HPSF HOW-TO

by Rainer Klute

1. How To Usethe HPSF APIs

ThisHOW-TO is organized in three sections. Y ou should read them sequentially because the
later sections build upon the earlier ones.

1. Thefirst section explains how to read the most important standard properties of a
Microsoft Office document. Standard properties are things like title, author, creation date
etc. It isquitelikely that you will find here what you need and don't have to read the
other sections.

2. The second section goes a small step further and focusses on reading additional standard
properties. It also talks about exceptions that may be thrown when dealing with HPSF
and shows how you can read properties of embedded objects.

3. Thethird section tells how to read non-standard properties. Non-standard properties are
application-specific triples consisting of an ID, atype, and avalue.

1.1. Reading Standard Properties

This section explains how to read the most important standard properties of a Microsoft Office document. Standard properties
arethings like title, author, creation date etc. Chances are that you will find here what you need and don't have to read the other
sections.

The first thing you should understand is that properties are stored in separate documents
inside the POI filesystem. (If you don't know what a POI filesystem is, read the POIES
documentation.) A document in a POI filesystem is also called a stream.

The following example shows how to read a POI filesystem's "title" property. Reading other
properties is similar. Consider the AP documentation of
or g. apache. poi . hpsf. Summaryl nformati on to learn which methods are
available!

The standard properties this section focusses on can be found in a document called
\005Summarylnformation located in the root of the POI filesystem. The notation \O05 in the
document's name means the character with the decimal value of 5. In order to read the title,

Page 1

../poifs/index.html
../poifs/index.html

HPSF HOW-TO

an application has to perform the following steps:

1. Open the document \OO5SSummaryl nformation located in the root of the POI filesystem.
2. Create an instance of the class Sunmar yl nf or mat i on from that document.
3. Cadl the Summrar yl nf or mat i on instance'sget Ti t | e() method.

Sounds easy, doesn't it? Here are the steps in detail.

1.1.1. Open the document \OO5Summar yl nformation in the r oot of the POI filesystem

An application that wants to open a document in a POI filesystem (POIFS) proceeds as
shown by the following code fragment. (The full source code of the sample application is
available in the examples section of the POI source tree as ReadTitle.java.

i mport java.io.?*;

i mport org. apache. poi . hpsf.*;

i mport org.apache. poi . poifs.eventfil esystem *;
1.

public static void main(String[] args)
t hrows | OExcepti on
{

final String filenane = args[O0];

PO FSReader r = new PO FSReader () ;

r.registerlListener(new MyPO FSReader Li st ener (),
"\ 005Sunmar yl nf or mati on") ;

r.read(new Fil el nput Stream(fil enane));

The first interesting statement is
PO FSReader r = new PO FSReader () ;

It creates a or g. apache. poi . poi fs. eventfil esystem PO FSReader instance
which we shall need to read the POI filesystem. Before the application actually opens the
POI filesystem we have to tell the PO FSReader which documents we are interested in. In
this case the application should do something with the document \OO5Summaryl nfor mation.

r.registerlListener(new MyPO FSReader Li st ener (),
"\ 005Sunmar yl nf or mati on") ;

This method call registers a
or g. apache. poi . poi fs. eventfil esystem PO FSReader Li st ener with the
PO FSReader. The PO FSReader Li stener interface specifies the method
processPO FSReader Event which processes a document. The class
MyPO FSReader Li st ener implements the PO FSReader Li st ener and thus the
pr ocessPO FSReader Event method. The eventing POI filesystem calls this method
when it finds the \005Summarylnformation document. In the sample application

Page 2

HPSF HOW-TO

MyPO FSReader Li st ener isastatic classin the ReadTitle,java sourcefile.

Now everything is prepared and reading the POI filesystem can start:
r.read(new Fil el nput Stream(fil enane));

The following source code fragment shows the MyPO FSReader Li st ener classand how
it retrievesthetitle.

static class MyPO FSReader Li st ener inpl enents PO FSReader Li st ener

public voi d processPO FSReader Event (PO FSReader Event event)
{

Sunmar yl nformation si = null;
try
{

si = (Sumaryl nf ormati on)

PropertySet Factory. creat e(event.getStream));
catch (Exception ex)

t hrow new Runti meExcepti on
("Property set stream\"" +
event.getPath() + event.getName() + "\": " + ex);
inal String title = si.getTitle();
title !'= null)
Systemout.printin("Title: \"" + title + "\"");
el se
System out. println("Docunent has no title.");

na
(

}
}

Theline
Sunmar yl nf ormation si = null;

declares a Summar yl nf or mat i on variable and initializes it with nul | . We need an
instance of this classto accessthetitle. Theinstanceiscreated inat r y block:

si = (Sumaryl nf ormati on)
PropertySet Factory. creat e(event.getStream));

The expression event . get St r ean() returns the input stream containing the bytes of the
property set stream named \OOSSummarylnformation. This stream is passed into thecr eat e
method of the factory class or g. apache. poi . hpsf. PropertySet Fact ory which
returns a or g. apache. poi . hpsf. PropertySet instance. It is more or less safe to
cast this result to Summaryl nf ormati on, a convenience class with methods like
getTitle(),get Aut hor () etc.

The PropertySet Fact ory. cr eat e method may throw all sorts of exceptions. Well
deal with them in the next sections. For now we just catch all exceptions and throw a
Runt i meExcept i on containing the message text of the origin exception.

Page 3

HPSF HOW-TO

If all goes well, the sample application retrieves the title and prints it to the standard output.
As you can see you must be prepared for the case that the POI filesystem does not have a
title.
final String title = si.getTitle();
if (title !'= null)

I Systemout.printin("Title: \"" + title + "\"");
el se

System out. println("Docunment has no title.");

Please note that a Microsoft Office document does not necessarily contain the
\005Summarylnformation stream. The documents created by the Microsoft Office suite have
one, as far as | know. However, an Excel spreadsheet exported from StarOffice 5.2 won't
have a \0OO5Summarylnformation stream. In this case the applications won't throw an
exception but simply does not call the pr ocessPO FSReader Event method. You have
been warned!

1.2. Additional Standard Properties, Exceptions And Embedded Objects

This section focusses on reading additional standard properties. It also talks about exceptions that may be thrown when dealing
with HPSF and shows how you can read properties of embedded objects.

A couple of additional standard properties ae not contained in the
\005Summarylnformation stream explained above, for example a document's category or the
number of multimedia clips in a PowerPoint presentation. Microsoft has invented an
additional stream named \005DocumentSummarylnformation to hold these properties. With
two minor exceptions you can proceed exactly as described above to read the properties
stored in \O0O5DocumentSummaryl nformation:

» Instead of \OO5Summarylnfor mation use \OO5DocumentSummaryl nformation as the
stream's hame.

» Replace al occurrences of the class Sunmmar yI nf or mat i on by
Docunent Summar yl nf or mati on.

And of course you cannot call getTitle() because
Docunent Summar yl nf or mat i on has different query methods. See the Javadoc API
documentation for the details!

In the previous section the application simply caught al exceptions and was in no way
interested in any details. However, a real application will likely want to know what went
wrong and act appropriately. Besides any 10 exceptions there are three HPSF resp. POI
specific exceptions you should know about:

NoPr opert ySet St r eanmExcepti on:

Page 4

HPSF HOW-TO

This exception is thrown if the application tries to create a Pr opert ySet
instance from a stream that is not a property set stream.

(Summar yl nf or mat i on and Docunent Sunmmar yl nf or mat i on are subclasses
of Propert ySet .) A faulty property set stream counts as not being a property
set stream at all. An application should be prepared to deal with this case even if
it opens streams named \005Summarylnformation or
\005DocumentSummaryinformation only. These are just names. A stream's
name by itself does not ensure that the stream contains the expected contents
and that this contents is correct.

Unexpect edPr opert ySet TypeExcepti on

This exception is thrown if a certain type of property set is expected somewhere
(e.g. a Summar yl nf or mat i on or Docunent Sunmar yl nf or mat i on) but the
provided property set is not of that type.

Mar kUnsupport edExcepti on

This exception is thrown if an input stream that is to be parsed into a property set
does not support the | nput St ream mar k(i nt) operation. The POI filesystem
uses the Docunent | nput St r eamclass which does support this operation, so
you are safe here. However, if you read a property set stream from another kind
of input stream things may be different.

Many Microsoft Office documents contain embedded objects, for example an Excel sheet
on a page in a Word document. Embedded objects may have property sets of their own. An
application can open these property set streams as described above. The only difference is
that they are not located in the POI filesystem's root but in a nested directory instead. Just
register a PO FSReader Li st ener for the property set streams you are interested in. For
example, the POIBrowser application in the contrib section tries to open each and every
document in a POI filesystem as a property set stream. If this operation was successful it
displays the properties.

1.3. Reading Non-Standard Properties
This section tells how to read non-standard properties. Non-standard properties are application-specific | D/type/value triples.

1.3.1. Overview

Now comes the rea hardcode stuff. As mentioned above, Summrar yl nf or mat i on and
Docunent Summar yl nf or mat i on are just specia cases of the general concept of a
property set. This concept says that a property set consists of properties and that each
property isan entity with an ID, atype, and avalue.

Page 5

HPSF HOW-TO

Okay, that was till rather easy. However, to make things more complicated, Microsoft in its
infinite wisdom decided that a property set shalt be broken into one or more sections. Each
section holds a bunch of properties. But since that's still not complicated enough, a section
may have an optional dictionary that maps property 1Ds to property names - well explain
later what that means.

The procedure to get to the properties is the following:

1. UsethePropertySet Fact ory classto createaPr opert ySet object froma
property set stream. If you don't know whether an input stream is a property set stream,
justtry tocall PropertySet Factory. create(java.io. | nputStrean):
You'll either get aPr opert ySet instance returned or an exception is thrown.

2. Cdl thePr opert ySet 'smethod get Secti ons() to get the sections contained in the
property set. Each section is an instance of the Sect i on class.

3. Each section hasaformat ID. The format ID of the first section in a property set
determines the property set'stype. For example, the first (and only) section of the
Summarylnformation property set hasaformat ID of
F29F85E0- 4FF9- 1068- AB- 91- 08- 00- 2B- 27- B3- D9. You can get the format
ID with Sect i on. get Format | D() .

4. The properties contained inaSect i on can be retrieved with
Section. get Properties().Theresultisanarray of Pr operty instances.

5. A property has aname, atype, and avalue. The Pr oper t y class has methods to retrieve
them.

1.3.2. A Sample Application

Let's have alook at a sample Java application that dumps all property set streams contained
in a POl file system. The full source code of this program can be found as
ReadCustomPropertySets.java in the examples area of the POl source code tree. Here are the
key sections:

i mport java.io.*;

i mport java.util.*;

i mport org.apache. poi . hpsf.*;

i mport org.apache. poi . poifs.eventfil esystem *;

i mport org. apache. poi . util . HexDunp;

The most important package the application needs is or g. apache. poi . hpsf. *. This
package contains the HPSF classes. Most classes hamed below are from the HPSF package.
Of course we also need the POIFS event file system's classesand j ava. i 0. * since we are
dealing with POI 1/O. From the j ava. uti | package we use the Li st and | t er at or
class. The class or g. apache. poi . uti | . HexDunp provides a methods to dump byte
arrays as nicely formatted strings.

public static void main(String[] args)

Page 6

HPSF HOW-TO

t hrows | CExcepti on

final String filenane = args[O0];
PO FSReader r = new PO FSReader () ;

/* Register a listener for *all* docunents. */
r.registerlListener(new MyPO FSReader Li stener());
r.read(new Fil el nput Strean(fil enane));

The PO FSReader is set up in a way that the listener MyPO FSReader Li st ener is
called on every filein the POI file system.

1.3.3. The Property Set

The listener class tries to create a PropertySet from each stream using the
PropertySet Fact ory. creat e() method:

static class MyPO FSReader Li st ener inpl enents PO FSReader Li st ener

public void processPO FSReader Event (PO FSReader Event event)

{
PropertySet ps = null;

try

{
ps = PropertySet Factory. create(event.getStream));

}
cat ch (NoPropertySet StreanExcepti on ex)

out ("No property set stream \"" + event.getPath() +
event.getName() + "\"");
return;

catch (Exception ex)

t hrow new Runti meExcepti on
("Property set stream\"" +
event.getPath() + event.getName() + "\": " + ex);

}

/* Print the nanme of the property set stream */
out ("Property set stream\"" + event.getPath() +
event.getName() + "\":");

Creating the Pr oper t ySet isdoneinat ry block, because not each stream in the POI file
system contans a property set. If it is some other file, the
PropertySet Fact ory. creat e() throws a NoPr opertySet St reanExcepti on,
which is caught and logged. Then the program continues with the next stream. However, all
other types of exceptions cause the program to terminate by throwing a runtime exception. If
all went well, we can print the name of the property set stream.

Page 7

HPSF HOW-TO

1.3.4. The Sections

The next step isto print the number of sections followed by the sections themselves:

/[* Print the nunber of sections: */
final l|ong sectionCount = ps.getSecti onCount();
out (" No. of sections: " + sectionCount);

/[* Print the |list of sections: */
Li st sections = ps.get Sections();

int nr = 0;
for (lterator i = sections.iterator(); i.hasNext();)
{
/* Print a single section: */
Section sec = (Section) i.next();
/1 See below for the conplete | oop body.
}

The Pr opert ySet 'smethod get Sect i onCount () returnsthe number of sections.

To retrieve the sections, use the get Secti ons() method. This method returns a
java. util.List containing instances of the Sect i on classin their proper order.

The sample code shows a loop that retrieves the Sect i on objects one by one and prints
some information about each one. Here is the complete body of the loop:

/* Print a single section: */
Section sec = (Section) i.next();
out (" Section " + nr++ + ":");
String s = hex(sec.getFormat| D().getBytes());
S = s.substring(0, s.length() - 1)

out (" Format ID. " + s);

/[* Print the nunmber of properties in this section. */
i nt propertyCount = sec.getPropertyCount();
out (" No. of properties: " + propertyCount);

/* Print the properties: */
Property[] properties = sec.getProperties();
for (int i2 =0; i2 < properties.length; i2++)
{

/* Print a single property: */

Property p = properties[i?2];

int id = p.getlD);

| ong type = p.get Type();

oj ect val ue = p. get Val ue();

out (" Property ID. " +id + ", type: " + type +

", value: " + value);

}
1.3.5. The Section's Format ID

Page 8

HPSF HOW-TO

The first method called on the Secti on instance is get Format | D() . As explained
above, the format ID of the first section in a property set determines the type of the property
set. ItstypeisC assl| Dwhichis essentially a sequence of 16 bytes. A real application using
its own type of a custom property set should have defined a unique format ID and, when
reading a property set stream, should check the format ID is equal to that unique format ID.
The sample program just printsthe format ID it findsin a section:

Strlng s = hex(sec.getFormat|D().getBytes());
S = s. substrlng(o s.length() - 1);

out (" Format ID. " + s);

As you can see, the get Format 1 D() method returns a Cl assl D object. An array
containing the bytes can be retrieved with Cl assl D. get Byt es() . In order to get anicely
formatted printout, the sample program uses the hex () helper method which in turn uses the
POI utility class HexDunp in the or g. apache. poi . uti| package. Another helper
method isout () which just savestyping Syst em out . println().

1.3.6. The Properties

Before getting the properties, it is possible to find out how many properties are available in
the section via the Sect i on. get Pr opert yCount () . The sample application uses this
method to print the number of properties to the standard output:

i nt propertyCount = sec.getPropertyCount();

out (" No. of properties: " + propertyCount);

Now its time to get to the properties themselves. Y ou can retrieve a section's properties with
the method Sect i on. get Properties():

Property[] properties = sec.getProperties();

As you can see the result is an array of Property objects. This class has three methods to
retrieve a property's ID, its type, and its value. The following code snippet shows how to call
them:

for (int i2 =0; i2 < properties.length; i2++)
{
/[* Print a single property: */
Property p = properties[i?2];
int id=p.getlX);
|l ong type = p.get Type();
(bj ect val ue = p. get Val ue();
out (" Property ID. " +id + ", type: " + type +
", value: " + value);

}
1.3.7. Sample Output

The output of the sample program might look like the following. It shows the summary
information and the document summary information property sets of a Microsoft Word

Page 9

HPSF HOW-TO

document. However, unlike the first and second section of this HOW-TO the application
does not have any code which is specific to the Summaryl nformati on and
Docunment Summrar yl nf or mat i on classes.

Property set stream "/ Summaryl nfornmation":
No. of sections: 1

Section O:
Format | D: 00000000 F2 9F 85 EO 4F F9 10 68 AB 91 08 00 2B 27 B3 D9O .h....+
No. of properties: 17
Property ID: 1, type: 2, value: 1252
Property ID: 2, type: 30, value: Tite
Property ID: 3, type: 30, value: Thena
Property ID: 4, type: 30, value: Rainer Kl ute (Autor)
Property ID: 5, type: 30, value: Test (Stichwodrter)
Property ID: 6, type: 30, value: This is a docunent for testing HPSF
Property ID: 7, type: 30, value: Nornal.dot
Property ID: 8, type: 30, value: Unknown User
Property ID. 9, type: 30, value: 3
Property I D 18, type: 30, value: Mcrosoft Wrd 9.0
Property I D 12, type: 64, value: Mn Jan 01 00:59:25 CET 1601
Property ID: 13, type: 64, value: Thu Jul 18 16:22: 00 CEST 2002
Property 1D 14, type: 3, value: 1
Property ID 15, type: 3, value: 20
Property ID: 16, type: 3, value: 93
Property ID: 19, type: 3, value: O
Property ID: 17, type: 71 val ue: [B@3582d

Property set stream' /DocunentSunnarylnfornat|on'
No. of sections: 2
Section O:
Format | D: 00000000 D5 CD D5 02 2E 9C 10 1B 93 97 08 00 2B 2C F9 AE +
No. of properties: 14

Property ID 1, type: 2, value: 1252
Property ID: 2, type: 30, value: Test
Property ID: 14, type: 30, value: Rainer Kl ute (Mnager)
Property ID: 15, type: 30, value: Rainer Klute IT-Consulting GrbH
Property ID: 5, type: 3, value: 3
Property ID: 6, type: 3, value: 2
Property ID: 17, type: 3, value: 111
Property ID: 23, type: 3, value: 592636
Property ID: 11, type: 11, value: false
Property ID: 16, type: 11, value: false
Property ID: 19, type: 11, value: false
Property ID:. 22, type: 11, value: false
Property I D 13, type: 4126, value: [B@®6a499
Property ID: 12, type: 4108, value: [B@06411
Section 1:
Format | D. 00000000 D5 CD D5 05 2E 9C 10 1B 93 97 08 00 2B 2C F9 AE +
No. of properties: 7
Property ID: 0, type: 0, value: {6=Test-JaNein, 5=Test-Zahl, 4=Test-Datum 3=Test
Property ID: 1, type: 2, value: 1252
Property ID: 2, type: 65, value: [B@9ba38
Property ID: 3, type: 30, value: This is sone text.
Property ID: 4, type: 64, value: Wd Jul 17 00:00: 00 CEST 2002

Page 10

HPSF HOW-TO

Property ID: 5, type: 3, value: 27
Property ID: 6, type: 11, value: true
No property set stream "/WrdDocunent"
No property set stream "/ConpChj"
No property set stream "/1Table"

There are some interesting items to note:

» Thefirst property set (summary information) consists of a single section, the second
property set (document summary information) consists of two sections.

» Each section type (identified by its format ID) has its own domain of property ID. For
example, in the second property set the properties with ID 2 have different meaningsin
the two section. By the way, the format 1Ds of these sections are not equal, but you have
to look hard to find the difference.

» The properties are not in any particular order in the section, although they dlightly tend to
be sorted by their IDs.

1.3.8. Property I Ds

Properties in the same section are distinguished by their IDs. Thisis similar to variablesin a
programming language like Java, which are distinguished by their names. But unlike variable
names, property 1Ds are simple integral numbers. There is another similarity, however. Just
like a Java variable has a certain scope (e.g. a member variables in a class), a property 1D
also hasiits scope of validity: the section.

Two property IDs in sections with different section format 1Ds don't have the same meaning
even though their IDs might be equal. For example, ID 4 in the first (and only) section of a
summary information property set denotes the document's author, while ID 4 in the first
section of the document summary information property set means the document's byte count.
The sample output above does not show a property with an ID of 4 in the first section of the
document summary information property set. That means that the document does not have a
byte count. However, there is a property with an ID of 4 in the second section: This is a
user-defined property 1D - we'll get to that topic in a minute.

So, how can you find out what the meaning of a certain property ID in the summary
information and the document summary information property set is? The standard property
sets as such don't have any hints about the meanings of their property I1Ds. For example,
the summary information property set does not tell you that the property 1D 4 stands for the
document's author. This is external knowledge. Microsoft defined standard meanings for
some of the property IDs in the summary information and the document summary
information property sets. As a help to the Java and POl programmer, the class
Propertyl DvMap in the org. apache. poi. hpsf.wel | known package defines
constants for the "well-known" property IDs. For example, thereisthe definition

public final static int PID AUTHOR = 4;

Page 11

HPSF HOW-TO

These definitions allow you to use symbolic names instead of numbers.

In order to provide support for the other way, too, - i.e. to map property IDs to property

names - the class PropertylDVap defines two static methods:
get Sunmar yl nf or mati onProperties() and
get Docunment Sunmar yl nf or mat i onProperties(). Both return
j ava. util . Map objects which map property IDs to strings. Such a string gives a hint
about the property's meaning. For example,

Propertyl DMap. get Summar yl nf or mati onProperties().get(4) returns the
string "PID_AUTHOR". An application could use this string as a key to a localized string
which is displayed to the user, e.g. "Author" in English or "Verfasser" in German. HPSF
might provide such language-dependend ("localized") mappingsin alater release.

Usually you won't have to deal with those two maps. Instead you should call the
Section.getPIDString(int) method. It returns the string associated with the
specified property 1D in the context of the Sect i on object.

Above you learned that property IDs have a meaning in the scope of a section only.
However, there are two exceptions to the rule: The property IDs 0 and 1 have a fixed
meaning in all sections:

Property ID Meaning

0 The property's value is a dictionary, i.e. a
mapping from property IDs to strings.

1 The property's value is the number of a
codepage, i.e. a mapping from character codes
to characters. All strings in the section
containing this property must be interpreted
using this codepage. Typical property values are
1252 (8-bit "western" characters) or 1200 (16-bit
Unicode characters).

1.3.9. Property types

A property is nothing without its value. It is stored in a property set stream as a sequence of
bytes. You must know the property's type in order to properly interpret those bytes and
reasonably handle the value. A property's type is one of the so-called Microsoft-defined
"variant types'. When you call Property. get Type() you'll get al ong value which
denoting the property's variant type. The class Var i ant intheor g. apache. poi . hpsf
package holds most of those | ong values as named constants. For example, the constant
VT |4 = 3 means a signed integer value of four bytes. Examples of other types are
VT_LPSTR = 30 meaning a null-terminated string of 8-bit characters, VT _LPWSTR =

Page 12

HPSF HOW-TO

31 which means a null-terminated Unicode string, or VT_BOOL = 11 denoting a boolean
value.

In most cases you won't need a property's type because HPSF does al the work for you.

1.3.10. Property values

When an application wants to retrieve a property's vaue and cals
Property. get Val ue(), HPSF has to interpret the bytes making out the value according
to the property's type. The type determines how many bytes the value consists of and what to
do with them. For example, if the type is VT _| 4, HPSF knows that the value is four bytes
long and that these bytes comprise a signed integer value in the little-endian format. Thisis
quite different from e.g. a type of VT_LPWSTR. In this case HPSF has to scan the value
bytes for a Unicode null character and collect everything from the beginning to that null
character as a Unicode string.

The good new is that HPSF does another job for you, too: It maps the variant type to an
adequate Javatype.

Variant type: Java type:
VT_12 java.lang.Integer
VT_l4 java.lang.Long
VT_FILETIME java.util.Date
VT _LPSTR java.lang.String
VT_LPWSTR java.lang.String
VT _CF byte[]
VT _BOOL java.lang.Boolean

The bad news is that there are still a couple of variant types HPSF does not yet support. If it
encounters one of these types it returns the property's value as a byte array and leavesit to be
interpreted by the application.

An application retrieves a property's value by caling the Property. get Val ue()
method. This method's return type is the abstract bj ect class. The get Val ue() method
looks up the property's variant type, reads the property's value bytes, creates an instance of an
adequate Java type, assigns it the property's value and returns it. Primitive types likei nt or
| ong will be returned as the corresponding class, e.g. | nt eger or Long.

1.3.11. Dictionaries

Page 13

HPSF HOW-TO

The property with ID 0 has a very special meaning: It is adictionary mapping property 1Ds
to property names. We have seen already that the meanings of standard properties in the
summary information and the document summary information property sets have been
defined by Microsoft. The advantage is that the labels of properties like "Author" or "Title"
don't have to be stored in the property set. However, a user can define custom fields in, say,
Microsoft Word. For each field the user hasto specify a name, atype, and avalue.

The names of the custom-defined fields (i.e. the property names) are stored in the document
summary information second section's dictionary. The dictionary is a map which associates
property |Ds with property names.

The method Secti on. getPIDString(int) not only returns with the well-known
property names of the summary information and document summary information property
sets, but with self-defined properties, too. It should also work with self-defined propertiesin
self-defined sections.

1.3.12. Codepage support

Improve codepage support!

The property with ID 1 holds the number of the codepage which was used to encode the
strings in this section. The present HPSF codepage support is still very limited: When
reading property value strings, HPSF distinguishes between 16-bit characters and 8-bit
characters. 16-hit characters should be Unicode characters and thus be okay. 8-bit characters
are interpreted according to the platform's default character set. This is fine as long as the
document being read has been written on a platform with the same default character set.
However, if you receive a document from another region of the world and want to process it
with HPSF you are in trouble - unless the creator used Unicode, of course.

1.3.13. Further Reading

There are still some aspects of HSPF left which are not covered by this HOW-TO. You
should dig into the Javadoc APl documentation to learn further details. Since you've
struggled through this document up to this point, you are well prepared.

Page 14

	1 How To Use the HPSF APIs
	1.1 Reading Standard Properties
	1.1.1 Open the document \005SummaryInformation in the root of the
 POI filesystem

	1.2 Additional Standard Properties, Exceptions And Embedded Objects
	1.3 Reading Non-Standard Properties
	1.3.1 Overview
	1.3.2 A Sample Application
	1.3.3 The Property Set
	1.3.4 The Sections
	1.3.5 The Section's Format ID
	1.3.6 The Properties
	1.3.7 Sample Output
	1.3.8 Property IDs
	1.3.9 Property types
	1.3.10 Property values
	1.3.11 Dictionaries
	1.3.12 Codepage support
	1.3.13 Further Reading

