, - 2772, 56448,

413952, - 352352, 3076668, - 3363360, 23114112, - 30494464,

175230832, - 267412992, 1338886528, - 2292126760]
3 6 3 9 6 3
x -1, x -2x +1,x -3x +3x -1,

12 9 6 3 15 12 9 6 3
X -4x +6x -4x +1, x - 5x +10x -10x + 5 x

18 15 12 9 6 3
-1, x -6 x + 15 x -20x +15x -6x +1,

21 18 15 12 9 6 3

x -7x +21x -3 x +3x -21x +7x -1]

[- 7, 1127, - 6139, 431767, - 5472047, 201692519, - 3603982011]
7 6 5 4 3 2

(ho2) y + 7y -539y - 1841 y + 51443 y + 315133 y

+ 376999 y + 125253
(%13) resolvante: lineaire$
(%i4) resolvante (x4 - 1, x, x1 + 2%x2 + 3*x3, [x1, x2, x3]);

" resolvante lineaire "
24 20 16 12 8
(hod) y + 80y + 7520y + 1107200 y  + 49475840 y

4
+ 344489984 y + 655360000
(%i5) resolvante: general$
(%16) resolvante (x4 - 1, x, x1 + 2%x2 + 3*x3, [x1, x2, x3]);

" resolvante generale "
24 20 16 12 8
(%o6) y + 80y + 7520y + 1107200 y  + 49475840 y

4



298 Maxima Manual

+ 344489984 y + 655360000
(%i7) resolvante (x"4 - 1, x, x1 + 2*x2 + 3*x3, [x1, x2, x3, x4]);

" resolvante generale "
24 20 16 12 8
(h07) y + 80y + 7520 y + 1107200 y  + 49475840 y

4
+ 344489984 y + 655360000
(%i8) direct ([x"4 - 1], x, x1 + 2*%x2 + 3*x3, [[x1, x2, x3]1]1);
24 20 16 12 8
(%08) y + 80y + 7520y + 1107200 y  + 49475840 y

4
+ 344489984 y + 655360000
(%19) resolvante :lineaire$
(%110) resolvante (x"4 - 1, x, x1 + x2 + x3, [x1, x2, x3]);

" resolvante lineaire "
4
(%o10) y -1
(%111) resolvante: symetrique$
(%i12) resolvante (x°4 - 1, x, x1 + x2 + x3, [x1, x2, x3]);

" resolvante symetrique "
4
(%ho12) y -1
(%i13) resolvante (x"4 + x + 1, x, x1 - x2, [x1, x2]);

resolvante symetrique
6 2

(%013) y -4y -1

(%i14) resolvante: alternee$

(%115) resolvante (x°4 + x + 1, x, x1 - x2, [x1, x2]);

" resolvante alternee "
12 8 6 4 2
(%o15) y +8y +26y - 112y + 216y + 229
(%116) resolvante: produit$
(%117) resolvante (x°7 - 7*x + 3, x, x1*x2*x3, [x1, x2, x3]);

" resolvante produit "
35 33 29 28 27 26
Chol?) y -7y =-1029y + 135y + 7203y - 7567

24 23 22 21 20
+ 1323 y  + 352947 y - 46305 y - 2463339 y  + 324135 y

19 18 17 15
30618 y - 453789 y - 40246444 y  + 282225202 y

14 12 11 10
44274492 y  + 155098503 y  + 12252303 y  + 2893401 y

9 8 7 6
171532242 y + 6751269 y + 2657205 y - 94517766



Chapter 33: Symmetries 299

5 3
- 3720087 y + 26040609 y + 14348907
(%118) resolvante: symetrique$
(%119) resolvante (x°7 - 7*x + 3, x, x1*x2*x3, [x1, x2, x3]);

" resolvante symetrique "

35 33 29 28 27 26
(ho19) y -7y -1029y + 135y + 7203y - 756y
24 23 22 21 20
+ 1323 y  + 352947 y - 46305 y - 2463339 y  + 324135 y
19 18 17 15
- 30618 y - 453789 y - 40246444 y + 282225202 y
14 12 11 10

44274492 y  + 155098503 y  + 12252303 y  + 2893401 y

9 8 7 6
171532242 y + 6751269 y + 2657205 y - 94517766 y

5 3
- 3720087 y + 26040609 y + 14348907
(%120) resolvante: cayley$
(%i21) resolvante (x°5 - 4*x"2 + x + 1, x, a, [1);

" resolvante de Cayley "
6 5 4 3 2
(%021) x - 40 x + 4080 x - 92928 x + 3772160 x + 37880832 x

+ 93392896

Pour la re’solvante de Cayley, les 2 derniers arguments sont neutres et le polyno~me donne’
en entre’e doit ne’cessairement e~tre de degre’ 5.

Voir e’galement :

resolvante_bipartite, resolvante_produit_sym, resolvante_unitaire,
resolvante_alterneel, resolvante_klein, resolvante_klein3, resolvante_vierer,
resolvante_diedrale.

resolvante_alterneel (P, x) Function
calcule la transformation de P(x) de degre n par la fonction $\prod_{1\leq i<j\leq n-1}
(x_i-xj)$.

Voir e’galement :

resolvante_produit_sym, resolvante_unitaire, resolvante , resolvante_klein,

resolvante_klein3, resolvante_vierer, resolvante_diedrale, resolvante_
bipartite.
resolvante_bipartite (P, x) Function

calcule la transformation de P(x) de degre n (n pair) par la fonction $x_1x_2\ldots
x_{n/2}+x_{n/2+1}\ldotsx_n$

Voir e’galement :

resolvante_produit_sym, resolvante_unitaire, resolvante , resolvante_klein,
resolvante_klein3, resolvante_vierer, resolvante_diedrale, resolvante_
alterneel.

(%i1) resolvante_bipartite (x°6 + 108, x);



300 Maxima Manual

10 8 6 4
(%o1) y - 972 y + 314928 y - 34012224 y
Voir e’galement :

resolvante_produit_sym, resolvante_unitaire, resolvante, resolvante_klein,
resolvante_klein3, resolvante_vierer, resolvante_diedrale, resolvante_
alterneel.

resolvante_diedrale (P, x) Function
calcule la transformation de P (x) par la fonction x_1 x_2 + x_3 x_4.
(%i1) resolvante_diedrale (x°5 - 3*x"4 + 1, x);
15 12 11 10 9 8 7
(hot) x -21x -81x -21x + 207 x + 1134 x + 2331 x

6 5 4 3 2
- 945 x - 4970 x - 18333 x - 29079 x - 20745 x - 25326 x

- 697
Voir e’galement :

resolvante_produit_sym, resolvante_unitaire, resolvante_alterneel,
resolvante_klein, resolvante_klein3, resolvante_vierer, resolvante.

resolvante_klein (P, x) Function
calcule la transformation de P (x) par la fonction x_1 x_2 x 4 + x_4.
Voir e’galement :

resolvante_produit_sym, resolvante_unitaire, resolvante_alterneel,
resolvante, resolvante_klein3, resolvante_vierer, resolvante_diedrale.

resolvante_klein3 (P, x) Function
calcule la transformation de P (x) par la fonction x_1 x 2 x 4 + x_4.
Voir e’galement :

resolvante_produit_sym, resolvante_unitaire, resolvante_alterneel,
resolvante_klein, resolvante, resolvante_vierer, resolvante_diedrale.

resolvante_produit_sym (P, x) Function
calcule la liste toutes les r\’esolvantes produit du polyn\~ome P (x).
(%1i1) resolvante_produit_sym (x°5 + 3*x"4 + 2%x - 1, x);
5 4 10 8 7 6 5
(hot) [y +3y +2y-1,y -2y -21y -31y -14y

4 3 2 10 8 7 6 5 4
-y +14y +3y +1,y +3y +14y -y -14y -31y

3 2 5 4
-2y -2y +1,y -2y -3y-1,y-1]
(%12) resolvante: produit$
(%i3) resolvante (x°5 + 3*x"4 + 2xx - 1, x, axb*xc, [a, b, c]);

" resolvante produit "
10 8 7 6 5 4 3 2
(ho3) y +3y +14y -y -14y -31y -21y -2y +1
Voir e’galement :
resolvante, resolvante_unitaire, resolvante_alterneel, resolvante_klein,
resolvante_klein3, resolvante_vierer, resolvante_diedrale.



Chapter 33: Symmetries 301

resolvante_unitaire (P, Q, x) Function
calcule la r\’esolvante du polyn\~ome P (x) par le polyn\~ome Q(x).

Voir e’galement :

resolvante_produit_sym, resolvante, resolvante_alterneel, resolvante_klein,
resolvante_klein3, resolvante_vierer, resolvante_diedrale.

resolvante_vierer (P, x) Function
calcule la transformation de P(x) par la fonction x_1 x_2 - x.3 x_4.

Voir e’galement :

resolvante_produit_sym, resolvante_unitaire, resolvante_alterneel,
resolvante_klein, resolvante_klein3, resolvante, resolvante_diedrale.

schur2comp (P, [_var) Function
P est un polyno~mes en les variables contenues dans la liste I_var. Chacune des variables
de Lvar repre’sente une fonction syme’trique comple‘te. On repre’sente dans I_var la ie‘'me
fonction syme’trique comple‘te comme la concate’nation de la lettre h avec I’entier i : hi.
Cette fonction donne 'expression de P en fonction des fonctions de Schur.

(%11) schur2comp (hi1*h2 - h3, [h1l, h2, h3]);

(ho1) s
1, 2
(%i2) schur2comp (a*h3, [h3]);
(%ho2) s a
3
somrac (I, k) Function

la liste I contient les fonctions syme’triques e’le’'mentaires d’'un polyno me P . On calcul
le polyno~mes dont les racines sont les sommes K a‘ K distinctes des racines de P.

Voir e’galement prodrac.

tcontract (pol, Ivar) Function
teste si le polyno~me pol est syme’trique en les variables contenues dans la liste Ivar. Si
oui il rend une forme contracte’e comme la fonction contract.

Autres fonctions de changements de repre’sentations :
contract, cont2part, explose, part2cont, partpol, tpartpol.

tpartpol (pol, Ivar) Function
teste si le polyno~me pol est syme’trique en les variables contenues dans la liste Ivar. Si
oui il rend sa forme partionne’e comme la fonction partpol.
Autres fonctions de changements de repre’sentations :

contract, cont2part, explose, part2cont, partpol, tcontract.

treillis (n) Function
rame‘ne toutes les partitions de poids n.
(%i1) treillis (4);
(hol) (r41, 3, 11, [2, 21, [2, 1, 11, [1, 1, 1, 1]]

Voir e’galement : 1gtreillis, 1treillis et treinat.

treinat (part) Function
rame‘ne la liste des partitions infe’rieures a‘ la partition part pour ’ordre naturel.
(%i1) treinat ([5]1);
(%o1) [[5]]
(%i2) treimat ([1, 1, 1, 1, 11);
(%02) [[5], [4, 11, [3, 21, [3, 1, 11, [2, 2, 11, [2, 1, 1, 1],



302 Maxima Manual

(1, 1, 1, 1, 111
(%i3) treinat ([3, 2]1);
(%03) (esl, [4, 11, [3, 211

Voir e’galement : 1gtreillis, 1treillis et treillis.



Chapter 34: Groups 303

34 Groups

34.1 Definitions for Groups

todd_coxeter (relations, subgroup) Function
todd_coxeter (relations) Function
Find the order of G/H where G is the Free Group modulo relations, and H is the subgroup
of G generated by subgroup. subgroup is an optional argument, defaulting to []. In doing
this it produces a multiplication table for the right action of G on G/H, where the cosets
are enumerated [H,Hg2 Hg3,...]. This can be seen internally in the $todd_coxeter_state
The multiplication tables for the variables are in table:todd_coxeter_state[2].
Then table[i] gives the table for the ith wvariable. mulcoset(coset,i) :=
table[varnum] [coset];
Example:
(%11) symet(n) :=create_list(
if (j - i) = 1 then (p(i,j)) "3 else
if (not i = j) then (p(i,j))~"2 else
p(i,i) , j, 1, n-1, i, 1, j);
<3>
(%01) symet(n) := create_list(if j - i = 1 then p(i, j)

<2>
j then p(i, j) else p(i, 1)), j, 1, n - 1,

else (if not 1

i, 1, )
(%i2) p(i,j) := concat(x,i).concat(x,j);
(%02) p(i, j) := concat(x, i) . concat(x, j)
(%13) symet(5);
<2> <3> <2> <2> <3>
(%03) [x1 , (x1 . x2) , X2 , (x1 . x3) , (x2 . x3) R
<2> <2> <2> <3> <2>
x3 , (x1 . x4) , (x2 . x4) , (x3 . x4) , x4 ]

(%i4) todd_coxeter(%o03);

Rows tried 426
(%04) 120
(%i5) todd_coxeter (%03, [x1]);

Rows tried 213
(%o05) 60
(%i6) todd_coxeter (%03, [x1,x2]);

Rows tried 71

(%06) 20

(%i7) table:todd_coxeter_state[2]$

(%18) tablel[1];

(%08) {Array: (SIGNED-BYTE 30) #(0 2 1 37 6 54 8 11 17 9 12 14 #

13 20 16 10 18 19156 00 000 00000 0 O

000}

Note only the elements 1 thru 20 of this array %o8 are meaningful. table[1][4] =7
indicates cosetd.varl = coset7



304 Maxima Manual



Chapter 35: Runtime Environment 305

35 Runtime Environment

35.1 Introduction for Runtime Environment

maxima-init.mac is a file which is loaded automatically when Maxima starts. You can use
maxima-init.mac to customize your Maxima environment. maxima-init.mac, if it exists, is
typically placed in the directory named by :1isp (default-userdir), although it can be in
any directory searched by the function file_search.

Here is an example maxima-init.mac file:

setup_autoload ("specfun.mac", ultraspherical, assoc_legendre_p);
showtime:all;

In this example, setup_autoload tells Maxima to load the specified file (specfun.mac) if
any of the functions (ultraspherical, assoc_legendre_p) are called but not yet defined. Thus
you needn’t remember to load the file before calling the functions.

The statement showtime: all tells Maxima to set the showtime variable. The maxima-
init.mac file can contain any other assignments or other Maxima statements.

35.2 Interrupts

The user can stop a time-consuming computation with the ~C (control-C) character. The
default action is to stop the computation and print another user prompt. In this case, it is not
possible to restart a stopped computation.

If the variable *debugger-hookx* is set to nil, by executing

:1lisp (setq *debugger-hook* nil)

then upon receiving ~C, Maxima will enter the Lisp debugger, and the user may use the de-
bugger to inspect the Lisp environment. The stopped computation can be restarted by entering
continue in the Lisp debugger. The means of returning to Maxima from the Lisp debugger
(other than running the computation to completion) is different for each version of Lisp.

On Unix systems, the character ~Z (control-Z) causes Maxima to stop altogether, and control
is returned to the shell prompt. The fg command causes Maxima to resume from the point at
which it was stopped.

35.3 Definitions for Runtime Environment

feature Declaration
Maxima understands two distinct types of features, system features and features which
apply to mathematical expressions. See also status for information about system features.
See also features and featurep for information about mathematical features.

feature itself is not the name of a function or variable.

featurep (a, f) Function
Attempts to determine whether the object a has the feature f on the basis of the facts in
the current database. If so, it returns true, else false.

Note that featurep returns false when neither f nor the negation of f can be established.
featurep evaluates its argument.
See also declare and features.

(%11) declare (j, even)$
(%12) featurep (j, integer);
(%ho2) true



306 Maxima Manual

room () Function
room (true) Function
room (false) Function

Prints out a description of the state of storage and stack management in Maxima. room
calls the Lisp function of the same name.

e room () prints out a moderate description.
e room (true) prints out a verbose description.

e room (false) prints out a terse description.

status (feature) Function
status (feature, putative_feature) Function
status (status) Function

Returns information about the presence or absence of certain system-dependent features.

e status (feature) returns a list of system features. These include Lisp version,
operating system type, etc. The list may vary from one Lisp type to another.

e status (feature, putative_feature) returns true if putative_feature is on the list of
items returned by status (feature) and false otherwise. status quotes the argu-
ment putative_feature. The double single quotes operator, ’’, defeats the quotation.
A feature whose name contains a special character, such as a hyphen, must be given
as a string argument. For example, status (feature, "ansi-cl").

e status (status) returns a two-element list [feature, status]. feature and
status are the two arguments accepted by the status function; it is unclear if this
list has additional significance.

The variable features contains a list of features which apply to mathematical expressions.
See features and featurep for more information.

time (%ol, %02, %03, ...) Function
Returns a list of the times, in seconds, taken to compute the output lines %01, %02, %03,
The time returned is Maxima’s estimate of the internal computation time, not the
elapsed time. time can only be applied to output line variables; for any other variables,
time returns unknown.

Set showtime: true to make Maxima print out the computation time and elapsed time
with each output line.

timedate () Function
Returns a string representing the current time and date. The string has the format
HH:MM:SS Day, mm/dd/yyyy (GMT-n), where the fields are hours, minutes, seconds, day of
week, month, day of month, year, and hours different from GMT.

The return value is a Lisp string.
Example:
(%i1) d: timedate (;
(%o1) 08:05:09 Wed, 11/02/2005 (GMT-7)
(%12) print ("timedate reports current time", d)$
timedate reports current time 08:05:09 Wed, 11/02/2005 (GMT-7)



Chapter 36: Miscellaneous Options 307

36 Miscellaneous Options

36.1 Introduction to Miscellaneous Options

In this section various options are discussed which have a global effect on the operation of
Maxima. Also various lists such as the list of all user defined functions, are discussed.

36.2 Share

The Maxima "share" directory contains programs and other files of interest to Maxima users,
but not part of the core implementation of Maxima. These programs are typically loaded via
load or setup_autoload.

:1lisp *maxima-sharedir* displays the location of the share directory within the user’s file
system.

printfile ("share.usg") prints an out-of-date list of share packages. Users may find it
more informative to browse the share directory using a file system browser.

36.3 Definitions for Miscellaneous Options

aliases System variable
Default value: []

aliases is the list of atoms which have a user defined alias (set up by the alias,
ordergreat, orderless functions or by declaring the atom a noun with declare).

alphabetic Declaration
declare (char, alphabetic) adds char to Maxima’s alphabet, which initially contains
the letters A through Z, a through z, % and _. char is specified as a string of length 1, e.g.,

(%11) declare ("™", alphabetic);

(%o1) done
(%i2) foo~bar;
(%02) foo~bar
(%13) atom (foo~bar);
(%03) true
apropos (string) Function

Searches for Maxima names which have string appearing anywhere within them. Thus,
apropos (exp) returns a list of all the flags and functions which have exp as part of
their names, such as expand, exp, and exponentialize. Thus if you can only remember
part of the name of something you can use this command to find the rest of the name.
Similarly, you could say apropos (tr_) to find a list of many of the switches relating to
the translator, most of which begin with tr_.

args (expr) Function
Returns the list of arguments of expr, which may be any kind of expression other than
an atom. Only the arguments of the top-level operator are extracted; subexpressions of
expr appear as elements or subexpressions of elements of the list of arguments.

The order of the items in the list may depend on the global flag inflag.
args (expr) is equivalent to substpart ("[", expr, 0). See also substpart.
See also op.

genindex Option variable
Default value: i
genindex is the alphabetic prefix used to generate the next variable of summation when
necessary.



308 Maxima Manual

gensumnuin Option variable
Default value: 0

gensumnum is the numeric suffix used to generate the next variable of summation. If it is
set to false then the index will consist only of genindex with no numeric suffix.

inf Constant
Real positive infinity.

infinity Constant
Complex infinity, an infinite magnitude of arbitrary phase angle. See also inf and minf.

infolists System variable
Default value: []

infolists is a list of the names of all of the information lists in Maxima. These are:
labels All bound %i, %o, and %t labels.

values All bound atoms which are user variables, not Maxima options or switches,
created by : or :: or functional binding.

functions
All user-defined functions, created by := or define.

arrays All declared and undeclared arrays, created by :, ::, or :=.
macros All user-defined macro functions.
myoptions

All options ever reset by the user (whether or not they are later reset to their
default values).

rules All user-defined pattern matching and simplification rules, created by
tellsimp, tellsimpafter, defmatch, or defrule.

aliases  All atoms which have a user-defined alias, created by the alias, ordergreat,
orderless functions or by declaring the atom as a noun with declare.

dependencies
All atoms which have functional dependencies, created by the depends or
gradef functions.

gradefs  All functions which have user-defined derivatives, created by the gradef func-
tion.

props All atoms which have any property other than those mentioned above, such as
properties established by atvalue or matchdeclare, etc., as well as properties
established in the declare function.

let_rule_packages
All user-defined let rule packages plus the special package default_let_
rule_package. (default_let_rule_package is the name of the rule package
used when one is not explicitly set by the user.)

integerp (expr) Function
Returns true if expr is a literal numeric integer, otherwise false.
integerp returns false if its argument is a symbol, even if the argument is declared integer.

Examples:
(%i1) integerp (0);
(hol) true
(%12) integerp (1);
(ho2) true

(%i3) integerp (-17);
(%03) true



Chapter 36: Miscellaneous Options 309

(%i4) integerp (0.0);

(hod) false

(%15) integerp (1.0);

(%05) false

(%16) integerp (¥%pi);

(%06) false

(%17) integerp (n);

(hoT) false

(%18) declare (n, integer);

(%08) done

(%19) integerp (n);

(%h09) false
mlpbranch Option variable

Default value: false

mlpbranch is the principal branch for -1 to a power. Quantities such as (1) ~(1/3) (that
is, an "odd" rational exponent) and (-1)~(1/4) (that is, an "even" rational exponent)
are handled as follows:

domain:real

(-1)7(1/3): -1
(-1)"(1/4): -1~ (1/4)

domain:complex

mlpbranch:false mlpbranch:true
(-1)°(1/3) 1/2+%i*sqrt (3)/2
-1)"1/4) sqrt (2) /2+)ixsqrt(2)/2
numberp (expr) Function

Returns true if expr is a literal integer, rational number, floating point number, or bigfloat,
otherwise false.

numberp returns false if its argument is a symbol, even if the argument is a symbolic
number such as %pi or %i, or declared to be even, odd, integer, rational, irrational, real,
imaginary, or complex.

Examples:
(%11) numberp (42);
(%o1) true
(%i2) numberp (-13/19);
(%02) true
(%13) numberp (3.14159);
(%03) true
(%i4) numberp (-1729b-4);
(%04) true
(%i5) map (numberp, [%e, %pi, %i, %phi, inf, minfl);
(%05) [false, false, false, false, false, falsel

(%16) declare (a, even, b, odd, c, integer, d, rational,
e, irrational, f, real, g, imaginary, h, complex);
(%06) done
(%1i7) map (numberp, [a, b, c, d, e, £, g, hl);
(%o7) [false, false, false, false, false, false, false, false]

properties (a) Function
Returns a list of the names of all the properties associated with the atom a.



310 Maxima Manual

props Special symbol
props are atoms which have any property other than those explicitly mentioned in
infolists, such as atvalues, matchdeclares, etc., as well as properties specified in the
declare function.

propvars (prop) Function
Returns a list of those atoms on the props list which have the property indicated by prop.
Thus propvars (atvalue) returns a list of atoms which have atvalues.

put (atom, value, indicator) Function
Assigns value to the property (specified by indicator) of atom. indicator may be the name
of any property, not just a system-defined property.

put evaluates its arguments. put returns value.

Examples:
(%11) put (foo, (atb)~5, expr);
5
(ho1) (b + a)
(%12) put (foo, "Hello", str);
(%02) Hello
(%13) properties (foo);
(%03) [[user properties, str, expr]l]
(%14) get (foo, expr);
5
(ho4d) (b + a)
(%15) get (foo, str);
(%05) Hello
qput (atom, value, indicator) Function

Assigns value to the property (specified by indicator) of atom. This is the same as put,
except that the arguments are quoted.

Example:
(%i1) foo: aa$
(%i2) bar: bb$
(%13) baz: cc$
(%i4) put (foo, bar, baz);

(%04) bb
(%i5) properties (aa);
(%05) [[user properties, ccl]
(%16) get (aa, cc);
(%06) bb
(%i7) qput (foo, bar, baz);
(%hoT) bar
(%1i8) properties (foo);
(%08) [value, [user properties, baz]]
(%19) get (’foo, ’baz);
(%09) bar
rem (atom, indicator) Function

Removes the property indicated by indicator from atom.

remove (a1, p_1, ..., a_n, p_n) Function
remove ([a_1, ..., a-m|, [p-1, ..., p-n], ...) Function
remove ("a", operator) Function
remove (a, transfun) Function
remove (all, p) Function

Removes properties associated with atoms.



Chapter 36: Miscellaneous Options 311

remove (a_l, p_1, ..., a_n, p_n) removes property p_k from atom a_k.
remove ([a_l, ..., am], [p_1, ..., p-n]l, ...) removes properties p_1, ..., p.n
from atoms a_1, ..., a_m. There may be more than one pair of lists.

remove (all, p) removes the property p from all atoms which have it.

The removed properties may be system-defined properties such as function, macro, or
mode_declare, or user-defined properties.

A property may be transfun to remove the translated Lisp version of a function. After
executing this, the Maxima version of the function is executed rather than the translated
version.

remove ("a", operator) or, equivalently, remove ("a", op) removes from a the operator
properties declared by prefix, infix, nary, postfix, matchfix, or nofix. Note that the
name of the operator must be written as a quoted string.

remove always returns done whether or not an atom has a specified property. This behav-
ior is unlike the more specific remove functions remvalue, remarray, remfunction, and

remrule.
remvalue (name_1, ..., name_n) Function
remvalue (all) Function
Removes the values of user variables name_1I, ..., name_n (which can be subscripted) from
the system.

remvalue (all) removes the values of all variables in values, the list of all variables given
names by the user (as opposed to those which are automatically assigned by Maxima).

See also values.

rncombine (expr) Function
Transforms expr by combining all terms of expr that have identical denominators or de-
nominators that differ from each other by numerical factors only. This is slightly different
from the behavior of combine, which collects terms that have identical denominators.

Setting pfeformat: true and using combine yields results similar to those that can be
obtained with rncombine, but rncombine takes the additional step of cross-multiplying
numerical denominator factors. This results in neater forms, and the possibility of recog-
nizing some cancellations.

scalarp (expr) Function
Returns true if expr is a number, constant, or variable declared scalar with declare, or
composed entirely of numbers, constants, and such variables, but not containing matrices

or lists.
setup_autoload (filename, function_1, ..., function_n) Function
Specifies that if any of function_1, ..., function_n are referenced and not yet defined, file-

name is loaded via load. filename usually contains definitions for the functions specified,
although that is not enforced.

setup_autoload does not work for array functions.
setup_autoload quotes its arguments.

Example:
(%11) legendre_p (1, %pi);
(%01) legendre_p(1, %pi)
(%12) setup_autoload ("specfun.mac", legendre_p, ultraspherical);
(ho2) done

(%13) ultraspherical (2, 1/2, %pi);
Warning - you are redefining the Macsyma function ultraspherical
Warning - you are redefining the Macsyma function legendre_p

(ho3) e +3 (hpi - 1) + 1



312 Maxima Manual

2
(%14) legendre_p (1, %pi);
(%04) hpi
(%15) legendre_q (1, %pi);
hpi + 1
Jpi log(------- )
1 - %pi
(ho®)  mmmmmmmmm o -1



Chapter 37: Rules and Patterns 313

37 Rules and Patterns

37.1 Introduction to Rules and Patterns

This section describes user-defined pattern matching and simplification rules. There are two
groups of functions which implement somewhat different pattern matching schemes. In one
group are tellsimp, tellsimpafter, defmatch, defrule, applyl, applybl, and apply2. In
the other group are let and letsimp. Both schemes define patterns in terms of pattern variables
declared by matchdeclare.

Pattern-matching rules defined by tellsimp and tellsimpafter are applied automatically
by the Maxima simplifier. Rules defined by defmatch, defrule, and let are applied by an
explicit function call.

There are additional mechanisms for rules applied to polynomials by tellrat, and for com-
mutative and noncommutative algebra in affine package.

37.2 Definitions for Rules and Patterns

applyl (expr, rule_1, ..., rule_n) Function
Repeatedly applies rule_1 to expr until it fails, then repeatedly applies the same rule to
all subexpressions of expr, left to right, until rule_1 has failed on all subexpressions. Call
the result of transforming expr in this manner expr_2. Then rule_2 is applied in the same
fashion starting at the top of expr_2. When rule_n fails on the final subexpression, the
result is returned.

maxapplydepth is the depth of the deepest subexpressions processed by applyl and
apply2.
See also applybl, apply2, and let.

apply2 (expr, rule_1, ..., rule_n) Function
If rule_1 fails on a given subexpression, then rule_2 is repeatedly applied, etc. Only if all
rules fail on a given subexpression is the whole set of rules repeatedly applied to the next
subexpression. If one of the rules succeeds, then the same subexpression is reprocessed,
starting with the first rule.

maxapplydepth is the depth of the deepest subexpressions processed by applyl and
apply2.
See also applyl and let.

applybl (expr, rule_1, ..., rule_n) Function
Repeatedly applies rule_1 to the deepest subexpression of expr until it fails, then repeat-
edly applies the same rule one level higher (i.e., larger subexpressions), until rule_1 has
failed on the top-level expression. Then rule_2 is applied in the same fashion to the result
of rule_1. After rule_n has been applied to the top-level expression, the result is returned.

applyb1 is similar to applyl but works from the bottom up instead of from the top down.
maxapplyheight is the maximum height which applybl reaches before giving up.
See also applyl, apply2, and let.

current_let_rule_package Option variable
Default value: default_let_rule_package

current_let_rule_package is the name of the rule package that is used by functions in
the let package (letsimp, etc.) if no other rule package is specified. This variable may
be assigned the name of any rule package defined via the let command.

If a call such as letsimp (expr, rule_pkg_name) is made, the rule package rule_pkg_

name is used for that function call only, and the value of current_let_rule_package is
not changed.



314 Maxima Manual

default_let_rule_package Option variable
Default value: default_let_rule_package

default_let_rule_package is the name of the rule package used when one is not explic-
itly set by the user with let or by changing the value of current_let_rule_package.

defmatch (progname, pattern, x_1, ..., x_n) Function
Creates a function progname (expr, y_1, ..., y-n) which tests expr to see if it matches
pattern.
pattern is an expression containing the pattern variables x_1, ..., x_n and pattern param-

eters, if any. The pattern variables are given explicitly as arguments to defmatch while
the pattern parameters are declared by the matchdeclare function.

The first argument to the created function progname is an expression to be matched

against the pattern and the other arguments are the actual variables y_1, ..., y_n in the
expression which correspond to the dummy variables x_1, ..., x_n in the pattern.

If the match is successful, progname returns a list of equations whose left sides are the
pattern variables and pattern parameters, and whose right sides are the expressions which
the pattern variables and parameters matched. The pattern parameters, but not the
variables, are assigned the subexpressions they match. If the match fails, progname returns
false.

Any variables not declared as pattern parameters in matchdeclare or as variables in
defmatch match only themselves.

A pattern which contains no pattern variables or parameters returns true if the match
succeeds.

See also matchdeclare, defrule, tellsimp, and tellsimpafter.
Examples:

This defmatch defines the function linearp (expr, y), which tests expr to see if it is of
the form a*y + b such that a and b do not contain y.

(%i1) matchdeclare (a, freeof(x), b, freeof(x))$
(%12) defmatch (linearp, a*x + b, x)$
(%13) linearp (3*z + (y+1)*z + y 2, z);

2
(%03) b=y, a=y+4, x=2z]
(%i4) a;
(ho4d) y+ 4
(%15) b;
2
(%05) y

If the third argument to defmatch in line (%i2) had been omitted, then linear would
only match expressions linear in x, not in any other variable.

(%i1) matchdeclare ([a, f], true)$
(%i2) constinterval (1, h) := constantp (h - 1)$
(%1i3) matchdeclare (b, constinterval (a))$
(%i4) matchdeclare (x, atom)$
(%15) (remove (integrate, outative),
defmatch (checklimits, ’integrate (f, x, a, b)),
declare (integrate, outative))$
(%16) ’integrate (sin(t), t, %pi + x, 2%%pi + x);
x + 2 Y%pi

(%08) sin(t) dt

N H /AN

x + %pi
(%i7) checklimits (%);



Chapter 37: Rules and Patterns 315

(%oT) [b=x+27%pi, a=x+ %pi, x =t, £ = sin(t)]
(%i8) a;

(%08) x + %pi

(%19) b;

(h09) x + 2 %pi

(%110) f;

(%010) sin(t)

(%il11) x;

(%o11) t

defrule (rulename, pattern, replacement) Function
Defines and names a replacement rule for the given pattern. If the rule named rulename
is applied to an expression (by applyl, applybl, or apply2), every subexpression match-
ing the pattern will be replaced by the replacement. All variables in the replacement
which have been assigned values by the pattern match are assigned those values in the
replacement which is then simplified.

The rules themselves can be treated as functions which transform an expression by one
operation of the pattern match and replacement. If the match fails, the original expression
is returned.

disprule (rulename_1, ..., rulename_2) Function
disprule (all) Function
Display rules with the names rulename_1, ..., rulename_n, as returned by defrule,

tellsimp, or tellsimpafter, or a pattern defined by defmatch. Each rule is displayed
with an intermediate expression label (%t).

disprule (all) displays all rules.

disprule quotes its arguments. disprule returns the list of intermediate expression labels
corresponding to the displayed rules.

See also letrules, which displays rules defined by let.

Examples:
(%i1) tellsimpafter (foo (x, y), bar (x) + baz (y));
(%o1) [foorulel, false]
(%12) tellsimpafter (x + y, special_add (x, y));
(%02) [+rulel, simplus]
(%13) defmatch (quux, mumble (x));
(%h03) quux
(%14) disprule (foorulel, "+rulel", quux);
(%t4) foorulel : foo(x, y) -> baz(y) + bar(x)
(%t5) +rulel : y + x -> special_add(x, y)
(%t6) quux : mumble(x) -> []
(%06) (ht4, %t5, %t6]

(ki6) 7%;
(%06) [foorulel : foo(x, y) -> baz(y) + bar(x),
+rulel : y + x -> special_add(x, y), quux : mumble(x) -> [1]

let (prod, repl, predname, arg_1, ..., arg_n) Function

let ([prod, repl, predname, arg_1, ..., arg_n|, package_name) Function
Defines a substitution rule for letsimp such that prod is replaced by repl. prod is a
product of positive or negative powers of the following terms:

e Atoms which letsimp will search for literally unless previous to calling letsimp the
matchdeclare function is used to associate a predicate with the atom. In this case
letsimp will match the atom to any term of a product satisfying the predicate.



316 Maxima Manual

e Kernels such as sin(x), n!, £(x,y), etc. As with atoms above letsimp will look for a
literal match unless matchdeclare is used to associate a predicate with the argument
of the kernel.

A term to a positive power will only match a term having at least that power. A term
to a negative power on the other hand will only match a term with a power at least as
negative. In the case of negative powers in prod the switch letrat must be set to true.
See also letrat.

If a predicate is included in the let function followed by a list of arguments, a tentative
match (i.e. one that would be accepted if the predicate were omitted) is accepted only if
predname (arg_1’, ..., arg_n’) evaluates to true where arg_i’ is the value matched to
arg_i. The arg_i may be the name of any atom or the argument of any kernel appearing
in prod. repl may be any rational expression. If any of the atoms or arguments from prod
appear in repl the appropriate substitutions are made.

The global flag 1etrat controls the simplification of quotients by letsimp. When letrat
is false, letsimp simplifies the numerator and denominator of expr separately, and does
not simplify the quotient. Substitutions such as n!/n goes to (n-1)! then fail. When
letrat is true, then the numerator, denominator, and the quotient are simplified in that
order.

These substitution functions allow you to work with several rule packages at once. Each
rule package can contain any number of let rules and is referenced by a user-defined
name. let ([prod, repl, predname, arg 1, ..., arg.n], package_.name) adds the rule
predname to the rule package package_name. letsimp (expr, package_name) applies the
rules in package_name. letsimp (expr, package_namel, package_name2, ...) is equiv-
alent to letsimp (expr, package_namel) followed by letsimp (%, package_name2), ....

current_let_rule_package is the name of the rule package that is presently being used.
This variable may be assigned the name of any rule package defined via the let com-
mand. Whenever any of the functions comprising the let package are called with no
package name, the package named by current_let_rule_package is used. If a call such
as letsimp (expr, rule_pkg_name) is made, the rule package rule_pkg_name is used for
that letsimp command only, and current_let_rule_package is not changed. If not oth-
erwise specified, current_let_rule_package defaults to default_let_rule_package.

(%1i1) matchdeclare ([a, al, a2], true)$

(%i2) oneless (x, y) := is (x = y-1)$

(%i3) let (alxa2!, al!, oneless, a2, al);

(%03) al a2! --> al! where oneless(a2, al)
(%i4) letrat: true$

(%i5) let (al!/al, (al-1)1!);

al!
(ho®) === == > (a1l - 1)!
al
(%16) letsimp (n*m!*(n-1)!/m);
(%06) (m - 1)! n!
(%17) let (sin(a)~"2, 1 - cos(a)~2);
2 2
(%oT) sin (a) --> 1 - cos (a)
(%18) letsimp (sin(x)~4);
4 2
(%08) cos (x) - 2 cos (x) + 1
letrat Option variable

Default value: false

When letrat is false, letsimp simplifies the numerator and denominator of a ratio
separately, and does not simplify the quotient.

When letrat is true, the numerator, denominator, and their quotient are simplified in
that order.



Chapter 37: Rules and Patterns 317

(%1i1) matchdeclare (n, true)$
(%i2) let (n!/n, (@m-1)!);

n!
(ho2) -— > (o - 1!
n
(%13) letrat: false$
(%14) letsimp (a!/a);
a!
(%ho4d) -
a
(%15) letrat: true$
(%16) letsimp (a!/a);
(%06) (a - D!
letrules () Function
letrules (package_name) Function

Displays the rules in a rule package. letrules () displays the rules in the current rule
package. letrules (package_name) displays the rules in package_name.

The current rule package is named by current_let_rule_package. If not otherwise
specified, current_let_rule_package defaults to default_let_rule_package.

See also disprule, which displays rules defined by tellsimp and tellsimpafter.

letsimp (expr) Function
letsimp (expr, package_name) Function
letsimp (expr, package_name_1, ..., package_name_n) Function
Repeatedly applies the substitution rules defined by let until no further change is made
to expr.

letsimp (expr) uses the rules from current_let_rule_package.

letsimp (expr, package_name) uses the rules from package_-name without changing
current_let_rule_package.

letsimp (expr, package_name_1, ..., package_name_n) is equivalent to letsimp (expr,
package_name_1, followed by letsimp (%, package_name_2), and so on.

let_rule_packages Option variable
Default value: [default_let_rule_package]

let_rule_packages is a list of all user-defined let rule packages plus the default package
default_let_rule_package.

matchdeclare (a_1, pred_1, ..., a_n, pred_n) Function
Associates a predicate pred_k with a variable or list of variables a_k so that a_k matches
expressions for which the predicate returns anything other than false.

The predicate is the name of a function, a function call missing the last argument, or true
or all. Any expression matches true or all. If the predicate is specified as a function
call, the expression to be tested is appended to the list of arguments; the arguments are
evaluated at the time the match is evaluated. Otherwise, the predicate is specified as a
function name, and the expression to be tested is the sole argument. A predicate function
need not be defined when matchdeclare is called; the predicate is not evaluated until a
match is attempted.

A matchdeclare predicate cannot be any kind of expression other than a function name
or function call. In particular, a predicate cannot be a lambda or block.

If an expression satisfies a match predicate, the match variable is assigned the expression,
except for match variables which are operands of addition + or multiplication *. Only
addition and multiplication are handled specially; other n-ary operators (both built-in
and user-defined) are treated like ordinary functions.

In the case of addition and multiplication, the match variable may be assigned a single
expression which satisfies the match predicate, or a sum or product (respectively) of such



318 Maxima Manual

expressions. Such multiple-term matching is greedy: predicates are evaluated in the order
in which their associated variables appear in the match pattern, and a term which satisfies
more than one predicate is taken by the first predicate which it satisfies. Each predicate is
tested against all operands of the sum or product before the next predicate is evaluated.
In addition, if 0 or 1 (respectively) satisfies a match predicate, and there are no other
terms which satisfy the predicate, 0 or 1 is assigned to the match variable associated with
the predicate.

The algorithm for processing addition and multiplication patterns makes some match
results (for example, a pattern in which a "match anything" variable appears) dependent
on the ordering of terms in the match pattern and in the expression to be matched.
However, if all match predicates are mutually exclusive, the match result is insensitive to
ordering, as one match predicate cannot accept terms matched by another.

Calling matchdeclare with a variable a as an argument changes the matchdeclare prop-
erty for a, if one was already declared; only the most recent matchdeclare is in effect
when a rule is defined, Later changes to the matchdeclare property (via matchdeclare
or remove) do not affect existing rules.

propvars (matchdeclare) returns the list of all variables for which there is a
matchdeclare property. printprops (a, matchdeclare) returns the predicate for
variable a. printprops (all, matchdeclare) returns the list of predicates for all
matchdeclare variables. remove (a, matchdeclare) removes the matchdeclare
property from a.

The functions defmatch, defrule, tellsimp, tellsimpafter, and let construct rules
which test expressions against patterns.

matchdeclare quotes its arguments. matchdeclare always returns done.
Examples:
e g matches an expression not containing x or %e.
(%1i1) matchdeclare (q, freeof (x, %e))$

matchfix (Idelimiter, rdelimiter) Function
matchfix (Idelimiter, rdelimiter, arg_pos, pos) Function
Declares a matchfix operator with left and right delimiters Idelimiter and rdelimiter. The
delimiters are specified as strings.
A "matchfix" operator is a function of any number of arguments, such that the arguments
occur between matching left and right delimiters. The delimiters may be any strings, so
long as the parser can distinguish the delimiters from the operands and other expressions
and operators. In practice this rules out unparseable delimiters such as %, ,, $ and ;,
and may require isolating the delimiters with white space. The right delimiter can be the
same or different from the left delimiter.
A left delimiter can be associated with only one right delimiter; two different matchfix
operators cannot have the same left delimiter.
An existing operator may be redeclared as a matchfix operator without changing its other
properties. In particular, built-in operators such as addition + can be declared matchfix,
but operator functions cannot be defined for built-in operators.
matchfix (ldelimiter, rdelimiter, arg_pos, pos) declares the argument part-of-speech
arg_pos and result part-of-speech pos, and the delimiters Idelimiter and rdelimiter.
The function to carry out a matchfix operation is an ordinary user-defined function. The
operator function is defined in the usual way with the function definition operator := or
define. The arguments may be written between the delimiters, or with the left delimiter
as a quoted string and the arguments following in parentheses. dispfun (ldelimiter)
displays the function definition.
The only built-in matchfix operator is the list constructor [ ]. Parentheses ( ) and double-
quotes " " act like matchfix operators, but are not treated as such by the Maxima parser.
matchfix evaluates its arguments. matchfix returns its first argument, Idelimiter.
Examples:
e Delimiters may be almost any strings.



Chapter 37: Rules and Patterns

Chit)
(Yho1)
(%hi2)
(%o2)
(%i3)
(%03)
(%hid)
(%hod)
(%i5)
(%05)
(%hi6)
(%06)
ChiT)

(o)

e Matchfix operators are ordinary user-defined functions.

(hi1)
(hol)
(hi2)
(%ho2)
(%i3)
(%03)
(hid)
(hod)
(%15)
(%t5)
(%05)
(%hi6)
(%06)
ChiT)
(hoT)

matchfix ("@", "~");
ll@"
Q@ a, b, c 7
Qa, b,
matchfix (">>", "<<");
n >> n
>> a, b, c <<;
>>a, b,
matchfix ("foo", "oof");
"foo
foo a, b, c oof;
fooa, b,

>> w + foo x, y oof + z<< / @p, q
>>z + foox, yoof + w<<

matchfix ("!—", ll_!n);
Il!_"
- x, ¥y o= x/y - oy/x;
!—Xy y_l

define (!'-x, y-!, x/y - y/x)

I-x, y-!

n

b

C

c<<

coof

y
define ("!'-" (x, y), x/y - y/x);

I-x, y-!
dispfun ("!-");
I-x, y-!
done
1-3, 5-1;
16
15
II!_II (3’ 5);
16

15

remlet (prod, name)

(
remlet ()
remlet (all)

remlet (all, name)
Deletes the substitution rule, prod —> repl, most recently defined by the let function. If

name is supplied the rule is deleted from the rule package name.

X

y

b

319

Function
Function
Function
Function

remlet () and remlet(all) delete all substitution rules from the current rule package. If
the name of a rule package is supplied, e.g. remlet (all, name), the rule package name
is also deleted.

If a substitution is to be changed using the same product, remlet need not be called,
just redefine the substitution using the same product (literally) with the let function and



320 Maxima Manual
the new replacement and/or predicate name. Should remlet (prod) now be called the
original substitution rule is revived.

See also remrule, which removes a rule defined by tellsimp or tellsimpafter.
remrule (op, rulename) Function

remrule (op, all)

Function

Removes rules defined by tellsimp or tellsimpafter.

remrule (op, rulename) removes the rule with the name rulename from the operator op.
When op is a built-in or user-defined operator (as defined by infix, prefix, etc.), op and
rulename must be enclosed in double quote marks.

remrule (op, all) removes all rules for the operator op.

See also remlet, which removes a rule defined by let.

Examples:
(%1i1) tellsimp (foo (aa, bb), bb - aa);
(%o1) [foorulel, falsel
(%12) tellsimpafter (aa + bb, special_add (aa, bb));
(ho2) [+rulel, simplus]
(%i3) infix ("@");
(%03) Q
(%14) tellsimp (aa @ bb, bb/aa);
(%ho4) [@rulel, false]
(%15) tellsimpafter (quux (%pi, %e), %pi - %e);
(%05) [quuxrulel, falsel
(%16) tellsimpafter (quux (%e, %pi), %pi + %e);
(%06) [quuxrule2, quuxrulel, falsel
(%17) [foo (aa, bb), aa + bb, aa @ bb, quux (%pi, %e), quux (%e, %pidl;
bb
(%07) [bb - aa, special_add(aa, bb), --, %pi - %e, %pi + %el
aa
(%1i8) remrule (foo, foorulel);
(%08) foo
(%19) remrule ("+", "+rulel");
(%09) +
(%i10) remrule ("@", "Q@rulel");
(%010) Q
(%111) remrule (quux, all);
(%hol1) quux
(%112) [foo (aa, bb), aa + bb, aa @ bb, quux (%pi, %e), quux (%e, %pidl;
(%012) [foo(aa, bb), bb + aa, aa @ bb, quux(%pi, %e),
quux (%e, %pi)]
tellsimp (pattern, replacement) Function

is similar to tellsimpafter but places new information before old so that it is applied
before the built-in simplification rules.

tellsimp is used when it is important to modify the expression before the simplifier works
on it, for instance if the simplifier "knows" something about the expression, but what it
returns is not to your liking. If the simplifier "knows" something about the main operator
of the expression, but is simply not doing enough for you, you probably want to use
tellsimpafter.

The pattern may not be a sum, product, single variable, or number.

rules is the list of rules defined by defrule, defmatch, tellsimp, and tellsimpafter.

Examples:

(%i1) matchdeclare (x, freeof (%i));

(o)
(%hi2)

done
%hiargs: false$



Chapter 37: Rules and Patterns 321

(%13) tellsimp (sin(%i*x), %i*sinh(x));

(%03) [sinrulel, simp-%sin]
(%14) trigexpand (sin (%ixy + x));
(%o4) sin(x) cos(%i y) + %i cos(x) sinh(y)

(%15) hiargs:true$
(%i6) errcatch(0°0);

0
0 has been generated
(%06) (1
(%17) ev (tellsimp (070, 1), simp: false);
(%hoT) ["rulel, simpexpt]
(%18) 070;
(%08) 1
(%19) remrule (""", %th(2)[1]);
(%09) -
(%110) tellsimp (sin(x)"2, 1 - cos(x)"2);
(%010) [Crule2, simpexpt]
(%i11) (1 + sin(x))"2;
2

(ho11) (sin(x) + 1)
(%i12) expand (%) ;

2
(ho12) 2 sin(x) - cos (x) + 2
(%i13) sin(x)"2;

2
(%013) 1 - cos (x)
(%i14) kill (rules);
(%014) done
(%i15) matchdeclare (a, true);
(%ho1b) done
(%1i16) tellsimp (sin(a)”2, 1 - cos(a)~2);
(%016) ["rule3, simpexpt]
(%i17) sin(y)~2;

2
(%o17) 1 - cos (y)

tellsimpafter (pattern, replacement) Function

Defines a simplification rule which the Maxima simplifier applies after built-in sim-
plification rules. pattern is an expression, comprising pattern variables (declared by
matchdeclare) and other atoms and operators, considered literals for the purpose of
pattern matching. replacement is substituted for an actual expression which matches
pattern; pattern variables in replacement are assigned the values matched in the actual
expression.

pattern may be any nonatomic expression in which the main operator is not a pattern
variable; the simplification rule is associated with the main operator. The names of
functions (with one exception, described below), lists, and arrays may appear in pattern
as the main operator only as literals (not pattern variables); this rules out expressions such
as aa(x) and bb[y] as patterns, if aa and bb are pattern variables. Names of functions,
lists, and arrays which are pattern variables may appear as operators other than the main
operator in pattern.

There is one exception to the above rule concerning names of functions. The name of a
subscripted function in an expression such as aa[x] (y) may be a pattern variable, because
the main operator is not aa but rather the Lisp atom mqapply. This is a consequence of
the representation of expressions involving subscripted functions.

Simplification rules are applied after evaluation (if not suppressed through quotation or
the flag noeval). Rules established by tellsimpafter are applied in the order they
were defined, and after any built-in rules. Rules are applied bottom-up, that is, applied



322

Maxima Manual

first to subexpressions before application to the whole expression. It may be necessary
to repeatedly simplify a result (for example, via the quote-quote operator ’’ or the flag
infeval) to ensure that all rules are applied.

Pattern variables are treated as local variables in simplification rules. Once a rule is
defined, the value of a pattern variable does not affect the rule, and is not affected by the
rule. An assignment to a pattern variable which results from a successful rule match does
not affect the current assignment (or lack of it) of the pattern variable. However, as with
all atoms in Maxima, the properties of pattern variables (as declared by put and related
functions) are global.

The rule constructed by tellsimpafter is named after the main operator of pattern.
Rules for built-in operators, and user-defined operators defined by infix, prefix,
postfix, matchfix, and nofix, have names which are Maxima strings. Rules for other
functions have names which are ordinary Maxima identifiers.

The treatment of noun and verb forms is slightly confused. If a rule is defined for a noun
(or verb) form and a rule for the corresponding verb (or noun) form already exists, the
newly-defined rule applies to both forms (noun and verb). If a rule for the corresponding
verb (or noun) form does not exist, the newly-defined rule applies only to the noun (or
verb) form.

The rule constructed by tellsimpafter is an ordinary Lisp function. If the name of
the rule is $foorulel, the construct :1isp (trace $foorulel) traces the function, and
:lisp (symbol-function ’$foorulel displays its definition.
tellsimpafter quotes its arguments. tellsimpafter returns the list of rules for the
main operator of pattern, including the newly established rule.
See also matchdeclare, defmatch, defrule, tellsimp, let, kill, remrule, and clear_
rules.
Examples:
pattern may be any nonatomic expression in which the main operator is not a pattern
variable.

(%11) matchdeclare (aa, atom, [11, mm], listp, xx, true)$

(%i2) tellsimpafter (sin (11), map (sin, 11));

(%ho2) [sinrulel, simp-%sin]

(%13) sin ([1/6, 1/4, 1/3, 1/2, 1]1*Ypi);

1 sqrt(2) sqrt(3)

(%03) -, —————- , —m==—-- , 1, 0]
2 2 2
(%14) tellsimpafter (11°mm, map (""", 11, mm));
(%ho4d) ["rulel, simpexpt]
(%i5) [a, b, cI1°[1, 2, 3];
2 3
(%05) [a, b, c ]
(%16) tellsimpafter (foo (aa (xx)), aa (foo (xx)));
(%06) [foorulel, false]
(%1i7) foo (bar (u - v));
(%oT) bar (foo(u - v))

Rules are applied in the order they were defined. If two rules can match an expression,
the rule which was defined first is applied.

(%11) matchdeclare (aa, integerp);

(%o1) done

(%12) tellsimpafter (foo (aa), bar_1 (aa));
(%02) [foorulel, false]
(%13) tellsimpafter (foo (aa), bar_2 (aa));
(%03) [foorule2, foorulel, false]
(%i4) foo (42);

(%04) bar_1(42)

Pattern variables are treated as local variables in simplification rules. (Compare to
defmatch, which treats pattern variables as global variables.)



Chapter 37: Rules and Patterns 323

(%i1) matchdeclare (aa, integerp, bb, atom);

(%o1) done

(%12) tellsimpafter (foo(aa, bb), bar(’aa=aa, ’bb=bb));
(%02) [foorulel, falsel

(%13) bb: 12345;

(%03) 12345

(%id) foo (42, %e);

(%o4) bar(aa = 42, bb = %e)

(%i5) bb;

(%05) 12345

As with all atoms, properties of pattern variables are global even though values are local.
In this example, an assignment property is declared via define_variable. This is a
property of the atom bb throughout Maxima.

(%11) matchdeclare (aa, integerp, bb, atom);

(%o1) done

(%12) tellsimpafter (foo(aa, bb), bar(’aa=aa, ’bb=bb));
(%02) [foorulel, false]

(%1i3) foo (42, %e);

(%03) bar(aa = 42, bb = %e)

(%i4) define_variable (bb, true, boolean);

(%04) true

(%i5) foo (42, %e);
Error: bb was declared mode boolean, has value: Y%e
-- an error. Quitting. To debug this try debugmode(true);

Rules are named after main operators. Names of rules for built-in and user-defined oper-
ators are strings, while names for other functions are ordinary identifiers.

(%11) tellsimpafter (foo (%pi + %e), 3*¥%pi);

(%ho1) [foorulel, false]

(%12) tellsimpafter (foo (%pi * %e), 17*%e);

(%02) [foorule2, foorulel, false]

(%13) tellsimpafter (foo (%i ~ %e), -42%%i);

(%03) [foorule3, foorule2, foorulel, falsel

(%i4) tellsimpafter (foo (9) + foo (13), quux (22));
(Yhod) [+rulel, simplus]

(%15) tellsimpafter (foo (9) * foo (13), blurf (22));
(%05) [*rulel, simptimes]

(%16) tellsimpafter (foo (9) ~ foo (13), mumble (22));
(%ho6) ["rulel, simpexpt]

(%i7) rules;

(%07) [trigruleO, trigrulel, trigrule2, trigrule3, trigrule4,
htrigrulel, htrigrule2, htrigrule3, htrigrule4, foorulel,
foorule2, foorule3, +rulel, *rulel, “rulel]

(%i8) foorule_name: first (%ol);

(%08) foorulel

(%19) plusrule_name: first (%o4);

(%09) +rulel

(%110) [?mstringp (foorule_name), symbolp (foorule_name)];
(%010) [false, true]

(%1i11) [7mstringp (plusrule_name), symbolp (plusrule_name)];
(%ho11) [true, truel

(%1i12) remrule (foo, foorulel);

(%012) foo

(%113) remrule (""", "“rulel");
(%013) -



324 Maxima Manual

clear_rules () Function
Executes kill (rules) and then resets the next rule number to 1 for addition +, multi-
plication *, and exponentiation ~



Chapter 38: Lists 325

38 Lists

38.1 Introduction to Lists

Lists are the basic building block for Maxima and Lisp. All data types other than arrays,
hash tables, numbers are represented as Lisp lists, These Lisp lists have the form

((MPLUS) $A 2)

to indicate an expression a+2. At Maxima level one would see the infix notation a+2. Maxima
also has lists which are printed as

[1, 2: 7: X+y]
for a list with 4 elements. Internally this corresponds to a Lisp list of the form
((MLIST) 1 2 7 ((MPLUS) $X $Y ))

The flag which denotes the type field of the Maxima expression is a list itself, since after it has
been through the simplifier the list would become

((MLIST SIMP) 1 2 7 ((MPLUS SIMP) $X $Y))

38.2 Definitions for Lists

append (list_1, ..., list_n) Function
Returns a single list of the elements of list_1 followed by the elements of list_2, ...
append also works on general expressions, e.g. append (f(a,b), f(c,d,e)); yields
f(a,b,c,d,e).

Do example(append) ; for an example.

assoc (key, list, default) Function

assoc (key, list) Function
This function searches for the key in the left hand side of the input list of the form
[x,y,2z,...] where each of the list elements is an expression of a binary operand and 2

elements. For example x=1, 273, [a,b] etc. The key is checked againts the first operand.
assoc returns the second operand if the key is found. If the key is not found it either
returns the default value. default is optional and defaults to false.

atom (expr) Function
Returns true if expr is atomic (i.e. a number, name or string) else false. Thus atom(5) is
true while atom(a[1]) and atom(sin(x)) are false (asuming a[1] and x are unbound).

cons (expr, list) Function
Returns a new list constructed of the element expr as its first element, followed by the
elements of list. cons also works on other expressions, e.g. cons(x, f(a,b,c)); ->

f(x,a,b,c).

copylist (list) Function
Returns a copy of the list list.

create_list (form, x_1, list_1, ..., x_n, list_n) Function
Create a list by evaluating form with x_1 bound to each element of list_1, and for each
such binding bind x_2 to each element of list_2, .... The number of elements in the result

will be the product of the number of elements in each list. Each variable x_i must actually
be a symbol — it will not be evaluated. The list arguments will be evaluated once at the
beginning of the iteration.
(%i1) create_list(x"i,i,[1,3,7]);
3 7
(%hot) [x, x , x]
With a double iteration:



326 Maxima Manual

(%i1) create_list([i,j],i,[a,b]l,j,[e,f,h]);

(%o1) [[a, €], [a, £f], [a, h]l, [b, el, [b, f1, [b, hl]
Instead of list_i two args may be supplied each of which should evaluate to a number.
These will be the inclusive lower and upper bounds for the iteration.

(%i1) create_list([i,j],i,[1,2,3],j,1,1);

(%ot) [[1, 11, [2, 11, [2, 21, [3, 11, [3, 21, [3, 3]]
Note that the limits or list for the j variable can depend on the current value of i.

delete (expr_1, expr_2) Function

delete (expr_1, expr_2, n) Function
Removes all occurrences of expr_1 from expr_2. expr_1 may be a term of expr_2 (if it is a
sum) or a factor of expr_2 (if it is a product).

(%11) delete(sin(x), x+sin(x)+y);
(%hol) y +x

delete(expr_1, expr_2, n) removes the first n occurrences of expr_1 from expr_2. If there
are fewer than n occurrences of expr_1 in expr_2 then all occurrences will be deleted.

(%i1) delete(a, f(a,b,c,d,a));

(%o1) f(b, c, d)
(%i2) delete(a, f(a,b,a,c,d,a), 2);
(%02) f(b, c, d, a)
eighth (expr) Function

Returns the 8’th item of expression or list expr. See first for more details.

endcons (expr, list) Function
Returns a new list consisting of the elements of 1ist followed by expr. endcons also works
on general expressions, e.g. endcons(x, f(a,b,c)); -> f(a,b,c,x).

fifth (expr) Function
Returns the 5’th item of expression or list expr. See first for more details.

first (expr) Function

Returns the first part of expr which may result in the first element of a list, the first
row of a matrix, the first term of a sum, etc. Note that first and its related functions,
rest and last, work on the form of expr which is displayed not the form which is typed
on input. If the variable inflag is set to true however, these functions will look at the
internal form of expr. Note that the simplifier re-orders expressions. Thus first (x+y)
will be x if inflag is true and y if inflag is false (first(y+x) gives the same results).
The functions second .. tenth yield the second through the tenth part of their input
argument.

fourth (expr) Function
Returns the 4’th item of expression or list expr. See first for more details.

get (a, i) Function
Retrieves the user property indicated by i associated with atom a or returns false if a
doesn’t have property i.
get evaluates its arguments.

(%i1) put (%e, ’transcendental, ’type);

(hol) transcendental

(%12) put (%pi, ’transcendental, ’type)$
(%13) put (%i, ’algebraic, ’type)$

(%14) typeof (expr) := block ([q],



Chapter 38: Lists 327

if numberp (expr)

then return (’algebraic),

if not atom (expr)

then return (maplist (’typeof, expr)),

q: get (expr, ’type),

if g=false

then errcatch (error(expr,"is not numeric.")) else q)$
(%15) typeof (2*%e + x*%pi);
X is not numeric.
(%05) [[transcendental, []1], [algebraic, transcendentalll]
(%16) typeof (2x%e + %pi);
(%06) [transcendental, [algebraic, transcendentall]

join (I, m) Function
Creates a new list containing the elements of lists I and m, interspersed. The result has
elements [I[1], m[1], I[2], m[2], ...]1. The lists I and m may contain any type of
elements.

If the lists are different lengths, join ignores elements of the longer list.
Maxima complains if L_1 or L_2 is not a list.

Examples:

(%i1) L1: [a, sin(b), c!, d - 1];
(%o1) [a, sin(b), c!, d - 1]
(hi2) join (L1, [1, 2, 3, 4]);
(%02) [a, 1, sin(b), 2, c!, 3, d - 1, 4]
(%13) join (L1, [aa, bb, cc, dd, ee, ff]);
(%03) [a, aa, sin(b), bb, c!, cc, d - 1, dd]

last (expr) Function

Returns the last part (term, row, element, etc.) of the expr.

length (expr) Function
Returns (by default) the number of parts in the external (displayed) form of expr. For
lists this is the number of elements, for matrices it is the number of rows, and for sums it
is the number of terms (see dispform).

The length command is affected by the inflag switch. So, e.g. length(a/(b*c)); gives
2 if inflag is false (Assuming exptdispflag is true), but 3 if inflag is true (the
internal representation is essentially axb~=1*c~-1).

listarith Option variable
default value: true - if false causes any arithmetic operations with lists to be suppressed;
when true, list-matrix operations are contagious causing lists to be converted to matrices
yielding a result which is always a matrix. However, list-list operations should return lists.

listp (expr) Function
Returns true if expr is a list else false.

makelist (expr, i, 1.0, i_1) Function

makelist (expr, x, list) Function

Constructs and returns a list, each element of which is generated from expr.

makelist (expr, i, i_0, i_1) returns a list, the j’th element of which is equal to ev (expr,
i=j) for j equal to i_0 through i_I.

makelist (expr, x, list) returns a list, the j'th element of which is equal to ev (expr,
x=list[j]1) for j equal to 1 through length (list).

Examples:



328 Maxima Manual

(%1i1) makelist(concat(x,i),i,1,6);

(%o1) [x1, x2, x3, x4, x5, x6]
(%12) makelist(x=y,y,[a,b,c]);
(%02) [x =a, x=Db, x = c]
member (expr, list) Function

Returns true if expr occurs as a member of list (not within a member). Otherwise false
is returned. member also works on non-list expressions, e.g. member(b,f(a,b,c)); ->
true.

ninth (expr) Function
Returns the 9’th item of expression or list expr. See first for more details.

rest (expr, n) Function

rest (expr) Function
Returns expr with its first n elements removed if n is positive and its last — n elements
removed if n is negative. If n is 1 it may be omitted. expr may be a list, matrix, or other
expression.

reverse (list) Function
Reverses the order of the members of the list (not the members themselves). reverse also
works on general expressions, e.g. reverse(a=b); gives b=a.

second (expr) Function
Returns the 2'nd item of expression or list expr. See first for more details.

seventh (expr) Function
Returns the 7’th item of expression or list expr. See first for more details.

sixth (expr) Function
Returns the 6’th item of expression or list expr. See first for more details.

tenth (expr) Function
Returns the 10’th item of expression or list expr. See first for more details.

third (expr) Function
Returns the 3’rd item of expression or list expr. See first for more details.



Chapter 39: Sets 329

39 Sets

39.1 Introduction to Sets

Maxima provides set functions, such as intersection and union, for finite sets that are defined
by explicit enumeration. Maxima treats lists and sets as distinct objects. This feature makes it
possible to work with sets that have members that are either lists or sets.

In addition to functions for finite sets, Maxima provides some functions related to combi-
natorics; these include the Stirling numbers of the first and second kind, the Bell numbers,
multinomial coefficients, partitions of nonnegative integers, and a few others. Maxima also
defines a Kronecker delta function.

39.1.1 Usage

To construct a set with members a_1, ..., a_n, write set(a_1, ..., a_n) or {a_1, ...,
a_n}; to construct the empty set, write set() or {}. In input, set (...) and { ... } are
equivalent. Sets are always displayed with curly braces.

If a member is listed more than once, the simplification process eliminates the redundant
member.

(%i1) set();

(%o1) {}

(%i2) set(a, b, a);

(%02) {a, b}

(%13) set(a, set(b));

(%03) {a, {b}}

(%i4) set(a, [bl);

(%o4) {a, [bl}

(%i5) {};

(%05) {}

(%i6) {a, b, a};

(%o6) {a, b}

(%17) {a, {b}};

(hoT) {a, {b}}

(%18) {a, [bl};

(%08) {a, [bl}

Two would-be elements x and y are redundant (i.e., considered the same for the purposes of

set construction) if and only if is (x = y) yields true. Note that is (equal (x, y)) can yield
true while is (x = y) yields false; in that case the elements x and y are considered distinct.

(%i1) x: a/c + b/c;

a
(%o1) -+ -
c c
(%1i2) y: a/c + b/c;
a
(%02) -+ -
c c
(%i3) z: (a + b)/c;
b+ a
(%03 ===
c
(%i4) is (x = y);
(%04) true
(%i5) is (y = 2);
(%05) false

(%i6) is (equal (y, z));



330

Maxima Manual

(%06) true
Hhi7) y - z;
b+ a b a
(%0T) - - + -+ -
c c c

(%18) ratsimp (%);
(%08) 0
(5i9) set (x, y, 2);

(%09) {-=-=m -+ 2}

To construct a set from the elements of a list, use setify.

(%i1) setify([b, al);
(hol) {a, b}

Set members x and y are equal provided is(x = y) evaluates to true. Thus rat(x) and x
are equal as set members; consequently,

(%i1) set(x, rat(x));
(%o1) {xX

Further, since is((x-1)*(x+1) = x"2 - 1) evaluates to false, (x-1)*(x+1) and x~2-1 are
distinct set members; thus

(%1i1) set((x - D*x(x + 1), x°2 - 1);
2
(%o1) {x-1) x+1), x -1}

To reduce this set to a singleton set, apply rat to each set member:

(%i1) set((x - D*(x + 1), x°2 - 1);

2
(%o1) {x-1) &+ 1), x -1}
(%i2) map(rat, %);
2
(%02) /R/ {x -1}

To remove redundancies from other sets, you may need to use other simplification functions.
Here is an example that uses trigsimp:

(%i1) set(1, cos(x)"2 + sin(x)"2);

2 2
(%o1) {1, sin (x) + cos (x)}
(%12) map(trigsimp, %);
(%02) {1}

A set is simplified when its members are non-redundant and sorted. The current version of
the set functions uses the Maxima function orderlessp to order sets; however, future versions
of the set functions might use a different ordering function.

Some operations on sets, such as substitution, automatically force a re-simplification; for
example,

(%i1) s: set (a, b, c)$
(%i2) subst (c=a, s);

(%02) {a, b}

(%1i3) subst ([a=x, b=x, c=x], s);

(%03) {x}

(%14) map (lambda ([x], x"2), set (-1, 0, 1));
(%04) {0, 1}

Maxima treats lists and sets as distinct objects; functions such as union and intersection
will signal an error if any argument is a list. If you need to apply a set function to a list, use
the setify function to convert it to a set. Thus

(%i1) union ([1, 2], set (a, b));
Function union expects a set, instead found [1,2]



Chapter 39: Sets 331

-- an error. Quitting. To debug this try debugmode(true);
(%i2) union (setify ([1, 2]), set (a, b));
(%ho2) {1, 2, a, b}

To extract all set elements of a set s that satisfy a predicate f, use subset(s,f). (A
predicate is a boolean-valued function.) For example, to find the equations in a given set that
do not depend on a variable z, use

(%11) subset (set (x +y +z, x -y + 4, x+y - 5), lambda ([e], freeof (z, e)));
(%o1) {-y+x+4, y+x -5}

The section Section 39.2 [Definitions for Sets]|, page 332 has a complete list of the set functions
in Maxima.

39.1.2 Set Member Iteration

There two ways to to iterate over set members. One way is the use map; for example:

(%1i1) map (f, set (a, b, c));
(%ho1) {f(a), £(b), £(c)}

The other way is to use for x in s do
(%i1) s: set (a, b, c);

(%hol) {a, b, c}

(%i2) for si in s do print (concat (si, 1));
al

b1l

cl

(%02) done

The Maxima functions first and rest work correctly on sets. Applied to a set, first returns
the first displayed element of a set; which element that is may be implementation-dependent.
If s is a set, then rest(s) is equivalent to disjoin (first(s), s). Currently, there are other
Maxima functions that work correctly on sets. In future versions of the set functions, first and
rest may function differently or not at all.

39.1.3 Bugs

The set functions use the Maxima function orderlessp to order set members and the (Lisp-
level) function like to test for set member equality. Both of these functions have known bugs
that may manifest if you attempt to use sets with members that are lists or matrices that contain
expressions in CRE form. An example is

(%i1) set ([x], [rat (x)1);

Maxima encountered a Lisp error:
CAR: #:X13129 is not a LIST

Automatically continuing.
To reenable the Lisp debugger set *debugger-hook* to nil.

This command causes Maxima to halt with an error (the error message depends on which
version of Lisp your Maxima uses). Another example is

(%i1) setify ([[rat(a)], [rat(®)]1);
Maxima encountered a Lisp error:

CAR: #:A13129 is not a LIST

Automatically continuing.
To reenable the Lisp debugger set *debugger-hook* to nil.

These bugs are caused by bugs in orderlessp and like; they are not caused by bugs in the
set functions. To illustrate, try the commands



332 Maxima Manual

(%i1) orderlessp ([rat(a)], [rat(®)]1);
Maxima encountered a Lisp error:

CAR: #:B13130 is not a LIST

Automatically continuing.

To reenable the Lisp debugger set *debugger-hook* to nil.
(%i2) is ([rat(a)] = [rat(a)]);

(%ho2) false

Until these bugs are fixed, do not construct sets with members that are lists or matrices
containing expressions in CRE form; a set with a member in CRE form, however, shouldn’t be
a problem:

(%i1) set (x, rat (x));
(%o1) {xX

Maxima’s orderlessp has another bug that can cause problems with set functions, namely
that the ordering predicate orderlessp is not transitive. The simplest known example that
shows this is

(i) q: x"2¢%

(%i2) r: (x + 1)°2¢%
(%i3) s: xx(x + 2)%
(%14) orderlessp (q, r);

(%hod) true
(%15) orderlessp (r, s);
(%05) true
(%16) orderlessp (q, s);
(%h06) false

This bug can cause trouble will all set functions as well as with Maxima functions in general.
It’s likely, but not certain, that if all set members are either in CRE form or have been simplified
using ratsimp, this bug will not manifest.

Maxima’s orderless and ordergreat mechanisms are incompatible with the set functions.
If you need to use either orderless or ordergreat, issue these commands before constructing
any sets and do not use the unorder command.

Maxima’s sign function has a bug that may cause the Kronecker delta function to misbehave;
for example:

(%i1) kron_delta (1/sqrt(2), sqrt(2)/2);
(%hol) 0
The correct value is 1; the bug is related to the sign bug
(%i1) sign (1/sqrt(2) - sqrt(2)/2);
(hol) pos

If you find something that you think might be a set function bug, please report it to the
Maxima bug database. See bug_report.

39.1.4 Authors

Stavros Macrakis of Cambridge, Massachusetts and Barton Willis of the University of Ne-
braska at Kearney (UNK) wrote the Maxima set functions and their documentation.

39.2 Definitions for Sets

adjoin (x, a) Function
Adjoin x to the set a and return a set. Thus adjoin(x, a) and union(set(x),a) are
equivalent; however, using adjoin may be somewhat faster than using union. If a isn’t a
set, signal an error.



Chapter 39: Sets 333

(%11) adjoin (c, set (a, b));

(%01) {a, b, c}
(%i2) adjoin (a, set (a, b));
(%02) {a, b}

See also disjoin.

belln (n) Function
For nonnegative integers n, return the n-th Bell number. If s is a set with n members,
belln(n) is the number of partitions of s. For example:

(%i1) makelist (belln (i), i, 0, 6);

(%hol) [1, 1, 2, 5, 15, 52, 203]

(%12) is (cardinality (set_partitions (set ())) = belln (0));

(%02) true

(%13) is (cardinality (set_partitions (set (1, 2, 3, 4, 5, 6))) = belln (6));
(%03) true

When n isn’t a nonnegative integer, belln(n) doesn’t simplify.

(%i1) [belln (x), belln (sqrt(3)), belln (-9)];
(%o1) [belln(x), belln(sqrt(3)), belln(- 9)]

The function belln threads over equalities, lists, matrices, and sets.

cardinality (a) Function
Return the number of distinct elements of the set a.

(%11) cardinality (set (O);

(%o1) 0

(%i2) cardinality (set (a, a, b, c));

(%02) 3

(%13) cardinality (set (a, a, b, c¢)), simp: false;

(%03) 3
In line (%03), we see that cardinality works correctly even when simplification has been
turned off.

cartesian_product (b_1, ... , b_n) Function

Return a set of lists of the form [x_1, ..., x.n], where x_1 in b_I, ..., x_n in b_n. Signal

an error when any b_k isn’t a set.
(%11) cartesian_product (set (0, 1));

(%hol) {fo], [11%}
(%i2) cartesian_product (set (0, 1), set (0, 1));
(%ho2) {fo, o1, [0, 11, [1, O], [1, 11}
(%13) cartesian_product (set (x), set (y), set (z));
(%03) {[x, y, z1}
(%i4) cartesian_product (set (x), set (-1, 0, 1));
(ho4d) {x, - 11, [x, 01, [x, 11}
disjoin (x, a) Function

Remove x from the set a and return a set. If x isn’t a member of a, return
a. Each of the following do the same thing: disjoin(x, a), delete(x, a), and
setdifference(a,set(x)); however, disjoin is generally the fastest way to remove a
member from a set. Signal an error if a isn’t a set.

disjointp (a, b) Function
Return true if the sets a and b are disjoint. Signal an error if either a or b isn’t a set.



334 Maxima Manual

divisors (n) Function
When n is a nonzero integer, return the set of its divisors. The set of divisors includes the
members 1 and n. The divisors of a negative integer are the divisors of its absolute value.

We can verify that 28 is a perfect number.
(%i1) s: divisors(28);

(hol) {1, 2, 4, 7, 14, 28}
(%12) lreduce ("+", args(s)) - 28;
(ho2) 28

The function divisors works by simplification; you shouldn’t need to manually re-evaluate
after a substitution. For example:

(%i1) divisors (a);

(%ol) divisors(a)
(%i2) subst (8, a, %);
(%02) {1, 2, 4, 8}

The function divisors threads over equalities, lists, matrices, and sets. Here is an example
of threading over a list and an equality.

(%11) divisors ([a, b, c=d]);
(%o1) [divisors(a), divisors(b), divisors(c) = divisors(d)]

elementp (x, a) Function
Return true if and only if x is a member of the set a. Signal an error if a isn’t a set.

emptyp (a) Function
Return true if and only if a is the empty set or the empty list.

(%i1) map (emptyp, [set O, [11);

(%o1) [true, true]
(%i2) map (emptyp, [a + b, set (set (), %pil);
(%02) [false, false, falsel
equiv_classes (s, f) Function

Return a set of the equivalence classes of s with respect to the equivalence relation f. The
function f should be a boolean-valued function defined on the cartesian product of s with
s. Further, the function f should be an equivalence relation; equiv_classes, however,
doesn’t check that it is.

(%i1) equiv_classes (set (a, b, c¢), lambda ([x, y], is (x=y)));

(%o1) {{a}, {b}, {c}}
Actually, equiv_classes (s, f) automatically applies the Maxima function is after ap-
plying the function f; accordingly, we can restate the previous example more briefly.

(%11) equiv_classes (set (a, b, c), "=");

(ho1) {{a}, {b}, {c}}

Here is another example.
(%11) equiv_classes (set (1, 2, 3, 4, 5, 6, 7), lambda ([x, y], remainder (x - -

(%hot) {{1, 4, 7}, {2, 5}, {3, 6}}
every (f, a) Function
every (f, L_1, ..., L_n) Function
The first argument f should be a predicate (a function that evaluates to true, false, or
unknown).

Given one set as the second argument, every (f, a) returns true if f (a_i) returns true
for all a_i in a. Since sets are unordered, every is free to evaluate f (a_i) in any order.
every may or may not evaluate f for all a_i in a. Because the order of evaluation isn’t
specified, the predicate f should not have side-effects or signal errors for any input.



Chapter 39: Sets 335

Given one or more lists as arguments, every (f, L_1, ..., L.n) returns true if f(x_1,

., x_n) returns true for all x_1, ..., x.nin L_1, ..., L_n, respectively. every may or may
not evaluate f for every combination x_1, ..., x_n. Since lists are ordered, every evaluates
in the order of increasing index.

To use every on multiple set arguments, they should first be converted to an ordered
sequence so that their relative alignment becomes well-defined.

If the global flag maperror is true (the default), all lists L_1, ..., L.n must have equal
lengths — otherwise, every signals an error. When maperror is false, the list arguments
are effectively truncated each to the length of the shortest list.

The Maxima function is automatically applied after evaluating the predicate f.
(%i1) every ("=", [a, bl, [a, bl);

(hol) true

(%i2) every ("#", [a, b], [a, bl);

(ho2) false
extremal_subset (s, f, max) Function
extremal_subset (s, f, min) Function

When the third argument is max, return the subset of the set or list s for which the
real-valued function f takes on its greatest value; when the third argument is min, return
the subset for which f takes on its least value.

(%i1) extremal_subset (set (-2, -1, 0, 1, 2), abs, max);

(%o1) {- 2, 2}
(%i2) extremal_subset (set (sqrt(2), 1.57, %pi/2), sin, min);
(%02) {sqrt(2)}
flatten (e) Function

Flatten essentially evaluates an expression as if its main operator had been declared n-ary;
there is, however, one difference — flatten doesn’t recurse into other function arguments.
For example:

(%i1) expr: flatten (f (g (£ (£ ()))N);

(%01) f(g(£ (£ (x))))
(%12) declare (f, nary);

(%o2) done
(%13) ev (expr);

(%o3) f(g(£(x)))

Applied to a set, flatten gathers all members of set elements that are sets; for example:
(%i1) flatten (set (a, set (b), set (set (c))));

(%o1) {a, b, c}
(%i2) flatten (set (a, set ([al, set (a))));
(%02) {a, [al}

Flatten works correctly when the main operator is a subscripted function

(%11) flatten (£[5] (£[5] (x)));

(%01) f (x)

5

To flatten an expression, the main operator must be defined for zero or more arguments;
if this isn’t the case, Maxima will halt with an error. Expressions with special represen-
tations, for example CRE expressions, can’t be flattened; in this case, flatten returns its
argument unchanged.

full listify (a) Function
If a is a set, convert a to a list and apply full_listify to each list element.

To convert just the top-level operator of a set to a list, see [listify], page 337.



336 Maxima Manual

fullsetify (a) Function
If a is a list, convert a to a set and apply fullsetify to each set member.

(%i1) fullsetify ([a, [all);

(%o1) {a, {a}}
(%i2) fullsetify ([a, £([b1)1);
(%02) {a, £([b])}

In line (%02), the argument of f isn’t converted to a set because the main operator of
£([b]) isn’t a list.

To convert just the top-level operator of a list to a set, see [setify], page 340.

identity (x) Function
The identity function evaluates to its argument for all inputs. To determine if every
member of a set is true, you can use

(%i1) every (identity, [true, truel);

(o) true
integer_partitions (n) Function
integer_partitions (n, len) Function

If the optional second argument len isn’t specified, return the set of all partitions of the
integer n. When len is specified, return all partitions that have length len or less; in
this case, zeros are appended to each partition with fewer than len terms to make each
partition have exactly len terms. In either case, each partition is a list sorted from greatest
to least.

We say a list [ay, ..., a,,] is a partition of a nonnegative integer n provided (1) each a; is a
nonzero integer and (2) a; + ... + a,, = n. Thus 0 has no partitions.

(%11) integer_partitions (3);

(%o1) {rt, t, 11, [2, 11, [31}
(%12) s: integer_partitions (25)$

(%13) cardinality (s);

(%03) 1958
(%i4) map (lambda ([x], apply ("+", %)), s);
(%o4) {25}

(%i5) integer_partitions (5, 3);

(hob) {[2, 2, 11, [3, 1, 11, [3, 2, 0], [4, 1, 0], [5, O, O]}
(%16) integer_partitions (5, 2);

(%06) {03, 21, [4, 11, [5, O]}

To find all partitions that satisfy a condition, use the function subset; here is an example
that finds all partitions of 10 that consist of prime numbers.

(%11) s: integer_partitions (10)$

(%i2) xprimep(x) := integerp(x) and (x > 1) and primep(x)$

(%13) subset (s, lambda ([x], every (xprimep, x)));

(ho3) {[2, 2, 2, 2, 21, [3, 3, 2, 21, [5, 3, 21, [5, 5], [7, 31}

(Notice that primep (1) is true in Maxima. This disagrees with most definitions of prime.)

intersect (a_1, ..., a_n) Function
Return a set containing the elements that are common to the sets a_1 through a_n. The
function intersect must receive one or more arguments. Signal an error if any of a_l
through a_n isn’t a set. See also [intersection|, page 336.

intersection (a_l, ..., a_n) Function
Return a set containing the elements that are common to the sets a_1 through a_n. The
function intersection must receive one or more arguments. Signal an error if any of a_1
through a_n isn’t a set. See also [intersect]|, page 336.



Chapter 39: Sets 337

kron_delta (x, y) Function
The Kronecker delta function; kron_delta (x, y) simplifies to 1 when is(x = y) is true
and it simplifies to zero when sign (|x - y|) is pos. When sign (Ix - y|) is zero and
x - y isn’t a floating point number (neither a double nor a bfloat), return 0. Otherwise,
return a noun form.
The function, kron_delta is declared to be symmetric; thus, for example, kron_delta(x,
y) - kron_delta(y, x) simplifies to zero.

Here are a few examples.
(%i1) [kxron_delta (a, a), kron_delta (a + 1, a)l;

(%o1) [1, 0]
(%12) kron_delta (a, b);
(%02) kron_delta(a, b)

Assuming that a > b makes sign (la - b|) evaluate to pos; thus

(%i1) assume (a > b)$
(%i2) kron_delta (a, b);
(ho2) 0
If we instead assume that x >= y, then sign (|x - y|) evaluates to pz; in this case, kron_
delta (x, y) doesn’t simplify
(%1i1) assume(x >= y)$
(%i2) kron_delta (x, y);
(%ho2) kron_delta(x, y)
Finally, since 1/10 - 0.1 evaluates to a floating point number, we have
(%i1) kron_delta (1/10, 0.1);
1
(%o1) kron_delta(--, 0.1)
10
If you want kron_delta (1/10, 0.1) to evaluate to 1, apply float.

(%i1) float (kron_delta (1/10, 0.1));
(%o1) 1

listify (a) Function
If a is a set, return a list containing the members of a; when a isn’t a set, return a. To
convert a set and all of its members to lists, see [full_listify], page 335.

Ireduce (£, s) Function

Ireduce (f, s, init) Function
The function lreduce (left reduce) extends a 2-arity function to an n-arity function by
composition; an example should make this clear. When the optional argument init isn’t
defined, we have

(%i1) 1reduce (£, [1, 2, 3]);

(%hol) f(£(1, 2), 3)
(%i2) 1lreduce (f, [1, 2, 3, 4]1);
(%ho2) fEEQ, 2), 3), 4

Notice that the function f is first applied to the leftmost list elements (thus the name
Ireduce). When init is defined, the second argument to the inner most function evaluation
is init; for example:
(%i1) 1lreduce (f, [1, 2, 31, 4);
(%o1) f(EEGE, 1, 2), 3
The function 1reduce makes it easy to find the product or sum of the elements of a list.
(%i1) 1lreduce ("+", args (set (a, b)));

(%o1) b + a
(%i2) lreduce ("x", args (set (1, 2, 3, 4, 5)));
(%02) 120

See also See [rreduce], page 339, See [xreduce|, page 343, and See [tree_reduce|, page 342.



338 Maxima Manual

makeset (e, v, s) Function
This function is similar to makelist, but makeset allows multiple substitutions. The first
argument e is an expression; the second argument v is a list of variables; and s is a list or
set of values for the variables v. Each member of s must have the same length as v. We
have makeset (e, v, s) is the set {z | z = substitute(v -> s_i) and s_i in s}.

(%i1) makeset (i/j, [i, jl, [[a, b], [c, d]11);

(%o1) {-, -}
b d
(%i2) ind: set (0, 1, 2, 3)$
(%13) makeset (i"2 + j~2 + k™2, [i, j, k], cartesian_product (ind, ind, ind));
(%03) {0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 17, 18,
19, 22, 27}

moebius (n) Function
The Moebius function; when n is product of k distinct primes, moebius(n) evaluates to
(—1)*; it evaluates to 1 when n = 1; and it evaluates to 0 for all other positive integers.
The Moebius function threads over equalities, lists, matrices, and sets.

multinomial _coeff (a_1, ..., a_n) Function

multinomial _coeff () Function
Return the multinomial coefficient. When each a_k is a nonnegative integer, the multino-
mial coefficient gives the number of ways of placing a_1 + ... + a_n distinct objects into n
boxes with a_k elements in the £’th box. In general, multinomial (a_1, ..., a_n) evalu-
atesto (a_l + ... +amn)!/(a_l! ... a_n!). Given no arguments, multinomial () evalu-
ates to 1. A user may use minfactorial to simplify the value returned by multinomial _
coeff; for example:

(%i1) multinomial_coeff (1, 2, x);
(x + 3)!
(Yot) ===

(%1i2) minfactorial (%);
(x+1) (x+2) (x+3)
(ho2)  mmmmmmmmm

(%i3) multinomial_coeff (-6, 2);
(- 4)!
(%03 ===

(%i4) minfactorial (%);
(%o4) 10

num_distinct_partitions (n) Function
num _distinct_partitions (n, a) Function
When n is a nonnegative integer, return the number of distinct integer partitions of n.

If the optional parameter a has the value 1ist, return a list of the number of distinct
partitions of 1,2,3, ... , n. If n isn’t a nonnegative integer, return a noun form.

Definition: If n = k; + ... + k,,,, where k; through k,, are distinct positive integers, we call
ki + ... + k,, a distinct partition of n.

num_partitions (n) Function

num_partitions (n, a) Function
When n is a nonnegative integer, return the number of partitions of n. If the optional
parameter a has the value 1ist, return a list of the number of partitions of 1,2,3, ... | n.

If n isn’t a nonnegative integer, return a noun form.



Chapter 39: Sets 339

(%i1) num_partitions (5) = cardinality (integer_partitions (5));

(%hol) 7T=17

(%12) num_partitions (8, list);

(%02) (1, 1, 2, 3, 5, 7, 11, 15, 22]

(%13) num_partitions (n);

(%03) num_partitions(n)
For a nonnegative integer n, num_partitions (n) is equal to cardinality (integer_
partitions (n)); however, calling num_partitions is much faster.

partition_set (a, f) Function
Return a list of two sets; the first set is the subset of a for which the predicate f evaluates
to false and the second is the subset of a for which f evaluates to true. If a isn’t a set,
signal an error. See also [subset], page 342.

(%11) partition_set (set (2, 7, 1, 8, 2, 8), evenp);

(%o1) {1, 7}, {2, 8}]
(%i2) partition_set (set (x, rat(y), rat(y) + z, 1), lambda ([x], ratp(x)));
(ho2) /R/ ({1, x}, {y, y + z}]

permutations (a) Function

Return a set of all distinct permutations of the members of the list or set a. (Each
permutation is a list, not a set.) When a is a list, duplicate members of a are not deleted
before finding the permutations. Thus

(%i1) permutations ([a, al);

(%o1) {[a, al}
(%12) permutations ([a, a, bl);
(%ho2) {la, a, b], [a, b, al, [b, a, al}

If a isn’t a list or set, signal an error.

powerset (a) Function
powerset (a, n) Function
When the optional second argument n isn’t defined, return the set of all subsets of
the set a. powerset(a) has 2"cardinality(a) members. Given a second argument,
powerset (a,n) returns the set of all subsets of a that have cardinality n. Signal an error
if a isn’t a set; additionally signal an error if n isn’t a positive integer.

rreduce (£, s) Function

rreduce (f, s, init) Function
The function rreduce (right reduce) extends a 2-arity function to an n-arity function by
composition; an example should make this clear. When the optional argument init isn’t
defined, we have

(%i1) rreduce (f, [1, 2, 3]);

(%o1) £f(1, £(2, 3))
(%i2) rreduce (f, [1, 2, 3, 4]);
(%02) £(1, £(2, £(3, 4))

Notice that the function f is first applied to the rightmost list elements (thus the name
rreduce). When init is defined, the second argument to the inner most function evaluation
is init; for example:
(%i1) rreduce (f, [1, 2, 3], 4);
(%o1) £f(1, £(2, £(3, )
The function rreduce makes it easy to find the product or sum of the elements of a list.
(%i1) rreduce ("+", args (set (a, b)));

(%01) b+ a
(%i2) rreduce ("x", args (set (1, 2, 3, 4, 5)));
(%02) 120

See also See [Ireduce|, page 337, See [tree_reduce], page 342, and See [xreduce|, page 343.



340 Maxima Manual

setdifference (a, b) Function
Return a set containing the elements in the set a that are not in the set b. Signal an error
if a or b is not a set.

setequalp (a, b) Function
Returns true if sets a and b have the same number of elements and is (x = y) is true
for x in the elements of a and y in the elements of b, considered in the order determined
by listify. Otherwise, setequalp returns false.

setequalp complains when a or b is not a set.

setify (a) Function
Construct a set from the elements of the list a. Duplicate elements of the list a are deleted
and the elements are sorted according to the predicate orderlessp. Signal an error if a
isn’t a list.

setp (a) Function
Return true if and only if a is a Maxima set. The function setp checks that the operator
of its argument is set; it doesn’t check that its argument is a simplified set. Thus

(%1i1) setp (set (a, a)), simp: false;

(ho1) true
The function setp could be coded in Maxima as setp(a) :=is (inpart (a, 0) = set).
set_partitions (a) Function
set_partitions (a, n) Function

When the optional argument n is defined, return a set of all decompositions of a into n
nonempty disjoint subsets. When n isn’t defined, return the set of all partitions.

We say a set P is a partition of a set S provided
1. each member of P is a nonempty set,
2. distinct members of P are disjoint,

3. the union of the members of P equals S.

The empty set is a partition of itself (the conditions 1 and 2 being vacuously true); thus

(%i1) set_partitions (set ());
(%o1) {{3}

The cardinality of the set of partitions of a set can be found using stirling2; thus
(%i1) s: set (0, 1, 2, 3, 4, 5)%
(%1i2) p: set_partitions (s, 3)$
(%03) 90 = 90
(%14) cardinality(p) = stirling2 (6, 3);
Each member of p should have 3 members; let’s check.
(%i1) s: set (0, 1, 2, 3, 4, 5%
(%12) p: set_partitions (s, 3)$
(%03) {3}
(%14) map (cardinality, p);

Finally, for each member of p, the union of its members should equal s; again let’s check.
(%i1) s: set (0, 1, 2, 3, 4, 5%
(%i2) p: set_partitions (s, 3)$

(%03) {{0, 1, 2, 3, 4, 5}}
(%i4) map (lambda ([x], apply (union, listify (x))), p);



Chapter 39: Sets 341

some (f, a) Function

some (f, L_1, ..., L_n) Function
The first argument f should be a predicate (a function that evaluates to true, false, or
unknown).

Given one set as the second argument, some (f, a) returns true if f (a_i) returns true for
at least one a_i in a. Since sets are unordered, some is free to evaluate f (a_i) in any order.
some may or may not evaluate f for all a_i in a. Because the order of evaluation isn’t
specified, the predicate f should not have side-effects or signal errors for any input. To
use some on multiple set arguments, they should first be converted to an ordered sequence
so that their relative alignment becomes well-defined.

Given one or more lists as arguments, some (f, L_1, ..., L.n) returns true if f(x_1,
., x_n) returns true for at least one x_1, ..., xnin L_1, ..., L_n, respectively. some may
or may not evaluate f for every combination x_1, ..., x_n. Since lists are ordered, some

evaluates in the order of increasing index.

If the global flag maperror is true (the default), all lists L_1, ..., L.n must have equal
lengths — otherwise, some signals an error. When maperror is false, the list arguments are
effectively truncated each to the length of the shortest list.

The Maxima function is is automatically applied after evaluating the predicate f.
(%i1) some ("<", [a, b, 5], [1, 2, 81);

(%o1) true
(%i2) some ("=", [2, 3], [2, 71);
(%02) true
stirlingl (n, m) Function

The Stirling number of the first kind. When n and m are nonnegative integers, the
magnitude of stirlingl (n, m) is the number of permutations of a set with n members
that have m cycles. For details, see Graham, Knuth and Patashnik Concrete Mathematics.
We use a recursion relation to define stirlingl (n, m) for mless than 0; we do not extend
it for n less than 0 or for non-integer arguments.

The function stirlingl works by simplification; it knows the basic special values (see
Donald Knuth, The Art of Computer Programming, third edition, Volume 1, Section
1.2.6, Equations 48, 49, and 50). For Maxima to apply these rules, the arguments must
be declared to be integer and the first argument must nonnegative. For example:

(%11) declare (n, integer)$

(%i2) assume (n >= 0)$

(%13) stirlingl (n, n);

(%03) 1
stirlingl does not simplify for non-integer arguments.

(%11) stirlingl (sqrt(2), sqrt(2));

(hol) stirlingl(sqrt(2), sqrt(2))
Maxima knows a few other special values; for example:

(%i1) declare (n, integer)$

(%i2) assume (n >= 0)$

(%13) stirlingl (n + 1, n);

n (n+ 1)
(o3> mmmmmm-
2
(%14) stirlingl (m + 1, 1);
(%o4) n!
stirling2 (n, m) Function

The Stirling number of the second kind. When n and m are nonnegative integers,
stirling2 (n, m) is the number of ways a set with cardinality n can be partitioned
into m disjoint subsets. We use a recursion relation to define stirling2 (n, m) for m
less than 0; we do not extend it for n less than 0 or for non-integer arguments.



342 Maxima Manual

The function stirling2 works by simplification; it knows the basic special values (see
Donald Knuth, The Art of Computer Programming, third edition, Volume 1, Section
1.2.6, Equations 48, 49, and 50). For Maxima to apply these rules, the arguments must
be declared to be integer and the first argument must nonnegative. For example:

(%11) declare (n, integer)$

(%i2) assume (n >= 0)$

(%13) stirling2 (n, n);

(%03) 1
stirling?2 does not simplify for non-integer arguments.

(%i1) stirling2 (%pi, %pi);

(o) stirling2(%pi, %pi)
Maxima knows a few other special values.

(%11) declare (n, integer)$

(%i2) assume (n >= 0)$

(%13) stirling2 (mn + 9, n + 8);

(n+8) (n+9)
(%03  mmmmmmmm———

(%14) stirling2 (n + 1, 2);

(%hod) 2 -1

subset (a, f) Function
Return the subset of the set a that satisfies the predicate f. For example:

(%i1) subset (set (1, 2, x, x +y, z, x +y + z), atom);

(%o1) {1, 2, x, z}
(%i2) subset (set (1, 2, 7, 8, 9, 14), evenp);
(%02) {2, 8, 14}

The second argument to subset must be a predicate (a boolean-valued function of one ar-
gument) if the first argument to subset isn’t a set, signal an error. See also [partition_set],
page 339.

subsetp (a, b) Function
Return true if and only if the set a is a subset of b. Signal an error if a or b is not a set.

symmdifference (a_1, ..., a_n) Function
Return the set of members that occur in exactly one set a_k. Signal an error if any
argument a_k isn’t a set. Given two arguments, symmdifference (a, b) is the same as
union (setdifference (a, b), setdifference (b, a)).

tree_reduce (f, s) Function

tree_reduce (f, s, init) Function
The function tree_reduce extends a associative binary operator f : SxS— > S from two
arguments to any number of arguments using a minimum depth tree. An example should
make this clear.

(%i1) tree_reduce (f, [a, b, c, dl);

(%01) f(f(a, b), f(c, d))
Given an odd number of arguments, tree_reduce favors the left side of the tree; for
example:

(%i1) tree_reduce (f, [a, b, c, d, e]);

(%o1) f(f(f(a, b), f(c, d)), e)

For addition of floating point numbers, using tree_reduce may give a sum that has a
smaller rounding error than using either rreduce or lreduce.



Chapter 39: Sets 343

union (a_l, ..., a_n) Function
Return the union of the sets a_1 through a_n. When union receives no arguments, it
returns the empty set. Signal an error when one or more arguments to union is not a set.

xreduce (f, s) Function

xreduce (f; s, init) Function
This function is similar to both lreduce and rreduce except that xreduce is free to
use either left or right associativity; in particular when f is an associative function and
Maxima has a built-in evaluator for it, xreduce may use the n-ary function; these n-ary
functions include addition +, multiplication *, and, or, max, min, and append. For these
operators, we generally expect using xreduce to be faster than using either rreduce or
lreduce. When f isn’t n-ary, xreduce uses left-associativity.

Floating point addition is not associative; nevertheless, xreduce uses Maxima’s n-ary
addition when the set or list s contains floating point numbers.



344 Maxima Manual



Chapter 40: Function Definition 345

40 Function Definition

40.1 Introduction to Function Definition

40.2 Function

To define a function in Maxima you use the := operator. E.g.
f(x) := sin(x)
defines a function £. Anonmyous functions may also be created using lambda. For example
lambda ([i, j1, ...)
can be used instead of £ where
£(i,j) := block ([1, ...);
map (lambda ([i], i+1), 1)
would return a list with 1 added to each term.

You may also define a function with a variable number of arguments, by having a final
argument which is assigned to a list of the extra arguments:

(i) £ ([ul) := u;

(%o1) f([ul) :=u

(%i2) £ (1, 2, 3, 4);

(%02) [1, 2, 3, 4]

(%i3) £ (a, b, [ul) := [a, b, ul;

(%03) f(a, b, [u]l) := [a, b, ul
(%id) £ (1, 2, 3, 4, 5, 6);

(%04) (1, 2, [3, 4, 5, 6]1]

The right hand side of a function is an expression. Thus if you want a sequence of expressions,
you do

f(x) := (exprl, expr2, ...., exprn);
and the value of exprn is what is returned by the function.

If you wish to make a return from some expression inside the function then you must use
block and return.

block ([], exprl, ..., if (a > 10) then return(a), ..., exprn)

is itself an expression, and so could take the place of the right hand side of a function
definition. Here it may happen that the return happens earlier than the last expression.

The first []1 in the block, may contain a list of variables and variable assignments, such as
[a: 3, b, c: [1], which would cause the three variables a,b,and c to not refer to their global
values, but rather have these special values for as long as the code executes inside the block, or
inside functions called from inside the block. This is called dynamic binding, since the variables
last from the start of the block to the time it exits. Once you return from the block, or throw
out of it, the old values (if any) of the variables will be restored. It is certainly a good idea to
protect your variables in this way. Note that the assignments in the block variables, are done in
parallel. This means, that if you had used c: a in the above, the value of ¢ would have been the
value of a at the time you just entered the block, but before a was bound. Thus doing something
like

block ([a: al, exprl, ... a: a+3, ..., exprn)

will protect the external value of a from being altered, but would let you access what that
value was. Thus the right hand side of the assignments, is evaluated in the entering context,
before any binding occurs. Using just block ([x], ... would cause the x to have itself as value,
just as if it would have if you entered a fresh Maxima session.

The actual arguments to a function are treated in exactly same way as the variables in a
block. Thus in

f(x) := (exprl, ..., exprn);
and



346 Maxima Manual

£f(1);
we would have a similar context for evaluation of the expressions as if we had done
block ([x: 1], exprl, ..., exprn)

Inside functions, when the right hand side of a definition, may be computed at runtime, it is
useful to use define and possibly buildg.

40.3 Macros

buildq (L, expr) Function
Substitutes variables named by the list L into the expression expr, in parallel, without
evaluating expr. The resulting expression is simplified, but not evaluated, after buildq
carries out the substitution.

The elements of L are symbols or assignment expressions symbol: value, evaluated in
parallel. That is, the binding of a variable on the right-hand side of an assignment is the
binding of that variable in the context from which buildq was called, not the binding of
that variable in the variable list L. If some variable in L is not given an explicit assignment,
its binding in buildq is the same as in the context from which buildq was called.

Then the variables named by L are substituted into expr in parallel. That is, the substitu-
tion for every variable is determined before any substitution is made, so the substitution
for one variable has no effect on any other.

If any variable x appears as splice (x) in expr, then x must be bound to a list, and the
list is spliced (interpolated) into expr instead of substituted.

Any variables in expr not appearing in L are carried into the result verbatim, even if they
have bindings in the context from which buildq was called.

Examples

a is explicitly bound to x, while b has the same binding (namely 29) as in the calling
context, and c is carried through verbatim. The resulting expression is not evaluated
until the explicit evaluation *’%.

(%i1) (a: 17, b: 29, c: 1729)$
(%12) buildq ([a: x, b], a + b + c);

(%02) X+ c+ 29
(%hi3) °%;
(%03) x + 1758

e is bound to a list, which appears as such in the arguments of foo, and interpolated into
the arguments of bar.

(%1i1) buildg ([e: [a, b, cl], foo (x, e, y));

(%01) foo(x, [a, b, cl, y)
(%12) buildq ([e: [a, b, cl], bar (x, splice (e), y));
(%02) bar(x, a, b, ¢, y)

The result is simplified after substitution. If simplification were applied before substitu-
tion, these two results would be the same.

(%11) buildq ([e: [a, b, cl], splice (e) + splice (e));

(%o1) 2c+2b+2a
(%12) buildq ([e: [a, b, cl], 2 * splice (e));
(%02) 2abc

The variables in L are bound in parallel; if bound sequentially, the first result would be
foo (b, b). Substitutions are carried out in parallel; compare the second result with the
result of subst, which carries out substitutions sequentially.

(%i1) buildq ([a: b, b: al, foo (a, b));

(%o1) foo(b, a)
(%12) buildq ([u: v, v: w, w: x, x: y, y: 2z, z: u], bar (u, v, w, x, y, 2));
(%02) bar(v, w, x, y, z, w)

(%13) subst ([u=v, v=w, w=x, x=y, y=z, z=u], bar (u, v, w, X, y, 2));



Chapter 40: Function Definition 347

(%03) bar(u, u, u, u, u, u)
Construct a list of equations with some variables or expressions on the left-hand side

and their values on the right-hand side. macroexpand shows the expression returned by
show_values.

(%11) show_values ([L]) ::= buildq ([L], map ("=", °L, L));
(%o1) show_values([L]) ::= buildq([L], map("=", °L, L))
(%i2) (a: 17, b: 29, c: 1729)$

(%i3) show_values (a, b, ¢ - a - b);

(%03) [a =17, b = 29, c = 1729]

macroexpand (expr) Function
Returns the macro expansion of expr without evaluating it, when expr is a macro function
call. Otherwise, macroexpand returns expr.

If the expansion of expr yields another macro function call, that macro function call is
also expanded.

macroexpand quotes its argument. However, if the expansion of a macro function call has
side effects, those side effects are executed.

See also ::=, macros, and macroexpandl.
Examples
(%i1) g (x) ::=x / 99;
X
(%o1) g(x) :1:= —-
99
(%i2) h (x) ::= buildg ([x], g (x - a));
(%02) h(x) ::= buildq([x], g(x - a))
(%i3) a: 1234;
(%03) 1234
(%i4) macroexpand (h (y));
y - a
(fot) ==
99
(%i5) h (y);
y - 1234
(ho®d> — mmmmmee-
99
macroexpandl (expr) Function

Returns the macro expansion of expr without evaluating it, when expr is a macro function
call. Otherwise, macroexpandl returns expr.

macroexpandl quotes its argument. However, if the expansion of a macro function call
has side effects, those side effects are executed.

If the expansion of expr yields another macro function call, that macro function call is
not expanded.

See also ::=, macros, and macroexpand.
Examples
(%i1) g (x) ::=x / 99;
X
(%o1) g(x) 1:= —-
99
(%i2) h (x) ::= buildq ([x], g (x - a));
(%02) h(x) ::= buildq([x], g(x - a))
(%i3) a: 1234;
(%03) 1234

(%i4) macroexpandl (h (y));



348 Maxima Manual

(%04) gy - a)
(%15) h (y);
y - 1234
(%08 ===
99
macros Global variable

Default value: []

macros is the list of user-defined macro functions. The macro function definition operator
: := puts a new macro function onto this list, and kill, remove, and remfunction remove
macro functions from the list.

See also infolists.

splice (a) Function
Splices (interpolates) the list named by the atom a into an expression, but only if splice
appears within buildq; otherwise, splice is treated as an undefined function. If appearing
within buildq as a alone (without splice), a is substituted (not interpolated) as a list
into the result. The argument of splice can only be an atom; it cannot be a literal list
or an expression which yields a list.

Typically splice supplies the arguments for a function or operator. For a function £, the
expression £ (splice (a)) within buildq expandstof (al[1], al[2], a[3], ...). Foran
operator o, the expression "o" (splice (a) within buildq expands to "o" (al[1], a[2],
al3], ...), where o may be any type of operator (typically one which takes multiple
arguments). Note that the operator must be enclosed in double quotes ".

Examples
(%1i1) buildq ([x: [1, %pi, z - yl]l, foo (splice (x)) / length (x));
foo(l, %pi, z - y)
(hot)  mmmmmmmmmmm o
length([1, %pi, z - y1)
(%i2) buildq ([x: [1, %pill, "/" (splice (x)));

1
(%02) _—
hpi
(%i3) matchfix ("<>", "<>");
(%h03) <>
(%14) buildq ([x: [1, %pi, z - yl1, "<>" (splice (x)));
(%o4) <>1, Ypi, z - oy

40.4 Definitions for Function Definition

apply (f, [x_1, ..., x.n]) Function
Returns the result of applying the function f to the list of arguments x_1, ..., x_n. f is the
name of a function or a lambda expression.

This is useful when it is desired to compute the arguments to a function before applying
that function. For example, if 1 is the list [1, 5, -10.2, 4, 3], then apply (min, 1)
gives -10.2. apply is also useful when calling functions which do not have their arguments
evaluated if it is desired to cause evaluation of them. For example, if filespec is a
variable bound to the list [test, case] then apply (closefile, filespec) is equivalent
to closefile (test, case). In general the first argument to apply should be preceded
by a ’ to make it evaluate to itself. Since some atomic variables have the same name as
certain functions the values of the variable would be used rather than the function because
apply has its first argument evaluated as well as its second.



Chapter 40: Function Definition 349

block ([v_1, ..., v.m]|, expr_1, ..., expr_n) Function
block (expr_1, ..., expr_n) Function
block evaluates expr_1, ..., expr_n in sequence and returns the value of the last expression

evaluated. The sequence can be modified by the go, throw, and return functions. The
last expression is expr_n unless return or an expression containing throw is evaluated.
Some variables v_1, ..., v.m can be declared local to the block; these are distinguished from
global variables of the same names. If no variables are declared local then the list may be
omitted. Within the block, any variable other than v_1, ..., v.m is a global variable.

block saves the current values of the variables v_1, ..., v.m (if any) upon entry to the
block, then unbinds the variables so that they evaluate to themselves. The local variables
may be bound to arbitrary values within the block but when the block is exited the saved
values are restored, and the values assigned within the block are lost.

block may appear within another block. Local variables are established each time a
new block is evaluated. Local variables appear to be global to any enclosed blocks. If a
variable is non-local in a block, its value is the value most recently assigned by an enclosing
block, if any, otherwise, it is the value of the variable in the global environment. This
policy may coincide with the usual understanding of "dynamic scope".

If it is desired to save and restore other local properties besides value, for example
array (except for complete arrays), function, dependencies, atvalue, matchdeclare,
atomgrad, constant, and nonscalar then the function local should be used inside of
the block with arguments being the names of the variables.

The value of the block is the value of the last statement or the value of the argument to
the function return which may be used to exit explicitly from the block. The function
go may be used to transfer control to the statement of the block that is tagged with
the argument to go. To tag a statement, precede it by an atomic argument as another
statement in the block. For example: block ([x], x:1, loop, x: x+1, ..., go(loop),
...). The argument to go must be the name of a tag appearing within the block. One
cannot use go to transfer to a tag in a block other than the one containing the go.

Blocks typically appear on the right side of a function definition but can be used in other
places as well.

break (expr_1, ..., expr_n) Function
Evaluates and prints expr_1, ..., expr_n and then causes a Maxima break at which point
the user can examine and change his environment. Upon typing exit; the computation
resumes.

catch (expr_1, ..., expr_n) Function
Evaluates expr_1, ..., expr_n one by one; if any leads to the evaluation of an expression of

the form throw (arg), then the value of the catch is the value of throw (arg), and no
further expressions are evaluated. This "non-local return" thus goes through any depth
of nesting to the nearest enclosing catch. If there is no catch enclosing a throw, an error
message is printed.

If the evaluation of the arguments does not lead to the evaluation of any throw then the
value of catch is the value of expr_n.

(%i1) lambda ([x], if x < O then throw(x) else f(x))$
(%12) g(1) := catch (map (*°%, 1))$
(%i3) g (I[1, 2, 3, 71);

(%03) (£(1), £(2), £(3), £(7)]
(%i4) g ([1, 2, -3, 71);
(%o4) -3

The function g returns a list of £ of each element of 1 if 1 consists only of non-negative
numbers; otherwise, g "catches" the first negative element of 1 and "throws" it up.

compfile (filename, .1, ..., f-n) Function
Translates Maxima functions .1, ..., f.n into Lisp and writes the translated code into the
file filename.



350

Maxima Manual

The Lisp translations are not evaluated, nor is the output file processed by the Lisp
compiler. translate creates and evaluates Lisp translations. compile_file translates
Maxima into Lisp, and then executes the Lisp compiler.

See also translate, translate_file, and compile_file.

compile (f.1, ..., f.n) Function

compile (functions) Function

compile (all) Function
Translates Maxima functions f_1, ..., fn into Lisp, evaluates the Lisp translations, and

define (f(x_1, ..., x.n), expr)

calls the Lisp function COMPILE on each translated function. compile returns a list of the
names of the compiled functions.

compile (all) or compile (functions) compiles all user-defined functions.
compile quotes its arguments; the double-single-quotes operator ’’ defeats quotation.

Defines a function named f with arguments x_1, ..., x_n and function body expr.

define quotes its first argument in most cases, and evaluates its second argument unless
explicitly quoted. However, if the first argument is an expression of the form ev (expr),
funmake (expr), or arraymake (expr), the first argument is evaluated; this allows for the
function name to be computed, as well as the body.

define is similar to the function definition operator :=, but when define appears inside
a function, the definition is created using the value of expr at execution time rather than
at the time of definition of the function which contains it.

All function definitions appear in the same namespace; defining a function £ within another
function g does not limit the scope of £ to g.

Examples:
(%i1) foo: 2°bar;

bar
(%01) 2
(%12) g(x) := (£_1 (y) :=  fooxxxy,
f_2 (y) := ’’fooxxx*y,
define (£_3 (y), foo*x*y),
define (f_4 (y), 2 fookxky)) ;

bar
(ho2) g(x) := (f_1(y) := foo x y, £_2(y) := 2 Xy,
bar
define(f_3(y), foo x y), define(f_4(y), 2 X y))
(%13) functioms;
(%03) [g(x)]
(hid) g(a);

bar
(Yhod) f_4(y) :=a 2 y
(%i5) functions;
(%05) [g(x), £_1(y), £_2(y), £_3(y), £_4(y)]
(%1i6) dispfun (f_1, f_2, £_3, f_4);
(%t6) f_1(y) := foo x y
bar
(%t7) f_2(y) := 2 Xy
bar
(%t8) £f_3(y) = a2 y
bar
(%t9) f_4(y) = a2 y

(%09) done

Function



Chapter 40: Function Definition 351

define_variable (name, default_value, mode) Function
Introduces a global variable into the Maxima environment. define_variable is useful in
user-written packages, which are often translated or compiled.

define_variable carries out the following steps:

1. mode_declare (name, mode) declares the mode of name to the translator. See
mode_declare for a list of the possible modes.

2. If the variable is unbound, default_value is assigned to name.

3. declare (name, special) declares it special.

4. Associates name with a test function to ensure that name is only assigned values of
the declared mode.

The value_check property can be assigned to any variable which has been defined via
define_variable with a mode other than any. The value_check property is a lambda
expression or the name of a function of one variable, which is called when an attempt is
made to assign a value to the variable. The argument of the value_check function is the
would-be assigned value.

define_variable evaluates default_value, and quotes name and mode. define_
variable returns the current value of name, which is default_value if name was unbound
before, and otherwise it is the previous value of name.

Examples:
foo is a Boolean variable, with the initial value true.

(%i1) define_variable (foo, true, boolean);

(%o1) true
(%i2) foo;

(%02) true
(%i3) foo: false;

(%03) false

(%i4) foo: %pi;
Error: foo was declared mode boolean, has value: %pi
-- an error. Quitting. To debug this try debugmode(true);
(%1i5) foo;
(%05) false
bar is an integer variable, which must be prime.

(%11) define_variable (bar, 2, integer);

(ho1) 2

(%12) gput (bar, prime_test, value_check);

(ho2) prime_test

(%13) prime_test (y) := if not primep(y) then error (y, "is not prime.");

(%03) prime_test(y) := if not primep(y)

then error(y, "is not prime.")

(%i4) bar: 1439;

(%o4) 1439

(%i5) bar: 1440;

1440 is not prime.

#0: prime_test (y=1440)

-- an error. Quitting. To debug this try debugmode(true);

(%i6) bar;

(%06) 1439
baz_quux is a variable which cannot be assigned a value. The mode any_check is like
any, but any_check enables the value_check mechanism, and any does not.

(%1i1) define_variable (baz_quux, ’baz_quux, any_check);

(ho1) baz_quux

(%12) F: lambda ([y], if y # ’baz_quux then error ("Cannot assign to ‘baz_quux’
(%02) lambda([yl, if y # ’baz_quux



352 Maxima Manual
then error(Cannot assign to ‘baz_quux’.))
(%13) gput (baz_quux, ’°’F, value_check);
(%03) lambda([yl, if y # ’baz_quux
then error(Cannot assign to ‘baz_quux’.))
(%14) baz_quux: ’baz_quux;
(%hod) baz_quux
(%1i5) baz_quux: sqrt(2);
Cannot assign to ‘baz_quux’.
#0: lambda([y],if y # ’baz_quux then error("Cannot assign to ‘baz_quux’.")) (y=s
-- an error. Quitting. To debug this try debugmode(true);
(%i6) baz_quux;
(%06) baz_quux
dispfun (£1, ..., f.n) Function
dispfun (all) Function

Displays the definition of the user-defined functions f_1, ..., fn. Each argument may be
the name of a macro (defined with : :=), an ordinary function (defined with := or define),
an array function (defined with := or define, but enclosing arguments in square brackets
[ 1), a subscripted function, (defined with := or define, but enclosing some arguments
in square brackets and others in parentheses ( )) one of a family of subscripted functions
selected by a particular subscript value, or a subscripted function defined with a constant
subscript.

dispfun (all) displays all user-defined functions as given by the functions, arrays, and
macros lists, omitting subscripted functions defined with constant subscripts.

dispfun creates an intermediate expression label (%t1, %t2, etc.) for each displayed
function, and assigns the function definition to the label. In contrast, fundef returns the
function definition.

dispfun quotes its arguments; the double-single-quote operator >’ defeats quotation.
dispfun returns the list of intermediate expression labels corresponding to the displayed
functions.
Examples:
(%i1) m(x, y) ::= x"(-y);
-y
(hol) m(x, y) ::=x
(%i2) £(x, y) = x"(-y);
-y
(%02) flx, y) 1= x
(%13) glx, yl := x"(-y);
-y
(%03) g 1= X
X, ¥
(%14) nlxl(y) := x"(-y);
-y
(%04) h (y) :=x
X
(%15) i[81(y) := 87 (-y);
-y
(%05) i(y) :=8
8
(%i6) dispfun (m, f, g, h, h([5], h[10], i[8]);
-y
(%t6) m(x, y) ::= x

-y



Chapter 40: Function Definition 353

(%tT7) f(x, y) = x
-y
(ht8) g 1= X
X, ¥
-y
(ht9) h (y) :=x
X
1
(%t10) h (y) := -
5 y
5
1
(ht11) h (y) = ——-
10 y
10
-y
(ht12) i (y) :=38
8
(%ho12) [%t6, %t7, %t8, %t9, %t10, %til, %ti12]
(%hi12) *°%;
-y -y -y
(%012) [m(x, y) ::=x , T(x, y) 1= x , g = x ,
X, ¥y
-y 1 1 -y
h (y) :=x ,h (y) :=--, h (y) :=-—,1(y) :=8 1]
X 5 y 10 y 8
5 10
functions System variable

Default value: []

functions is the list of user-defined Maxima functions in the current session. A user-
defined function is a function constructed by define or :=. A function may be defined
at the Maxima prompt or in a Maxima file loaded by load or batch. Lisp functions,
however, are not added to functions.

fundef (f) Function
Returns the definition of the function f.

The argument may be the name of a macro (defined with ::=), an ordinary function
(defined with := or define), an array function (defined with := or define, but enclosing
arguments in square brackets [ 1), a subscripted function, (defined with := or define,
but enclosing some arguments in square brackets and others in parentheses ( )) one of a
family of subscripted functions selected by a particular subscript value, or a subscripted
function defined with a constant subscript.

fundef quotes its argument; the double-single-quote operator ’’ defeats quotation.

fundef (f) returns the definition of f. In contrast, dispfun (f) creates an intermediate
expression label and assigns the definition to the label.

funmake (name, [arg_1, ..., arg_n]) Function
Returns an expression name (arg_1, ..., arg-n). The return value is simplified, but not
evaluated, so the function is not called.



354 Maxima Manual

funmake evaluates its arguments.
Examples:
e funmake evaluates its arguments, but not the return value.

(%i1) det(a,b,c) := b~2 -4*a*c$
(%i2) x: 8%
(%i3) y: 10%
(hid) =z: 12%
(%i5) f: det$
(%i6) funmake (f, [x, y, z]);

(%06) det (8, 10, 12)
i) 2 %;
(%o7) - 284

e Maxima simplifies funmake’s return value.
(%1i1) funmake (sin, [%pi/2]);

(ho1) 1
lambda ([x_1, ..., x_m]|, expr_1, ..., expr_n) Function
lambda ([[L]], expr_1, ..., expr_n) Function
lambda ([x_1, ..., x_m, [L]], expr_1, ..., expr_n) Function
Defines and returns a lambda expression (that is, an anonymous function). The function
may have required arguments x_1, ..., x-m and/or optional arguments L, which appear

within the function body as a list. The return value of the function is expr_n. A lambda
expression can be assigned to a variable and evaluated like an ordinary function. A lambda
expression may appear in some contexts in which a function name is expected.

When the function is evaluated, unbound local variables x_1, ..., x_m are created. lambda
may appear within block or another lambda; local variables are established each time
another block or lambda is evaluated. Local variables appear to be global to any enclosed
block or lambda. If a variable is not local, its value is the value most recently assigned
in an enclosing block or lambda, if any, otherwise, it is the value of the variable in the
global environment. This policy may coincide with the usual understanding of "dynamic
scope".

After local variables are established, expr_1 through expr_n are evaluated in turn. The
special variable %%, representing the value of the preceding expression, is recognized. throw
and catch may also appear in the list of expressions.

return cannot appear in a lambda expression unless enclosed by block, in which case
return defines the return value of the block and not of the lambda expression, unless the
block happens to be expr_n. Likewise, go cannot appear in a lambda expression unless
enclosed by block.
lambda quotes its arguments; the double-single-quote operator ’’ defeats quotation.
Examples:

e A lambda expression can be assigned to a variable and evaluated like an ordinary

function.

(%i1) f: lambda ([x], x"2);

2
(%o1) lambda([x], x )
(%i2) f(a);
2
(ho2) a
e A lambda expression may appear in contexts in which a function evaluation is ex-
pected.
(%i3) lambda ([x], x72) (a);
2
(%h03) a

(%i4) apply (lambda ([x], x72), [al);
2



Chapter 40: Function Definition 355

(%o4) a
(%1i5) map (lambda ([x], x72), [a, b, c, d, el);
2 2 2 2 2
(%05) [a,b,c,d, el
e Argument variables are local variables. Other variables appear to be global variables.
Global variables are evaluated at the time the lambda expression is evaluated, unless
some special evaluation is forced by some means, such as ’’.
(%i6) a: %pi$
(%17) b: %e$
(%18) g: lambda ([al, a*b);
(%08) lambda([a], a b)
(%19) b: Y%gamma$
(hi10) g(1/2);

(Yoo mmmm-

(%111) g2: lambda ([al, ax’’b);

(%o11) lambda([a], a %gamma)
(%i12) b: %e$

(%i13) g2(1/2);

(%013 ===

e Lambda expressions may be nested. Local variables within the outer lambda expres-
sion appear to be global to the inner expression unless masked by local variables of
the same names.

(%1i14) h: lambda ([a, b], h2: lambda ([a], a*b), h2(1/2));

1
(%o014) lambda([a, b]l, h2 : lambda([al, a b), h2(-))
2
(%115) h(%pi, %gamma);
fgamma
(%ot ===
2

e Since lambda quotes its arguments, lambda expression i below does not define a
"multiply by a" function. Such a function can be defined via buildq, as in lambda
expression 12 below.

(%i16) i: lambda ([a], lambda ([x], a*x));

(%o16) lambda([a], lambda([x], a x))
(hi17) i(1/2);
(%o1T) lambda([x], a x)

(%118) i2: lambda([al]l, buildq([a: al, lambda([x], a*x)));
(%o18) lambda([a], buildq([a : al], lambda([x], a x)))
(%i19) i2(1/2);

X
(%019) lambda([x], -)
2
(%120) 12(1/2) (%pi);
hpi
(%020) -
2

e A lambda expression may take a variable number of arguments, which are indicated
by [L] as the sole or final argument. The arguments appear within the function body
as a list.

(%i1) f : lambda ([aa, bb, [ccl]], aa * cc + bb);



356 Maxima Manual

(%o1) lambda([aa, bb, [cc]], aa cc + bb)
(%i2) £ (foo, %i, 17, 29, 256);
(%o2) [17 foo + %i, 29 foo + %i, 256 foo + %i]
(%i3) g : lambda ([[aa]ll, apply ("+", aa));
(%03) lambda([[aal]l, apply(+, aa))
(hid) g (17, 29, %, y, z, he);
(%o04) z+y+x+ e + 46
local (v_1, ..., v_n) Function
Declares the variables v_1, ..., v_.n to be local with respect to all the properties in the

statement in which this function is used.
local quotes its arguments. local returns done.

local may only be used in block, in the body of function definitions or lambda expressions,
or in the ev function, and only one occurrence is permitted in each.

local is independent of context.

macroexpansion Option variable
Default value: false
macroexpansion controls whether the expansion (that is, the return value) of a macro

function is substituted for the macro function call. A substitution may speed up subse-
quent expression evaluations, at the cost of storing the expansion.

false The expansion of a macro function is not substituted for the macro function
call.
expand The first time a macro function call is evaluated, the expansion is stored.

The expansion is not recomputed on subsequent calls; any side effects (such
as print or assignment to global variables) happen only when the macro
function call is first evaluated. Expansion in an expression does not affect
other expressions which have the same macro function call.

displace The first time a macro function call is evaluated, the expansion is substituted
for the call, thus modifying the expression from which the macro function was
called. The expansion is not recomputed on subsequent calls; any side effects
happen only when the macro function call is first evaluated. Expansion in
an expression does not affect other expressions which have the same macro
function call.

Examples

When macroexpansion is false, a macro function is called every time the calling expres-
sion is evaluated, and the calling expression is not modified.

(Fi1) £ x) :=h x) / g x);

h(x)
(%o1) f(x) = ———-

g(x)
(%12) g (x) ::= block (print ("x + 99 is equal to", x), return (x + 99));
(%02) g(x) ::= block(print("x + 99 is equal to", x),

return(x + 99))

(%13) h (x) ::= block (print ("x - 99 is equal to", x), return (x - 99));
(%03) h(x) ::= block(print("x - 99 is equal to", x),

return(x - 99))
(%14) macroexpansion: false;
(%04) false
(%i8) £ (a * b);
x - 99 is equal to x
x + 99 is equal to x

2



Chapter 40: Function Definition 357

ab+ 99
(%i6) dispfun (£f);
h(x)
(%t6) f(x) 1= ———-
g(x)
(%06) done
(hi7) £ (a * b);
x - 99 is equal to x
x + 99 is equal to x
ab - 99
o e
ab+ 99

When macroexpansion is expand, a macro function is called once, and the calling expres-
sion is not modified.

(%i1) £ (x) :=h x) / g (x);
h(x)
(%o1) f(x) 1= ———-
g(x)
(%i2) g (x) ::= block (print ("x + 99 is equal to", x), return (x + 99));

(ho2) g(x) block(print("x + 99 is equal to", x),

return(x + 99))
(%1i3) h (x) ::= block (print ("x - 99 is equal to", x), return (x - 99));
(%03) h(x) block(print("x - 99 is equal to", x),

return(x - 99))

(%14) macroexpansion: expand;

(%hod) expand
(%iB) £ (a * b);

x - 99 is equal to x

x + 99 is equal to x

ab - 99
(%08 ===
ab + 99
(%i6) dispfun (£f);
h(x)
(%t6) £(x) 1= -
g(x)
(%06) done
(%i7) £ (a * b);
ab - 99
(o ===
ab + 99

When macroexpansion is expand, a macro function is called once, and the calling expres-
sion is modified.

(%i1) £ x) :=h x) / g (x);
h(x)
(hol) f(x) 1= ———-
g(x)
(%12) g (x) ::= block (print ("x + 99 is equal to", x), return (x + 99));

(%02) g(x) block(print("x + 99 is equal to", x),

return(x + 99))
(%13) h (x) ::= block (print ("x - 99 is equal to", x), return (x - 99));
(%03) h(x) block(print("x - 99 is equal to", x),

return(x - 99))

(%14) macroexpansion: displace;



358 Maxima Manual

(%ho4d) displace
(%i8) £ (a * b);

x - 99 is equal to x

x + 99 is equal to x

ab - 99
(o) ==
ab + 99
(%i6) dispfun (f);
x - 99
(%t6) f(x) 1= —————-
x + 99
(%06) done
(5i7) £ (a * b);
ab - 99
(ot ===
ab+ 99
mode_checkp Option variable

Default value: true
When mode_checkp is true, mode_declare checks the modes of bound variables.

mode_check_errorp Option variable
Default value: false

When mode_check_errorp is true, mode_declare calls error.

mode_check_warnp Option variable
Default value: true

When mode_check_warnp is true, mode errors are described.

mode_declare (y_1, mode_1, ..., y_.n, mode_n) Function
mode_declare is used to declare the modes of variables and functions for subsequent
translation or compilation of functions. mode_declare is typically placed at the beginning
of a function definition, at the beginning of a Maxima script, or executed at the interactive
prompt.

The arguments of mode_declare are pairs consisting of a variable and a mode which is
one of boolean, fixnum, number, rational, or float. Each variable may also be a list of
variables all of which are declared to have the same mode.

If a variable is an array, and if every element of the array which is referenced has a value
then array (yi, complete, diml, dim2, ...) rather than

array(yi, diml, dim2, ...)
should be used when first declaring the bounds of the array. If all the elements of the

array are of mode fixnum (float), use fixnum (float) instead of complete. Also if every
element of the array is of the same mode, say m, then

mode_declare (completearray (yi), m))
should be used for efficient translation.

Numeric code using arrays might run faster by declaring the expected size of the array, as
in:

mode_declare (completearray (a [10, 10]), float)
for a floating point number array which is 10 x 10.

One may declare the mode of the result of a function by using function (f_1, £_2, ...)

as an argument; here £_1, £_2, ... are the names of functions. For example the expression,
mode_declare ([function (f_1, f_2, ...)], fixnum)

declares that the values returned by £_1, £_2, ... are single-word integers.

modedeclare is a synonym for mode_declare.



Chapter 40: Function Definition 359

mode_identity (arg_1, arg_2) Function

A special form used with mode_declare and macros to declare, e.g., a list of lists of
flonums, or other compound data object. The first argument to mode_identity is a
primitive value mode name as given to mode_declare (i.e., one of float, fixnum, number,
list, or any), and the second argument is an expression which is evaluated and returned
as the value of mode_identity. However, if the return value is not allowed by the mode
declared in the first argument, an error or warning is signalled. The important thing is
that the mode of the expression as determined by the Maxima to Lisp translator, will
be that given as the first argument, independent of anything that goes on in the second
argument. E.g., x: 3.3; mode_identity (fixnum, x); yields an error. mode_identity
(flonum, x) returns 3.3 . This has a number of uses, e.g., if you knew that first (1)
returned a number then you might write mode_identity (number, first (1)). However,
a more efficient way to do it would be to define a new primitive,

firstnumb (x) ::= buildq ([x], mode_identity (number, x));
and use firstnumb every time you take the first of a list of numbers.

transcompile Option variable
Default value: true

When transcompile is true, translate and translate_file generate declarations to
make the translated code more suitable for compilation.

compfile sets transcompile: true for the duration.

translate (f_1, ..., f.n) Function

translate (functions) Function

translate (all) Function
Translates the user-defined functions f_1, ..., f-n from the Maxima language into Lisp and
evaluates the Lisp translations. Typically the translated functions run faster than the
originals.

translate (all) or translate (functions) translates all user-defined functions.

Functions to be translated should include a call to mode_declare at the beginning when
possible in order to produce more efficient code. For example:

f (x_1, x_2, ...) := block ([v_1, v_2, ...],
mode_declare (v_1, mode_1, v_2, mode_2, ...), ...)

where the x_1, x_2, ... are the parameters to the function and the v_1, v_2, ... are the local
variables.

The names of translated functions are removed from the functions list if savedef is
false (see below) and are added to the props lists.

Functions should not be translated unless they are fully debugged.

Expressions are assumed simplified; if they are not, correct but non- optimal code gets
generated. Thus, the user should not set the simp switch to false which inhibits simpli-
fication of the expressions to be translated.

The switch translate, if true, causes automatic translation of a user’s function to Lisp.

Note that translated functions may not run identically to the way they did before transla-
tion as certain incompatabilities may exist between the Lisp and Maxima versions. Prin-
cipally, the rat function with more than one argument and the ratvars function should
not be used if any variables are mode_declare’d canonical rational expressions (CRE).
Also the prederror: false setting will not translate.

savedef - if true will cause the Maxima version of a user function to remain when the
function is translate’d. This permits the definition to be displayed by dispfun and
allows the function to be edited.

transrun - if false will cause the interpreted version of all functions to be run (provided
they are still around) rather than the translated version.

The result returned by translate is a list of the names of the functions translated.



360 Maxima Manual

translate_file (maxima_filename) Function

translate_file (maxima_filename, lisp_filename) Function
Translates a file of Maxima code into a file of Lisp code. translate_file returns a list of
three filenames: the name of the Maxima file, the name of the Lisp file, and the name of
file containing additional information about the translation. translate_file evaluates
its arguments.

translate_file ("foo.mac"); load("foo.LISP") is the same as batch ("foo.mac")
except for certain restrictions, the use of >’ and %, for example.

translate_file (maxima_filename) translates a Maxima file maxima_filename into a
similarly-named Lisp file. For example, foo.mac is translated into foo.LISP. The Maxima
filename may include a directory name or names, in which case the Lisp output file is
written to the same directory from which the Maxima input comes.

translate_file (maxima_filename, lisp_filename) translates a Maxima file max-
ima_filename into a Lisp file lisp_filename. translate_file ignores the filename
extension, if any, of 1lisp_filename; the filename extension of the Lisp output file is
always LISP. The Lisp filename may include a directory name or names, in which case
the Lisp output file is written to the specified directory.

translate_file also writes a file of translator warning messages of various degrees of
severity. The filename extension of this file is UNLISP. This file may contain valuable
information, though possibly obscure, for tracking down bugs in translated code. The
UNLISP file is always written to the same directory from which the Maxima input comes.

translate_file emits Lisp code which causes some declarations and definitions to take
effect as soon as the Lisp code is compiled. See compile_file for more on this topic.

See also tr_array_as_ref, tr_bound_function_applyp, tr_exponent, tr_file_tty_
messagesp, tr_float_can_branch_complex, tr_function_call_default, tr_numer,
tr_optimize_max_loop, tr_semicompile, tr_state_vars, tr_warnings_get,
tr_warn_bad_function_calls, tr_warn_fexpr, tr_warn_meval, tr_warn_mode,
tr_warn_undeclared, tr_warn_undefined_variable, and tr_windy.

transrun Option variable
Default value: true

When transrun is false will cause the interpreted version of all functions to be run
(provided they are still around) rather than the translated version.

tr_array_as_ref Option variable
Default value: true

If translate_fast_arrays is false, array references in Lisp code emitted by translate_
file are affected by tr_array_as_ref. When tr_array_as_ref is true, array names
are evaluated, otherwise array names appear as literal symbols in translated code.

tr_array_as_ref has no effect if translate_fast_arrays is true.

tr_bound_function_applyp Option variable
Default value: true

When tr_bound_function_applyp is true, Maxima gives a warning if a bound variable
(such as a function argument) is found being used as a function. tr_bound_function_
applyp does not affect the code generated in such cases.

For example, an expression such as g (£, x) :=f (x+1) will trigger the warning message.

tr_file_tty_messagesp Option variable
Default value: false

When tr_file_tty_messagesp is true, messages generated by translate_file during
translation of a file are displayed on the console and inserted into the UNLISP file. When
false, messages about translation of the file are only inserted into the UNLISP file.



Chapter 40: Function Definition 361

tr_float_can_branch_complex Option variable
Default value: true

Tells the Maxima-to-Lisp translator to assume that the functions acos, asin, asec, and
acsc can return complex results.

The ostensible effect of tr_float_can_branch_complex is the following. However, it
appears that this flag has no effect on the translator output.

When it is true then acos(x) is of mode any even if x is of mode float (as set by
mode_declare). When false then acos(x) is of mode float if and only if x is of mode
float.

tr_function_call_default Option variable
Default value: general

false means give up and call meval, expr means assume Lisp fixed arg function. general,
the default gives code good for mexprs and mlexprs but not macros. general assures
variable bindings are correct in compiled code. In general mode, when translating F(X),
if F is a bound variable, then it assumes that apply (f, [x]) is meant, and translates
a such, with apropriate warning. There is no need to turn this off. With the default
settings, no warning messages implies full compatibility of translated and compiled code
with the Maxima interpreter.

tr_numer Option variable
Default value: false

When tr_numer is true numer properties are used for atoms which have them, e.g. %pi.

tr_optimize_max_loop Option variable
Default value: 100

tr_optimize_max_loop is the maximum number of times the macro-expansion and op-
timization pass of the translator will loop in considering a form. This is to catch macro
expansion errors, and non-terminating optimization properties.

tr_semicompile Option variable
Default value: false

When tr_semicompile is true, translate_file and compfile output forms which will
be macroexpanded but not compiled into machine code by the Lisp compiler.

tr_state_vars System variable
Default value:

[transcompile, tr_semicompile, tr_warn_undeclared, tr_warn_meval,
tr_warn_fexpr, tr_warn_mode, tr_warn_undefined_variable,
tr_function_call_default, tr_array_as_ref,tr_numer]

The list of the switches that affect the form of the translated output. This information is

useful to system people when trying to debug the translator. By comparing the translated
product to what should have been produced for a given state, it is possible to track down

bugs.

tr_warnings_get () Function
Prints a list of warnings which have been given by the translator during the current
translation.

tr_warn_bad_function_calls Option variable

Default value: true

- Gives a warning when when function calls are being made which may not be correct due
to improper declarations that were made at translate time.



362 Maxima Manual

tr_warn_fexpr Option variable
Default value: compfile

- Gives a warning if any FEXPRs are encountered. FEXPRs should not normally be
output in translated code, all legitimate special program forms are translated.

tr_warn_meval Option variable
Default value: compfile

- Gives a warning if the function meval gets called. If meval is called that indicates
problems in the translation.

tr_warn_mode Option variable
Default value: all

- Gives a warning when variables are assigned values inappropriate for their mode.

tr_warn_undeclared Option variable
Default value: compile

- Determines when to send warnings about undeclared variables to the TTY.

tr_warn_undefined_variable Option variable
Default value: all

- Gives a warning when undefined global variables are seen.

tr_windy Option variable
Default value: true

- Generate "helpfull" comments and programming hints.

compile_file (filename) Function
compile_file (filename, compiled_filename) Function
compile_file (filename, compiled_filename, lisp_filename) Function

Translates the Maxima file filename into Lisp, executes the Lisp compiler, and, if the
translation and compilation succeed, loads the compiled code into Maxima.

compile_file returns a list of the names of four files: the original Maxima file, the Lisp
translation, notes on translation, and the compiled code. If the compilation fails, the
fourth item is false.

Some declarations and definitions take effect as soon as the Lisp code is compiled (without
loading the compiled code). These include functions defined with the := operator, macros
define with the ::= operator, alias, declare, define_variable, mode_declare, and
infix, matchfix, nofix, postfix, prefix, and compfile.

Assignments and function calls are not evaluated until the compiled code is loaded. In
particular, within the Maxima file, assignments to the translation flags (tr_numer, etc.)
have no effect on the translation.

filename may not contain :1lisp statements.
compile_file evaluates its arguments.

declare_translated (£.1, £.2, ...) Function
When translating a file of Maxima code to Lisp, it is important for the translator to know
which functions it sees in the file are to be called as translated or compiled functions, and
which ones are just Maxima functions or undefined. Putting this declaration at the top of
the file, lets it know that although a symbol does which does not yet have a Lisp function
value, will have one at call time. (MFUNCTION-CALL fn argl arg2 ...) is generated when
the translator does not know fn is going to be a Lisp function.



Chapter 41: Program Flow

363

41 Program Flow

41.1 Introduction to Program Flow

Maxima provides a do loop for iteration, as well as more primitive constructs such as go.

41.2 Definitions for Program Flow

backtrace () Function

backtrace (n)

do

Function
Prints the call stack, that is, the list of functions which called the currently active function.
backtrace() prints the entire call stack.
backtrace (n) prints the n most recent functions, including the currently active function.
backtrace can be called from a script, a function, or the interactive prompt (not only in
a debugging context).
Examples:

e backtrace() prints the entire call stack.

(%1i1) h(x) := gx/7)$
(hi2) g(x) := f(x-11)$
(%i3) f(x) := e(x"2)$

(%id) e(x) (backtrace(), 2*x + 13)$
(%i5) h(10);

#0: e(x=4489/49)

#1: f(x=-67/7)

#2: g(x=10/7)

#3: h(x=10)
9615
(%05) -—==
49
e backtrace (n) prints the n most recent functions, including the currently active
function.

(backtrace(1), gx/7))$
(backtrace(1), f(x-11))$
(backtrace(1), e(x"2))$
(backtrace(1), 2*x + 13)$

(%i1) h(x)
(%i2) g(x)
(%i3) £(x)
(%id) e(x)
(%i5) h(10);
#0: h(x=10)
#0: g(x=10/7)
#0: f(x=-67/7)
#0: e(x=4489/49)

9615

(%05) ===
49

Special operator

The do statement is used for performing iteration. Due to its great generality the do
statement will be described in two parts. First the usual form will be given which is
analogous to that used in several other programming languages (Fortran, Algol, PL/I,
etc.); then the other features will be mentioned.
There are three variants of this form that differ only in their terminating conditions. They
are:

e for variable: initial_value step increment thru limit do body

e for variable: initial_value step increment while condition do body



364

Maxima Manual

e for variable: initial_value step increment unless condition do body

(Alternatively, the step may be given after the termination condition or limit.)

initial_value, increment, limit, and body can be any expressions. If the increment is 1
then "step 1" may be omitted.

The execution of the do statement proceeds by first assigning the initial_value to the
variable (henceforth called the control-variable). Then: (1) If the control-variable has
exceeded the limit of a thru specification, or if the condition of the unless is true, or if
the condition of the while is false then the do terminates. (2) The body is evaluated.
(3) The increment is added to the control-variable. The process from (1) to (3) is per-
formed repeatedly until the termination condition is satisfied. One may also give several
termination conditions in which case the do terminates when any of them is satisfied.

In general the thru test is satisfied when the control-variable is greater than the limit
if the increment was non-negative, or when the control-variable is less than the limit if
the increment was negative. The increment and limit may be non-numeric expressions as
long as this inequality can be determined. However, unless the increment is syntactically
negative (e.g. is a negative number) at the time the do statement is input, Maxima
assumes it will be positive when the do is executed. If it is not positive, then the do may
not terminate properly.

Note that the limit, increment, and termination condition are evaluated each time through
the loop. Thus if any of these involve much computation, and yield a result that does not
change during all the executions of the body, then it is more efficient to set a variable to
their value prior to the do and use this variable in the do form.

The value normally returned by a do statement is the atom done. However, the function
return may be used inside the body to exit the do prematurely and give it any desired
value. Note however that a return within a do that occurs in a block will exit only the
do and not the block. Note also that the go function may not be used to exit from a do
into a surrounding block.

The control-variable is always local to the do and thus any variable may be used without
affecting the value of a variable with the same name outside of the do. The control-variable
is unbound after the do terminates.

(%i1) for a:-3 thru 26 step 7 do display(a)$

a=-3
a=4
a =11
a =18
a =25

(%i1) s: 0%
(%i2) for i: 1 while i <= 10 do s: s+i;

(%02) done
(%i3) s;
(%03) 55

Note that the condition while i <= 10 is equivalent to unless i > 10 and also thru 10.

(%i1) series: 1%
(%i2) term: exp (sin (x))$
(%13) for p: 1 unless p > 7 do
(term: diff (term, x)/p,
series: series + subst (x=0, term)*x"p)$
(%i4) series;
7 6 5 4 2
X X X X X
(%04) —— = === = == = ==+ ==+ x + 1



Chapter 41: Program Flow 365

90 240 15 8 2
which gives 8 terms of the Taylor series for e”"sin(x).

(%i1) poly: 0%
(%12) for i: 1 thru 5 do

for j: i step -1 thru 1 do

poly: poly + i*x"j$
(%i3) poly;
5 4 3 2

(%03) 5x +9x +12x + 14 x + 15 x
(%i4) guess: -3.0%
(%1i5) for i: 1 thru 10 do

(guess: subst (guess, x, 0.5%x(x + 10/x)),

if abs (guess”™2 - 10) < 0.00005 then return (guess));
(%05) - 3.162280701754386

This example computes the negative square root of 10 using the Newton- Raphson iteration
a maximum of 10 times. Had the convergence criterion not been met the value returned
would have been done.

Instead of always adding a quantity to the control-variable one may sometimes wish to
change it in some other way for each iteration. In this case one may use next expression
instead of step increment. This will cause the control-variable to be set to the result of
evaluating expression each time through the loop.

(%i6) for count: 2 next 3*count thru 20 do display (count)$
count = 2

count = 6

count = 18

As an alternative to for variable: value ...do... the syntax for variable from value

..do... may be used. This permits the from value to be placed after the step or next
Value or after the termination condition. If from value is omitted then 1 is used as the
initial value.

Sometimes one may be interested in performing an iteration where the control-variable is
never actually used. It is thus permissible to give only the termination conditions omitting
the initialization and updating information as in the following example to compute the
square-root of 5 using a poor initial guess.

(%i1) x: 1000%
(%i2) thru 20 do x: 0.5%(x + 5.0/x)$

(%13) x;

(%03) 2.23606797749979
(%i4) sqrt(5), numer;

(%hod) 2.23606797749979

If it is desired one may even omit the termination conditions entirely and just give do body
which will continue to evaluate the body indefinitely. In this case the function return
should be used to terminate execution of the do.

(%i1) newton (f, x):= ([y, df, dfx], df: diff (f (Cx), ’x),
do (y: ev(df), x: x - £(x)/y,
if abs (f (x)) < 5e-6 then return (x)))$
(%1i2) sqr (x) := x"2 - 5.0%
(%13) newton (sqr, 1000);
(%03) 2.236068027062195

(Note that return, when executed, causes the current value of x to be returned as the
value of the do. The block is exited and this value of the do is returned as the value of
the block because the do is the last statement in the block.)

One other form of the do is available in Maxima. The syntax is:



366 Maxima Manual
for variable in list end_tests do body
The elements of list are any expressions which will successively be assigned to the variable
on each iteration of the body. The optional termination tests end_tests can be used to
terminate execution of the do; otherwise it will terminate when the list is exhausted or
when a return is executed in the body. (In fact, list may be any non-atomic expression,
and successive parts are taken.)
(%11) for f in [log, rho, atan] do 1ldisp(£(1))$
(ht1) 0
(%t2) rho (1)
hpi
(%t3) -—=
4
(%id) ev(%t3,numer);
(%hod) 0.78539816
errcatch (expr_1, ..., expr_n) Function
Evaluates expr_1, ..., expr_n one by one and returns [expr_n] (a list) if no error occurs.
If an error occurs in the evaluation of any argument, errcatch prevents the error from
propagating and returns the empty list [] without evaluating any more arguments.
errcatch is useful in batch files where one suspects an error might occur which would
terminate the batch if the error weren’t caught.
error (expr_1, ..., expr_n) Function
error System variable
Evaluates and prints expr_1, ..., expr_n, and then causes an error return to top level
Maxima or to the nearest enclosing errcatch.
The variable error is set to a list describing the error. The first element of error is a
format string, which merges all the strings among the arguments expr_1, ..., expr_n, and
the remaining elements are the values of any non-string arguments.
errormsg () formats and prints error. This is effectively reprinting the most recent error
message.
errormsg () Function
Reprints the most recent error message. The variable error holds the message, and
errormsg formats and prints it.
for Special operator
Used in iterations. See do for a description of Maxima’s iteration facilities.
go (tag) Function
is used within a block to transfer control to the statement of the block which is tagged
with the argument to go. To tag a statement, precede it by an atomic argument as another
statement in the block. For example:
block ([x], x:1, loop, x+1, ..., go(loop), ...)
The argument to go must be the name of a tag appearing in the same block. One cannot
use go to transfer to tag in a block other than the one containing the go.
if Special operator

The if statement is used for conditional execution. The syntax is:
if <condition> then <expr_1> else <expr_2>

The result of an if statement is expr_1 if condition is true and expr_2 otherwise. expr_1
and expr_2 are any Maxima expressions (including nested if statements), and condition is
an expression which evaluates to true or false and is composed of relational and logical
operators which are as follows:



Chapter 41: Program Flow 367

Operation Symbol Type
less than < relational infix
less than <=

or equal to relational infix
equality (syntactic) = relational infix
negation of = # relational infix
equality (value) equal relational function
negation of equal notequal relational function
greater than >=

or equal to relational infix
greater than > relational infix
and and logical infix
or or logical infix
not not logical prefix

map (f, expr_1, ..., expr_n) Function

Returns an expression whose leading operator is the same as that of the expressions expr_1,
..., expr_n but whose subparts are the results of applying f to the corresponding subparts
of the expressions. f is either the name of a function of n arguments or is a lambda form
of n arguments.

maperror - if false will cause all of the mapping functions to (1) stop when they finish
going down the shortest expi if not all of the expi are of the same length and (2) apply
fn to [expl, exp2,...] if the expi are not all the same type of object. If maperror is true
then an error message will be given in the above two instances.

One of the uses of this function is to map a function (e.g. partfrac) onto each term
of a very large expression where it ordinarily wouldn’t be possible to use the function
on the entire expression due to an exhaustion of list storage space in the course of the

computation.
(%11) map(f,x+axy+b*z);
(ho1) f(bz) + flay) + £(x)
(%i2) map(lambda([u],partfrac(u,x)),x+1/(x"3+4%x"2+5%x+2));
1 1 1
(%02  mmmm= = —m—— + —mm———— + x
x + 2 x + 1 2
(x + 1)
(%13) map(ratsimp, x/(x"2+x)+(y~2+y)/y);
1
(%03) y + ———— + 1
x + 1
(%14) map("=",[a,b],[-0.5,3]);
(%o4) [a=-0.5, b=23]
mapatom (expr) Function

Returns true if and only if expr is treated by the mapping routines as an atom. "Map-
atoms" are atoms, numbers (including rational numbers), and subscripted variables.

maperror Option variable
Default value: true

When maperror is false, causes all of the mapping functions, for example
map (f, expr_1, expr_2, ...))
to (1) stop when they finish going down the shortest expi if not all of the expi are of the

same length and (2) apply f to [expr_1, expr_2, ...] if the expr_i are not all the same
type of object.

If maperror is true then an error message is displayed in the above two instances.



368 Maxima Manual

maplist (f, expr_1, ..., expr_n) Function
Returns a list of the applications of f to the parts of the expressions expr_1, ..., expr_n. f
is the name of a function, or a lambda expression.
maplist differs from map (f, expr_1, ..., expr_n) which returns an expression with the
same main operator as expr-i has (except for simplifications and the case where map does
an apply).

prederror Option variable

Default value: true

When prederror is true, an error message is displayed whenever the predicate of an if
statement or an is function fails to evaluate to either true or false.

If false, unknown is returned instead in this case. The prederror: false mode is not
supported in translated code; however, maybe is supported in translated code.

See also is and maybe.

return (value) Function
May be used to exit explicitly from a block, bringing its argument. See block for more
information.

scanmap (f, expr) Function

scanmap (f, expr, bottomup) Function

Recursively applies f to expr, in a top down manner. This is most useful when complete
factorization is desired, for example:

(%1i1) exp:(a~2+2%a+l)*y + x"2%
(%12) scanmap(factor,exp);

2 2
(ho2) (a+1) y+x

Note the way in which scanmap applies the given function factor to the constituent
subexpressions of expr; if another form of expr is presented to scanmap then the result
may be different. Thus, %02 is not recovered when scanmap is applied to the expanded
form of exp:

(%13) scanmap(factor,expand(exp));
2 2
(%03) a y+2ay+y+x
Here is another example of the way in which scanmap recursively applies a given function
to all subexpressions, including exponents:

(%14) expr : uxv”(a*x+b) + c$
(%i5) scanmap(’f, expr);
f(f(f(a) £(x)) + £(b))

(%hob) f(£(£f(u) £(£f(v) )) + £(c))
scanmap (f, expr, bottomup) applies f to expr in a bottom-up manner. E.g., for unde-
fined £,

scanmap (f ,a*xx+b) ->
f(a*xx+b) -> £(f(axx)+f(b)) -> £(£(£f(a)*f(x))+£f(b))
scanmap (f,a*x+b,bottomup) -> f(a)*f(x)+f(b)
-> f(f(a)*f(x))+£(b) ->
(£ (£ (a)*f (x))+£ (b))

In this case, you get the same answer both ways.

throw (expr) Function
Evaluates expr and throws the value back to the most recent catch. throw is used with
catch as a nonlocal return mechanism.



Chapter 41: Program Flow 369

outermap (f, a_l, ..., a_n) Function
Applies the function f to each one of the elements of the outer product a_1 cross a_2 ...
Cross a_n.

f is be the name of a function of n arguments or a lambda expression of n arguments. The
arguments a_I, ..., a_n may be lists or nonlists. List arguments may have different lengths.
Arguments other than lists are treated as lists of length 1 for the purpose of constructing
the outer product.

The result of applying f to the outer product is organized as a nested list. The depth
of nesting is equal to the number of list arguments (arguments other than lists do not
contribute a nesting level). A list at nesting depth k& has the same length as the k’th list
argument.
outermap evaluates its arguments.
See also map, maplist, and apply.
Examples:
(%i1) £ (x, y) = x - y$
(%12) outermap (£, [2, 3, 5], [a, b, c, d1);
(%02) [[2 -a, 2 -Db, 2 -c¢c, 2 -4d],
[3-a,3-b,3-¢,3-4d], [65-a,5-b,5-¢c, 5-4dl]
(%13) outermap (lambda ([x, yl, y/x), [565, 991, [Z, WI);
Z W Z W
(%03) (f--, --1, [--, --11
55 55 99 99
(%14) g: lambda ([x, y, z], x + y*z)$
(%15) outermap (g, [a, b, cl, %pi, [11, 171);
(%05) [[a + 11 %pi, a + 17 %pil, [b + 11 %pi, b + 17 %pil,
[c + 11 %pi, c + 17 %pil]
(%i6) flatten (%);
(%06) [a + 11 Y%pi, a + 17 %pi, b + 11 %pi, b + 17 Ypi,
c + 11 %pi, c + 17 %pil



370 Maxima Manual



Chapter 42: Debugging 371

42 Debugging

42.1 Source Level Debugging

Maxima has a built-in source level debugger. The user can set a breakpoint at a function, and
then step line by line from there. The call stack may be examined, together with the variables
bound at that level.

The command :help or :h shows the list of debugger commands. (In general, commands
may be abbreviated if the abbreviation is unique. If not unique, the alternatives will be listed.)
Within the debugger, the user can also use any ordinary Maxima functions to examine, define,
and manipulate variables and expressions.

A breakpoint is set by the :br command at the Maxima prompt. Within the debugger, the
user can advance one line at a time using the :n (“next”) command. The :bt (“backtrace”)
command shows a list of stack frames. The :r (“resume”) command exits the debugger and
continues with execution. These commands are demonstrated in the example below.

(%1i1) load ("/tmp/foobar.mac");
(%hol) /tmp/foobar.mac

(%12) :br foo
Turning on debugging debugmode (true)
Bkpt 0 for foo (in /tmp/foobar.mac line 1)

(%12) bar (2,3);
Bkpt 0:(foobar.mac 1)
/tmp/foobar.mac:1::

(dbm:1) :bt <-- :bt typed here gives a backtrace
#0: foo(y=5) (foobar.mac line 1)
#1: bar(x=2,y=3) (foobar.mac line 9)

(dbm:1) :n <-- Here type :n to advance line
(foobar.mac 2)
/tmp/foobar.mac:2::

(dbm:1) :n <-- Here type :n to advance line
(foobar.mac 3)
/tmp/foobar.mac:3::

(dbm:1) wu; <-- Investigate value of u

28

(dbm:1) u: 33; <-- Change u to be 33

33

(dbm:1) :r <-- Type :r to resume the computation
(%02) 1094

The file /tmp/foobar.mac is the following:
foo(y) := block ([u:y~2],

u: ut+3,
u: u"2,
uw ;

bar(x,y) := (



372 Maxima Manual

X: X+2,

v oy+2,

x: foo(y),
X+y);

USE OF THE DEBUGGER THROUGH EMACS

If the user is running the code under GNU emacs in a shell window (dbl shell), or is running
the graphical interface version, xmaxima, then if he stops at a break point, he will see his
current position in the source file which will be displayed in the other half of the window, either
highlighted in red, or with a little arrow pointing at the right line. He can advance single lines
at a time by typing M-n (Alt-n).

Under Emacs you should run in a dbl shell, which requires the dbl.el file in the elisp
directory. Make sure you install the elisp files or add the Maxima elisp directory to your path:
e.g., add the following to your ‘.emacs’ file or the site-init.el

(setq load-path (cons "/usr/share/maxima/5.9.1/emacs" load-path))
(autoload ’dbl "dbl")

then in emacs
M-x dbl

should start a shell window in which you can run programs, for example Maxima, gcl, gdb
etc. This shell window also knows about source level debugging, and display of source code in
the other window.

The user may set a break point at a certain line of the file by typing C-x space. This figures
out which function the cursor is in, and then it sees which line of that function the cursor is
on. If the cursor is on, say, line 2 of foo, then it will insert in the other window the command,
“:br foo 27, to break foo at its second line. To have this enabled, the user must have maxima-
mode.el turned on in the window in which the file foobar.mac is visiting. There are additional
commands available in that file window, such as evaluating the function into the Maxima, by
typing Alt-Control-x.

42.2 Keyword Commands

Keyword commands are special keywords which are not interpreted as Maxima expressions.
A keyword command can be entered at the Maxima prompt or the debugger prompt, although
not at the break prompt. Keyword commands start with a colon, ":’. For example, to evaluate
a Lisp form you may type :1isp followed by the form to be evaluated.
(%i1) :lisp (+ 2 3)
5
The number of arguments taken depends on the particular command. Also, you need not
type the whole command, just enough to be unique among the break keywords. Thus :br would
suffice for :break.

The keyword commands are listed below.

:break Fn
Set a breakpoint in function F at line offset n from the beginning of the function.
If F is given as a string, then it is assumed to be a file, and n is the offset from the
beginning of the file. The offset is optional. If not given, it is assumed to be zero
(first line of the function or file).

:bt Print a backtrace of the stack frames

:continue
Continue the computation

:delete  Delete the specified breakpoints, or all if none are specified
:disable Disable the specified breakpoints, or all if none are specified
:enable  Enable the specified breakpoints, or all if none are specified

:frame n  Print stack frame n, or the current frame if none is specified



Chapter 42: Debugging 373

:help Print help on a debugger command, or all commands if none is specified
:info Print information about item

:1lisp some-form
Evaluate some-form as a Lisp form

:lisp—quiet some-form
Evaluate Lisp form some-form without any output

:next Like :step, except :next steps over function calls
1quit Quit the current debugger level without completing the computation

:resume  Continue the computation

:step Continue the computation until it reaches a new source line
1top Return to the Maxima prompt (from any debugger level) without completing the
computation

42.3 Definitions for Debugging

refcheck Option variable
Default value: false

When refcheck is true, Maxima prints a message each time a bound variable is used for
the first time in a computation.

setcheck Option variable
Default value: false

If setcheck is set to a list of variables (which can be subscripted), Maxima prints a message
whenever the variables, or subscripted occurrences of them, are bound with the ordinary
assignment operator :, the :: assignment operator, or function argument binding, but
not the function assignment := nor the macro assignment ::= operators. The message
comprises the name of the variable and the value it is bound to.

setcheck may be set to all or true thereby including all variables.

Each new assignment of setcheck establishes a new list of variables to check, and any
variables previously assigned to setcheck are forgotten.

The names assigned to setcheck must be quoted if they would otherwise evaluate to
something other than themselves. For example, if x, y, and z are already bound, then
enter

setcheck: [’x, ’y, ’z]$
to put them on the list of variables to check.

No printout is generated when a variable on the setcheck list is assigned to itself, e.g.,
X: ’X.

setcheckbreak Option variable
Default value: false

When setcheckbreak is true, Maxima will present a break prompt whenever a variable
on the setcheck list is assigned a new value. The break occurs before the assignment is
carried out. At this point, setval holds the value to which the variable is about to be
assigned. Hence, one may assign a different value by assigning to setval.

See also setcheck and setval.

setval System variable
Holds the value to which a variable is about to be set when a setcheckbreak occurs.
Hence, one may assign a different value by assigning to setval.

See also setcheck and setcheckbreak.



374 Maxima Manual

timer (£.1, ..., f.n) Function
timer () Function
Given functions f_1, ..., f.n, timer puts each one on the list of functions for which timing

statistics are collected. timer(f)$ timer(g)$ puts £ and then g onto the list; the list
accumulates from one call to the next.

With no arguments, timer returns the list of timed functions.

Maxima records how much time is spent executing each function on the list of timed
functions. timer_info returns the timing statistics, including the average time elapsed
per function call, the number of calls, and the total time elapsed. untimer removes
functions from the list of timed functions.

timer quotes its arguments. f(x) :=x"2$ g:£$ timer(g)$ does not put £ on the timer
list.

If trace(£) is in effect, then timer (£) has no effect; trace and timer cannot both be in
effect at the same time.

See also timer_devalue.

untimer (f.1, ..., fn) Function
untimer () Function
Given functions f_1, ..., fn, untimer removes each function from the timer list.

With no arguments, untimer removes all functions currently on the timer list.

After untimer (f) is executed, timer_info (£) still returns previously collected timing
statistics, although timer_info() (with no arguments) does not return information about
any function not currently on the timer list. timer (f) resets all timing statistics to zero
and puts £ on the timer list again.

timer_devalue Option variable
Default value: false

When timer_devalue is true, Maxima subtracts from each timed function the time spent
in other timed functions. Otherwise, the time reported for each function includes the time
spent in other functions. Note that time spent in untimed functions is not subtracted
from the total time.

See also timer and timer_info.

timer_info (f.1, ..., fn) Function
timer_info () Function
Given functions f_1, ..., f-n, timer_info returns a matrix containing timing information

for each function. With no arguments, timer_info returns timing information for all
functions currently on the timer list.

The matrix returned by timer_info contains the function name, time per function call,
number of function calls, total time, and gctime, which meant "garbage collection time"
in the original Macsyma but is now always zero.

The data from which timer_info constructs its return value can also be obtained by the
get function:

get(f, ’calls); get(f, ’runtime); get(f, ’gctime);
See also timer.

trace (f.1, ..., fon) Function
trace () Function
Given functions f.1, ..., fn, trace instructs Maxima to print out debugging information

whenever those functions are called. trace(f)$ trace(g)$ puts £ and then g onto the
list of functions to be traced; the list accumulates from one call to the next.

With no arguments, trace returns a list of all the functions currently being traced.
The untrace function disables tracing. See also trace_options.

trace quotes its arguments. Thus, £(x) := x"2$ g:£$ trace(g)$ does not put £ on the
trace list.



Chapter 42: Debugging 375

When a function is redefined, it is removed from the timer list. Thus after timer (£f)$
f(x) :=x"28$, function f is no longer on the timer list.

If timer (f) is in effect, then trace (f) has no effect; trace and timer can’t both be in
effect for the same function.

trace_options (f, option_1, ..., option_n) Function

trace_options (f) Function
Sets the trace options for function £ Any previous options are superseded. trace_
options (f, ...) has no effect unless trace (f) is also called (either before or after

trace_options).
trace_options (f) resets all options to their default values.
The option keywords are:

e noprint Do not print a message at function entry and exit.

e break Put a breakpoint before the function is entered, and after the function is exited.
See break.

e lisp_print Display arguments and return values as Lisp objects.

e info Print -> true at function entry and exit.

e errorcatch Catch errors, giving the option to signal an error, retry the function call,
or specify a return value.

Trace options are specified in two forms. The presence of the option keyword alone puts
the option into effect unconditionally. (Note that option foo is not put into effect by
specifying foo: true or a similar form; note also that keywords need not be quoted.)
Specifying the option keyword with a predicate function makes the option conditional on
the predicate.

The argument list to the predicate function is always [level, direction, function,
item] where level is the recursion level for the function, direction is either enter or
exit, function is the name of the function, and item is the argument list (on entering)
or the return value (on exiting).

Here is an example of unconditional trace options:
(%11) ff(n) := if equal(n, 0) then 1 else n * ff(n - 1)$

(%i2) trace (£ff)$
(%13) trace_options (ff, lisp_print, break)$

(%hid) ££(3);
Here is the same function, with the break option conditional on a predicate:
(%i5) trace_options (ff, break(pp))$

(%16) pp (level, direction, function, item) := block (print (item),
return (function = ’ff and level = 3 and direction = exit))$

(%i7) ££(6);

untrace (f_1, ..., f.n) Function
untrace () Function
Given functions .1, ..., f_n, untrace disables tracing enabled by the trace function. With

no arguments, untrace disables tracing for all functions.
untrace returns a list of the functions for which it disabled tracing.



376 Maxima Manual



Chapter 43: Indices 377

43 Indices



378 Maxima Manual



Appendix A: Function and Variable Index

Appendix A Function and Variable Index

"

TEEY (OPerator) ... 24
"I (Operator) . ... 23
"#" (Operator). ... 24
"I (Operator). .. ... 15
"IN (OPErator) ... 16
TN (Operator) . ... 25
T (Operator) . ... 25
Mt (Operator) ... 25
Mri=" (Operator) . ... 25
M=t (Operator) . ......iiiii 26
M=t (OPErator) . ......ouuiii i 26
"t (Special symbol) ........ ... oL 79
"[" (Special symbol) ............ .o 215
"]J" (Special symbol) .......... ... .ol 215
"I (Operator) ... 242
" (Operator) ... 241

%

% (System variable).............. ... .. ... 78
%% (System variable) ........... ... ... L. 78
%he (Constant).................oiiii.... 121
%e_to_numlog (Option variable)................ 123
%edispflag (Option variable) ................... 78
%emode (Option variable) ....................... 47
%enumer (Option variable) ...................... 47
%hgamma (Constant) ............................ 286
%pi (Constant) ..., 121
Jirnum_list (System variable).................. 169
%th (Function) .......... ... ... ... ... .. 78
?

?round (Lisp function)............... .. ... ... 98
?truncate (Lisp function) ...................... 98
_ (System variable).............. .. ... ... 7
__ (System variable) ............ ... ... L. 7

A

abasep (Function)............................. 271
abs (Function)........... ... ... ... ... ...... 27
absboxchar (Option variable) ................... 79
absint (Function)............................. 191
acos (Function)............... ... . ... ..., 127
acosh (Function).............................. 127
acot (Function).................... ... ..., 127
acoth (Function).............................. 127
acsc (Function)............ ... ... ... 127
acsch (Function)................ ... . .. .. 127
activate (Function) ........................... 99
activecontexts (System variable) .............. 99
addcol (Function).............. ... ... ... .... 199
additive (Keyword) ........................... 27
addrow (Function)................ ... ... .... 200
adim (Variable) .............. ... ... ... ...... 271
adjoin (Function)............................. 332

adjoint (Function) ........................... 200

379
af (Function)........... ... ... ... ... ... .. 271
aform (Variable) .............................. 271
airy (Function)............... ... ... ..., 133
airy_ai (Function) ........................... 134
airy_bi (Function) ........................... 134
airy_dai (Function) .......................... 134
airy_dbi (Function) .......................... 134
alg_type (Function) .......................... 271
algebraic (Option variable) ................... 103
algepsilon (Option variable) ................... 97
algexact (Option variable) .................... 169
algsys (Function)............................. 169
alias (Function)............... ... ... ... ... 16
aliases (System variable) ..................... 307
all_dotsimp_denoms (Option variable) ......... 218
allbut (Keyword) ............................. 27
allroots (Function) .......................... 170
allsym (Option variable) ...................... 229
alphabetic (Declaration)...................... 307
and (Operator).......... ..., 26
antid (Function)............... .. ... ... .... 145
antidiff (Function) .......................... 145
antisymmetric (Declaration) ................... 27
append (Function)............................. 325
appendfile (Function) ......................... 79
apply (Function).............................. 348
applyl (Function).......... ... ... ... ... .... 313
apply2 (Function)............................. 313
applybl (Function) ........... ... ... ... ..... 313
apropos (Function) ........................... 307
args (Function)................ ... .. ... ..., 307
array (Function)........... ... .. ... ... ... 195
arrayapply (Function) ........................ 195
arrayinfo (Function) ......................... 195
arraymake (Function) ......................... 195
arrays (System variable) ...................... 195
asec (Function)........... ... .. ... ... .. ... 127
asech (Function).............................. 127
asin (Function)........... ... ... ... ... .. ... 127
asinh (Function).............................. 127
askexp (System variable) .................... ... 61
askinteger (Function) ......................... 61
asksign (Function).............. ... ... ....... 61
assoc (Function)........... ... ... .. ... ... 325
assume (Function).............................. 99
assume_pos (Option variable) .................. 100
assume_pos_pred (Option variable)............. 100
assumescalar (Option variable)................ 100
asymbol (Variable) ............................ 271
asympa (Function)............................. 134
at (Function) ............ ... ... .. ... ... 43
atan (Function)............... ... . ... .... 127
atan2 (Function)........... ... ... ... ........ 127
atanh (Function).............................. 127
atensimp (Function) .......................... 270
atom (Function)........... ... .. ... ... .. ... 325
atomgrad (Property) .......................... 146
atrigl (Package) ........... ... ... ... 128
atvalue (Function) ........................... 146
augcoefmatrix (Function)..................... 200
av (Function) ......... ... ... o i 271



380

B

backsubst (Option variable) ................... 171
backtrace (Function) ......................... 363
bashindices (Function) ....................... 195
batch (Function)............................... 79
batchload (Function) .......................... 80
be2 (Function)............ ... ... ... L. 183
bdvac (Function).............................. 260
belln (Function).............................. 333
berlefact (Option variable)................... 103
bern (Function)............ ... ... ... ....... 283
bernpoly (Function) .......................... 283
bessel (Function)................. .. ... ..... 134
bessel_i (Function) .......................... 135
bessel_j (Function) .......................... 135
bessel_k (Function) .......................... 135
bessel_y (Function) .......................... 135
besselexpand (Option variable)................ 135
beta (Function)............ ... ... ... ....... 136
bezout (Function)............................. 103
bffac (Function)............................... 97
bfhzeta (Function) ........................... 283
bfloat (Function).............................. 97
bfloatp (Function)............... ... ... ...... 97
bfpsi (Function)............ ... .. ... ... .... 97
bfpsiO (Function).................ooio.i.. 97
bftorat (Option variable) ...................... 97
bftrunc (Option variable) ...................... 97
bfzeta (Function)............................. 283
bimetric (Function) .......................... 260
binomial (Function) .......................... 283
block (Function) ......................... 348, 349
bothcoef (Function) .......................... 103
box (Function)............ ... ... 44
boxchar (Option variable) ...................... 44
break (Function).............................. 349
breakup (Option variable) ..................... 171
bug_report (Function) .......................... 7
build_info (Function) .......................... 7
buildq (Function)............................. 346
burn (Function)............ ... ... ... .. ... 284

C

cabs (Function).......... ... ... ... ... ...... 27
canform (Function) ........................... 230
canten (Function)............................. 229
cardinality (Function) ....................... 333
carg (Function) ............. .. ... .. ... . ... 45
cartan (Function)............. ... ... ........ 147
cartesian_product (Function)................. 333
catch (Function)............. ... ... ......... 349
cauchysum (Option variable) ................... 273
cbffac (Function)............... ..., 97
cdisplay (Function) .......................... 261
ceiling (Function)............................. 28
cf (Function) .............coooiiiiii ... 284
cfdisrep (Function) .......................... 285
cfexpand (Function) .......................... 285
cflength (Option variable) .................... 285
cframe_flag (Option variable)................. 265
cgeodesic (Function) ......................... 260
changename (Function) ........................ 222
changevar (Function) ......................... 153
charfun (Function)............................. 28
charpoly (Function) .......................... 200

check_overlaps (Function).................... 218

Maxima Manual

checkdiv (Function) .......................... 260
christof (Function) .......................... 251
clear_rules (Function) ....................... 323
closefile (Function) .......................... 80
closeps (Function)............................. 75
cmetric (Function) .......... ... ... ... ... ... 249
cnonmet_flag (Option variable)................ 265
coeff (Function).............................. 104
coefmatrix (Function) ........................ 200
cograd (Function)............................. 259
col (Function).......... ... ... .. ... ... ..., 201
collapse (Function) ........................... 80
columnvector (Function)...................... 201
combine (Function) ........................... 104
commutative (Declaration)...................... 28
comp2pui (Function) .......................... 289
compare (Function)............................. 28
compfile (Function) .......................... 349
compile (Function) ........................... 350
compile_file (Function)...................... 362
components (Function) ........................ 224
concan (Function)............. ... ... ... .... 229
concat (Function).............................. 80
conjugate (Function) ......................... 201
conmetderiv (Function) ....................... 233
cons (Function).......... ... .. ... ... ... .. 325
constant (Special operator)..................... 45
constantp (Function) .......................... 45
cont2part (Function) ......................... 289
content (Function) ........................... 104
context (Option variable) ..................... 101
contexts (Option variable) .................... 101
contortion (Function) ........................ 258
contract (Function)...................... 224, 289
contragrad (Function) ........................ 259
coord (Function).............................. 232
copylist (Function) .......................... 325
copymatrix (Function) ........................ 201
cos (Function).......... ... ... ... .. ... ... 128
cosh (Function).......... ... .. ... ... ... .. 128
cosnpiflag (Option variable).................. 191
cot (Function).......... ... ... .. ... ... ..., 128
coth (Function).............. .. ... ... ... .. 128
covdiff (Function) ........................... 235
covect (Function)............................. 201
create_list (Function) ....................... 325
csc (Function).......... ... ... .. .. .. 128
csch (Function)............. ... ... ... ... .. 128
csetup (Function)............ ... ... ........ 248
ct_coords (Option variable) ................... 267
ct_coordsys (Function) ....................... 249
ctaylor (Function) ........................... 253
ctaypov (Option variable) ..................... 265
ctaypt (Option variable) ...................... 265
ctayswitch (Option variable) .................. 265
ctayvar (Option variable) ..................... 265
ctorsion_flag (Option variable)............... 265
ctransform (Function) ........................ 258
ctrgsimp (Option variable) .................... 265

current_let_rule_package (Option variable)... 313



Appendix A: Function and Variable Index

D

dblint (Function)............................. 154
deactivate (Function) ........................ 102
debugmode (Option variable) .................... 16
declare (Function)............................. 45
declare_translated (Function)................ 362
declare_weight (Function).................... 217
decsym (Function)............................. 229
default_let_rule_package (Option variable)... 314
defcon (Function)............................. 224
define (Function)............................. 350
define_variable (Function)................... 351
defint (Function)............................. 154
defmatch (Function) .......................... 314
defrule (Function) ........................... 315
deftaylor (Function) ......................... 273
del (Function).......... ... .. 147
delete (Function)................. ... ... 326
deleten (Function) ........................... 264
delta (Function).............................. 147
demo (Function)................ oo ... 11
demoivre (Function) ........................... 61
demoivre (Option variable) ..................... 61
denom (Function).............................. 104
dependencies (System variable)................ 148
depends (Function) ........................... 148
derivabbrev (Option variable)................. 149
derivdegree (Function) ....................... 149
derivlist (Function) ......................... 149
derivsubst (Option variable) .................. 149
describe (Function) ............... .. ... ..... 12
desolve (Function) ........................... 183
determinant (Function) ....................... 202
detout (Option variable) ...................... 202
diagmatrix (Function) ........................ 202
diagmatrixp (Function) ....................... 260
diagmetric (Option variable).................. 265
Aiff (Function) .............oooveeieii., 149, 230
diff (Special symbol) ......................... 150
dim (Option variable).......................... 264
dimension (Function) ......................... 172
direct (Function)............................. 289
disjoin (Function) ........................... 333
disjointp (Function) ......................... 333
disolate (Function) ........................... 46
disp (Function)............. ... ... ... ... 81
dispcon (Function)............... ... ... ...... 81
dispflag (Option variable) .................... 173
dispform (Function) ........................... 46
dispfun (Function) ........................... 352
display (Function)............................. 81
display_format_internal (Option variable)..... 81
display2d (Option variable) .................... 81
disprule (Function) .......................... 315
dispterms (Function) .......................... 81
distrib (Function)............... ... ... ...... 46
divide (Function)............................. 104
divisors (Function) .......................... 334
divsum (Function)................. .. ... ..... 285
do (Special operator) ............ ... ... ..., 363
doallmxops (Option variable).................. 202
domain (Option variable) ....................... 61
domxexpt (Option variable) .................... 202
domxmxops (Option variable) ................... 203
domxnctimes (Option variable)................. 203
dontfactor (Option variable).................. 203

doscmxops (Option variable) ................... 203

381
doscmxplus (Option variable) .................. 203
dotOnscsimp (Option variable)................. 203
dotOsimp (Option variable) .................... 203
dot1simp (Option variable) .................... 203
dotassoc (Option variable) .................... 203
dotconstrules (Option variable)............... 204
dotdistrib (Option variable) .................. 204
dotexptsimp (Option variable)................. 204
dotident (Option variable) .................... 204
dotscrules (Option variable) .................. 204
dotsimp (Function) ........................... 217
dpart (Function)............... ... ... ... .... 47
dscalar (Function) ....................... 150, 259
E
echelon (Function) ........................... 204
eigenvalues (Function) ....................... 204
eigenvectors (Function) ...................... 205
eighth (Function)............................. 326
einstein (Function) .......................... 252
eivals (Function).............. ... ... ... ... 204
eivects (Function) ........... ... ... ... ..... 205
ele2comp (Function) .......................... 291
ele2polynome (Function)...................... 291
ele2pui (Function) ........................... 291
elem (Function)............................... 291
elementp (Function) .......................... 334
eliminate (Function) ......................... 104
elliptic_e (Function) ........................ 142
elliptic_ec (Function) ....................... 142
elliptic_eu (Function) ....................... 142
elliptic_f (Function) ........................ 142
elliptic_kc (Function) ....................... 142
elliptic_pi (Function)....................... 142
ematrix (Function) ........................... 205
emptyp (Function)............................. 334
endcons (Function) ........................... 326
entermatrix (Function) ....................... 205
entertensor (Function) ....................... 222
entier (Function).............. ... ... ... .... 29
equal (Function)............... ... ... ... ... 29
equalp (Function)............................. 191
equiv_classes (Function)..................... 334
erf (Function).............. .. ... ... ... 154
erfflag (Option variable) ..................... 154
errcatch (Function) .......................... 366
error (Function)........... ... .. ... ... ... 366
error (System variable) ....................... 366
error_size (Option variable) ................... 82
error_syms (Option variable)................... 82
errormsg (Function) .......................... 366
euler (Function)........... ... .. ... ... .... 286
ev (Function) ............ ... ... .. ... ... 16
eval (Operator) ........... ... ...ooii.... 30
evenp (Function)............................... 31
every (Function).............................. 334
evflag (Property)........... ... ... ... 18
evfun (Property)............ ... ... ... ... 18
evundiff (Function) .......................... 231
example (Function)............................. 13
exp (Function) ......... ... ... ... ... ... 47
expand (Function).............................. 61
expandwrt (Function) .......................... 62
expandwrt_denom (Option variable).............. 62
expandwrt_factored (Function)................. 62
explose (Function) ........................... 292



382

expon (Option variable) ........................ 62
exponentialize (Function)..................... 62
exponentialize (Option variable)............... 62
expop (Option variable) ........................ 62
express (Function) .......... ... ... ... .. ... 150
expt (Function)........... ... ... ... ... .. ... 82
exptdispflag (Option variable)................. 82
exptisolate (Option variable).................. 47
exptsubst (Option variable) .................... 47
extdiff (Function) ........................... 242
extract_linear_equations (Function)......... 218
extremal_subset (Function)................... 335
ezged (Function).............. ..., 105

F

facexpand (Option variable) ................... 105
factcomb (Function) .......................... 105
factlim (Option variable) ...................... 63
factor (Function)............................. 105
factorflag (Option variable) .................. 107
factorial (Function) ......................... 286
factorout (Function) ......................... 107
factorsum (Function) ......................... 107
facts (Function)........... .. ... ... ... ... 102
false (Constant) ............................. 121
fast_central_elements (Function) ............ 217
fast_linsolve (Function)..................... 217
fasttimes (Function) ......................... 107
fb (Variable) .......... ... ... ... . L 266
feature (Declaration) ......................... 305
featurep (Function) .......................... 305
features (Declaration)........................ 102
f£ft (Function) ........... ... ... ... ... .. 188
fib (Function)........... ... ... ... ... ... 286
fibtophi (Function) .......................... 286
fifth (Function)............... .. ... ... .... 326
file_output_append (Option variable) .......... 79
file_search (Function) ........................ 83
file_search_demo (Option variable)............. 83
file_search_lisp (Option variable)............. 83
file_search_maxima (Option variable) .......... 83
file_type (Function) .......................... 84
filename_merge (Function)..................... 83
fillarray (Function) ......................... 196
find_root (Function) ......................... 190
find_root_abs (Option variable)............... 190
find_root_error (Option variable)............. 190
find_root_rel (Option variable)............... 191
findde (Function)............................. 258
first (Function).............................. 326
fix (Function)........... ... ... ... ... ... .. 31
flatten (Function) ........... ... ... ... ..... 335
flipflag (Option variable) .................... 224
float (Function)............... ... ... ........ 97
float2bf (Option variable) ..................... 98
floatnump (Function) .......................... 98
floor (Function)........... ... ... ... ........ 29
flush (Function)........... ... ... ... ... ... 232
flushideriv (Function) ....................... 234
flushd (Function)............................. 232
flushnd (Function) ........................... 232
for (Special operator)......................... 366
forget (Function).............. .. ... ... ... 102
fortindent (Option variable).................. 188
fortran (Function) ........................... 188

fortspaces (Option variable) .................. 189

Maxima Manual

fourcos (Function) ........................... 192
fourexpand (Function) ........................ 191
fourier (Function) ........... ... ... ... ..... 191
fourint (Function) ........... ... ... ... ..... 192
fourintcos (Function) ........................ 192
fourintsin (Function) ........................ 192
foursimp (Function) .......................... 191
foursin (Function) ........................... 192
fourth (Function)............................. 326
fpprec (Option variable) ....................... 98
fpprintprec (Option variable).................. 98
frame_bracket (Function)..................... 255
freeof (Function).............................. 48
full_listify (Function)...................... 335
fullmap (Function)............................. 31
fullmapl (Function) ........................... 31
fullratsimp (Function) ....................... 108
fullratsubst (Function)...................... 108
fullsetify (Function) ........................ 336
funcsolve (Function) ......................... 173
functions (System variable)................... 353
fundef (Function)............................. 353
funmake (Function) ........................... 353
funp (Function)............... ... ... .... 191

G

gamma (Function).............................. 136
gammalim (Option variable) .................... 136
gauss (Function).................. ... ... ... 193
ged (Function) . ... 109
gedex (Function).................... . 109
gefactor (Function) .......... ... ... .. ..., 110
gdet (System variable) ........................ 265
genfact (Function)............... ... ... ...... 49
genindex (Option variable) .................... 307
genmatrix (Function) ......................... 206
gensumnum (Option variable) ................... 308
get (Function)............ ... ... ... ..., 326
gfactor (Function) ............ ... ... ....... 110
gfactorsum (Function) ........................ 110
globalsolve (Option variable)................. 173
go (Function) ............ ... ... ... ... ..... 366
gradef (Function)............................. 151
gradefs (System variable) ..................... 152
gramschmidt (Function) ....................... 206
grind (Function)............ ... .. ... ... .... 84
grind (Option variable) ........................ 84
grobner_basis (Function)..................... 217
gschmit (Function) ........................... 207

H

hach (Function)............ ... ... ... ....... 207
halfangles (Option variable).................. 128
hipow (Function).............................. 110
hodge (Function).............................. 243
horner (Function)............................. 189



Appendix A: Function and Variable Index

0 (Function).......... ... ... ... 136
1 (Function) ............ ... ... ... ... 136
ibase (Option variable) ........................ 85
ic_convert (Function) ........................ 244
icl (Function).......... ... ... ... .. ... 183
ic2 (Function).......... ... ... .. ... 184
icel (Variable) ......... ... ... .. ... .. L 237
ice2 (Variable) ........... .. ... ... L. 238
ichrl (Function)............. ... ... ......... 234
ichr2 (Function)............. ... ... ......... 234
icounter (Option variable) .................... 227
icurvature (Function) ........................ 235
ident (Function)............. ... ... ... ..... 207
identity (Function) .......................... 336
idiff (Function)............. ... ... ......... 230
idim (Function)............. ... ... ... ...... 234
idummy (Function)............................. 226
idummyx (Option variable) ..................... 227
iegn (Function)............. ... ... ... ... .. 174
iegnprint (Option variable) ................... 174
if (Special operator) .......................... 366
ifb (Variable) ....... ... ... ... ... .o 237
ifcl (Variable) ......... ... ... ... L. 238
ifc2 (Variable) ....... ... ... ...l 238
ifg (Variable) ....... ... ... .. ... ... ... 238
ifgi (Variable) ............ ... ... ... 238
ifr (Variable) ......... ... ... ... ... ... 238
iframe_bracket_form (Option variable) ........ 239
iframes (Function) ........................... 237
ifri (Variable) ......... ... ... ... .. .. ..., 238
ift (Function) ............... .. ... ...... 187, 188
igeodesic_coords (Function).................. 235
igeowedge_flag (Option variable).............. 243
ikt1 (Variable) ......... ... ... ... .. .. ..., 239
ikt2 (Variable) ............. ... ... .. ... 239
ilt (Function)............. ... i 154
imagpart (Function) .......... ... ... ... .. ... 49
imetric (Function) ........................... 234
imetric (System variable)..................... 234
in_netmath (Option variable) ................... 69
inchar (Option variable) ....................... 85
indexed_tensor (Function).................... 224
indices (Function) ........................... 222
inf (Constant) ........................... 121, 308
infeval (Option variable) ...................... 19
infinity (Constant)...................... 121, 308
infix (Function).............. ... ............. 49
inflag (Option variable) ....................... 50
infolists (System variable)................... 308
init_atensor (Function)...................... 270
init_ctensor (Function)...................... 250
nm (Variable) ........... ... ... ... ... ..., 239
inmel (Variable) ......... ... ... .. ... ... .. 239
inme2 (Variable) ............ ... .. ... ... 239
innerproduct (Function)...................... 207
inpart (Function).............................. 50
inprod (Function)............................. 207
inrt (Function)............. ... ... ... ... .. 286
integer_partitions (Function)................ 336
integerp (Function) .......................... 308
integrate (Function) ......................... 155
integrate_use_rootsof (Option variable)...... 158
integration_constant_counter (System variable)
......................................... 157
intersect (Function) ......................... 336

intersection (Function)...................... 336

383
intfaclim (Option variable) ................... 110
intopois (Function) .......................... 136
intosum (Function)............................. 63
invariant1 (Function) ........................ 260
invariant2 (Function) ........................ 260
inverse_jacobi_cd (Function)................. 141
inverse_jacobi_cn (Function)................. 141
inverse_jacobi_cs (Function)................. 141
inverse_jacobi_dc (Function)................. 141
inverse_jacobi_dn (Function)................. 141
inverse_jacobi_ds (Function)................. 141
inverse_jacobi_nc (Function)................. 141
inverse_jacobi_nd (Function)................. 141
inverse_jacobi_ns (Function)................. 141
inverse_jacobi_sc (Function)................. 141
inverse_jacobi_sd (Function)................. 141
inverse_jacobi_sn (Function)................. 141
invert (Function)............................. 207
s (Function) .......... ... ... .. . L. 31
ishow (Function).............................. 222
isolate (Function)............................. 50
isolate_wrt_times (Option variable) ........... 51
isqrt (Function).............. ... ... ......... 32
itr (Variable) ........... ... L. 240
J
jO (Function) .......... ... . ... ... ... ... 136
j1 (Function) ... 136
jacobi (Function)............................. 286
jacobi_cd (Function) ......................... 140
jacobi_cn (Function) ......................... 140
jacobi_cs (Function) ......................... 140
jacobi_dc (Function) ......................... 141
jacobi_dn (Function) ......................... 140
jacobi_ds (Function) ......................... 141
jacobi_nc (Function) ......................... 140
jacobi_nd (Function) ......................... 141
jacobi_ns (Function) ......................... 140
jacobi_sc (Function) ......................... 140
jacobi_sd (Function) ......................... 140
jacobi_sn (Function) ......................... 140
jn (Function) ......... ... ... ... ... 136
join (Function).............. .. ... .. 327
K
kdels (Function).............................. 227
kdelta (Function)............................. 227
keepfloat (Option variable)................... 110
kill (Function)................ooiiieioiin... 19
killcontext (Function)....................... 102
kinvariant (Variable)......................... 266
kostka (Function)............................. 292
kron_delta (Function) ........................ 337
t (Variable) ........... ... .. ... ... ... 267



384

L

labels (Function).............................. 19
labels (System variable) ....................... 20
lambda (Function)............................. 354
laplace (Function) ........................... 152
lassociative (Declaration)..................... 63
last (Function)............................... 327
lc_1 (Function)........... .. ... ... ......... 228
lc_u (Function)............... .. ... ......... 229
lc2kdt (Function)............. ... ... .. ... 227
lem (Function) ... 286
ldefint (Function) ........................... 158
1disp (Function).............. ..., 86
ldisplay (Function) ........................... 86
leinstein (Function) ......................... 252
length (Function)............................. 327
let (Function)................................ 315
let_rule_packages (Option variable) .......... 317
letrat (Option variable) ...................... 316
letrules (Function) .......................... 317
letsimp (Function) ........................... 317
levi_civita (Function) ....................... 227
1fg (Variable) ............. ... i 266
1freeof (Function)............................. 52
1g (Variable) ............. ... ... ... ... 266
lgtreillis (Function) ........................ 292
lhospitallim (Option variable)................ 143
1hs (Function)........... ... ... ... .. 174
1i (Function) .......... ... .. 123
liediff (Function) ........................... 231
limit (Function)............... ..., 143
limsubst (Option variable) .................... 143
linear (Declaration) ........................... 63
linechar (Option variable) ..................... 87
linel (Option variable) ........................ 87
linenum (System variable)...................... 20
linsolve (Function) .......................... 175
linsolve_params (Option variable)............. 176
linsolvewarn (Option variable)................ 176
lispdisp (Option variable) ..................... 87
list_nc_monomials (Function)................. 218
listarith (Option variable) ................... 327
listarray (Function) ......................... 196
listconstvars (Option variable)................ 51
listdummyvars (Option variable)................ 51
listify (Function) ........... ... ... ... ..... 337
listoftens (Function) ........................ 222
listofvars (Function) ......................... 51
listp (Function)............... .. ... ... .... 327
Imax (Function).......... ... ... ... ......... 32
Imin (Function)............... ... ............. 32
lmxchar (Option variable) ..................... 208
load (Function)............... ... ... ......... 87
loadfile (Function) ........................... 87
loadprint (Option variable) .................... 87
local (Function).............. ... ... ... 356
log (Function)...........ocovviiiiniieaan. 124
logabs (Option variable) ...................... 124
logarc (Option variable) ...................... 124
logconcoeffp (Option variable)................ 124
logcontract (Function) ....................... 124
logexpand (Option variable) ................... 125
lognegint (Option variable) ................... 125
lognumer (Option variable) .................... 125
logsimp (Option variable) ..................... 125
lopow (Function)............... ... ... ... ... 52

lorentz_gauge (Function)..................... 235

Maxima Manual

lpart (Function)............... ..., 52
lratsubst (Function) ......................... 111
lreduce (Function) ........................... 337
lriem (Variable) .............. ... ... ........ 266
lriemann (Function) .......................... 252
1sum (Function)............... ... ... ... ..... 60
ltreillis (Function) ......................... 292

M

mipbranch (Option variable) ................... 309
macroexpand (Function) ....................... 347
macroexpandl (Function) ...................... 347
macroexpansion (Option variable).............. 356
macros (Global variable)....................... 348
mainvar (Declaration).......................... 63
make_array (Function) ........................ 196
make_random_state (Function).................. 33
make_transform (Function)..................... 75
makebox (Function) ........................... 232
makefact (Function) .......................... 136
makegamma (Function) ......................... 136
makelist (Function) .......................... 327
makeset (Function) ........................... 338
map (Function)............. ... .. ... ... .... 367
mapatom (Function) ........................... 367
maperror (Option variable) .................... 367
maplist (Function) ............. ... ... ... .. 368
matchdeclare (Function) ...................... 317
matchfix (Function) .......................... 318
matrix (Function)............................. 208
matrix_element_add (Option variable) ......... 210
matrix_element_mult (Option variable) ........ 210
matrix_element_transpose (Option variable)... 211
matrixmap (Function) ......................... 210
matrixp (Function) ........................... 210
mattrace (Function) .......................... 212
max (Function)............. ... .. ... ... 32
maxapplydepth (Option variable)................ 63
maxapplyheight (Option variable)............... 63
maxnegex (Option variable) ..................... 63
maxposex (Option variable) ..................... 63
maxtayorder (Option variable)................. 274
maybe (Function)............................... 32
member (Function)............................. 328
min (Function).......... ... ... ... ... ... 32
minf (Constant) ............. ... ... ......... 121
minfactorial (Function)...................... 287
minor (Function).............................. 212
mod (Function)............ ... .. 33
mode_check_errorp (Option variable) .......... 358
mode_check_warnp (Option variable) ........... 358
mode_checkp (Option variable) ................. 358
mode_declare (Function) ...................... 358
mode_identity (Function)..................... 359
modulus (Option variable) ..................... 111
moebius (Function) ........................... 338
mon2schur (Function) ......................... 292
mono (Function)......... ... ... ... ... ... 218
monomial_dimensions (Function) .............. 218
multi_elem (Function) ........................ 292
multi_orbit (Function)....................... 293
multi_pui (Function) ......................... 293
multinomial (Function)....................... 293
multinomial_coeff (Function)................. 338
multiplicative (Declaration) .................. 63
multiplicities (System variable) ............. 176



Appendix A: Function and Variable Index

multsym (Function) ........................... 293
multthru (Function) ........................... 52
myoptions (System variable).................... 20

N

nc_degree (Function) ......................... 217
ncexpt (Function)............................. 212
ncharpoly (Function) ......................... 212
negdistrib (Option variable) ................... 64
negsumdispflag (Option variable)............... 64
newcontext (Function) ........................ 102
newdet (Function)............................. 212
niceindices (Function) ....................... 274
niceindicespref (Option variable)............. 274
ninth (Function).............................. 328
nm (Variable) ...... ... .. ... ... ... .. .. 267
nmc (Variable) ............... ... ... ... ... 267
noeval (Special symbol)........................ 64
nolabels (Option variable) ..................... 20
nonmetricity (Function)...................... 258
nonscalar (Declaration)....................... 212
nonscalarp (Function) ........................ 212
not (Operator)........... ... 27
notequal (Function) ........................... 30
noun (Declaration) ............ ... ... ... ... .. 64
noundisp (Option variable) ..................... 64
nounify (Function)............................. 52
nouns (Special symbol) ........... .. ... ... 64
np (Variable) ........... ... ... ... ... ..., 267
npi (Variable) ......... ... ... i 267
nptetrad (Function) .......................... 255
nroots (Function)............................. 176
nterms (Function).............................. 53
ntermst (Function) ........................... 261
nthroot (Function) ............ ... ... ....... 176
ntrig (Package) ............ ... ... ... .. 128
num (Function).......... .. ... .. ... ... ... 111
num_distinct_partitions (Function).......... 338
num_partitions (Function).................... 338
numberp (Function) ................ .. ... .... 309
numer (Special symbol) .......... ... ... ... ... 64
numerval (Function) ........................... 64
numfactor (Function) ......................... 136
nusum (Function)........... ... ... ... ... 275

@)

obase (Option variable) ........................ 88
oddp (Function)............... ... ..., 33
ode2 (Function)............................... 184
op (Function) ............. ... . 53
openplot_curves (Function).................... 69
operatorp (Function) .......................... 53
opproperties (System variable)................. 64
opsubst (Option variable) ...................... 65
optimize (Function) ........................... 53
optimprefix (Option variable).................. 53
optionset (Option variable).................... 20
or (Operator)...... ..o ... 26
orbit (Function).............................. 293
ordergreat (Function) ......................... 53
ordergreatp (Function) ........................ 54
orderless (Function) .......................... 54
orderlessp (Function) ......................... 54
outative (Declaration)......................... 65

outchar (Option variable) ...................... 88

385
outermap (Function) .......................... 369
outofpois (Function) ......................... 137
P
packagefile (Option variable).................. 88
pade (Function)............ ... ... ... ....... 275
part (Function)............. ... ... ... ... ... 54
part2cont (Function) ......................... 294
partfrac (Function) ............ ... ... ...... 287
partition (Function) .......................... 54
partition_set (Function)..................... 339
partpol (Function) ........................... 294
partswitch (Option variable) ................... 54
permanent (Function) ......................... 212
permut (Function)............................. 294
permutations (Function) ...................... 339
petrov (Function)............................. 256
pfeformat (Option variable) .................... 88
pickapart (Function) .......................... 54
piece (System variable) ........................ 56
playback (Function) ........................ 20, 21
plog (Function)............ ... ... ... ... ... 125
plot_options (System variable)................. 71
plot2d (Function).............................. 69
plot2d_ps (Function) .......................... 75
plot3d (Function)......................... ... 74
poisdiff (Function) .......................... 137
poisexpt (Function) ............ ... ... ... .. 137
poisint (Function) ........................... 137
poislim (Option variable) ..................... 137
poismap (Function) ........................... 137
poisplus (Function) .......................... 137
poissimp (Function) ............ ... ... ... .. 137
poisson (Special symbol)...................... 137
poissubst (Function) ......................... 137
poistimes (Function) ......................... 138
poistrim (Function) .......................... 138
polarform (Function) .......................... 56
polartorect (Function)................... 187, 188
polydecomp (Function) ........................ 111
polymod (Function)............................. 32
polynome2ele (Function)...................... 294
posfun (Declaration) ........................... 65
potential (Function) ......................... 159
powerdisp (Option variable) ................... 276
powers (Function)............ .. ... ... ... ... 56
powerseries (Function) ....................... 277
powerset (Function) .......................... 339
pred (Operator) ...........ccooiiiiiniinean... 33
prederror (Option variable) ................... 368
primep (Function)........... ... ... ... ...... 287
print (Function)............ ... .. ... ... .... 89
printpois (Function) ......................... 138
printprops (Function) ......................... 21
prodrac (Function) ........................... 294
product (Function)............................. 56
programmode (Option variable)................. 177
prompt (Option variable) ....................... 21
properties (Function) ........................ 309
props (Special symbol) ........................ 309
propvars (Function) .......................... 310
pscom (Function)............ ... .. ... ... ... 76
psdraw_curve (Function) ....................... 76
psexpand (Option variable) .................... 277
psi (Function) ......... ... ... .. .. ..., 138, 256
pui (Function)............. .. ... ... ... ... 294



386

pui_direct (Function) ........................ 295
pui2comp (Function) .......................... 295
pui2ele (Function) ........................... 295
pui2polynome (Function)...................... 295
puireduc (Function) .......................... 296
put (Function)............ ... ... ... ........ 310
Q

gput (Function)............... ... ... . ..., 310
qq (Function) ........... ... ... ... .. ... ... 159
quad_qgag (Function) .......................... 162
quad_qgagi (Function) ......................... 163
quad_qgags (Function) ......................... 163
quad_qgawc (Function) ......................... 164
quad_qgawf (Function) ......................... 165
quad_qgawo (Function) ......................... 166
quad_qgaws (Function) ......................... 167
quanc8 (Function)............................. 159
quit (Function)............... ... ... ......... 21
qunit (Function)................. ... ... ... 287
quotient (Function) .......................... 112

R

radcan (Function)........... ... ... ... ....... 65
radexpand (Option variable) .................... 65
radsubstflag (Option variable)................. 65
random (Function).............................. 33
rank (Function)............ ... ... ... ... ... 213
rassociative (Declaration)..................... 66
rat (Function)................ .. ... ... 112
ratalgdenom (Option variable)................. 113
ratchristof (Option variable)................. 265
ratcoef (Function) ........................... 113
ratdenom (Function) .......................... 113
ratdenomdivide (Option variable).............. 113
ratdiff (Function) ........................... 114
ratdisrep (Function) ......................... 115
rateinstein (Option variable)................. 266
ratepsilon (Option variable).................. 115
ratexpand (Function) ......................... 115
ratexpand (Option variable) ................... 115
ratfac (Option variable) ...................... 116
rationalize (Function) ........................ 34
ratmx (Option variable) ....................... 213
ratnumer (Function) .......................... 116
ratnump (Function) ........................... 116
ratp (Function)................ .. ... ........ 116
ratprint (Option variable) .................... 116
ratriemann (Option variable).................. 266
ratsimp (Function) ..................... ... ... 116
ratsimpexpons (Option variable)............... 117
ratsubst (Function) .......................... 117
ratvars (Function) ..................... ... ... 118
ratvars (System variable) .............. ... ... 118
ratweight (Function) ......................... 118
ratweights (System variable).................. 118
ratweyl (Option variable) ..................... 266
ratwtlvl (Option variable) .................... 118
read (Function)............. .. ... ... ... ... 90
readonly (Function) ........................... 90
realonly (Option variable) .................... 177
realpart (Function) ........................... 57
realroots (Function) ......................... 177
rearray (Function) ........................... 196

rectform (Function) ........................... 57

Maxima Manual

recttopolar (Function)................... 187, 188
rediff (Function)............................. 231
refcheck (Option variable) .................... 373
rem (Function)................ .. ... .. ........ 310
remainder (Function) ......................... 119
remarray (Function) .......................... 196
rembox (Function).............. ... ... ....... 57
remcomps (Function) ........... ... ... ... .. 226
remcon (Function)........... ... ... ... . ..., 224
remcoord (Function) ............ ... ... ... .. 232
remfun (Function)............................. 191
remfunction (Function) ........................ 21
remlet (Function)............................. 319
remove (Function)............................. 310
remrule (Function) ........................... 320
remsym (Function)............................. 230
remvalue (Function) .......................... 311
rename (Function)............................. 223
reset (Function)............. ... ... ... ... 22
residue (Function) ........................... 159
resolvante (Function) ........................ 296
resolvante_alterneel (Function) ............. 299
resolvante_bipartite (Function) ............. 299
resolvante_diedrale (Function) .............. 300
resolvante_klein (Function).................. 300
resolvante_klein3 (Function)................. 300
resolvante_produit_sym (Function) ........... 300
resolvante_unitaire (Function) .............. 301
resolvante_vierer (Function)................. 301
rest (Function)............ ... ... ... ... ... 328
resultant (Function) ......................... 119
resultant (Variable).......................... 119
return (Function)............................. 368
reveal (Function).............................. 90
reverse (Function) ........................... 328
revert (Function)............................. 277
revert2 (Function) ........................... 277
rhs (Function)............ ... ... ... ... ... 177
ric (Variable) ............ ... ... ... ... ..., 266
ricci (Function)........... ... ... ... ........ 251
riem (Variable) ................ ... ......... 266
riemann (Function) ........................... 252
rinvariant (Function) ........................ 252
risch (Function).............................. 159
rmxchar (Option variable) ...................... 91
rancombine (Function) ......................... 311
romberg (Function) ........................... 160
rombergabs (Option variable) .................. 161
rombergit (Option variable) ................... 162
rombergmin (Option variable) .................. 162
rombergtol (Option variable).................. 162
room (Function)............ ... ... ... ... 306
rootsconmode (Option variable)................ 178
rootscontract (Function)..................... 178
rootsepsilon (Option variable)................ 178
row (Function)............ ... ... ... ... ... 213
rreduce (Function) ........................... 339
run_testsuite (Function) ....................... 7



Appendix A: Function and Variable Index

S

save (Function).............. ... ... ... ...... 91
savedef (Option variable) ...................... 92
savefactors (Option variable) ................. 119
scalarmatrixp (Option variable)............... 213
scalarp (Function) ........................... 311
scalefactors (Function) ...................... 213
scanmap (Function) ........................... 368
schur2comp (Function) ........................ 301
sconcat (Function)............................. 80
scsimp (Function).............. ... ... ... .. ... 66
scurvature (Function) ........................ 251
sec (Function).............. ... .. ... ... 128
sech (Function).............. .. ... ... ... .. 128
second (Function)............. ... ... ... .... 328
set_partitions (Function).................... 340
set_plot_option (Function).................... 75
set_random_state (Function)................... 33
set_up_dot_simplifications (Function)....... 217
setcheck (Option variable) .................... 373
setcheckbreak (Option variable)............... 373
setdifference (Function) ..................... 340
setelmx (Function) .............. ... ... ..... 213
setequalp (Function) ......................... 340
setify (Function)............. ... ... ... .... 340
setp (Function)............ ... ... ... ...... 340
setup_autoload (Function).................... 311
setval (System variable) ...................... 373
seventh (Function) ........................... 328
st (Function).......... ... ... ... ... ........ 271
show (Function)............... ... ... 92
showcomps (Function) ......................... 226
showratvars (Function) ........................ 92
showtime (Option variable) ..................... 22
sign (Function).......... ... ... ... .......... 35
signum (Function).............................. 35
similaritytransform (Function) .............. 213
simpmetderiv (Function)...................... 233
simpsum (Option variable) ...................... 66
simtran (Function) ........................... 213
sin (Function).............. .. ... ... ... ..., 128
sinh (Function)............. ... ... ... ... .. 128
sinnpiflag (Option variable) .................. 191
sixth (Function).............................. 328
solve (Function).............................. 179
solve_inconsistent_error (Option variable)... 181
solvedecomposes (Option variable)............. 181
solveexplicit (Option variable)............... 181
solvefactors (Option variable)................ 181
solvenullwarn (Option variable)............... 181
solveradcan (Option variable) ................. 181
solvetrigwarn (Option variable)............... 181
some (Function)............. ... ... ... ... .. 341
somrac (Function)............................. 301
sort (Function).......... ... ... ... ... ...... 35
sparse (Option variable) ...................... 214
splice (Function)............................. 348
sqfr (Function)............. ... ... ... ...... 119
sqrt (Function).............. .. ... .. ... .. ... 35
sqrtdispflag (Option variable)................. 35
sstatus (Function).......... ... .. ... ... ... 22
stardisp (Option variable) ..................... 92
status (Function)............................. 306
stirlingl (Function) ......................... 341
stirling2 (Function) ......................... 341
string (Function).............................. 92

stringdisp (Lisp variable)...................... 92

387
stringout (Function) .......................... 93
sublis (Function).............................. 35
sublis_apply_lambda (Option variable) ......... 35
sublist (Function)............................. 35
submatrix (Function) ......................... 214
subset (Function)............................. 342
subsetp (Function) ........................... 342
subst (Function)............................... 36
substinpart (Function) ........................ 36
substpart (Function) .............. ... ... .... 37
subvar (Function)............................. 196
subvarp (Function).............. ... .. ... ... 37
sum (Function)............. ... ... ... ... 58
sumcontract (Function) ........................ 66
sumexpand (Option variable) .................... 66
sumsplitfact (Option variable)................. 66
supcontext (Function) ........................ 102
symbolp (Function)............................. 37
symmdifference (Function).................... 342
symmetric (Declaration)........................ 67
symmetricp (Function) ........................ 260
system (Function).............. ... ... ........ 95
T
tan (Function)............ ... ... ... ... ... 128
tanh (Function)................ ..., .. 128
taylor (Function)............................. 278
taylor_logexpand (Option variable) ........... 281
taylor_order_coefficients (Option variable).. 281
taylor_simplifier (Function)................. 281
taylor_truncate_polynomials (Option variable)
......................................... 281
taylordepth (Option variable)................. 280
taylorinfo (Function) ........................ 280
taylorp (Function) ........................... 281
taytorat (Function) .......................... 281
tcl_output (Function) ......................... 89
tcontract (Function) ......................... 301
tellrat (Function) ............ ... ... ....... 119
tellsimp (Function) .......................... 320
tellsimpafter (Function)..................... 321
tensorkill (System variable).................. 267
tentex (Function)............................. 243
tenth (Function)........... ... ... ... ....... 328
testsuite_files (Option variable)............... 7
tex (Function)......... ... ... ... .. .. ... 93
texput (Function).............................. 94
third (Function).............................. 328
throw (Function).............................. 368
time (Function)............................... 306
timedate (Function) .......................... 306
timer (Function).............................. 374
timer_devalue (Option variable)............... 374
timer_info (Function) ........................ 374
tldefint (Function) .......................... 162
tlimit (Function)............................. 143
tlimswitch (Option variable).................. 143
to_lisp (Function)............... ... ... ...... 22
todd_coxeter (Function)...................... 303
totaldisrep (Function) ....................... 120
totalfourier (Function)...................... 192
totient (Function) ............ ... ... ....... 287
tpartpol (Function) ............ ... ... ...... 301
tr (Variable) ...... ... .. ... .. ... ... ... 267
tr_array_as_ref (Option variable)............. 360

tr_bound_function_applyp (Option variable)... 360



388
tr_file_tty_messagesp (Option variable) ...... 360
tr_float_can_branch_complex (Option variable)
......................................... 361
tr_function_call_default (Option variable)... 361
tr_numer (Option variable) .................... 361
tr_optimize_max_loop (Option variable) ....... 361
tr_semicompile (Option variable).............. 361
tr_state_vars (System variable)............... 361
tr_warn_bad_function_calls (Option variable)
......................................... 361
tr_warn_fexpr (Option variable)............... 362
tr_warn_meval (Option variable)............... 362
tr_warn_mode (Option variable)................ 362
tr_warn_undeclared (Option variable) ......... 362
tr_warn_undefined_variable (Option variable)
......................................... 362
tr_warnings_get (Function)................... 361
tr_windy (Option variable) .................... 362
trace (Function)............... ... .. ... ... 374
trace_options (Function)..................... 375
transcompile (Option variable)................ 359
translate (Function) ......................... 359
translate_file (Function).................... 360
transpose (Function) ......................... 214
transrun (Option variable) .................... 360
tree_reduce (Function) ....................... 342
treillis (Function) .......................... 301
treinat (Function) ..................... ... ... 301
triangularize (Function)..................... 214
trigexpand (Function) ........................ 129
trigexpandplus (Option variable).............. 129
trigexpandtimes (Option variable)............. 129
triginverses (Option variable)................ 129
trigrat (Function) ............ ... ... ....... 130
trigreduce (Function) ........................ 129
trigsign (Option variable) .................... 130
trigsimp (Function) .......................... 130
true (Constant) ................c.oiii... 121
trunc (Function)........... ... .. ... ... .... 281
ttyoff (Option variable) ....................... 95
U
ueivects (Function) .......................... 214
ufg (Variable) ........... ... ... ... ... ..., 266

ug (Variable) ............. ... i 266

Maxima Manual

undiff (Function)............................. 231
union (Function)........... ... ... ... ... .... 343
uniteigenvectors (Function).................. 214
unitvector (Function) ........................ 215
unknown (Function)............... ... ... ... .. 67
unorder (Function)............................. 37
unsum (Function)................. .. ... ..., 282
untellrat (Function) ......................... 120
untimer (Function) ........................... 374
untrace (Function) ........................... 375
uric (Variable) ........... ... ... ... ... 266
uricci (Function)........... ... ... ... . ..., 251
uriem (Variable) ........... .. ... ... ... ... 266
uriemann (Function) .......................... 252
use_fast_arrays (Option variable)............. 197
uvect (Function).............................. 215

Vv

values (System variable) ....................... 22
vect_cross (Option variable) .................. 215
vectorpotential (Function).................... 38
vectorsimp (Function) ........................ 215
verbify (Function)............................. 60
verbose (Option variable) ..................... 282

A%

weyl (Function)............... ... .. 252
weyl (Variable) ........... ... ... ... ... ... 266
with_stdout (Function) ........................ 95
writefile (Function) .......................... 96

X

xgraph_curves (Function) ...................... 71
xreduce (Function) ........................... 343
xthru (Function)........ ... ... .. ... ... ... 38

Z

zerobern (Option variable) .................... 287
zeroequiv (Function) .......................... 38
zeromatrix (Function) ........................ 215
zeta (Function)........... ... .. ... ... .. ... 288
zeta%pi (Option variable) ..................... 288



Short Contents

© 00 3 O O = W N =

LW W W W W W W W W W NDNDNDDNDDNDIDNDDNDDND DN = = = = s s s
© 0 I O T i W N = O © 00 ~J O Ui W N = O © 0 O UL i Wi = O

............................................... 1
Introduction to Maxima « « e e v vvvveeeeeeeeeeeonononnns 3
Bug Detection and Reporting . « o o o e v v v v v e e eeeeeeennnn. 7
Y 9
Command Line. . voveeeeeeeeeeeeeeeeeooosoosssonees 15
Operators v v oo v v vt e oo vveeeeeeesssessonenooassss 23
EXPIressions o o o o oo v v e e oo eeeeeeeeeeeessosssssesss 39
Simplification o o o v oo v v v ittt ittt i i i e 61
Plotting . o o o v vttt it iiiinneeeeeoosannnns 69
Input and OUutput o o v v v v v v e ittt ittt i i eeennnnnn 7
Floating Point . .o oo v v v ittt iiiennnnnnns 97
CONtEXES o v v v v v oo vvssssooeeeesssssssssssscesssss 99
Polynomials « o v oo oot it i i i it it i i 103
CONStANTS o o o o o v s s v oo vvvvsssessssoooeceossssssss 121
Logarithms . ..o oo i ittt ieennnnnnnnns 123
TrigonometriC o o v v v oo v e v oo oo o ooeeeeeeessssessss 127
Special Functions ..o oo v v vt iiieeeennnnns 133
Elliptic FUNctions « e e e oo oo v v v oo v vt eeooooeessoeeas 139
Limits o o o v v oo oo v oo ssoonsoesssoessssoessssosssss 143
Differentiation. . o o v oo v v e oo e s s et eeeeeoseoossoens 145
Integration o v v v v v v e ettt it it ooonnnnns 153
Bquations. o oo oot e e i e e eeeeeeeeeennnnooooseess 169
Differential EqUations « v v v v v v v oo e v e s e vveeeoooneesss 183
Numerical o o v oo oo v v sveesoeessoeassossssonsss 187
T 811 193
Arraysand Tables . o o o o oo i i it it i i i 195
Matrices and Linear Algebra ..o v oo v v v v v e i ineeeeennns 199
Affine oo v s ittt it i et i et e sttt seeeessssssssssnnns 217
TEETISOT & o o o o o o o o oo o oo o oo oosoosossossossessossas 219
CUETISOT « o o o o o o o o oo oo oo ovoooosssosssssosssnsssss 247
ALEIISOT & o v o o o o o oo oo o oo osocososososososssosssss 269
1 273
Number Theory. ..o ee et e i eeeeeeeeenns 283
SYMIMELTIES v v v v v v vt oo oo vvvooooeeesossssosonnses 289
GTOUDPS 4 ¢ v oo v v oo oo s oossssesnnooossssssssssssas 303
Runtime Environment . . . o o v oo oo v evveeeeeeesoonss 305
Miscellaneous Options v v e e e v oo o v o s s oo oooeoooscessss 307
Rules and Patterns « o oo v v v v v v i i i i i eeennnn 313
3] 325
] 1 329



i
40
41

42
43

Maxima Manual

Function Definition . o o v v v oo e e e e i i i i ieeeeennns 345
Program Flow ... ..ottt iinnnnnnns 363
Debugging o v v oo v e ittt i e s nnneeeeeeeosononnnnns 371
INAiCES e o v e oo v v oo oo e ooooeessoesssoesssossssssss 377

Function and Variable Index v v v v e v v e v v v v e v et vevvenes 379



Table of Contents

................................................. 1
1 Introduction to Maxima....................... 3
2 Bug Detection and Reporting ................. 7
2.1 Introduction to Bug Detection and Reporting.................. 7
2.2 Definitions for Bug Detection and Reporting................... 7
3 Help...oooviiiiii it 9
3.1 Introductionto Help......... ... . i, 9
3.2 Lispand Maxima.......... ..., 9
3.3 Garbage Collection ......... ... ... i 10
3.4 Documentation. ........... ... 10
3.5 Definitions for Help....... ... ... ... .. . . 11
4 Command Line................ ..., 15
4.1 Introduction to Command Line.............................. 15
4.2 Definitions for Command Line............................... 16
5 Operators..........ccviiiiiiiiiiiiiiirennnn. 23
.1 mary. ... 23
D.2  NOMX .o 23
0.3 OPETatOr . ..ottt 23
5.4 POStiix. ..o 23
B PrefixX. . 23
5.6 Definitions for Operators.............. ... ... 23
6 EXpressions ...........c.c.oeiiiiiiiiiiiiiiiaaan 39
6.1 Introduction to Expressions............... ... ... ... ....... 39
6.2 ASSIGNIENT . ...t 39
6.3 Complex. ... 39
6.4 Nounsand Verbs.......... ... i, 39
6.5 Identifiers....... ... 40
6.6 Inequality........ .. ... 41
6.7  SYNLAX « ottt e e 41
6.8 Definitions for Expressions .............. ... ... ... ... 43
7 Simplification ............................... 61
7.1 Definitions for Simplification .............. ... .. ... .. ... ... 61
8 Plotting............ ..., 69
8.1 Definitions for Plotting .............. ... .. ... .. ... ... ..... 69
9 Inputand Output ........................... 77
9.1 Imtroduction to Input and Output ........................... 7
0.2 Files ..o 7
9.3 Definitions for Input and Output ............................ 7
10 Floating Point.............................. 97

10.1 Definitions for Floating Point .............................. 97

iii



v

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Maxima Manual

Contexts......coviiiiiiiiiiiiiiinnnnnnnn. 99
11.1  Definitions for Contexts. ........... ... .. 99
Polynomials.................. ... ... 103
12.1 Introduction to Polynomials............................... 103
12.2  Definitions for Polynomials................................ 103
Constants..............ooiiiiiiiaa.. 121
13.1 Definitions for Constants..................... .. ... ....... 121
Logarithms................... ... .. ... ... 123
14.1 Definitions for Logarithms .............. ... ... ... ......... 123
Trigonometric................iiii... 127
15.1 Introduction to Trigonometric............................. 127
15.2  Definitions for Trigonometric.............. .. ............. 127
Special Functions.......................... 133
16.1 Introduction to Special Functions.......................... 133
16.2 specint ...... .o 133
16.3 Definitions for Special Functions........................... 133
Elliptic Functions.......................... 139
17.1 Introduction to Elliptic Functions and Integrals............. 139
17.2  Definitions for Elliptic Functions .......................... 140
17.3 Definitions for Elliptic Integrals ........................... 142
Limits . ...t i iii i 143
18.1 Definitions for Limits............. ... ... ... ... ... ...... 143
Differentiation ............................ 145
19.1 Definitions for Differentiation ............................. 145
Integration.....................cin... 153
20.1 Introduction to Integration.................. ... ... ... ... 153
20.2 Definitions for Integration............. ... . ... .. ... ... 153
Equations............... .. 169
21.1 Definitions for Equations................... ... ........... 169
Differential Equations...................... 183
22.1 Definitions for Differential Equations....................... 183
Numerical .............. ... 0., 187
23.1 Introduction to Numerical ........... ... ... ... ... ...... 187
23.2 Fourier packages ... 187
23.3 Definitions for Numerical ................................. 187
23.4  Definitions for Fourier Series .............................. 191
Statistics.......covveiiiiiiiiiiinn, 193
24.1 Definitions for Statistics ............. ... .. ... ... ... 193
Arraysand Tables......................... 195

25.1 Definitions for Arrays and Tables.......................... 195



26

28

29

30

31

32

33

34

Matrices and Linear Algebra............... 199

26.1 Introduction to Matrices and Linear Algebra ............... 199
26.1.1 Dot ..o 199
26.1.2 Vectors ... 199
26.1.3 eigen ... 199
26.2 Definitions for Matrices and Linear Algebra ................ 199
Affine. ... i i i 217
27.1 Definitions for Affine ........... ... ... .. ... ... 217
Itensor.......coiiiiiiiiiiiiiiiiiiiiiia, 219
28.1 Introduction to itensor.................iiiiiiiia... 219
28.1.1 New tensor notation ............................. 219
28.1.2 Indicial tensor manipulation ...................... 220
28.2 Definitions for itensor................ ... . . 222
28.2.1 Managing indexed objects............... ... ... ... 222
28.2.2 Tensor symmetries. .. ..., 229
28.2.3 Indicial tensor calculus........................... 230
28.2.4 Tensors in curved SPaCes .........c.coveeuunnee.... 234
28.2.5 Moving frames ...............i i 236
28.2.6 Torsion and nonmetricity......................... 239
28.2.7 Exterior algebra ............. . ... 241
28.2.8 Exporting TeX expressions ....................... 243
28.2.9 Interfacing with ctensor .......................... 244
28.2.10 Reserved words.............c... i 245
(0 753 0 110 ) (e 247
29.1 Introduction to ctensor .............. ... .. .. ... .. ... .. ... 247
29.2  Definitions for ctensor ............. ... 248
29.2.1 Initialization and setup........................... 248
29.2.2 The tensors of curved space ...................... 251
29.2.3 Taylor series expansion. .......................... 253
29.2.4 Framefields............. ... ... ... .. ... ... 255
29.2.5 Algebraic classification ........................... 255
29.2.6 Torsion and nonmetricity......................... 257
29.2.7 Miscellaneous features............................ 258
29.2.8 Utility functions . ........... ... 260
29.2.9 Variables used by ctensor ....................... 264
29.2.10 Reserved names ..............oiiiiiiiia... 267
29.2.11 Changes . ...t 268
ALENSOT ...ttt ittt i i i i e 269
30.1 Introduction to atensor ............ ... ... ... ... ... 269
30.2 Definitions for atensor ................ ... 270
NS TS) 0 (<t S 273
31.1 Introduction to Series............ ... 273
31.2 Definitions for Series........... ... .. 273
Number Theory ........................... 283
32.1 Definitions for Number Theory ............................ 283
Symmetries .............ciiiiiiiiinnnn.. 289
33.1 Definitions for Symmetries................................ 289
GrOUPS + ittt ittt ettt eeeneeaneennns 303

34.1 Definitions for Groups ............coooviiiiiiii ... 303



vi Maxima Manual

35 Runtime Environment ..................... 305
35.1 Introduction for Runtime Environment..................... 305

35.2 Inberrupts . ... 305

35.3 Definitions for Runtime Environment ...................... 305

36 Miscellaneous Options..................... 307
36.1 Introduction to Miscellaneous Options ..................... 307

36.2 Share. . ... 307

36.3 Definitions for Miscellaneous Options ...................... 307

37 Rulesand Patterns.................c...... 313
37.1 Introduction to Rules and Patterns . ....................... 313

37.2 Definitions for Rules and Patterns .. ....................... 313

3 J 5 1= 17 325
38.1 Introduction to Lists .......... .. . 325

38.2 Definitions for Lists .. ... .ot 325

39 St vttt e e e e et e 329
39.1 Introduction to Sets......... ... 329

39. 1.1 USage. oot 329

39.1.2 Set Member Iteration .......... ... oo ... 331

39.1.3 BUgS. ..o 331

39.1.4 Authors..........oo 332

39.2 Definitions for Sets ... ... . 332

40 Function Definition..............c.c.v..... 345
40.1 Introduction to Function Definition........................ 345

40.2 Function.............. . 345

40.3 MaACLOS . o vt e et e 346

40.4 Definitions for Function Definition......................... 348

41 Program Flow................ ... ... ....... 363
41.1 Introduction to Program Flow.......................... ... 363

41.2 Definitions for Program Flow.............................. 363

42 Debugging ..........ciiiiiiiiiiiiiiinnn.. 371
42.1 Source Level Debugging............ .. ... .. ... ..., 371

42.2 Keyword Commands ..............oouiiiiiiiiiiinnnnea .. 372

42.3 Definitions for Debugging . .......... ... ... . ... ... 373

43 INndiCeS....vv ittt ettt 377

Appendix A Function and Variable Index...... 379



	
	Introduction to Maxima
	Bug Detection and Reporting
	Introduction to Bug Detection and Reporting
	Definitions for Bug Detection and Reporting

	Help
	Introduction to Help
	Lisp and Maxima
	Garbage Collection
	Documentation
	Definitions for Help

	Command Line
	Introduction to Command Line
	Definitions for Command Line

	Operators
	nary
	nofix
	operator
	postfix
	prefix
	Definitions for Operators

	Expressions
	Introduction to Expressions
	Assignment
	Complex
	Nouns and Verbs
	Identifiers
	Inequality
	Syntax
	Definitions for Expressions

	Simplification
	Definitions for Simplification

	Plotting
	Definitions for Plotting

	Input and Output
	Introduction to Input and Output
	Files
	Definitions for Input and Output

	Floating Point
	Definitions for Floating Point

	Contexts
	Definitions for Contexts

	Polynomials
	Introduction to Polynomials
	Definitions for Polynomials

	Constants
	Definitions for Constants

	Logarithms
	Definitions for Logarithms

	Trigonometric
	Introduction to Trigonometric
	Definitions for Trigonometric

	Special Functions
	Introduction to Special Functions
	specint
	Definitions for Special Functions

	Elliptic Functions
	Introduction to Elliptic Functions and Integrals
	Definitions for Elliptic Functions
	Definitions for Elliptic Integrals

	Limits
	Definitions for Limits

	Differentiation
	Definitions for Differentiation

	Integration
	Introduction to Integration
	Definitions for Integration

	Equations
	Definitions for Equations

	Differential Equations
	Definitions for Differential Equations

	Numerical
	Introduction to Numerical
	Fourier packages
	Definitions for Numerical
	Definitions for Fourier Series

	Statistics
	Definitions for Statistics

	Arrays and Tables
	Definitions for Arrays and Tables

	Matrices and Linear Algebra
	Introduction to Matrices and Linear Algebra
	Dot
	Vectors
	eigen

	Definitions for Matrices and Linear Algebra

	Affine
	Definitions for Affine

	itensor
	Introduction to itensor
	New tensor notation
	Indicial tensor manipulation

	Definitions for itensor
	Managing indexed objects
	Tensor symmetries
	Indicial tensor calculus
	Tensors in curved spaces
	Moving frames
	Torsion and nonmetricity
	Exterior algebra
	Exporting TeX expressions
	Interfacing with ctensor
	Reserved words


	ctensor
	Introduction to ctensor
	Definitions for ctensor
	Initialization and setup
	The tensors of curved space
	Taylor series expansion
	Frame fields
	Algebraic classification
	Torsion and nonmetricity
	Miscellaneous features
	Utility functions
	Variables used by ctensor
	Reserved names
	Changes


	atensor
	Introduction to atensor
	Definitions for atensor

	Series
	Introduction to Series
	Definitions for Series

	Number Theory
	Definitions for Number Theory

	Symmetries
	Definitions for Symmetries

	Groups
	Definitions for Groups

	Runtime Environment
	Introduction for Runtime Environment
	Interrupts
	Definitions for Runtime Environment

	Miscellaneous Options
	Introduction to Miscellaneous Options
	Share
	Definitions for Miscellaneous Options

	Rules and Patterns
	Introduction to Rules and Patterns
	Definitions for Rules and Patterns

	Lists
	Introduction to Lists
	Definitions for Lists

	Sets
	Introduction to Sets
	Usage
	Set Member Iteration
	Bugs
	Authors

	Definitions for Sets

	Function Definition
	Introduction to Function Definition
	Function
	Macros
	Definitions for Function Definition

	Program Flow
	Introduction to Program Flow
	Definitions for Program Flow

	Debugging
	Source Level Debugging
	Keyword Commands
	Definitions for Debugging

	Indices
	Function and Variable Index

