
HPSF HOW-TO

by Rainer Klute

1. How To Use the HPSF APIs

This HOW-TO is organized in three sections. You should read them sequentially because the
later sections build upon the earlier ones.

1. The first section explains how to read the most important standard properties of a
Microsoft Office document. Standard properties are things like title, author, creation date
etc. It is quite likely that you will find here what you need and don't have to read the
other sections.

2. The second section goes a small step further and focusses on reading additional standard
properties. It also talks about exceptions that may be thrown when dealing with HPSF
and shows how you can read properties of embedded objects.

3. The third section tells how to read non-standard properties. Non-standard properties are
application-specific triples consisting of an ID, a type, and a value.

1.1. Reading Standard Properties

Note:
This section explains how to read the most important standard properties of a Microsoft Office document. Standard properties
are things like title, author, creation date etc. Chances are that you will find here what you need and don't have to read the other
sections.

The first thing you should understand is that properties are stored in separate documents
inside the POI filesystem. (If you don't know what a POI filesystem is, read the POIFS
documentation.) A document in a POI filesystem is also called a stream.

The following example shows how to read a POI filesystem's "title" property. Reading other
properties is similar. Consider the API documentation of
org.apache.poi.hpsf.SummaryInformation to learn which methods are
available!

The standard properties this section focusses on can be found in a document called
\005SummaryInformation located in the root of the POI filesystem. The notation \005 in the
document's name means the character with the decimal value of 5. In order to read the title,

Page 1
Copyright © 2003 The Apache Software Foundation. All rights reserved.

../poifs/index.html
../poifs/index.html

an application has to perform the following steps:

1. Open the document \005SummaryInformation located in the root of the POI filesystem.
2. Create an instance of the class SummaryInformation from that document.
3. Call the SummaryInformation instance's getTitle() method.

Sounds easy, doesn't it? Here are the steps in detail.

1.1.1. Open the document \005SummaryInformation in the root of the POI filesystem

An application that wants to open a document in a POI filesystem (POIFS) proceeds as
shown by the following code fragment. (The full source code of the sample application is
available in the examples section of the POI source tree as ReadTitle.java.

import java.io.*;
import org.apache.poi.hpsf.*;
import org.apache.poi.poifs.eventfilesystem.*;

// ...

public static void main(String[] args)
throws IOException

{
final String filename = args[0];
POIFSReader r = new POIFSReader();
r.registerListener(new MyPOIFSReaderListener(),

"\005SummaryInformation");
r.read(new FileInputStream(filename));

}

The first interesting statement is
POIFSReader r = new POIFSReader();

It creates a org.apache.poi.poifs.eventfilesystem.POIFSReader instance
which we shall need to read the POI filesystem. Before the application actually opens the
POI filesystem we have to tell the POIFSReader which documents we are interested in. In
this case the application should do something with the document \005SummaryInformation.

r.registerListener(new MyPOIFSReaderListener(),
"\005SummaryInformation");

This method call registers a
org.apache.poi.poifs.eventfilesystem.POIFSReaderListener with the
POIFSReader. The POIFSReaderListener interface specifies the method
processPOIFSReaderEvent which processes a document. The class
MyPOIFSReaderListener implements the POIFSReaderListener and thus the
processPOIFSReaderEvent method. The eventing POI filesystem calls this method
when it finds the \005SummaryInformation document. In the sample application

HPSF HOW-TO

Page 2
Copyright © 2003 The Apache Software Foundation. All rights reserved.

MyPOIFSReaderListener is a static class in the ReadTitle.java source file.

Now everything is prepared and reading the POI filesystem can start:
r.read(new FileInputStream(filename));

The following source code fragment shows the MyPOIFSReaderListener class and how
it retrieves the title.

static class MyPOIFSReaderListener implements POIFSReaderListener
{

public void processPOIFSReaderEvent(POIFSReaderEvent event)
{

SummaryInformation si = null;
try
{

si = (SummaryInformation)
PropertySetFactory.create(event.getStream());

}
catch (Exception ex)
{

throw new RuntimeException
("Property set stream \"" +
event.getPath() + event.getName() + "\": " + ex);

}
final String title = si.getTitle();
if (title != null)

System.out.println("Title: \"" + title + "\"");
else

System.out.println("Document has no title.");
}

}

The line
SummaryInformation si = null;

declares a SummaryInformation variable and initializes it with null. We need an
instance of this class to access the title. The instance is created in a try block:
si = (SummaryInformation)

PropertySetFactory.create(event.getStream());

The expression event.getStream() returns the input stream containing the bytes of the
property set stream named \005SummaryInformation. This stream is passed into the create
method of the factory class org.apache.poi.hpsf.PropertySetFactory which
returns a org.apache.poi.hpsf.PropertySet instance. It is more or less safe to
cast this result to SummaryInformation, a convenience class with methods like
getTitle(), getAuthor() etc.

The PropertySetFactory.create method may throw all sorts of exceptions. We'll
deal with them in the next sections. For now we just catch all exceptions and throw a
RuntimeException containing the message text of the origin exception.

HPSF HOW-TO

Page 3
Copyright © 2003 The Apache Software Foundation. All rights reserved.

If all goes well, the sample application retrieves the title and prints it to the standard output.
As you can see you must be prepared for the case that the POI filesystem does not have a
title.
final String title = si.getTitle();
if (title != null)

System.out.println("Title: \"" + title + "\"");
else

System.out.println("Document has no title.");

Please note that a Microsoft Office document does not necessarily contain the
\005SummaryInformation stream. The documents created by the Microsoft Office suite have
one, as far as I know. However, an Excel spreadsheet exported from StarOffice 5.2 won't
have a \005SummaryInformation stream. In this case the applications won't throw an
exception but simply does not call the processPOIFSReaderEvent method. You have
been warned!

1.2. Additional Standard Properties, Exceptions And Embedded Objects

Note:
This section focusses on reading additional standard properties. It also talks about exceptions that may be thrown when dealing
with HPSF and shows how you can read properties of embedded objects.

A couple of additional standard properties are not contained in the
\005SummaryInformation stream explained above, for example a document's category or the
number of multimedia clips in a PowerPoint presentation. Microsoft has invented an
additional stream named \005DocumentSummaryInformation to hold these properties. With
two minor exceptions you can proceed exactly as described above to read the properties
stored in \005DocumentSummaryInformation:

• Instead of \005SummaryInformation use \005DocumentSummaryInformation as the
stream's name.

• Replace all occurrences of the class SummaryInformation by
DocumentSummaryInformation.

And of course you cannot call getTitle() because
DocumentSummaryInformation has different query methods. See the Javadoc API
documentation for the details!

In the previous section the application simply caught all exceptions and was in no way
interested in any details. However, a real application will likely want to know what went
wrong and act appropriately. Besides any IO exceptions there are three HPSF resp. POI
specific exceptions you should know about:

NoPropertySetStreamException:

HPSF HOW-TO

Page 4
Copyright © 2003 The Apache Software Foundation. All rights reserved.

This exception is thrown if the application tries to create a PropertySet
instance from a stream that is not a property set stream.
(SummaryInformation and DocumentSummaryInformation are subclasses
of PropertySet.) A faulty property set stream counts as not being a property
set stream at all. An application should be prepared to deal with this case even if
it opens streams named \005SummaryInformation or
\005DocumentSummaryInformation only. These are just names. A stream's
name by itself does not ensure that the stream contains the expected contents
and that this contents is correct.
UnexpectedPropertySetTypeException
This exception is thrown if a certain type of property set is expected somewhere
(e.g. a SummaryInformation or DocumentSummaryInformation) but the
provided property set is not of that type.
MarkUnsupportedException
This exception is thrown if an input stream that is to be parsed into a property set
does not support the InputStream.mark(int) operation. The POI filesystem
uses the DocumentInputStream class which does support this operation, so
you are safe here. However, if you read a property set stream from another kind
of input stream things may be different.

Many Microsoft Office documents contain embedded objects, for example an Excel sheet
on a page in a Word document. Embedded objects may have property sets of their own. An
application can open these property set streams as described above. The only difference is
that they are not located in the POI filesystem's root but in a nested directory instead. Just
register a POIFSReaderListener for the property set streams you are interested in. For
example, the POIBrowser application in the contrib section tries to open each and every
document in a POI filesystem as a property set stream. If this operation was successful it
displays the properties.

1.3. Reading Non-Standard Properties

Note:
This section tells how to read non-standard properties. Non-standard properties are application-specific ID/type/value triples.

1.3.1. Overview

Now comes the real hardcode stuff. As mentioned above, SummaryInformation and
DocumentSummaryInformation are just special cases of the general concept of a
property set. This concept says that a property set consists of properties and that each
property is an entity with an ID, a type, and a value.

HPSF HOW-TO

Page 5
Copyright © 2003 The Apache Software Foundation. All rights reserved.

Okay, that was still rather easy. However, to make things more complicated, Microsoft in its
infinite wisdom decided that a property set shalt be broken into one or more sections. Each
section holds a bunch of properties. But since that's still not complicated enough, a section
may have an optional dictionary that maps property IDs to property names - we'll explain
later what that means.

The procedure to get to the properties is the following:

1. Use the PropertySetFactory class to create a PropertySet object from a
property set stream. If you don't know whether an input stream is a property set stream,
just try to call PropertySetFactory.create(java.io.InputStream):
You'll either get a PropertySet instance returned or an exception is thrown.

2. Call the PropertySet's method getSections() to get the sections contained in the
property set. Each section is an instance of the Section class.

3. Each section has a format ID. The format ID of the first section in a property set
determines the property set's type. For example, the first (and only) section of the
SummaryInformation property set has a format ID of
F29F85E0-4FF9-1068-AB-91-08-00-2B-27-B3-D9. You can get the format
ID with Section.getFormatID().

4. The properties contained in a Section can be retrieved with
Section.getProperties(). The result is an array of Property instances.

5. A property has a name, a type, and a value. The Property class has methods to retrieve
them.

1.3.2. A Sample Application

Let's have a look at a sample Java application that dumps all property set streams contained
in a POI file system. The full source code of this program can be found as
ReadCustomPropertySets.java in the examples area of the POI source code tree. Here are the
key sections:
import java.io.*;
import java.util.*;
import org.apache.poi.hpsf.*;
import org.apache.poi.poifs.eventfilesystem.*;
import org.apache.poi.util.HexDump;

The most important package the application needs is org.apache.poi.hpsf.*. This
package contains the HPSF classes. Most classes named below are from the HPSF package.
Of course we also need the POIFS event file system's classes and java.io.* since we are
dealing with POI I/O. From the java.util package we use the List and Iterator
class. The class org.apache.poi.util.HexDump provides a methods to dump byte
arrays as nicely formatted strings.
public static void main(String[] args)

HPSF HOW-TO

Page 6
Copyright © 2003 The Apache Software Foundation. All rights reserved.

throws IOException
{

final String filename = args[0];
POIFSReader r = new POIFSReader();

/* Register a listener for *all* documents. */
r.registerListener(new MyPOIFSReaderListener());
r.read(new FileInputStream(filename));

}

The POIFSReader is set up in a way that the listener MyPOIFSReaderListener is
called on every file in the POI file system.

1.3.3. The Property Set

The listener class tries to create a PropertySet from each stream using the
PropertySetFactory.create() method:
static class MyPOIFSReaderListener implements POIFSReaderListener
{

public void processPOIFSReaderEvent(POIFSReaderEvent event)
{

PropertySet ps = null;
try
{

ps = PropertySetFactory.create(event.getStream());
}
catch (NoPropertySetStreamException ex)
{

out("No property set stream: \"" + event.getPath() +
event.getName() + "\"");

return;
}
catch (Exception ex)
{

throw new RuntimeException
("Property set stream \"" +
event.getPath() + event.getName() + "\": " + ex);

}

/* Print the name of the property set stream: */
out("Property set stream \"" + event.getPath() +

event.getName() + "\":");

Creating the PropertySet is done in a try block, because not each stream in the POI file
system contains a property set. If it is some other file, the
PropertySetFactory.create() throws a NoPropertySetStreamException,
which is caught and logged. Then the program continues with the next stream. However, all
other types of exceptions cause the program to terminate by throwing a runtime exception. If
all went well, we can print the name of the property set stream.

HPSF HOW-TO

Page 7
Copyright © 2003 The Apache Software Foundation. All rights reserved.

1.3.4. The Sections

The next step is to print the number of sections followed by the sections themselves:
/* Print the number of sections: */
final long sectionCount = ps.getSectionCount();
out(" No. of sections: " + sectionCount);

/* Print the list of sections: */
List sections = ps.getSections();
int nr = 0;
for (Iterator i = sections.iterator(); i.hasNext();)
{

/* Print a single section: */
Section sec = (Section) i.next();

// See below for the complete loop body.
}

The PropertySet's method getSectionCount() returns the number of sections.

To retrieve the sections, use the getSections() method. This method returns a
java.util.List containing instances of the Section class in their proper order.

The sample code shows a loop that retrieves the Section objects one by one and prints
some information about each one. Here is the complete body of the loop:
/* Print a single section: */
Section sec = (Section) i.next();
out(" Section " + nr++ + ":");
String s = hex(sec.getFormatID().getBytes());
s = s.substring(0, s.length() - 1);
out(" Format ID: " + s);

/* Print the number of properties in this section. */
int propertyCount = sec.getPropertyCount();
out(" No. of properties: " + propertyCount);

/* Print the properties: */
Property[] properties = sec.getProperties();
for (int i2 = 0; i2 < properties.length; i2++)
{

/* Print a single property: */
Property p = properties[i2];
int id = p.getID();
long type = p.getType();
Object value = p.getValue();
out(" Property ID: " + id + ", type: " + type +

", value: " + value);
}

1.3.5. The Section's Format ID

HPSF HOW-TO

Page 8
Copyright © 2003 The Apache Software Foundation. All rights reserved.

The first method called on the Section instance is getFormatID(). As explained
above, the format ID of the first section in a property set determines the type of the property
set. Its type is ClassID which is essentially a sequence of 16 bytes. A real application using
its own type of a custom property set should have defined a unique format ID and, when
reading a property set stream, should check the format ID is equal to that unique format ID.
The sample program just prints the format ID it finds in a section:
String s = hex(sec.getFormatID().getBytes());
s = s.substring(0, s.length() - 1);
out(" Format ID: " + s);

As you can see, the getFormatID() method returns a ClassID object. An array
containing the bytes can be retrieved with ClassID.getBytes(). In order to get a nicely
formatted printout, the sample program uses the hex() helper method which in turn uses the
POI utility class HexDump in the org.apache.poi.util package. Another helper
method is out() which just saves typing System.out.println().

1.3.6. The Properties

Before getting the properties, it is possible to find out how many properties are available in
the section via the Section.getPropertyCount(). The sample application uses this
method to print the number of properties to the standard output:
int propertyCount = sec.getPropertyCount();
out(" No. of properties: " + propertyCount);

Now its time to get to the properties themselves. You can retrieve a section's properties with
the method Section.getProperties():
Property[] properties = sec.getProperties();

As you can see the result is an array of Property objects. This class has three methods to
retrieve a property's ID, its type, and its value. The following code snippet shows how to call
them:
for (int i2 = 0; i2 < properties.length; i2++)
{

/* Print a single property: */
Property p = properties[i2];
int id = p.getID();
long type = p.getType();
Object value = p.getValue();
out(" Property ID: " + id + ", type: " + type +

", value: " + value);
}

1.3.7. Sample Output

The output of the sample program might look like the following. It shows the summary
information and the document summary information property sets of a Microsoft Word

HPSF HOW-TO

Page 9
Copyright © 2003 The Apache Software Foundation. All rights reserved.

document. However, unlike the first and second section of this HOW-TO the application
does not have any code which is specific to the SummaryInformation and
DocumentSummaryInformation classes.
Property set stream "/SummaryInformation":

No. of sections: 1
Section 0:

Format ID: 00000000 F2 9F 85 E0 4F F9 10 68 AB 91 08 00 2B 27 B3 D9O..h....+'..
No. of properties: 17
Property ID: 1, type: 2, value: 1252
Property ID: 2, type: 30, value: Titel
Property ID: 3, type: 30, value: Thema
Property ID: 4, type: 30, value: Rainer Klute (Autor)
Property ID: 5, type: 30, value: Test (Stichwörter)
Property ID: 6, type: 30, value: This is a document for testing HPSF
Property ID: 7, type: 30, value: Normal.dot
Property ID: 8, type: 30, value: Unknown User
Property ID: 9, type: 30, value: 3
Property ID: 18, type: 30, value: Microsoft Word 9.0
Property ID: 12, type: 64, value: Mon Jan 01 00:59:25 CET 1601
Property ID: 13, type: 64, value: Thu Jul 18 16:22:00 CEST 2002
Property ID: 14, type: 3, value: 1
Property ID: 15, type: 3, value: 20
Property ID: 16, type: 3, value: 93
Property ID: 19, type: 3, value: 0
Property ID: 17, type: 71, value: [B@13582d

Property set stream "/DocumentSummaryInformation":
No. of sections: 2
Section 0:

Format ID: 00000000 D5 CD D5 02 2E 9C 10 1B 93 97 08 00 2B 2C F9 AE+,..
No. of properties: 14
Property ID: 1, type: 2, value: 1252
Property ID: 2, type: 30, value: Test
Property ID: 14, type: 30, value: Rainer Klute (Manager)
Property ID: 15, type: 30, value: Rainer Klute IT-Consulting GmbH
Property ID: 5, type: 3, value: 3
Property ID: 6, type: 3, value: 2
Property ID: 17, type: 3, value: 111
Property ID: 23, type: 3, value: 592636
Property ID: 11, type: 11, value: false
Property ID: 16, type: 11, value: false
Property ID: 19, type: 11, value: false
Property ID: 22, type: 11, value: false
Property ID: 13, type: 4126, value: [B@56a499
Property ID: 12, type: 4108, value: [B@506411

Section 1:
Format ID: 00000000 D5 CD D5 05 2E 9C 10 1B 93 97 08 00 2B 2C F9 AE+,..
No. of properties: 7
Property ID: 0, type: 0, value: {6=Test-JaNein, 5=Test-Zahl, 4=Test-Datum, 3=Test-Text, 2=_PID_LINKBASE}
Property ID: 1, type: 2, value: 1252
Property ID: 2, type: 65, value: [B@c9ba38
Property ID: 3, type: 30, value: This is some text.
Property ID: 4, type: 64, value: Wed Jul 17 00:00:00 CEST 2002

HPSF HOW-TO

Page 10
Copyright © 2003 The Apache Software Foundation. All rights reserved.

Property ID: 5, type: 3, value: 27
Property ID: 6, type: 11, value: true

No property set stream: "/WordDocument"
No property set stream: "/CompObj"
No property set stream: "/1Table"

There are some interesting items to note:

• The first property set (summary information) consists of a single section, the second
property set (document summary information) consists of two sections.

• Each section type (identified by its format ID) has its own domain of property ID. For
example, in the second property set the properties with ID 2 have different meanings in
the two section. By the way, the format IDs of these sections are not equal, but you have
to look hard to find the difference.

• The properties are not in any particular order in the section, although they slightly tend to
be sorted by their IDs.

1.3.8. Property IDs

Properties in the same section are distinguished by their IDs. This is similar to variables in a
programming language like Java, which are distinguished by their names. But unlike variable
names, property IDs are simple integral numbers. There is another similarity, however. Just
like a Java variable has a certain scope (e.g. a member variables in a class), a property ID
also has its scope of validity: the section.

Two property IDs in sections with different section format IDs don't have the same meaning
even though their IDs might be equal. For example, ID 4 in the first (and only) section of a
summary information property set denotes the document's author, while ID 4 in the first
section of the document summary information property set means the document's byte count.
The sample output above does not show a property with an ID of 4 in the first section of the
document summary information property set. That means that the document does not have a
byte count. However, there is a property with an ID of 4 in the second section: This is a
user-defined property ID - we'll get to that topic in a minute.

So, how can you find out what the meaning of a certain property ID in the summary
information and the document summary information property set is? The standard property
sets as such don't have any hints about the meanings of their property IDs. For example,
the summary information property set does not tell you that the property ID 4 stands for the
document's author. This is external knowledge. Microsoft defined standard meanings for
some of the property IDs in the summary information and the document summary
information property sets. As a help to the Java and POI programmer, the class
PropertyIDMap in the org.apache.poi.hpsf.wellknown package defines
constants for the "well-known" property IDs. For example, there is the definition
public final static int PID_AUTHOR = 4;

HPSF HOW-TO

Page 11
Copyright © 2003 The Apache Software Foundation. All rights reserved.

These definitions allow you to use symbolic names instead of numbers.

In order to provide support for the other way, too, - i.e. to map property IDs to property
names - the class PropertyIDMap defines two static methods:
getSummaryInformationProperties() and
getDocumentSummaryInformationProperties(). Both return
java.util.Map objects which map property IDs to strings. Such a string gives a hint
about the property's meaning. For example,
PropertyIDMap.getSummaryInformationProperties().get(4) returns the
string "PID_AUTHOR". An application could use this string as a key to a localized string
which is displayed to the user, e.g. "Author" in English or "Verfasser" in German. HPSF
might provide such language-dependend ("localized") mappings in a later release.

Usually you won't have to deal with those two maps. Instead you should call the
Section.getPIDString(int) method. It returns the string associated with the
specified property ID in the context of the Section object.

Above you learned that property IDs have a meaning in the scope of a section only.
However, there are two exceptions to the rule: The property IDs 0 and 1 have a fixed
meaning in all sections:

Property ID Meaning

0 The property's value is a dictionary, i.e. a
mapping from property IDs to strings.

1 The property's value is the number of a
codepage, i.e. a mapping from character codes
to characters. All strings in the section
containing this property must be interpreted
using this codepage. Typical property values are
1252 (8-bit "western" characters) or 1200 (16-bit
Unicode characters).

1.3.9. Property types

A property is nothing without its value. It is stored in a property set stream as a sequence of
bytes. You must know the property's type in order to properly interpret those bytes and
reasonably handle the value. A property's type is one of the so-called Microsoft-defined
"variant types". When you call Property.getType() you'll get a long value which
denoting the property's variant type. The class Variant in the org.apache.poi.hpsf
package holds most of those long values as named constants. For example, the constant
VT_I4 = 3 means a signed integer value of four bytes. Examples of other types are
VT_LPSTR = 30 meaning a null-terminated string of 8-bit characters, VT_LPWSTR =

HPSF HOW-TO

Page 12
Copyright © 2003 The Apache Software Foundation. All rights reserved.

31 which means a null-terminated Unicode string, or VT_BOOL = 11 denoting a boolean
value.

In most cases you won't need a property's type because HPSF does all the work for you.

1.3.10. Property values

When an application wants to retrieve a property's value and calls
Property.getValue(), HPSF has to interpret the bytes making out the value according
to the property's type. The type determines how many bytes the value consists of and what to
do with them. For example, if the type is VT_I4, HPSF knows that the value is four bytes
long and that these bytes comprise a signed integer value in the little-endian format. This is
quite different from e.g. a type of VT_LPWSTR. In this case HPSF has to scan the value
bytes for a Unicode null character and collect everything from the beginning to that null
character as a Unicode string.

The good new is that HPSF does another job for you, too: It maps the variant type to an
adequate Java type.

Variant type: Java type:

VT_I2 java.lang.Integer

VT_I4 java.lang.Long

VT_FILETIME java.util.Date

VT_LPSTR java.lang.String

VT_LPWSTR java.lang.String

VT_CF byte[]

VT_BOOL java.lang.Boolean

The bad news is that there are still a couple of variant types HPSF does not yet support. If it
encounters one of these types it returns the property's value as a byte array and leaves it to be
interpreted by the application.

An application retrieves a property's value by calling the Property.getValue()
method. This method's return type is the abstract Object class. The getValue() method
looks up the property's variant type, reads the property's value bytes, creates an instance of an
adequate Java type, assigns it the property's value and returns it. Primitive types like int or
long will be returned as the corresponding class, e.g. Integer or Long.

1.3.11. Dictionaries

HPSF HOW-TO

Page 13
Copyright © 2003 The Apache Software Foundation. All rights reserved.

The property with ID 0 has a very special meaning: It is a dictionary mapping property IDs
to property names. We have seen already that the meanings of standard properties in the
summary information and the document summary information property sets have been
defined by Microsoft. The advantage is that the labels of properties like "Author" or "Title"
don't have to be stored in the property set. However, a user can define custom fields in, say,
Microsoft Word. For each field the user has to specify a name, a type, and a value.

The names of the custom-defined fields (i.e. the property names) are stored in the document
summary information second section's dictionary. The dictionary is a map which associates
property IDs with property names.

The method Section.getPIDString(int) not only returns with the well-known
property names of the summary information and document summary information property
sets, but with self-defined properties, too. It should also work with self-defined properties in
self-defined sections.

1.3.12. Codepage support

FIXME (Rainer Klute):
Improve codepage support!

The property with ID 1 holds the number of the codepage which was used to encode the
strings in this section. The present HPSF codepage support is still very limited: When
reading property value strings, HPSF distinguishes between 16-bit characters and 8-bit
characters. 16-bit characters should be Unicode characters and thus be okay. 8-bit characters
are interpreted according to the platform's default character set. This is fine as long as the
document being read has been written on a platform with the same default character set.
However, if you receive a document from another region of the world and want to process it
with HPSF you are in trouble - unless the creator used Unicode, of course.

1.3.13. Further Reading

There are still some aspects of HSPF left which are not covered by this HOW-TO. You
should dig into the Javadoc API documentation to learn further details. Since you've
struggled through this document up to this point, you are well prepared.

HPSF HOW-TO

Page 14
Copyright © 2003 The Apache Software Foundation. All rights reserved.

	1 How To Use the HPSF APIs
	1.1 Reading Standard Properties
	1.1.1 Open the document \005SummaryInformation in the root of the
 POI filesystem

	1.2 Additional Standard Properties, Exceptions And Embedded Objects
	1.3 Reading Non-Standard Properties
	1.3.1 Overview
	1.3.2 A Sample Application
	1.3.3 The Property Set
	1.3.4 The Sections
	1.3.5 The Section's Format ID
	1.3.6 The Properties
	1.3.7 Sample Output
	1.3.8 Property IDs
	1.3.9 Property types
	1.3.10 Property values
	1.3.11 Dictionaries
	1.3.12 Codepage support
	1.3.13 Further Reading

