GStreamer Plugin Writer's Guide (0.8.9)

Richard John Boulton
Erik Walthinsen
Steve Baker
Leif Johnson

Ronald S. Bultje

GStreamer Plugin Writer's Guide (0.8.9)
by Richard John Boulton, Erik Walthinsen, Steve Baker, Uetfinson, and Ronald S. Bultje

This material may be distributed only subject to the ternts @nditions set forth in the Open Publication License, \t.ater (the latest version
is presently available at http://www.opencontent.orgfgmib/).

Table of Contents

Lo TNEFOOUCTION ..t b et b et er bbbt b bbbt en e Vii
I e 1= Tl PP P PP PUPPPPPPPPPRNY 1.
1.1. Who Should Read ThisS GUITE?..........oeiiiiiiiieeiiiic e 1.
1.2. Preliminary REAAINGuuuuiiiiiiiiiiitie ettt e e e e 1
1.3. Structure of ThiS GUILE.........cueiiiiiiiiii e 1.
A = - T (ol 0] o o1 =] o] £ PP UPPPRRTRY 4
2.1. Elements and PIUGQINS........ccoouiiiiiiiiiiiie ettt e e e e e ennees 4.
2.2, PAUS. ... 4.
2.3. Data, BUffers and EVENTS..........ccuiiiiiiiiiiiii et 5.
2.4. Mimetypes and PrOPertiES..........uueiiiiiieaieeee ettt 1..
1. BUITAING @ PIUGIN .ottt 11
3. Constructing the BOIEIPIALEccuuuiii it 12
3.1. Getting the GStreamer Plugin TEMPIALES.........cceeveeiiiiiiieie e 12
3.2. USING the ProjeCt STaMID......civeiiie it 12
3.3. Examining the BasiC COUE........cciiuiiieiiiiiie ettt 13
3.4. GSLEIEMENIDELAIIS.eeiieiiieii e 14
3.5. GStStatiCPaAdTEMPIALE.eeiiiiiiiiee e 15.
3.6. CONSLIUCIOr FUNCLIONSoiiiiiiiie ettt et 16.
3.7. The plugin_iNit FUNCHON.coiiiiiie e 17.
4. SPECIfYiNg the PAGS......coiiiiiie e 18
4.1, The INK FUNCHON. ..ottt et e e rneee e 18
4.2. The getcaps FUNCHON.........ooiiiiiii e 20
T (o] o] [A o= o LS P 21
5. The Chain fUNCHION.........ooiiiiie e e 22
6. WAL Are STAES ...ttt ettt e e et eenn e e eeaaee 24
6.1. Managing filter StAte..........ooo s 24
A Yo [0 [1aTo AN (o [0 0 4[] 1 £ TP RPRE PRI 26
8. SIONQAUS. ...t e e e e e e e e b e e e e e e e e e neraees 29
9. Building @ Test APPHCALION......cooiiieieiee et e e e e e e 30
10. Creating a Filter with @ Filter FACLOLY..........cuuiiiiiiiiiiiiiee e 32
1. AdVANCE FIlter CONCEPLS.......iiiieiiiecieieciit ettt 33
11. HOW SChedUIING WOTKS ...t ettt e e e e e e e e e 34
11.1. The BasiC SCREAUIEE........ccueiiiii e 34.
11.2. The Optimal SChEAUIEE...........ciiiiii e 34
12. HOW @ I0OPFUNC WOTKS ...ttt e e e e e e e e 36
12.1. MUR-INPUL EIEMENTS. ...ttt 36.
12.2. The Bytestream ODJECL.........ooiiiiiiii e 39.
12.3. AddiNg & SECONT OULPULeiiuieiiieiieiiie ettt et e et e st ee e e seeeeeeeen 41
12.4. Modifying the test apPliCAtION............eiiiiiiiiee e 41
13, TYPES AN PrOPEITIES.....ccviiiie ettt e et e e et eesameeesane 42
13.1. Building a Simple Format for TEStING........ccouvriiiiiiiieiiieee e 42
13.2. Typefind Functions and AUutoplUGQING.........ccooirriiaiiiiiie e reee e 42
13.3. List Of DefiNed TYPES.....ueiiiiiiiiieeiiiiiee ettt 44.
14. Request and SOMEtIMES PAAS.......ouoiiiiiiieiiiiiie et r et 54.
14.1. SOMELIMES PAAS ..o iuieeiiiiiieee ettt et e st e e enbbeee e enb e e eanes 54

I = L= [=2 o F= Lo PP 57

LT 4 [o Tox (] o H PR 59
15,0, TYPES OF LMttt e e et 59

LT 1 (o o] O SUOUPPPPN 59

15.3. Flow of data between elements and time..............cccovvveeieiiiiiie e 59

15.4. Obligations of each element.............oooiiiiiiiii i 60

16. Supporting DYNamic ParameterS..........coouuuieiiiiiiie et 61
16.1. Comparing Dynamic Parameters with GObject Propertie............ccccccvvvvveneeennn. 61

16.2. GettiNg StArt@U........eeeieiiieii et senee e 61

16.3. Defining Parameter SpecifiCatiQnS...........cvveeiiiiiiieiiiiiie e 62

16.4. The Data ProCesSing LAQP.......coiuuiiiaiiiiieea it 65

L7 MIDL. ettt e s ane et e e s nnnnee e nnnneed 69
R TR 01 1=T 5 7= Lo PSPPSR 70
18.1. How to Implement INtErfaces.........cooouiiiiiiiiie e 70
18.2. MIXEI INTEITACE. ... ettt 71
18.3. TUNEN INEITACE ... ettt seneee s] D
18.4. Color BalancCe INTEIACE...........eeviiiiiiiie ittt 77
18.5. Property Probe Interface............ueeiiiiiiiii e 77
18.6. X OVerlay INTEITACE.eeiiii et 80

18.7. Navigation INtEITACE.oi e 82.

19. Tagging (Metadata and Streaminfo)...........ccooooiiiiiiiiiiiee e 83
19.1. Reading Tags from StrEamMS.coooiiiiiiiiieee e 83

19.2. Writing TagS 10 SLIEAIMS. ..ottt e e e 85

20. Events: Seeking, Navigation and MOIE...........ooouiiiiiiiiiiiie e 38
20.1. DOWNSIIEAM BVENIS.....ciiiiiiiiiiiii et 88
20.2. UPSIrEAM BVENLS. .. .ottt ettt ettt et ettt ettt ettt eeteaeeeeeeesseeaeeesbesseneeed 89
20.3. Al EVENLS TOQEINEL.......eeiiiiiiiieie ettt a0

V. Other EIEMENT TYPES .ocviiieiiitciieieiet ettt sttt ee et en e tene s 95
21 WIING @ SOUICE. ...ttt ettt ettt et e e ettt e e e sttt e e e s bbe e e e s anbe e e e s s rmeeennsbeeeenan 96
21.1. The get()-TUNCHIOMcoiiiiii ettt e e 96
21.2. Events, querying and CONVEITING.ccooiuuriiiiieiiis i seeeeiee e 96
21.3. Time, clocking and synchronization............ccccoevieeee i 100
21.4. USING SPECIAI MEIMOIY.....eiiiiiiiiieiiiiie ettt ettt e s a e 103

22, WIHING @ SINK et et e et e sttt e et e e e s e e s neeeas 105
22.1. Data processing, events, synchronization and clocks............ccoceviiieeennnen. 105
22.2. SPECIAI MEMOLY. . ..eiieiiiiiiie ettt ettt et e e e st b ee e e anbbe e e e eanbaeeeesnbeeenaas 106

23. Writing a 1-to-N Element, DEMUXET OF PArSEr.........cccuuvriiiieeeeeeieeieiieeeeeeesseneeeeeeeeeee s 108
23.1. Demuxer Caps NegOtatiOn.........uvieiiiiiiee it 108
23.2. Data processing and dOwnStream eVENLS.ooveveeeiiiree e 108
23.3. Parsing Versus INterPretiNng........oouueee e eeeee et 108
23.4. Simple seeking and INAEXES.......ccccoii it 110

24, Writing @ N-t0-1 ElemMent OF MUXEEL...........uuiiiiiiiieei ittt a e 111
24.1. The Data LOOP FUNCHOM.......coiiiiiiiiiiie et e e e e 111
24.2. Eventsin the LOOp FUNCHON. ...t 111
P2 T\ [=To T (=1 1 o] o NP R PP PPRRRTP 112
24.4. Markup VS. data PrOCESSING. .. .uuueiieeeiaiitiiieeeee e et e e e e e e e e e e e e nbeeeees 114

25. Writing @ N-10-N @IEMENT......ccoiiiiii e 116

26. WHEING @N AULOPIUGOEEeeee ettt ettt e et e e et e e e snbbeeeaas 117

27, WIEING @ MBNAGET ...ttt ettt ettt e st e e s snt et e e e beeeeneeeee s 118

RV Y o] o= Lo Lot 119
28. Things to check when writing an element.... ... 120
28.1. ADOUL STALES. ... ettt e 120

28.2. DEBUGUING ..ottt 120

28.3. Querying, events and the lKe..........coouiiiiiiiii e 121

28.4. Testing YOUr €IEMENT........uuiiiiiiiie e 121

29. GStreamer ICENSING.veie ettt et e e e e e e st e e e s e e e enaeeas 122
29.1. How to license the code you write for GStreamer...........ccooevcvvvvieieeee e 122

List of Tables

2-1. Table Of BASIC TYPES. .. uuitieieiiie e ettt ettt e ettt e e e e e e et e kbbbt et e e e e e e s smnnee e e e e e nneeees 7
13-1. Table Of AUAIO TYPES...cii it e e e e eneeeseeeeeen . A
13-2. Table Of VIAEO TYPESueeeiiiieeei ittt ee e e e e e e e e e e e s ennaeeeene s snnneeen s A8
13-3. Table Of CONtAINET TYPES. . ceiiiiiiii ittt ee et e e e e e e st e e e e e e e aaanebbaeeaaaesnnes 52
13-4. Table Of SUDLIIE TYPES. .. eeii ittt e e e e e e e e bbb e e e eneebee e 53
13-5. Table Of OthEr TYPES ...t e et e e et e e e e e e e ee b e e e e ennnrenbees 53

\Y

|. Introduction

GStreamer is an exremely powerful and versatile frameworlkcfeating streaming media applications.
Many of the virtues of the GStreamer framework come from itslodarity: GStreamer can seamlessly
incorporate new plugin modules. But because modularitypoveer often come at a cost of greater
complexity (consider, for example, CORBA (http://www.orag/)), writing new plugins is not always
easy.

This guide is intended to help you understand the GStrearaerdwork (version 0.8.9) so you can
develop new plugins to extend the existing functionalityeQuide addresses most issues by following
the development of an example plugin - an audio filter plugimitten in C. However, the later parts of
the guide also present some issues involved in writing dthpas of plugins, and the end of the guide
describes some of the Python bindings for GStreamer.

Chapter 1. Preface

1.1. Who Should Read This Guide?

This guide explains how to write new modules for GStreambe guide is relevant to several groups of
people:

- Anyone who wants to add support for new ways of processing ida® Streamer. For example, a
person in this group might want to create a new data formatexter, a new visualization tool, or a
new decoder or encoder.

- Anyone who wants to add support for new input and output éesviEor example, people in this group
might want to add the ability to write to a new video outputteys or read data from a digital camera
or special microphone.

- Anyone who wants to extend GStreamer in any way. You needue &a understanding of how the
plugin system works before you can understand the congdrtiat the plugin system places on the
rest of the code. Also, you might be surprised after readiigdt how much can be done with plugins.

This guide is not relevant to you if you only want to use thestrg functionality of GStreamer, or if you
just want to use an application that uses GStreamer. If yewuly interested in using existing plugins to
write a new application - and there are quite a lot of pluginsaaly - you might want to check the
GStreamer Application Development Manuélou are just trying to get help with a GStreamer
application, then you should check with the user manualifat particular application.

1.2. Preliminary Reading

This guide assumes that you are somewhat familiar with teclveorkings of GStreamer. For a gentle
introduction to programming concepts in GStreamer, you mig to read thé&sStreamer Application
Development Manudirst. Also check out the documentation available on the &8trer web site
(http://gstreamer.freedesktop.org/documentation/).

Since GStreamer adheres to the GObject programming mdkeftide also assumes that you
understand the basics of GObject (http://developer.gnomg&oc/AP1/2.0/gobject/index.html)
programming. There are several good introductions to th&jée library, including the&TK+ Tutorial
(http://www.gtk.org/tutorial/and theGlib Object system
(http://www.le-hacker.org/papers/gobject/index.html

1.3. Structure of This Guide

To help you navigate through this guide, it is divided intgesal large parts. Each part addresses a

Chapter 1. Preface

particular broad topic concerning GStreamer plugin dgwelent. The parts of this guide are laid out in
the following order:

- Building a Plugin- Introduction to the structure of a plugin, using an exanguldio filter for
illustration.

This part covers all the basic steps you generally need foypeto build a plugin, such as registering
the element with GStreamer and setting up the basics so iecaive data from and send data to
neighbour elements. The discussion begins by giving exesgflgenerating the basic structures and
registering an element i@onstructing the Boilerplat&d hen, you will learn how to write the code to
get a basic filter plugin working i€hapter 4 Chapter sandChapter 6

After that, we will show some of the GObject concepts on homeke an element configurable for
applications and how to do application-element interacitivAdding ArgumentandChapter 8 Next,
you will learn to build a quick test application to test alattyou've just learned i€hapter 9We will
just touch upon basics here. For full-blown applicationalepment, you should look at the
Application Development Manual
(http://gstreamer.freedesktop.org/data/doc/gstredmead/manual/html/index.html).

« Advanced Filter Conceptsinformation on advanced features of GStreamer plugin ldgveent.

After learning about the basic steps, you should be abledatera functional audio or video filter
plugin with some nice features. However, GStreamer offesgenfor plugin writers. This part of the
guide includes chapters on more advanced topics, such adwdaiy, media type definitions in
GStreamer, clocks, interfaces and tagging. Since theserésaare purpose-specific, you can read
them in any order, most of them don’t require knowledge fraheosections.

The first chapter, namddhapter 11will explain some of the basics of element scheduling. ftas
very in-depth, but is mostly some sort of an introduction diywther things work as they do. Read
this chapter if you're interested in GStreamer internalsxfNwe will apply this knowledge and
discuss another type of data transmission than what yondedanChapter 5 Chapter 12Loop-based
elements will give you more control over input rate. This $&ful when writing, for example, muxers
or demuxers.

Next, we will discuss media identification in GStreameCinapter 13You will learn how to define
new media types and get to know a list of standard media typfsetl in GStreamer.

In the next chapter, you will learn the concept of requestt smmetimes-pads, which are pads that are
created dynamically, either because the application afgkdt(request) or because the media stream
requires it (sometimes). This will be @hapter 14

The next chapteChapter 15will explain the concept of clocks in GStreamer. You neesd th
information when you want to know how elements should aeh@wdio/video synchronization.

Chapter 1. Preface

The next few chapters will discuss advanced ways of doingjcdjpn-element interaction.
Previously, we learned on the GObject-ways of doing thi&dding ArgumentandChapter 8 We

will discuss dynamic parameters, which are a way of definlagyent behaviour over time in advance,
in Chapter 16Next, you will learn about interfaces hapter 18Interfaces are very target- specific
ways of application-element interaction, based on GOlsj&interface. Lastly, you will learn about
how metadata is handled in GStreameC€Cimapter 19

The last chapteChapter 20will discuss the concept of events in GStreamer. Eventsoaréhe one
hand, another way of doing application-element interactibatkes care of seeking, for example. On
the other hand, it is also a way in which elements interadt wéch other, such as letting each other
know about media stream discontinuities, forwarding tag&ie a pipeline and so on.

Other Element TypesExplanation of writing other plugin types.

Because the first two parts of the guide use an audio filter axample, the concepts introduced
apply to filter plugins. But many of the concepts apply equtlother plugin types, including

sources, sinks, and autopluggers. This part of the guideepts the issues that arise when working on
these more specialized plugin types. The part includestehapnWriting a SourceWriting a Sink
Writing a 1-to-N Element, Demuxer or Pars@/riting a N-to-1 Element or Muxeand

Writing a Manager

Appendices Further information for plugin developers.

The appendices contain some information that stubborifilises to fit cleanly in other sections of the
guide. Most of this section is not yet finished.

The remainder of this introductory part of the guide presenshort overview of the basic concepts
involved in GStreamer plugin development. Topics covenetlideElements and Plugin®ads

Data, Buffers and EventndTypes and PropertieHf you are already familiar with this information, you
can use this short overview to refresh your memory, or yousté@mto Building a Plugin

As you can see, there a lot to learn, so let’s get started!

- Creating compound and complex elements by extending frorstBi This will allow you to create
plugins that have other plugins embedded in them.

- Adding new mime-types to the registry along with typedetanttions. This will allow your plugin to
operate on a completely new media type.

Chapter 2. Basic Concepts

This chapter of the guide introduces the basic concepts tfe@®er. Understanding these concepts will
help you grok the issues involved in extending GStreamenyMd these concepts are explained in
greater detail in th&Streamer Application Development Manuhk basic concepts presented here
serve mainly to refresh your memory.

2.1. Elements and Plugins

Elements are at the core of GStreamer. In the context of pldgvelopment, aalemenis an object
derived from the Gt H enert (..I../gstreamer/html/GstElement.html) class. Eleragmbvide some

sort of functionality when linked with other elements: Faaeple, a source element provides data to a
stream, and a filter element acts on the data in a stream. Wigdements, GStreamer is just a bunch of
conceptual pipe fittings with nothing to link. A large numloéelements ship with GStreamer, but extra
elements can also be written.

Just writing a new element is not entirely enough, howeveu Will need to encapsulate your element in
apluginto enable GStreamer to use it. A plugin is essentially a Ibkdllock of code, usually called a
shared object file or a dynamically linked library. A singlegin may contain the implementation of
several elements, or just a single one. For simplicity, gfisle concentrates primarily on plugins
containing one element.

A filter is an important type of element that processes a stream af Bedducers and consumers of data
are calledsourceandsink elements, respectivel@in elements contain other elements. One type of bin is
responsible for scheduling the elements that they contaihat data flows smoothly. Another type of

bin, calledautopluggerelements, automatically add other elements to the bin akd them together so
that they act as a filter between two arbitary stream types.

The plugin mechanism is used everywhere in GStreamer, éoetyithe standard packages are being
used. A few very basic functions reside in the core librang all others are implemented in plugins. A
plugin registry is used to store the details of the pluginarinXML file. This way, a program using
GStreamer does not have to load all plugins to determinelwdrie needed. Plugins are only loaded
when their provided elements are requested.

See theGStreamer Library Referender the current implementation details @f H enent
(../../gstreamer/html/GstElement.html) a@tR ugin ~ (../../gstreamer/html/gstreamer-GstPlugin.html).

2.2. Pads

Padsare used to negotiate links and data flow between elementStire@ner. A pad can be viewed as a

Chapter 2. Basic Concepts

“place” or “port” on an element where links may be made withestelements, and through which data
can flow to or from those elements. Pads have specific datdihgredpabilities: A pad can restrict the
type of data that flows through it. Links are only allowed begéw two pads when the allowed data types
of the two pads are compatible.

An analogy may be helpful here. A pad is similar to a plug okjan a physical device. Consider, for
example, a home theater system consisting of an amplifiey,[a [@ayer, and a (silent) video projector.
Linking the DVD player to the amplifier is allowed becauselbdévices have audio jacks, and linking
the projector to the DVD player is allowed because both d=/fave compatible video jacks. Links
between the projector and the amplifier may not be made bed¢hagprojector and amplifier have
different types of jacks. Pads in GStreamer serve the sampoge as the jacks in the home theater
system.

For the most part, all data in GStreamer flows one way througtkdetween elements. Data flows out
of one element through one or m@eurce padsand elements accept incoming data through one or
moresink padsSource and sink elements have only source and sink paggctesly.

See theGStreamer Library Referender the current implementation details ofz Rd
(../..Igstreamer/html/GstPad.html).

2.3. Data, Buffers and Events

All streams of data in GStreamer are chopped up into churd¢satte passed from a source pad on one
element to a sink pad on another elem@&mtaare structures used to hold these chunks of data.

Data contains the following important types:

- An exact type indicating what type of data (control, conten)this Data is.

- Areference count indicating the number of elements culydraiding a reference to the buffer. When
the buffer reference count falls to zero, the buffer will beinked, and its memory will be freed in
some sense (see below for more details).

There are two types of data defined: events (control) ancsifEontent).

Buffers may contain any sort of data that the two linked patskhow to handle. Normally, a buffer
contains a chunk of some sort of audio or video data that flomrs one element to another.

Buffers also contain metadata describing the buffer'seotst Some of the important types of metadata
are:

« A pointer to the buffer's data.

Chapter 2. Basic Concepts

« Aninteger indicating the size of the buffer's data.

- Atimestamp indicating the preferred display timestamghefd¢ontent in the buffer.

Events contain information on the state of the stream flowieigveen the two linked pads. Events will
only be sent if the element explicitely supports them, étgeciore will (try to) handle the events
automatically. Events are used to indicate, for exampléekaliscontinuity, the end of a media stream
or that the cache should be flushed.

Events may contain several of the following items:

« A subtype indicating the type of the contained event.

- The other contents of the event depend on the specific eveat ty

Events will be discussed extensively@mapter 20Until then, the only event that will be used is the
EOSevent, which is used to indicate the end-of-stream (usweaiti-of-file).

See theGStreamer Library Referender the current implementation details ofst Dt a
(../../gstreamer/html/gstreamer-GstData. ht@t)pf fer
(../../gstreamer/html/gstreamer-GstBuffer.html) @tdvent
(../..Igstreamer/html/gstreamer-GstEvent.html).

2.3.1. Buffer Allocation

Buffers are able to store chunks of memory of several diffetgpes. The most generic type of buffer
contains memory allocated by malloc(). Such buffers, altffoconvenient, are not always very fast,
since data often needs to be specifically copied into thesbuff

Many specialized elements create buffers that point toiapeemory. For example, the filesrc element
usually maps a file into the address space of the applicaiging mmap()), and creates buffers that
point into that address range. These buffers created bydites exactly like generic buffers, except that
they are read-only. The buffer freeing code automaticatiednines the correct method of freeing the
underlying memory. Downstream elements that recieve tkiesks of buffers do not need to do anything
special to handle or unreference it.

Another way an element might get specialized buffers is quest them from a downstream peer. These
are called downstream-allocated buffers. Elements caa @gler connected to a source pad to create an
empty buffer of a given size. If a downstream element is ablzreate a special buffer of the correct size,
it will do so. Otherwise GStreamer will automatically creat generic buffer instead. The element that
requested the buffer can then copy data into the buffer, ast the buffer to the source pad it was
allocated from.

Chapter 2. Basic Concepts

Many sink elements have accelerated methods for copyiragtddtardware, or have direct access to
hardware. It is common for these elements to be able to cdemtestream-allocated buffers for their
upstream peers. One such example is ximagesink. It creatiessthat contain XImages. Thus, when an
upstream peer copies data into the buffer, it is copyingetlyento the XImage, enabling ximagesink to
draw the image directly to the screen instead of having ty cigta into an XImage first.

Filter elements often have the opportunity to either workadsuffer in-place, or work while copying
from a source buffer to a destination buffer. It is optimairtgplement both algorithms, since the
GStreamer framework can choose the fastest algorithm aspipgte. Naturally, this only makes sense
for strict filters -- elements that have exactly the same fdrom source and sink pads.

2.4. Mimetypes and Properties

GStreamer uses a type system to ensure that the data passedielements is in a recognized format.
The type system is also important for ensuring that the patara required to fully specify a format
match up correctly when linking pads between elements. laklthat is made between elements has a
specified type and optionally a set of properties.

2.4.1. The Basic Types

GStreamer already supports many basic media types. Folipiwia table of a few of the the basic types
used for buffers in GStreamer. The table contains the namar(® type") and a description of the type,
the properties associated with the type, and the meaningabf property. A full list of supported types is
included inList of Defined Types

Table 2-1. Table of Basic Types

Mime Type Description Property Property Property Property
Type Values Description
audio/* All audio types| rate integer greater than O | The sample

rate of the data
in samples (pef
channel) per
second.

channels integer greater than 0 | The number of]
channels of
audio data.

Chapter 2. Basic Concepts

Mime Type

Description

Property

Property
Type

Property
Values

Property
Description

audio/x-raw-int

Unstructured
and
uncompressed
raw integer
audio data.

endianness

integer

G_BIG_ENDIA
(1234) or
G_LITTLE_EN
(4321)

NThe order of
bytesin a
DHadNple. The
value
G_LITTLE_EN
(4321) means
“little-endian”
(byte-orderis
“least
significant byte
first”). The
value
G_BIG_ENDIA
(1234) means
“big-endian”
(byte order is
“most
significant byte
first”).

DIAN

signed

boolean

TRUE or
FALSE

Whether the
values of the
integer sample
are signed or
not. Signed
samples use
one bit to
indicate sign
(negative or
positive) of the
value.
Unsigned
samples are

always positive|

width

integer

greater than 0

Number of bits|
allocated per

sample.

Chapter 2. Basic Concepts

Mime Type

Description

Property

depth

Property
Type
integer

Property
Values

greater than 0

Property
Description
The number of]
bits used per
sample. This
must be less
than or equal ta
the width: If the
depth is less
than the width,
the low bits are
assumed to be
the ones used.
For example, a
width of 32 and
a depth of 24
means that eag
sample is
stored in a 32
bit word, but
only the low 24
bits are actually
used.

audio/mpeg

Audio data
compressed
using the
MPEG audio
encoding
scheme.

mpegversion

integer

1,2or4

The
MPEG-version
used for
encoding the
data. The valug
1 refers to
MPEG-1, -2
and -2.5 layer
1,2o0r3.The
values 2 and 4
refer to the
MPEG-AAC
audio encoding
schemes.

Chapter 2. Basic Concepts

Mime Type

Description

Property

framed

Property
Type
boolean

Property
Values

Oorl

Property
Description

A true value
indicates that
each buffer
contains
exactly one
frame. A false
value indicates
that frames and
buffers do not
necessarily
match up.

layer

integer

1,2,0r3

The
compression
scheme layer
used to
compress the
data(only if
mpegver-
sion=1).

bitrate

integer

greater than 0

The bitrate, in
bits per second.
For VBR
(variable
bitrate) MPEG
data, this is the
average bitrate

audio/x-vorbis

\orbis audio
data

There are
currently no
specific
properties
defined for this
type.

10

Il. Building a Plugin

You are now ready to learn how to build a plugin. In this parthef guide, you will learn how to apply
basic GStreamer programming concepts to write a simpleiplddne previous parts of the guide have
contained no explicit example code, perhaps making thirgsabstract and difficult to understand. In
contrast, this section will present both applications amdiecby following the development of an
example audio filter plugin called “ExampleFilter”.

The example filter element will begin with a single input pad @ single output pad. The filter will, at
first, simply pass media and event data from its sink pad toitsce pad without modification. But by
the end of this part of the guide, you will learn to add someanioteresting functionality, including
properties and signal handlers. And after reading the nasttq the guideAdvanced Filter Concepts
you will be able to add even more functionality to your plugin

The example code used in this part of the guide can be fouadrip es/ prg/ exanpl efi l ter/ in
your GStreamer directory.

Chapter 3. Constructing the Boilerplate

In this chapter you will learn how to construct the bare minimcode for a new plugin. Starting from
ground zero, you will see how to get the GStreamer templaieceo Then you will learn how to use a
few basic tools to copy and modify a template plugin to createw plugin. If you follow the examples
here, then by the end of this chapter you will have a functiandio filter plugin that you can compile
and use in GStreamer applications.

3.1. Getting the GStreamer Plugin Templates

There are currently two ways to develop a new plugin for G8trer: You can write the entire plugin by
hand, or you can copy an existing plugin template and wrigepllngin code you need. The second
method is by far the simpler of the two, so the first method nalt even be described here. (Errm, that is,
“it is left as an exercise to the reader.”)

The first step is to check out a copy of tige-tenpl ate CVS module to get an important tool and the
source code template for a basic GStreamer plugin. To chetcthegst-tenpl ate module, make sure
you are connected to the internet, and type the followingroamds at a command console:

shell $ cvs -d: pserver: anoncvs@vs. f reedeskt op. org/ cvs/ gstre aner co login

Logging in to :pserver:anoncvs@vs. freedeskt op. org: / cv s/ gstreaner

G/S passvor d: [BENTER

shell $ cvs -z3 -d: pserver: anoncvs@vs. freedeskt op. org: / cvs/ g streaner co gst-tenplate

U gst -tenpl at e/ RRAIME

U gst-tenpl at e gst - app/ ATHIRS

U gst-tenpl at e gst -app/ Grangel og

U gst-tenpl at e gst - app/ Mkefil e.am

U gst-tenpl at e gst - app/ NVS

U gst-tenpl at & gst - appy/ RADME

U gst-tenpl at e gst - app/ aut ogen. sh

U gst-tenpl at e gst-ap/ confi gure. ac

U gst-tenpl at e gst - app/ src/ Mkefil e.am

After the first command, you will have to preE®NTER to log in to the CVS server. (You might have to
log in twice.) The second command will check out a series e§fdnd directories into

./gst-tenpl ate . The template you will be using is igst-tenpl at e gst-pl ugi V directory.
You should look over the files in that directory to get a gehielea of the structure of a source tree for a
plugin.

12

Chapter 3. Constructing the Boilerplate

3.2. Using the Project Stamp

The first thing to do when making a new element is to specifyesbasic details about it: what its name
is, who wrote it, what version number it is, etc. We also needédfine an object to represent the element
and to store the data the element needs. These details ketively known as théoilerplate

The standard way of defining the boilerplate is simply to @sbme code, and fill in some structures. As
mentioned in the previous section, the easiest way to dagtiiscopy a template and add functionality
according to your needs. To help you do so, there are somgitotie. /gst-pl ugins/tod s/

directory. One toolgst - qui ck-st anp ,is a quick command line tool. The other,

gst -prgj ect - stanp ,is a full GNOME druid application that takes you through siteps of creating a
new project (either a plugin or an application).

To usepluginstamp.sh, first open up a terminal window. Change to thetenpl ate directory, and
then run thepluginstamp.sh command. The arguments to tphkiginstamp.sh are:

1. the name of the plugin, and

2. the directory that should hold a new subdirectory for thierse tree of the plugin.

Note that capitalization is important for the name of thegohuUnder some operating systems,
capitalization is also important when specifying diregtnames. For example, the following commands
create the ExampleFilter plugin based on the plugin tere@at! put the output files in a new directory
called~ src/exanpl efi I ter/

shell $ cd gst-tenplate
shell $ tools/pluginstanp.sh Exanpl eFilter ~/src

3.3. Examining the Basic Code

First we will examine the code you would be likely to place ineader file (although since the interface
to the code is entirely defined by the plugin system, and dbéspend on reading a header file, this is
not crucial.) The code here can be found in

exanpl es/ prgy exanpl efi | ter/ boi | er/ gstexanpl ef il ter. h.

Example 3-1. Example Plugin Header File

[+ Definition of structwre storing data for this e enent. */
typedef struct _GtExanpl e Gt Exanpl €

struct _GstExanpl e {
GtHenent € enent;

GtRad *sinkpad, * srepad;

13

Chapter 3. Constructing the Boilerplate

ghod ean silent;
h

/* Sandard definition defining a class for this e enent. */
typedef struct _GtExanpl eGass Gt Exanpl eC ass;
struct _GtExanpl eQ ass {
GtHenentGass parent_cl ass;
1

[+ Sandard nacros for defining types for this e enent. */
#define GBT TYFE EXAVALE \

(gst_exanpl e get_type())
#lefine GBT_EXAMALEH o) \

(G TYFE GEK O'ST((0), GBT_ TYFE EXARLE Gt Exarpl 9)
#efi ne GBT_EXAVALE ALASY K ass) \
(GTYFE GHEK QASS O'ST((Kl ass) , GBT. TYFE BXAVRLE G st Beanpl €))

#define GBT IS EXAVALE o) \
(G TYFE GEX TYFE (0) , GST_ TYFE EXAVALE))
#define GBT |'S PXAVALE QASYahj) \
(G TYFE GEXK QASS TYFH (Kl ass), GBT TYFE BXAALE)

/* Sandard function returning type infornation. */
Gype gst_exanpl e get_type (voi d);

3.4. GstElementDetails

The GstElementDetails structure gives a hierarchical fgpéhe element, a human-readable description
of the element, as well as author and version data. The sratréee

A long, english, name for the element.

The type of the element, as a hierarchy. The hierarchy is ety specifying the top level category,
followed by a "/*, followed by the next level category, etheltype should be defined according to the
guidelines elsewhere in this document. (FIXME: write théglines, and give a better reference to
them)

A brief description of the purpose of the element.

The name of the author of the element, optionally followedmpntact email address in angle
brackets.

For example:

static GtHenentDetails exanpl e details = {

"An exanple plugin’,
"Exanpl & F r st Exanpl €,

"Shons the basic structure of a plugn',
"your nan@ <your.nane@our . i sp>

14

Chapter 3. Constructing the Boilerplate

The element details are registered with the plugin durimgithse init () function, which is part of
the GObject system. Theese int () function should be set for this GObject in the function where
you register the type with Glib.

static vod
ost_ny filter_base init (GtMHIterGass * Kkl ass)
{
static GtHenentDetails ny filter_details = {
[-]
h
Gt H enent G ass el enent_class = GST_ HEMENIT @ASS (Kl ass);
[--]
ost_elenent_class set_details (el enent_class, &y fil ter_details);

}

3.5. GstStaticPadTemplate

A GstStaticPadTemplate is a description of a pad that thmaeé will (or might) create and use. It
contains:

- A short name for the pad.
- Pad direction.

- Existence property. This indicates whether the pad exigigys (an “always” pad), only in some
cases (a “sometimes” pad) or only if the application receebstich a pad (a “request” pad).

« Supported types by this element (capabilities).

For example:

static GtSaticRadlenplate sink factory =
GST_STAT C PAD TEMRLATE (

"sink',

G PDINK

GBT_PAD AVRYS

GST_STATI CO¥S ("AY")
);

Those pad templates are registered duringthse init () function. Pads are created from these
templates in the element’snit () function usinggst_pad newfromtenpl ate () . The
template can be retrieved from the element class ugingl enent_class get_pad tenpl ate

15

Chapter 3. Constructing the Boilerplate

() . See below for more details on this. In order to create a nefmen this template using
gst_pad newfromtenpl ate () , You will need to declare the pad template as a global vaiabl
More on this subject itChapter 4

static GtSaticRdlenplate sink factory = [..],
src factory = [..];

static vod
ost_ny filter_base init (GtMHIterGass * Kl ass)
{
[..]
Gt H enent G ass el enent_class = GBI HEMENIT @ASS (Kl ass);

ost_el enent_cl ass add pad tenpl ate (e enent_cl ass,
ost_static pad tenplate get (&rc factory));

ost_el enent_cl ass add pad tenpl ate (e enent_cl ass,
ost_static pad tenpl ate get (&ink factory));
[--]
}

The last argument in a template is its type or list of supmbtypes. In this example, we use 'ANY’,
which means that this element will accept all input. In féfalsituations, you would set a mimetype and
optionally a set of properties to make sure that only sumgabiriput will come in. This representation
should be a string that starts with a mimetype, then a setrofica-separates properties with their
supported values. In case of an audio filter that supportsieeger 16-bit audio, mono or stereo at any
samplerate, the correct template would look like this:

static GtSaticRadlenplate sink factory =
GST_STAT C PAD TRVRLATE (

"sink",
GBI PDINK
GBT_PAD AVWRYS
GBT_STATI C %S (
"aud o/ x-rawint, "
"wdh = (int) 16 "
"depth = (int) 16, "

"endianness = (int) BYIE GUR "
"channels = (int) { 14, 2}, "
"rate = (int) [8000, 96000]"

Values surrounded by curly brackets (“{” and “}") are list&lues surrounded by square brackets ([’
and “]") are ranges. Multiple sets of types are supported &mal should be separated by a semicolon
(;7). Later, in the chapter on pads, we will see how to usestypo know the exact format of a stream:
Chapter 4

16

Chapter 3. Constructing the Boilerplate

3.6. Constructor Functions

Each element has three functions which are used for conistnuaf an element. These are the

_base init() function which is meant to initialize class and child classgerties during each new
child class creation; thedl ass init() function, which is used to initialise the class only once
(specifying what signals, arguments and virtual functithesclass has and setting up global state); and
the_init() function, which is used to initialise a specific instancelis type.

3.7. The plugin_init function

Once we have written code defining all the parts of the pluganeed to write the plugin_init()
function. This is a special function, which is called as sasnhe plugin is loaded, and should return
TRUE or FALSE depending on whether it loaded initialized dependencies correctly. Also, in this
function, any supported element type in the plugin shoulcelgéstered.

static ghod ean
plugnint (GtRugn *plugn)
{
return gst_el enent_register (pugin, "ny filter”,
GBT_RNK NDNE
GB_TYFE W A LTER);
}

GBI AUWE N O NE (
Gol VBR ON MR
Gol VER9 ON MINDR
"ny filter",

"M filter plugin',

pugnint,

VERA QN

"L&,

"Greaner”,

"http://gstreaner.net/"
)

Note that the information returned by the plugin_init() étion will be cached in a central registry. For
this reason, it is important that the same information isaglsweturned by the function: for example, it
must not make element factories available based on runtimeitions. If an element can only work in
certain conditions (for example, if the soundcard is nohbeised by some other process) this must be
reflected by the element being unable to enter the READY #tateavailable, rather than the plugin
attempting to deny existence of the plugin.

17

Chapter 4. Specifying the pads

As explained before, pads are the port through which data go@&nd out of your element, and that
makes them a very important item in the process of elemeatiore In the boilerplate code, we have
seen how static pad templates take care of registering pgolages with the element class. Here, we will
see how to create actual elements, ussk () and_getcaps () functions to let other elements
know their capabilities and how to register functions todata flow through the element.

Inthe elementinit () function, you create the pad from the pad template that has tegistered
with the element class in théase init () function. After creating the pad, you have to setiak

() function pointer and agetcaps () function pointer. Optionally, you can seteain () function
pointer (on sink pads in filter and sink elements) throughohfdata will come in to the element, or (on
source pads in source elementspa () function pointer through which data will be pulled from the
element. After that, you have to register the pad with thenelet. This happens like this:

static GtPadli nkReturn gst_ny filter link (GtPad * pad,
const Gt s * caps);
static GtGps * gst_ny filter_getcaps (GtRad * pad);
static vod gst_ny filter chain (GtPad * pad,
Gtata *data);

static vod

ost_ny filter_init (GtMHIter *filter)

{
Gt H enent G ass xKlass = GBI HEMENT (2T AASS (filter);
/* pad through which data cones in to the € enent */
filter->sinkpad = gst_pad newfromtenplate (

ost_eenent_class get_pad tenplate (klass, "sirk'), "s ink');
ost_ped set_link function (filter->sinkpad, gst_ny fi Iter_link);
ost_ped set_getcaps function (filter->sinkpad, gst_ny filter_getcaps);
ost_pad set_chain function (filter->sinkpad, gst_ny f ilter_chain;
gst_el enent_add ped (GST_HEMENT (filter), filter->sin kpad);
[+ pad through vhich data goes out of the e enent */
filter->srcpad = gst_pad newfromtenpl ate (

ost_eenent_class get_pad tenplate (Klass, "src'), "sr c);
ost_ped set_|ink function (filter->srcpad, gst_ny fil ter_link);
ost_pad set_getcaps function (filter->srcpad, gst_ny filter_getcaps);
gst_el enent_add pad (GST_HBEMENT (filter), filter->src pad);

[--]

}

18

Chapter 4. Specifying the pads

4.1. The link function

The_link () is called during caps negotiation. This is the process wtherdinked pads decide on the
streamtype that will transfer between them. A full list operdefinitions can be found @hapter 13A
_link () receivesapointerto@tGps (../../gstreamer/html/gstreamer-GstCaps.html) sttt
defines the proposed streamtype, and can respond with &&r(GST_PAD_LINK_OK), “no”
(GST_PAD_LINK_REFUSED) or “don’t know yet” (GST_PAD_LINKDELAYED). If the element
responds positively towards the streamtype, that typeheilised on the pad. An example:

static GtPadli nkReturn
gst_ny filter link (GtPRad * pad,
const Gt Gyps * C3ps)
{
GtSructure xstructure = gst_caps get_structure (caps, 0);
GtMHF I ter *filter = GBT_MW HLTER (gst_pad get_parent (pad));
GtPd *otherpad = (pad = filter->srcpad) ? filter->sinkpad :
filter->srcpad;
Gt Padli nkReturn ret;
const gchar * MNE,

/+* Snce were an audo filter, v vat to hande raw aud o

* and fromthat audio type, we need to get the sanplerate and

* nunber of channel s. */

nmne = gst_structure get_nane (structure);

if (strenp (mne, "audi o/ x-rawint™) = 0) {
GBI VRN NG ("Wong ninetype % provided, we only support % s',
mne, "aud o x-rawint");
return GST_PAD LI NK FERLED)

}

/+ wre a filter and don't touch the properties of the data

* That neans we can set the gven caps umadified on the next

* eenent, and use that negatiation return vaue as ours. */
ret = gst_ped try set_caps (otherped, gst_caps copy (cap 9));
if (G PDUNKFALD (ret))

return ret;

/ * Cypsnego succeeded, get the streamproperties for internd

* Usage and return success. */

ost_structure get_int (structure, "rate', &ilter->sam perae);
ost_structure get_int (structure, "chamnds*, &ilter- >channel s);
gprint ("Gps negotiation succeeded Wth % H @% chane s\,

filter->sanplerate, filter->channd s);

return ret;

In here, we check the mimetype of the provided caps. Normgdly don’t need to do that in your own
plugin/element, because the core does that for you. We giogd it to show how to retrieve the

19

Chapter 4. Specifying the pads

mimetype from a provided set of caps. Types are storegt@ructure
(../..Igstreamer/html/gstreamer-GstStructure.htmiinally. AGt Gyps
(../..Igstreamer/html/gstreamer-GstCaps.html) is imgtinore than a small wrapper for 0 or more
structures/types. From the structure, you can also retfegperties, as is shown above with the function
gst_structure get_int ()

Ifyour link () function does not need to perform any specific operationi(iveill only forward
caps), you can set it tgst_pad proxy |ink . This is a link forwarding function implementation
provided by the core. It is useful for elements sucldastity

4.2. The getcaps function

The_getcaps () funtion is used to request the list of supported formats aongerties from the

element. In some cases, this will be equal to the formatsigeohby the pad template, in which case this
function can be omitted. In some cases, too, it will not delpgmanything inside this element, but it will
rather depend on the input from another element linked todl@ment’s sink or source pads. In that case,
you can usest_pad proxy_get caps as implementation, it provides getcaps forwarding in theco
However, in many cases, the format supported by this elepgmiot be defined externally, but is more
specific than those provided by the pad template. In this, gaseshould use aget caps () function.

In the case as specified below, we assume that our filter ig@bdsample sound, so it would be able to
provide any samplerate (indifferent from the samplerategjed on the other pad) on both pads. It
explains how agetcaps () can be used to do this.

static GtCGps *
gst_ny filter_getcaps (Gt Pad * pad)
{
GtMHF I ter *filter = GBT_W HLTER (gst_pad get_parent (pad));
GtRPad *otherpad = (pad = filter->srcpad) ? filter->sinkpad :
filter->srcpad;
GtGps *othercaps = gst_pad get_al | oved caps (ot herpad), * Caps;
gn n

if (gst_caps_is enpty (othercaps))
return ot hercaps;

/* \é support *ay » sanplerate, indfferent fromthe sanplerate
* supported by the linked el enents on both sides. */
for (i =0 1 < gst_caps get_size (othercaps); i+) {

GtSructure xstructure = gst_caps get_structure (athercaps, i);

gst_structure renove field (structure, "rate');
}
caps = gst_caps intersect (othercaps, gst_ped get ped t enpl ate_caps (ped));
ost_caps free (othercaps);

return caps;

20

Chapter 4. Specifying the pads

4.3. Explicit caps

Obviously, many elements will not need this complex mecsranbecause they are much simpler than
that. They only support one format, or their format is fixed the contents of the format depend on the
stream or something else. In those casgplicit capsare an easy way of handling caps. Explicit caps are
an easy way of specifying one, fixed, supported format on apads using explicit caps do not
implement their ownget caps () or_lirk () functions. When the exact format is known, an
elements usegst_pad set_expicit_caps () to specify the exact format. This is very useful for
demuxers, for example.

static vod
gst_ny filter_init (GtMHIter *filter)
{
Gt H enent @ ass xKlass = GBI HEMENT (BT AASS (filter);

(-]
filter->srcpad = gst_pad newfromtenpl ate (

ost_elenent_class get_pad tenplate (klass, "src'), "sr c);
ost_pad use explicit_caps (filter->srcpad);

[..]

}

static vod
ost_ny filter_sonefunction (GtMH Iter *filter)
{
GtGps *caps = ..
[--]
ost_pad set_explicit_caps (filter->srcpad, caps);
[--]
}

21

Chapter 5. The chain function

The chain function is the function in which all data procegdiekes place. In the case of a simple filter,
_chain () functions are mostly linear functions - so for each incontinéfer, one buffer will go out,
too. Below is a very simple implementation of a chain funatio

static vod
gst_ny filter_chain (GtPad * pad,
Gthta *data)
{
GtMWH I ter *filter = GSI_MW HLTER (gst_pad get_parent (pad));
GtBiffer *buf = GBT_BUFER (data);
if (Mfilter->silent)
gpint ("Hawve data of size % bytes!\n', GST BAAER I ZE (buf));
gst_pad push (filter->srcpad, GST_DATA (buf));
}

Obviously, the above doesn’t do much useful. Instead ofipigrthat the data is in, you would normally
process the data there. Remember, however, that buffereaedways writable. In more advanced
elements (the ones that do event processing), the inconaitagndight not even be a buffer.

static vod

gst_ny filter_chain (GtPad * pad,
Gthta *data)

{

GtMH I ter *filter = GSI_MW HLTER (gst_pad get_parent (pad));
Gt Buffer *buf, *outhuf;

if (ELISBAEN (data)) {
Gt Brent *evert = GSI_BVENT (deta);

swtch (GST_BVEN_TYFE (event)) {
case 5T BANT KB

[+ end-of-stream we shoud close dom al streamleftovers he re x/
ost_ny filter_stop processing (filter);
[+ fal-through to defaut event handing */
defaul t:

ost_ped evert_default (pad, event);
br eak;

}

return;

}

buf = GST_BHER (data);

outhuf = gst_ny filter_process data (buf);
ost_buffer_uref (buf);

if (louthuf) {

22

Chapter 5. The chain function

/* sonething vent wong - signd an error */
ost_elenent_error (GST_ HLEMENT (filter), SIFEAMI FALED , (N, (NUD));
return;

}

ost_pad push (filter->srcpad, GST_DATA (outhuf));
}

In some cases, it might be useful for an element to have dantes the input data rate, too. In that case,
you probably want to write a so-calléolop-basedlement. Source elements (with only source pads) can
also beget-basedalements. These concepts will be explained in the advarezgibs of this guide, and

in the section that specifically discusses source pads.

23

Chapter 6. What are states?

A state describes whether the element instance is inigid)iwhether it is ready to transfer data and
whether it is currently handling data. There are four stdeftned in GStreamer: GST_STATE_NULL,
GST_STATE_READY, GST_STATE_PAUSED and GST_STATE_PLA@GN

GST_STATE_NULL (from now on referred to as “NULL”") is the arflt state of an element. In this
state, it has not allocated any runtime resources, it haaded any runtime libraries and it can
obviously not handle data.

GST_STATE_READY (from now on referred to as “READY”) is thext state that an element can be
in. In the READY state, an element has all default resouncagtifme-libraries, runtime-memory)
allocated. However, it has not yet allocated or defined angtthat is stream-specific. When going from
NULL to READY state (GST_STATE_NULL_TO_READY), an elemesftould allocate any
non-stream-specific resources and should load runtimzalala libraries (if any). When going the other
way around (from READY to NULL, GST_STATE_READY_TO_NULLAn element should unload
these libraries and free all allocated resources. Exangblesch resources are hardware devices. Note
that files are generally streams, and these should thus lségdeved as stream-specific resources;
therefore, they shouldot be allocated in this state.

GST_STATE_PAUSED (from now on referred to as “PAUSED”) idat& in which an element is by all
means able to handle data; the only 'but’ here is that it dbastually handle any data. When going
from the READY state into the PAUSED state (GST_STATE_READ®_PAUSED), the element will
usually not do anything at all: all stream-specific info imgeally handled in thelink () , which is
called during caps negotiation. Exceptions to this rule fareexample, files: these are considered
stream-specific data (since one file is one stream), anddlttous be opened in this state change. When
going from the PAUSED back to READY (GST_STATE_PAUSED_ T@&ADY), all stream-specific
data should be discarded.

GST_STATE_PLAYING (from now on referred to as “PLAYING”) the highest state that an element
can be in. It is similar to PAUSED, except that now, data isialty passing over the pipeline. The
transition from PAUSED to PLAYING (GST_STATE_PAUSED_TCOLAYING) should be as small as
possible and would ideally cause no delay at all. The same fgo¢he reverse transition
(GST_STATE_PLAYING_TO_PAUSED).

6.1. Managing filter state

An element can be notified of state changes through a virtunadtfon pointer. Inside this function, the
element can initialize any sort of specific data needed bgldment, and it can optionally fail to go
from one state to another.

Do not g_assert for unhandled state changes; this is takerothy the GstElement base class.

24

Chapter 6. What are states?

static GtHenentSateRturn
gst_ny filter_change state (GtH enent * el enent) ;

static vod
ost_ny filter class init (GtMHIterQass * Kl ass)
{

Gt H enent @ ass el enent_class = GST_HEMENIT @ASS (Kl ass);

el enent_cl ass->change state = gst_ny filter_change st ae
}

static GtHenentSateRturn
gst_ny filter_change state (GtH enent * el enent)

{
GtMAlter +filter = GT.W ALTER (el enent):

swtch (GST_STATE TRANH TION (el enent)) {
case GBI_STATE NLL TO READY:
if (logst_nyfilter_alocate nenory (filter))
return GSI_STATE FA LURE
break;
case GBI_STATE READY TONULL:
ost_ny filter_free nenory (filter);
break;
defaul t:
break;
}

if (GST_HEMENT QASS (parent_cl ass)->change state)
return GST_HBMENT @ ASS (parent_cl ass)->change state (el enant);

return GoI_STATE SOESS

25

Chapter 7. Adding Arguments

The primary and most important way of controlling how an edatbehaves, is through GObject
properties. GObject properties are defined in_thess_init () function. The element optionally
implements aget_property () and a set_property () function. These functions will be
notified if an application changes or requests the value obpgrty, and can then fill in the value or take
action required for that property to change value integnall

/* properties */

enum {
AGO,
AGILENT
/[ALL ME */
¥
static vod gst_ny filter_set_property (G ect * 0 ect,
oui nt prop.id,
const GA ue *val ue,
Gar angpec * pspec)
static vod gst_ny filter_get property (G ect * 0 ect,
oui nt prop id,
GAl ue *val ue,
Gar anfpec * PSpeC) ;
static vod
gst_ny filter_class int (GtMHIterGass * Kl ass)
{
Gy ect G ass o ect_class = G@IETT_ AASS (K ass);
/* define properties */
goyect_class instal_property (ogect _class, ARGS LENT,

g paramspec bod ean ("silent”, "Slent",
"Wether to be very verbose or nat",
FAEY GPARVMREDRTB);

/* define virtud function pointers */

ohj ect_class->set_property = gst_ny filter_set_proper ty;

o ect _cl ass->get_property = gst_ny_filter_get_proper ty;
}

static vad
ost_ny filter_set_property (G ect * o ect,
oui rt propid,
const G ue * val Ue,
Grar angpec * pSpec)
{
GtMF I ter *filter = GBI W ALTER (o ect);

swtch (propid {
case ARG S LENT:
filter->silent = g val ue get_bod ean (val ue);

26

Chapter 7. Adding Arguments

gprint ("Slent argunent vas changed to 9%\n",
filter->silent ? "true" : "false");

break;
oefaul t:
G QRIECT WRN | N/ALI D FRIFERTY I D (object, propid, ps pec);
bresk;
}

}

static vad

ost_ny_filter_get_property (GRject * o ect,
oui rt propid,
GAl ue * val ue,
Gar anpec * PSpec)

{

GtMAlter +filter = GST. W ALTER (0 ect);

swtch (propid) {
case ARG S LENT:
gvaue set_bodean (vaue filter->silent);
break;
defaul t:
G QRIECT WRN | N/ALI D FRIFERTY I D (object, propid, ps pec);
break;

The above is a very simple example of how arguments are usegh@al applications - for example
GStreamer Editor - will use these properties and will dig@aiser-controlleable widget with which
these properties can be changed. This means that - for thenpydo be as user-friendly as possible - you
should be as exact as possible in the definition of the prpgéat only in defining ranges in between
which valid properties can be located (for integers, floats,), but also in using very descriptive (better
yet: internationalized) strings in the definition of the peoty, and if possible using enums and flags
instead of integers. The GObject documentation descriEsetin a very complete way, but below, we'll
give a short example of where this is useful. Note that usitegers here would probably completely
confuse the user, because they make no sense in this cortexéxample is stolen from videotestsrc.

typedef enum {
GBI M EOESTSRC SWTE
GBI M EOESTSRC S\
GST M EOESTSRC BAK
} GtV deatestsrcRattern;

[..]

#oefine GBI_TYFE M DEOESTIRC PATTERN ((gst_vi deotests rc pattern get_type ())
static Gype
ost_videotestsrc pattern get type (void)
{
static Gype videotestsrc pattern type = G

27

Chapter 7. Adding Arguments

if (!videotestsrc patterntype) {
static Gaunval be pattern types[] = {

{ GST M EOESTSC SWIE "snpte’, "SWIE 100%col or bars "1,

{ GBT M EOESIFC S\ "snow/, "Random (te evision smo w" 1,
{ GST M EOESIFCHAXK "black', "0%Hack' },

{ 0 NILL NI},

I3

Vi deotestsrc pattern type =
genumreg ster_static ("GtM dectestsrcRattern’,
pettern types);
}

return videatestsrc pattern type
}

[..]

static vod
ost_videotestsrc class init (GtvideatestsrcGass * Kl ass)
{
[--]
goyect_class instal_property (GABIECT AASS (klas s), ARGTYE
g paramspec_enum ("pettern’, "Rattern’,
"Type of test pattern to generate",
GL_TYEM EOESTFC PAITERN 1, GPRWMRADR TH)

28

Chapter 8. Signals

GObject signals can be used to notify applications of evepesific to this object. Note, however, that
the application needs to be aware of signals and their mgasinif you're looking for a generic way for
application-element interaction, signals are probablywitat you're looking for. In many cases,
however, signals can be very useful. See the GObject dociaiem
(http://lwww.le-hacker.org/papers/gobject/index.htfat all internals about signals.

29

Chapter 9. Building a Test Application

Often, you will want to test your newly written plugin in an simall setting as possible. Usually,
gst-lauch is a good first step at testing a plugin. However, you will ofteeed more testing features
than gst-launch can provide, such as seeking, eventsaatidty and more. Writing your own small
testing program is the easiest way to accomplish this. Tédan explains - in a few words - how to do
that. For a complete application development guide, seAppdication Development Manual
(../../manual/html/index.html).

At the start, you need to initialize the GStreamer core liptay callinggst_init () . Youcan
alternatively callgst_init_wth popt_tades () , which will return a pointer to popt tables. You
can then use libpopt to handle the given argument table rasavill finish the GStreamer intialization.

You can create elements usiggy_el enent_factory nake () , where the first argument is the
element type that you want to create, and the second argusnefriee-form name. The example at the
end uses a simple filesource - decoder - soundcard outpdir@pleut you can use specific debugging
elements if that's necessary. For exampleidntity element can be used in the middle of the
pipeline to act as a data-to-application transmitter. This be used to check the data for misbehaviours
or correctness in your test application. Also, you can ukaesink element at the end of the pipeline
to dump your data to the stdout (in order to do this, setithg property to TRUE). Lastly, you can use
theefence element (indeed, an eletric fence memory debugger wrapeereat) to check for memory
errors.

During linking, your test application can use fixation orditd caps as a way to drive a specific type of
data to or from your element. This is a very simple and efiectvay of checking multiple types of input
and output in your element.

Running the pipeline happens through thkebiniterate () function. Note that during running,
you should connect to at least the “error” and “eos” sighalste pipeline and/or your plugin/element to
check for correct handling of this. Also, you should add @sémto the pipeline and make sure your
plugin handles these correctly (with respect to clockinggiinal caching, etc.).

Never forget to clean up memory in your plugin or your testlaygpion. When going to the NULL state,
your element should clean up allocated memory and caches, Akhould close down any references
held to possible support libraries. Your application sldautef () the pipeline and make sure it
doesn’t crash.

#ind we <gst/gst. h>

gint
nain (gn arcy,

ochar - *argv])
{

Gt H enent +pipeling *filesrc, * decoder, +filter, *Sink;

30

Chapter 9. Building a Test Application

[+ initidization */
gst_int (&arge, &argy);

/| * create dennts */
pipeline = gst_pipeline new ("ny_pipeline);

filesrc = gst_eenent factory nake (“filesrc', "ny file source');

decoder = gst_e enent_factory nake ("nad', "ny_decoder”);

filter = gst_el enent_factory nake ("ny filter", "ny fil ter");

sink = gst_e enent_factory nake ("osssirk', "aud osirk");

goyect_set (GAIET (filesrc), "location’, argql, N ub;

/* link everything together */

ost_elenent |ink nany (filesrc, decoder, filter, sink, N ub;
gst_binadd nany (GT_BN (pipeline), filesrc, decoder, filter, sink, NLL);
[* run */

ost_elenent_set_state (pipeline, GBI_STATE HAYING;
vhile (gst_biniterate (GG BN (pipeine)));

[+ clean up = */
ost_elenent_set_state (pipeline, GBI_STATE NLL);
gst_oject_urref (GB_RIECT (pipelineg));

return O

31

Chapter 10. Creating a Filter with a Filter
Factory

A plan for the future is to create a FilterFactory, to makephacess of making a new filter a simple
process of specifying a few details, and writing a small ami@f code to perform the actual data
processing. Ideally, a FilterFactory would perform thekgasf boilerplate creation, code functionality
implementation, and filter registration.

Unfortunately, this has not yet been implemented. Even veloemeone eventually does write a
FilterFactory, this element will not be able to cover all gwssibilities available for filter writing. Thus,
some plugins will always need to be manually coded and re@gdt

Here is a rough outline of what is planned: You run the Fileatery and give the factory a list of
appropriate function pointers and data structures to defiiiieer. With a reasonable measure of
preprocessor magic, you just need to provide a name for tiee dihd definitions of the functions and
data structures desired. Then you call a macro from withiigiol_init() that registers the new filter. All
the fluff that goes into the definition of a filter is thus be feddrom view.

32

lll. Advanced Filter Concepts

By now, you should be able to create basic filter elementscirateceive and send data. This is the
simple model that GStreamer stands for. But GStreamer camubt more than only this! In this

chapter, various advanced topics will be discussed, susbteluling, special pad types, clocking,
events, interfaces, tagging and more. These topics areiga that makes GStreamer so easy to use for
applications.

Chapter 11. How scheduling works

Scheduling is, in short, a method for making sure that evisment gets called once in a while to
process data and prepare data for the next element. Likesvisgrnel has a scheduler to for processes,
and your brain is a very complex scheduler too in a way. Rargloailing elements’ chain functions
won't bring us far, however, so you'll understand that theestulers in GStreamer are a bit more
complex than this. However, as a start, it's a nice pictuigtr&mer currently provides two schedulers: a
basicscheduler and aoptimalscheduler. As the name says, the basic scheduler (“basief) i
unoptimized, but very complete and simple scheduler. Thienah scheduler (“opt”), on the other hand,

is optimized for media processing, but therefore also morepex.

Note that schedulers only operate on one thread. If youlipgeontains multiple threads, each thread
will run with a separate scheduler. That is the reason whyelgments running in different threads need
a queue-like element @A element) in between them.

11.1. The Basic Scheduler

Thebasicscheduler assumes that each element is its own process.Weise UNIX processes or
POSIX threads for this, however; instead, we use so-caltethreadsCo-threads are threads that run
besides each other, but only one is active at a time. The #alyaiof co-threads over normal threads is
that they're lightweight. The disadvantage is that UNIX @$X do not provide such a thing, so we
need to include our own co-threads stack for this to run.

The task of the scheduler here is to control which co-thread at what time. A well-written scheduler
based on co-threads will let an element run until it outpuis piece of data. Upon pushing one piece of
data to the next element, it will let the next element run, smon. Whenever a running element requires
data from the previous element, the scheduler will switcthéd previous element and run that element
until it has provided data for use in the next element.

This method of running elements as needed has the disadeahia a lot of data will often be queued in
between two elements, as the one element has provided ddtemther element hasn’t actually used it
yet. These storages of in-between-data are callgdensand they can be visualized as a light “queue”.

Note that since every element runs in its own (co-)thread stheduler is rather heavy on your system
for larger pipelines.

11.2. The Optimal Scheduler

Theoptimalscheduler takes advantage of the fact that several eler@mtse linked together in one
thread, with one element controlling the other. This workéadlows: in a series of chain-based

34

Chapter 11. How scheduling works

elements, each element has a function that accepts onegbidata, and it calls a function that provides
one piece of data to the next element. The optimal schedullenake sure that thest_pad push ()
function of the first elemerdirectly calls the chain-function of the second element. This sigguifily
decreases the latency in a pipeline. It takes similar agggnof other possibilities of short-cutting the
data path from one element to the next.

The disadvantage of the optimal scheduler is that it is nigt fionplemented. Also it is badly
documented; for most developers, the opt scheduler is @nelack box. Features that are not
implemented include pad-unlinking within a group while nimg, pad-selecting (i.e. waiting for data to
arrive on a list of pads), and it can’t really cope with muftput/-output elements (with the elements
linked to each of these in-/outputs running in the same threght now.

Some of our developers are intending to write a new schediitailar to the optimal scheduler (but
better documented and more completely implemented).

35

Chapter 12. How a loopfunc works

A lop () functionis a function that is called by the scheduler, bubwit providing data to the
element. Instead, the element will become responsibleciguiaing its own data, and it will still be
responsible of sending data over to its source pads. Thisadetoticeably complicates scheduling; you
should only write loop-based elements when you need to. itynthain-based elements are preferred.
Examples of elements thhaiveto be loop-based are elements with multiple sink pads. Shee
scheduler will push data into the pads as it comes (and thghtmiot be synchronous), you will easily
get asynchronous data on both pads, which means that théhdatarives on the first pad has a different
display timestamp than the data arriving on the second ptittaame time. To get over these issues,
you should write such elements in a loop-based form. Otlemehts that areasierto write in a
loop-based form than in a chain-based form are demuxersanses. It is not required to write such
elements in a loop-based form, though.

Below is an example of the easiest loop-function that onenrée:

static vod gst_ny filter_| oopfunc (GstH enent * el enent);
static vod
gst_ny filter_init (GtMWHIter *filter)
{
[.-]
ost_el enent_set | oopfunc (GST_HEMENT (filter), gst_ny _filter_l oopfunc);
[.-]
}
static vod
ost_ny filter_| oopfunc (Gt H enent * el enent)
{

GtMWH I ter *filter = GSI_W HLTER (e enent);
Gthta +data

/* acquire deta */
data = gst_pad pu |l (filter->sinkpad);

[+ send data */
ost_pad push (filter->srcpad, deta);

Obviously, this specific example has no single advantageabebain-based element, so you should
never write such elements. However, it's a good introdurctithe concept.

36

Chapter 12. How a loopfunc works

12.1. Multi-Input Elements

Elements with multiple sink pads need to take manual coptret their input to assure that the input is
synchronized. The following example code could (shouldy&ed in an aggregator, i.e. an element that
takes input from multiple streams and sends it out interrtehdNot really useful in practice, but a good
example, again.

typedef struct GtMHIterlnputGntext {
ghoolean ecs;
GtBirfer x| astbuf ;

} GtMHIterlnputGntext;

[..]

static vod

gst_ny filter_init (GtMHIter *filter)

{
Gt H enent G ass +xklass = GBI HBEMENT GET AASS (filter);
Gt MH | terl nput Gt ext *context;

filter->sinkpadl = gst_pad newfromtenpl ate (
ost_eenent_class get_pad tenplate (Klass, "sirk'), "s ink 1");

cotext = gnewd (GtMHIterlnputGntext, 1);

ost_pad set_private data (filter->sinkpadl, context);
[--]

filter->sinkpad2 = gst_pad newfromtenpl ate (
ost_eenent_class get pad tenplate (Klass, "sirk'), "s ink 2');

cotext = gnew) (GtMHIterlnputGntext, 1);

ost_ped set_private data (filter->sinkpad?, context);
[--]

ost_el enent_set | oopfunc (GBT_BLEMENT (filter),

gst_ny_filter_I oopfunc);

}
[--]
static vad
gst_ny filter_| oopfunc (GstH enent * el enent)
{
GtMH I ter *filter = GSI_W HLTER (e enent);
Gist rpadist;
Gt MH | terl nput Gont ext *first_context = NLL;

/* @ over each sink pad, update the cache if needed, hand e BB
* o nonrresponding streans and see which data we shoud hand e
* next. */
for (padist = gst_elenent_get padist (el enent);
padist !'= NLL; padist = glist_next (padist)) {
GtPd *pad = GBI PD (pedist->data);
Gt MF | terl nput Gont ext *context = gst_pad get_private deta (pad);

37

Chapter 12. How a loopfunc works

if (G PDIS S (pad))
conti nue

vhile (GST PIDIS UELE (pad) &&
lcortext->e0s && !context-> asthuf) {
GtDta +data = gst_pad pul (pad);

if (BLISBAEN (data)) {
[+ V@ hand e events inmediately */
Gt Brent *event = GBI BVENT (data);

swtch (GST_BVEN_TYFE (evert)) {
case GBT_BVENT_EB
cotext->ecs = TRE
ost_evert_urref (evert);
break;
case GST_BVEANT_D SCNT NLOLS
gwanng ("HEP Hwdo | hand e this?');
[+ fal-through */
defaul t:
ost_ped evert_default (pad, evert);
break;
}
} ese {
[+ V@ store the buffer to hand e synchroni zation bel ow */
context-> astbuf = GST_BFHER (data);
}
}

/* synchronize streans by aways using the earliest buffer */
if (context->asthuf) {
if (Mfirst_context) {
first_cotext = context;
} dse {
if (GBI BAER T MESTAMP (context->l asthbuf) <
GBT_BUFER T MESTAWP (first_context->l asthbuf))
first_cotext = context;

}
}
}
/+ If wve hande no data a adl, wre a the endof-stream so
* ve shoud signd EXB */
if (Ifirst_cotext) {
ost_pad push (filter->srcpad, GBI DNTA (gst_evert_new (Gl BAT E9));
ost_el enent_set_ecs (e enant);
return;
}
/* S we do have datal Let’s forvard that to our source pad. */
ost_pad push (filter->srcpad, GBI DNA (first_context- S asthuf));

first_context-> astbuf = NULL;

38

Chapter 12. How a loopfunc works

Note that a loop-function is allowed to return. Better yeh@p functionhas toreturn so the scheduler
can let other elements run (this is particularly true fordppgimal scheduler). Whenever the scheduler
feels right, it will call the loop-function of the elementaig.

12.2. The Bytestream Object

A second type of elements that wants to be loop-based, asotballed bytestream-elements. Until now,
we've only dealt with elements that receive or pull full e of a random size from other elements.
Often, however, it is wanted to have control over the stretenlgyte-level, such as in stream parsers or
demuxers. Itis possible to manually pull buffers and mehgert until a certain size; it is easier, however,
to use bytestream, which wraps this behaviour.

To use bytestream, you need to load the bytestream when Yuggings loaded; you should do this
before registering the element, which you learned preWansSection 3.7 After that, all functions of
the bytestream plugin are available in your plugin as well.

#incl ude <gst/ byt estreanibyt estreamh>

static ghod ean
plugnint (GtRugn *plugin)
{
if ('gst_library |oad ("gstbytestrea))
return FASE
/* and now actudly register the e enent */

[..]
}

Bytestream-using elements are usually stream parsersyundes. For now, we will take a parser as an
example. Demuxers require some more magic that will be aatdtlater in this guideChapter 14The
goal of this parser will be to parse a text-file and to push diaehof text as a separate buffer over its
source pad.

static vod
gst_ny filter_| oopfunc (GstH enent * el enent)
{
GtMH I ter *filter = GSI_W HLTER (e enent);
gnt n num
Qun8 xdaa

for (n =0 ; nt) {

39

Chapter 12. How a loopfunc works

num = gst_hytestreampeek bytes (filter->bs, &ata, n + 1)
if (num!=n+1) {

Gt Bvent *evet = NULL;

Quint renaining

ost_bytestreamget_status (filter->bs, &emining &ev en);
if (evert) {
if (G _BEN_TYE (evet) = G BENTEY) {
[+ end-of-file */
ost_ped push (filter->srcpad, GBI DATA (evert));
gst_el enent_set_eos (e enant);

return;
}
ost_event_uref (evert);
}

/* failed to read - throw error and bail out */
ost_eenent_error (elenent, STREAV READ (NUL), (N);

return;

}

[+ check if the last character is a newine */
if (datan ='\n) {
GtBirffer *buf = gst_buffer_newand dloc (n + 1);

[+ read the line of text wthout newine - then flush the newine */
ost_bytestreampeek data (filter->bs, &ata, n);

nenepy (GST_ BIHFFER DATA (buf), data, n);

G BAAR DA (buf)[n] = "\0;

ost_bytestreamflush fast (filter->bs, n + 1);

gprint ("Russhing '%'\n", GBI BLHFER DATA (buf));

ost_pad push (filter->srcpad, GBT_DATA (buf));

return;
}
}
}

static vod
ost_ny filter_change state (GtH enent * el enent)

{
GtMH I ter *filter = GSI_W HLTER (e enent);

swtch (CGST_STATE TRANS TION (el enent)) {

case GBI_STATE RADY TOPALED
filter->hs = gst_bytestreamnew (filter->si nkpad);
break;

case GBI_STATE PALEED TO READY:
gst_bytestreamdestroy (filter->hs);
break;

defaul t:

40

Chapter 12. How a loopfunc works

br eak;
}

if (GST_HEMEINT QASS (parent_cl ass)->change state)
return GST_HBMENT @ ASS (parent_cl ass)->change state (el enant);

retun GBI STATE SUBESS
}

In the above example, you'll notice how bytestream handldieling of data for you. The result is that
you can handle the same data multiple times. Event handiibgtestream is currently sort @facky but
it works quite well. The one big disadvantage of bytestreathat itrequiresthe element to be
loop-based. Long-term, we hope to have a chain-based usatsien of bytestream, too.

12.3. Adding a second output

WRITEME

12.4. Modifying the test application

WRITEME

41

Chapter 13. Types and Properties

There is a very large set of possible types that may be useast®gata between elements. Indeed, each
new element that is defined may use a new data format (thoughuat least one other element
recognises that format, it will be most likely be uselesgsinothing will be able to link with it).

In order for types to be useful, and for systems like autogérg to work, it is necessary that all elements
agree on the type definitions, and which properties are reddior each type. The GStreamer framework
itself simply provides the ability to define types and partarg but does not fix the meaning of types
and parameters, and does not enforce standards on theoorefitiew types. This is a matter for a policy
to decide, not technical systems to enforce.

For now, the policy is simple:
- Do not create a new type if you could use one which alreadytexis

- If creating a new type, discuss it first with the other GStreadevelopers, on at least one of: IRC,
mailing lists.

- Try to ensure that the name for a new format is as unlikely tflezi with anything else created
already, and is not a more generalised name than it shoulbbbexample: "audio/compressed"
would be too generalised a name to represent audio data egegat with an mp3 codec. Instead
"audio/mp3" might be an appropriate name, or "audio/cosgrd" could exist and have a property
indicating the type of compression used.

- Ensure that, when you do create a new type, you specify itlglemd get it added to the list of known
types so that other developers can use the type correctly whigng their elements.

13.1. Building a Simple Format for Testing

If you need a new format that has not yet been defined irL@tiof Defined Typesyou will want to

have some general guidelines on mimetype naming, propentié such. A mimetype would ideally be
one defined by IANA,; else, it should be in the form type/x-namieere type is the sort of data this
mimetype handles (audio, video, ...) and name should betbémgespecific for this specific type. Audio
and video mimetypes should try to support the general avidied properties (see the list), and can use
their own properties, too. To get an idea of what propertieghink are useful, see (again) the list.

Take your time to find the right set of properties for your tyfplere is no reason to hurry. Also,
experimenting with this is generally a good idea. Experéelearns that theoretically thought-out types
are good, but they still need practical use to assure thgtthre their needs. Make sure that your
property names do not clash with similar properties usedhertypes. If they match, make sure they
mean the same thing; properties with different types bustme names areot allowed.

42

Chapter 13. Types and Properties

13.2. Typefind Functions and Autoplugging

With only definingthe types, we’re not yet there. In order for a random datadileet recognized and
played back as such, we need a way of recognizing their typefdhe blue. For this purpose,
“typefinding” was introduced. Typefinding is the process efatting the type of a datastream.
Typefinding consists of two separate parts: first, there'srdimited number of functions that we call
typefind functionswhich are each able to recognize one or more types from art gsiggam. Then,
secondly, there’s a small engine which registers and catlk ef those functions. This is the typefind
core. On top of this typefind core, you would normally writeartoplugger, which is able to use this
type detection system to dynamically build a pipeline acban input stream. Here, we will focus only
on typefind functions.

A typefind function ususally lives ipst-pl ugi ns/ gst/ t ypefi nd/ gst t ypef i ndf uncti ons. ¢ ,
unless there’s a good reason (like library dependencign)ttd elsewhere. The reason for this
centralization is to decreate the number of plugins thatitede loaded in order to detect a stream’s
type. Below is an example that will recognize AVI files, whigfart with a “RIFF” tag, then the size of
the file and then an “AVI " tag:

static vod
gst_ny typefind function (Gt TypeH nd *tf,
gpoi nter dat @)
{
quint8 xdata = gst_type find peek (tf, 0 12);
if (dta &
GJ N2 FRMLE (&(gquint 32 *) dad[0) = GLMKERRTC ('R,'I",’F,"F) &
GJ NI32 FRMLE (& (guint32 *) dag)[2) = GBLMKEFRART ("A,'V,'I'," ") {
ost_type find suggest (tf, GBT_TYFE HND MX MM
gst_caps newsinpl e ("vided x-nsvi ded’, NULL));
}
}
static ghod ean
pugnint (GtRugn *plugin)
{
static gchar *exts[] = { "ai", NULL };
if (ost_typefindregister (pugin "', GBI _RANKFRM\ RY,
ost_ny typefind function, exts,
gst_caps newsinpl e ("vided x-nsvi ded’,
NLL), NLL))
return FASE
}
Note thatgst - pl ugi ns/ gst/ typefi nd/ gst t ypefi ndf uncti ons. ¢ has some simplification

macros to decrease the amount of code. Make good use of thasewant to submit typefinding
patches with new typefind functions.

43

Chapter 13. Types and Properties

Autoplugging will be discussed in great detail in the chap#ledWriting an Autoplugger

13.3. List of Defined Types

Below is a list of all the defined types in GStreamer. They alit 8p in separate tables for audio, video,
container, subtitle and other types, for the sake of redithalBelow each table might follow a list of

notes that apply to that table. In the definition of each tyyetry to follow the types and rules as defined
by IANA (http://www.isi.edu/in-notes/iana/assignmémsdia-types/media-types) for as far as possible.

Jump directly to a specific table:

- Table of Audio Types

. Table of Video Types

- Table of Container Types
- Table of Subtitle Types

- Table of Other Types

Note that many of the properties are metuired but ratheroptionalproperties. This means that most of
these properties can be extracted from the container hdadedhat - in case the container header does
not provide these - they can also be extracted by parsingrbans header or the stream content. The
policy is that your element should provide the data that @ws about by only parsing its own content,
not another element’s content. Example: the AVI headeriges/samplerate of the contained audio
stream in the header. MPEG system streams don’t. This mbeabart AVI stream demuxer would
provide samplerate as a property for MPEG audio streams;egsean MPEG demuxer would not. A
decoder needing this data would require a stream parsetweba two extract this from the header or
calculate it from the stream.

Table 13-1. Table of Audio Types

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values

All audio types.

audio/* | All rate integer | greater | The sample rate of the data, in samples (per channgel)
audio than O |per second.
types | channeldnteger | greater | The number of channels of audio data.
than 0

All raw audio types.

44

Chapter 13. Types and Properti

es

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values
audio/xq Un- endiannasteger | G_BIG_|ENiRIANer of bytes in a sample. The value
raw-int | struc- (1234) |G_LITTLE_ENDIAN (4321) means “little-endian”
tured or (byte-order is “least significant byte first”). The value
and G_LITTL& BNDIBNDIAN (1234) means “big-endian” (byte
uncom- (4321) |orderis “most significant byte first”).
pressed signed | boolean TRUE | Whether the values of the integer samples are signed or
raw or not. Signed samples use one bit to indicate sign
fixed- FALSE | (negative or positive) of the value. Unsigned samples
integer are always positive.
audio width |integer | greater | Number of bits allocated per sample.
data. than O
depth |integer | greater | The number of bits used per sample. This must be |ess
than 0 |than or equal to the width: If the depth is less than the
width, the low bits are assumed to be the ones used. For
example, a width of 32 and a depth of 24 means that
each sample is stored in a 32 bit word, but only the low
24 bits are actually used.
audio/xq Un- endiannasteger | G_BIG_|ENiRIANer of bytes in a sample. The value
raw- struc- (1234) |G_LITTLE_ENDIAN (4321) means “little-endian”
float tured or (byte-order is “least significant byte first”). The value
and G_LITT& BNDIANDIAN (1234) means “big-endian” (byte
uncom- (4321) | order is “most significant byte first”).
pressed width | integer | greater | The amount of bits used and allocated per sample.
raw than 0
floating-
point
audio | ffer- |integer | Any The number of frames per buffer. The reason for this
data. | frames property is that the element does not need to reuse
buffers or use data spanned over multiple buffers, so
this property - when used rightly - will decrease
latency. Note that some people think that this propefty
is very ugly, whereas others think it is vital for the use
of GStreamer in professional audio applications. The
special value zero is reserved and implies that size |s

variable between buffers.

All encoded aud

io types.

audio/xA
ac3

AC-3
or A52
audio

streams,.

There are currently no specific properties defined o
needed for this type.

r

45

Chapter 13. Types and Properti

es

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values
audio/x{ ADPCM layout |string The layout defines the packing of the samples in the
adpcm | Audio “quick- |stream. In ADPCM, most formats store multiple
streams. time”, |samples per channel together. This number of samples
“dvi, |differs per format, hence the different layouts. On the
“mi- long term, we probably want this variable to die and use
crosoft”| something more descriptive, but this will do for now.
or
“4xm”.
block_aligneger | Any Chunk buffer size.
audio/x4 Audio There are currently no specific properties defined of
cinepak| as pro- needed for this type.
vided
ina
Cinepak
(Quick-
time)
stream.
audio/x4 Audio There are currently no specific properties defined of
dv as pro- needed for this type.
vided
ina
Digital
Video
stream.
audio/x- Free There are currently no specific properties defined of
flac Loss- needed for this type.
less
Audio
codec
(FLAC).
audio/x4 Data There are currently no specific properties defined of
gsm en- needed for this type.
coded
by the
GSM
codec.
audio/x4 A-Law There are currently no specific properties defined of
alaw | Audio. needed for this type.

46

Chapter 13. Types and Properti

es

de

ctly

r

0]

a

r

Mime | DescriptiBroperty Property Property Property Description
Type Type | Values
audio/x4{ Mu- There are currently no specific properties defined o
mulaw | Law needed for this type.
Audio.
audio/x{ MACE | macevefsiteger |3 or 6 | The version of the MACE audio codec used to encq
mace |Audio the stream.
(usedin
Quick-
time).
audio/mpAgdio | mpegversiteger | 1, 2 or | The MPEG-version used for encoding the data. Thg
data 4 value 1 refers to MPEG-1, -2 and -2.5 layer 1, 2 or 3.
com- The values 2 and 4 refer to the MPEG-AAC audio
pressed encoding schemes.
using |framed |booleanf O or1 | A true value indicates that each buffer contains exa
the one frame. A false value indicates that frames and
MPEG buffers do not necessarily match up.
audio
encod- | layer integer | 1, 2, or | The compression scheme layer used to compress the
ing 3 data(only if mpegversion=1)
sce-
hem. : X) . .
bitrate |integer | greater | The bitrate, in bits per second. For VBR (variable
than O |bitrate) MPEG data, this is the average bitrate.
audio/x4 Data There are currently no specific properties defined o
gdm2 |en- needed for this type.
coded
by the
QDM
version
2
codec.
audio/x{ Realmefiaversiarinteger | 1 or 2 | The version of the Real Audio codec used to encod
pn- Audio the stream. 1 stands for a 14k4 stream, 2 stands for,
realaudialata. 28k8 stream.
audio/x4 Data There are currently no specific properties defined o
speex |en- needed for this type.
coded
by the
Speex
audio
codec

47

Chapter 13. Types and Properties

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values
audio/x Vorbis There are currently no specific properties defined of
vorbis |audio needed for this type.

data
audio/xq Windowsvmaversioteger | 1,2 or 3| The version of the WMA codec used to encode the
wma | Media stream.

Audio
audio/xq Ensonid There are currently no specific properties defined of
paris | PARIS needed for this type.

audio
audio/x{ Amiga There are currently no specific properties defined of
SVX IFF/ needed for this type.

SVX8/

SV16

audio
audio/x{ Sphere There are currently no specific properties defined of
nist NIST needed for this type.

audio
audio/x4 Sound There are currently no specific properties defined of
voc Blaster needed for this type.

VOC

audio
audio/x- Berkeley/IRCAM/CARL There are currently no specific properties defined of
ircam |audio needed for this type.
audio/xq Sonic There are currently no specific properties defined of
w64 Foundry’s needed for this type.

64 bit

RIFF/WAV

Table 13-2. Table of Video Types

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values

All video types.

video/* | All width |integer | greater | The width of the video image
video than 0

types | height |integer | greater | The height of the video image
than 0

48

Chapter 13. Types and Properti

es

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values
frameratelouble | greater | The (average) framerate in frames per second. Notg
than O |that this property does not guaranteaimyway that it
will actually come close to this value. If you need a
fixed framerate, please use an element that provides
that (such as “videodrop”).
All raw video types.
video/x-| YUV |format |fourcc | YUY2, | The layout of the video. See FourCC definition site
raw- (or YVYU, |(http://www.fourcc.org/) for references and definitions.
yuv Y'Cb'Cr UYVY, |YUY2, YVYU and UYVY are 4:2:2 packed-pixel,
video Y41P, |Y41P is 4:1:1 packed-pixel and IYU2 is 4:4:4
format. IYU2, |packed-pixel. Y42B is 4:2:2 planar, YV12 and 1420 are
Y42B, |4:2:0 planar, Y41B is 4:1:1 planar and YUV9 and
YV12, | YVU9 are 4:1:0 planar. Y800 contains Y-samples only
1420, | (black/white).
Y41B,
YUV9,
YVU9,
Y800
video/x-| Red- |bpp integer | greater | The number of bits allocated per pixel. This is usually
raw-rgb| Green- than 0 |16, 24 or 32.
Blue depth |integer | greater | The number of bits used per pixel by the R/G/B
(RBG) than O |components. This is usually 15, 16 or 24.
video. | endiannigsteger | G_BIG |EN@IANer of bytes in a sample. The value
(1234) |G_LITTLE_ENDIAN (4321) means “little-endian”
or (byte-order is “least significant byte first”). The value
G_LITT& BNDIENDIAN (1234) means “big-endian” (byte
(4321) | order is “most significant byte first”). For 24/32bpp,
this should always be big endian because the byte order
can be given in both.
red_maskteger | any The masks that cover all the bits used by each of the
green_mask samples. The mask should be given in the endianness
and specified above. This means that for 24/32bpp, the
blue_mask masks might be opposite to host byte order (if you are
working on little-endian computers).
All encoded video types.
video/x-| 3ivx There are currently no specific properties defined of
3ivx video. needed for this type.
video/x-{ DivX |divxversiornieger |3, 4 or | Version of the DivX codec used to encode the stream.
divx video. 5

49

Chapter 13. Types and Properties

Mime | DescriptiBroperty Property Property Property Description
Type Type | Values
video/x- Digital |systemstbembean FALSE | Indicates that this stream it a system container
dx Video. stream.
video/x- FFMpeg ffvversigimteger | 1 Version of the FFMpeg video codec used to encode the
ffv video. stream.
video/x- H-263 There are currently no specific properties defined of
h263 |video. needed for this type.
video/x-| H-264 There are currently no specific properties defined of
h264 |video. needed for this type.
video/x-| Huffyuv There are currently no specific properties defined of
huffyuv | video. needed for this type.
video/x- Indeo |indeoversiteger | 3 Version of the Indeo codec used to encode this stream.
indeo |video.
video/x-| Motion- There are currently no specific properties defined of
ireg JPEG needed for this type. Note that video/x-jpeg only
video. applies to Motion-JPEG pictures (YUY2 colourspace).
RGB colourspace JPEG images are referred to as
image/jpeg (JPEG image).
video/mpd&EG | mpegvelrsiteger | 1, 2 or | Version of the MPEG codec that this stream was
video. 4 encoded with. Note that we have different mimetypes
for 3ivx, XviD, DivX and "standard" ISO MPEG-4.
This isnota good thing and we’re fully aware of this.
However, we do not have a solution yet.
systemstbeatean FALSE | Indicates that this streami®ta system container
stream.
video/x-| Microsoftnsmpegirgegien | 41, 42 | Version of the MS-MPEG-4-like codec that was used
msmpegMPEG- or43 |to encode this version. A value of 41 refers to MS
4 video MPEG 4.1, 42 to 4.2 and 43 to version 4.3.
devia-
tions.
video/x-| Microsoftnsvidegwetesien | 1 Version of the codec - always 1.
msvideg&bdiec 1
(oldish
codec).

50

Chapter 13. Types and Properti

es

Mime | DescriptiBroperty Property Property Property Description
Type Type | Values
video/x- Realmeimversiomteger | 1, 2 or | Version of the Real Video codec that this stream was
pn- video. 3 encoded with.
realvidep
video/x-{ RLE layout |string |"microsoff’he RLE format inside the Microsoft AVI container
rle anima- or has a different byte layout than the RLE format inside
tion "quick- | Apple’s Quicktime container; this property keeps track
format. time" | of the layout.
depth |integer | 1to 64 | Bitdepth of the used palette. This means that the palette
that belongs to this format defines 2*depth colors.
palette_|dasaBuffer Buffer containing a color palette (in native-endian
RGBA) used by this format. The buffer is of size
4*2"depth.
video/x- Sorensesvqversjameger | 1 or 3 | Version of the Sorensen codec that the stream was
svq Video. encoded with.
video/x-| Tarkin There are currently no specific properties defined of
tarkin | video. needed for this type.
video/x-| Theora There are currently no specific properties defined of
theora |video. needed for this type.
video/x-| VP-3 There are currently no specific properties defined of
vp3 video. needed for this type. Note that we have different
mimetypes for VP-3 and Theora, which is not
necessarily a good idea. This could probably be
improved.
video/x- Windowsvmvversioteger | 1,2 or 3| Version of the WMV codec that the stream was
wmyv | Media encoded with.
Video
video/x-| XviD There are currently no specific properties defined of
xvid video. needed for this type.
All image types.
image/jpdgint There are currently no specific properties defined of
Picture needed for this type. Note that image/jpeg only applies
Expert to RGB-colourspace JPEG images; YUY2-colourspace
Group JPEG pictures are referred to as video/x-jpeg ("Motion

Image.

JPEG").

51

Chapter 13. Types and Properties

Mime
Type

Descrip

iBroperty

Property
Type

Property
Values

Property Description

image/prigortable

Net-
work
Graph-
ics
Image.

There are currently no specific properties defined of
needed for this type.

Table 13-3. Table of Container Types

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values
video/x- Advanced There are currently no specific properties defined of
ms-asf | Stream- needed for this type.
ing
Format
(ASF).
video/x-| AVI. There are currently no specific properties defined of
msvided needed for this type.
video/x- Digital | systemgtoemiean TRUE | Indicates that this is a container system stream rather
dv Video. than an elementary video stream.
video/x-| Matroska. There are currently no specific properties defined of
matroskia needed for this type.
video/mpdgtion | systemstbembean TRUE | Indicates that this is a container system stream rather
Pic- than an elementary video stream.
tures
Expert
Group
System
Stream.
applicatj@gogg There are currently no specific properties defined of
needed for this type.
video/quiQkiickéme. There are currently no specific properties defined of
needed for this type.
video/x- Digital |systemstbembean TRUE | Indicates that this is a container system stream rather
pn- Video. than an elementary video stream.
realvidep

52

Chapter 13. Types and Properties

Mime | DescriptiBroperty Property Property Property Description

Type Type |Values
audio/x{ WAV. There are currently no specific properties defined of
wav needed for this type.

Table 13-4. Table of Subtitle Types

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values

None defined yet.

Table 13-5. Table of Other Types

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values

None defined yet.

53

Chapter 14. Request and Sometimes pads

Until now, we've only dealt with pads that are always avd#ablowever, there’s also pads that are only
being created in some cases, or only if the application retgubke pad. The first is calledsametimes

the second is calledraquestpad. The availability of a pad (always, sometimes or request be seen in
a pad’s template. This chapted will discuss when each oftbeg useful, how they are created and
when they should be disposed.

14.1. Sometimes pads

A “sometimes” pad is a pad that is created under certain ¢immgdi, but not in all cases. This mostly
depends on stream content: demuxers will generally paessttham header, decide what elementary
(video, audio, subtitle, etc.) streams are embedded iis&@leystem stream, and will then create a
sometimes pad for each of those elementary streams. At itchwice, it can also create more than one
instance of each of those per element instance. The onltgliion is that each newly created pad should
have a unique name. Sometimes pads are disposed when tra st is disposed, too (i.e. when going
from PAUSED to the READY state). You shoumt dispose the pad on EOS, because someone might
re-activate the pipeline and seek back to before the ersfre&m point. The stream should still stay
valid after EOS, at least until the stream data is disposedny case, the element is always the owner of
such a pad.

The example code below will parse a text file, where the firg 1§ a number (n). The next lines all start
with a number (0 to n-1), which is the number of the source pat which the data should be sent.

foo
bar

NO R QW

bye

The code to parse this file and create the dynamic “sometipess, looks like this:

typedef struct GtMHIter {
[..]

ghod ean firstrum;

Gist xsrcpadist;

} GtMHIter;
static vod
gst_ny filter_ base init (GtMF IterGass * ki ass)
{
Gt H enent G ass el enent_class = GBI HEMENIT @ASS (Kl ass);

static GtSaticRadlenplate src factory =
GST_STAT C PAD TRVRLATE (

54

Chapter 14. Request and Sometimes pads

"src_%2d',

G PO FC

GST_PD SOMETT MES
GET_STATI C GBS ("AYY")

~

[-]
ost_el enent_cl ass add pad tenpl ate (e enent_cl ass,
gst_static pad tenplate get (&rc factory));
[-]
}
static vod
ost_ny filter_int (GtMHAIter +filter)
{

[-]
filter->firstrun = TRE
filter->srepadist = NULL;
}

| *
* Gt one line of data - wthout newine
*/

static GtBifer *
ost_ny filter_getline (GtMH Iter *filter)
{

Quint8 +data

gnt n num

/* nax. line length is 512 characters - for safety */
fo (n =0 n <512 nH {
num = gst_hytestreampeek bytes (filter->bs, &ata, n + 1)
if (num!=n + 1)
return N,

[+ newine? */
if (datafn ='\n) {
GtBiffer *buf = gst_buffer_newand dloc (n + 1);

ost_bytestreampeek bytes (filter->bs, &ata n);
nenecpy (GST BIFAER DNTA (buf), data, n);
GBT_BIHERDANTA (buf)[n] = "\O;
ost_bytestreamflush fast (filter->bs, n + 1);

return buf;
}

}
}

static vod
ost_ny filter_| oopfunc (Gt H enent * el enent)
{

GtMH I ter *filter = GBI_W HLTER (e enent);

55

Chapter 14. Request and Sometimes pads

GtBffer *huf;
GtRad *pad;
gnt num n

/ = parse header */
if (filter->firstrun) {

Gt H enent @ ass * Kl ass;
Gt PadTenpl at e *tenpl ;
ochar * padnane;

if (!(buf = gst_nyfilter_getline (filter))) {
ost_eenent_error (elenent, STREAV REAQ (N,
("Sreamcontains no header"));
return;
}
num= ao (G BAERDVA (buf));
ost_buffer_uref (buf);

/* for each of the streans, create a pad x [
klass = GOl _HEMENT GET GASS (filter);
tenpl = gst_elenent_class get_pad tenplate (klass, "src _%2d");

foo (n =0 n<num nH) {
padnane = g stradup printf ("src %2d', n);
ped = gst_ped newfromtenpl ate (tenpl, pechene);

g free (padnane);
[+ here, you woud set _getcaps () ad _link () functions */
ost_el enent_add ped (€ enent, ped);
filter->srcpadist = glist_append (filter->srcpadist , pad);
}
}
/+ and now sinply parse each line and push over */

if (!(buf = gst_nyfilter_getline (filter))) {
Gt Brent xevent = gst_evert_new (GST_ BVENT KB
Gist =*padist;

for (pedist = srcpedist;
padist = NLL; padist = glist_next (padist)) {
ped = GBT_PAD (ped i st->ceta);
ost_event_ref (evert);
gst_ped push (ped, GBT_DATA (evert));
}
ost_event_unref (evert);
ost_el enent_set_eos (el enent);

return;

}
/ * parse streamnunber and go beyond the ':’ in the data */

num= ato (GST BFFER DNTA (buf));
if (um>= 0 & rum< glist_length (filter->srepadist)) {

56

Chapter 14. Request and Sometimes pads
pad = GBT PID (g list_nth data (filter->srepadist, nun)

/* nagic buffer parsing foo */
for (n =0 GBI BAERDNA (buf)[r] '=":" &
GBI BFERDATA (buf)[n] '="\0; nH) ;
if (G BHERDVA (buf)[n !'="\0) {
GtBffer * SUb;

[+ create subbuffer that starts right pest the space. The reaso n
* that we dont just forvard the data pointer is because the

* pointer is no longer the start of an alocated bock of nenory ,
* but just a pointer to a position sonewhere in the mdde of it.

* That canot be freed upon disposa, so wed either crash o ha ve
* a nenheak. CQeating a subbuffer is a sinple way to sdve that. */
sb = gst_buffer_create sub (buf, n + 1, GITBAFERIZE (b uf) - n- D;
gst_ped push (ped, GBT_DATA (sub));
}
}
ost_buffer_uref (buf);

}

Note that we use a lot of checks everywhere to make sure taawihtent in the file is valid. This has two
purposes: first, the file could be erronous, in which case weeut a crash. The second and most
important reason is that - in extreme cases - the file couldskd maliciously to cause undefined
behaviour in the plugin, which might lead to security issud&aysassume that the file could be used to
do bad things.

14.2. Request pads

“Request” pads are similar to sometimes pads, except thaest are created on demand of something
outside of the element rather than something inside theexérithis concept is often used in muxers,
where - for each elementary stream that is to be placed inutpubsystem stream - one sink pad will be
requested. It can also be used in elements with a variabléeauai input or outputs pads, such as the
tee (multi-output),swtch oragyegat or (both multi-input) elements. At the time of writing this,jst
unclear to me who is responsible for cleaning up the creaaeldand how or when that should be done.
Below is a simple example of an aggregator based on requést pa

static GtPad * gst_ny filter_request_newpad (GtH enent * el enent,
Gt PedTenpl at e *tenpl ,
const gchar * NaNg) ;
static vod
gst_ny filter_bese init (GtMFIterQass * Kl ass)
{
Gt H enent @ ass + el enent_class = GSI_HBMEINI_ AASS (Kl ass);

57

Chapter 14. Request and Sometimes pads

static GtSaticRadTenplate sink factory =
GET_STATI C PAD THWRLATE (
"si nk 96",
G PDINK
GBI PAD REQEST,
GET_STATI C S ("AYY")
)
[..]
ost_el enent_class add pad tenpl ate (Kl ass,
ost_static pad tenplate get (&ink factory));
}

static vod
ost_ny filter class init (GtNHIterQass * Kl ass)
{
Gt H enent G ass el enent_class = GBI HEMENIT @ASS (Kl ass);
[--]
el enent_cl ass->request_newpad = gst_ny filter_reques t_new pad;
}

static GtkRd *

gst_ny filter_request_newpad (GstH enent * el enant,
Gt PedTenpl at e *tenpl ,
const gchar * Nane)

GtRad *ped
Gt MF | terl nput Gont ext * context;

cotext = gnewd (GtMHIterlnputGntext, 1);

ped = gst_ped newfromtenpl ate (tenpl, nene);

ost_elenent_set_private data (pad, context);

/* nornally, you would set link () and _getcaps () functions he re =/
ost_el enent_add pad (e enent, pad);

return ped;

The_lop () function is the same as the one given previouslpinti-Input Elements

58

Chapter 15. Clocking

When playing complex media, each sound and video samplelreysiyed in a specific order at a
specific time. For this purpose, GStreamer provides a symization mechanism.

15.1. Types of time

There are kinds of time in GStream@iock timeis an absolute time. By contrastement timeis the
relative time, usually to the start of the current mediaastteThe element time represents the time that
should have a media sample that is being processed by themti@tthis time. The element time is
calculated by adding an offset to the clock time.

15.2. Clocks

GStreamer can use different clocks. Though the system tandve used as a clock, soundcards and
other devices provides a better time source. For this ressore elements provide a clock. The method
get_clock is implemented in elements that provide one.

As clocks return an absolute measure of time, they are natllysused directly. Instead, a reference to a
clock is stored in any element that needs it, and it is usextniaty by GStreamer to calculate the element
time.

15.3. Flow of data between elements and time

Now we will see how time information travels the pipeline ifferent states.

The pipeline starts playing. The source element typicaligws the time of each sampleFirst, the
source element sends a discontinous event. This evengsarformation about the current relative time
of the next sample. This relative time is arbitrary, but itshioe consistent with the timestamp that will
be placed in buffers. It is expected to be the relative timgostart of the media stream, or whatever
makes sense in the case of each media. When receiving ittiteeadements adjust their offset of the
element time so that this time matches the time written iretrent.

Then the source element sends media samples in bufferselEnient places a timestamp in each buffer
saying when the sample should be played. When the buffensahe sink pad of the last element, this
element compares the current element time with the timgstithe buffer. If the timestamp is higher or
equal it plays the buffer, otherwise it waits until the tinegaiace the buffer arrives with

gst_el enent_vai t()

59

Chapter 15. Clocking

If the stream is seeked, the next samples sent will have atam that is not adjusted with the element
time. Therefore, the source element must send a discorstienant.

15.4. Obligations of each element.

Let us clarify the contract between GStreamer and each eleiménhe pipeline.

15.4.1. Source elements

Source elements (or parsers of formats that provide notidme, such as MPEG, as explained above).
must place a timestamp in each buffer that they deliver. Tlggroof the time used is arbitrary, but it
must match the time delivered in the discontinous eventlfsiew). However, it is expected that the
origin is the origin of the media stream.

In order to initialize the element time of the rest of the pipe, a source element must send a
discontinous event before starting to play. In additiotereeeking, a discontinious event must be sent,
because the timestamp of the next element does not matcletherg time of the rest of the pipeline.

15.4.2. Sink elements

If the element is intended to emit samples at a specific tiea (e playing), the element should
require a clock, and thus implement the metkedcl ock

In addition, before playing each sample, if the current elettime is less than the timestamp in the
sample, it wait until the current time arrives should gl & enent_vai t () 2See an example in
Data processing, events, synchronization and clocks

Notes

1. Sometimes it is a parser element the one that knows the fimiestance if a pipeline contains a
filesrc element connected to a MPEG decoder element, thesfasthe one that knows the time of
each sample, because the knowledge of when to play eachesangphbedded in the MPEG format.
In this case this element will be regarded as the source eleimethis discussion.

2. With some schedulergst_el enent_vait () blocks the pipeline. For instance, if there is one
audio sink element and one video sink element, while theceeléiment is waiting for a sample the
video element cannot play other sample. This behaviourdeudiscussion, and might change in a
future release.

60

Chapter 16. Supporting Dynamic Parameters

Sometimes object properties are not powerful enough tarabtiite parameters that affect the behaviour
of your element. When this is the case you can expose theamptars as Dynamic Parameters which
can be manipulated by any Dynamic Parameters aware applicat

Throughout this section, the terdparamswill be used as an abbreviation for "Dynamic Parameters".

16.1. Comparing Dynamic Parameters with GObject
Properties
Your first exposure to dparams may be to convert an existi@gnent from using object properties to

using dparams. The following table gives an overview of tifieence between these approaches. The
significance of these differences should become appairtentda.

Object Properties Dynamic Parameters
Parameter definition Class level at compile time Any level at run time
Getting and setting Implemented by element Handled entirely by dparams
subclass as functions subsystem
Extra objects required None - all functionality is Element needs to create and store
derived from base GObject a Gt DPar anhdinager at object
creation
Frequency and resolution of Object properties will only be | dparams can be updated at any
updates updated between calls to _get, | rate independent of calls to _get,
_chain or _loop _chainor _loop upto
sample-level accuracy

16.2. Getting Started

The dparams subsystem is contained withingdteontra library. You need to include the header in
your element’s source file:

#include <gst/contrd/contrd . h>

Even though thest contra library may be linked into the host application, you shoulake sure it is
loaded in youplugninit function:

static ghod ean
pugnint (Gwdde *nodu e, GtHugin * pl ugi n)

61

Chapter 16. Supporting Dynamic Parameters

{
/* load dparamsupport library */
if (gt _library load ("gstcortra™))
{
ogst_info ("exanple: coud not |oad support library: ’gstco ntrol’\n");
retun FASE
}
}
You need to store an instance@f DPar anhnager in your element’s struct:
struct _GstExanpl e {

GtH enent € enent;

Gt CPar anénager * dpnan;

The Gt DPar anhinager can be initialised in your element’s init function:
static vod
ost_exanple init (GtEanpl e * exanpl)
{
exanpl e->dpnan = gst_dpnan_new ("exanpl e dpnan”, GBI _H- BMENT{ exanpl €)) ;
}

16.3. Defining Parameter Specifications

You can define the dparams you need anywhere within your eiebu will usually need to do so in
only a couple of places:

- Inthe elementnit function, just after the call tgst_dpnan new

- Whenever a new pad is created so that parameters can affagalag into or out of a specific pad. An
example of this would be a mixer element where a separatenmparameter is needed on every pad.

62

Chapter 16. Supporting Dynamic Parameters

There are three different ways the dparams subsystem carppeameters into your element. Which one
you use will depend on how that parameter is used within yt@ment. Each of these methods has its
own function to define a required dparam:

+ gst_dpnan add requi red dperamdi rect

« gst_dpnan add requi red dparamcal | back

 gst_dpnan add reoui red dparamarray

These functions will return TRUE if the required dparam wdded successfully.

The following function will be used as an example.

ghodl ean

gst_dpnan_add requi red dparamdi rect (Gt ORar anhiineg er *dpnan,
Garanfec * paramspec,
gbool ean is | og,
ghool ean is rate,

gpo nter updat e dat a)

The common parameters to these functions are:

Gt CRar anhéinager =donan the element’s dparam manager
« Garantpec *paramspec the param spec which defines the required dparam

« ghodean islag whether this dparam value should be interpreted on a log $sath as a
frequency or a decibel value)

« goodean israe whether this dparam value is a proportion of the sample Faieexample with a
sample rate of 44100, 0.5 would be 22050 Hz and 0.25 would B23. Hz.

16.3.1. Direct Method

This method is the simplest and has the lowest overhead fanpeers which change less frequently
than the sample rate. First you need somewhere to store tampeer - this will usually be in your
element’s struct.

struct _GtExanpl e {
GtH enent € enernt;
Gt CPar anénager * cpnan;

ofl oat vol une;

63

Chapter 16. Supporting Dynamic Parameters

Then to define the required dparam just egatll donan add requi red dparamdi rect and pass in
the location of the parameter to change. In this case theidoris & exanpl e->vd une)

gst_dpnan add requi red dparamdirect (

exanpl e->dpnan,
g paramspec float ("vd une”,"\ol ung',"\ol une of the au doa',
0.0, 1.0, 0.8 GPAVREDRTE,
FALE
FAE
& exanpl e->va une)
):
You can now usexanpl e->va une anywhere in your element knowing that it will always conttie

correct value to use.

16.3.2. Callback Method

This should be used if the you have other values to calculatnever a parameter changes. If you used
the direct method you wouldn’t know if a parameter had chdrggeyou would have to recalculate the
other values every time you needed them. By using the c&lliveathod, other values only have to be
recalculated when the dparam value actually changes.

The following code illustrates an instance where you migamntto use the callback method. If you had a
volume dparam which was represented by a gfloat number, yeoremt may only deal with integer
arithmetic. The callback could be used to calculate thetecaler when the volume changes. First you
will need somewhere to store these values.

struct _GtExanple {
GstH enent el enernt;

Gt CPar anénager * dpnan;
ofloat vol une f;
gint va une i ;

When the required dparam is defined, the callback funajomrxanpl e updat e vo une and some
user data (which in this case is our element instance) issgdago the call to

gst_dpnan add requi red dparamca | back

ost_dpnan add requi red dparamcal | back (

64

Chapter 16. Supporting Dynamic Parameters

exanpl e->dpnan,

g paramspec float ("vd une”,"\ol ung',"\ol une of the au doao',
0.0, 1.0, 0.8 GPAVFREDRTE,

FASE

FALE

gst_exanpl e updat e vol une,

exanpl e

The callback function needs to conform to this signature

typedef void (* Gt DAMpdat eFuncti on) (Gl ue *val ue, gpointer data);

In our example the callback function looks like this

static vad
gst_exanpl e_updat e vol une(GAl ue *val ue, gpointer data)
{
Gt Exanpl e *exanple = (Gt EBxanpl e *)data
gretunif fal (G 1S EXAMAHexanpl €));

exanpl e->vol une f = g val ue get_float (val ue);
exanpl e->vol une i = exanpl e->val une f * 8192,
}
Now exanpl e->vd une i can be used elsewhere and it will always contain the corieaev

16.3.3. Array Method

This method is quite different from the other two. It couldtheught of as a specialised method which
should only be used if you need the advantages that it previdstead of giving the element a single
value it provides an array of values where each item in theeyarorresponds to a sample of audio in your
buffer. There are a couple of reasons why this might be useful

- Certain optimisations may be possible since you can itenete your dparams array and your buffer
data together.

+ Some dparams may be able to interpolate changing values ahathple rate. This would allow the
array to contain very smoothly changing values which maydogiired for the stability and quality of
some DSP algorithms.

The array method is currently the least mature of the threthaas and is not yet ready to be used in
elements, but plugin writers should be aware of its existdocthe future.

65

Chapter 16. Supporting Dynamic Parameters

16.4. The Data Processing Loop

This is the most critical aspect of the dparams subsystetrelaies to elements. In a traditional audio
processing loop, gor loop will usually iterate over each sample in the buffer,gassing one sample at a
time until the buffer is finished. A simplified loop with no errchecking might look something like this.

static vod
exanpl e chain (Gt Pd *pad, GtBiufer * buf)
{

Qﬁoat «float_data

int j;

Gt Bxanpl e *exanpl e = GST_EXAVALE GST (QRIECT PARENT (pad));
in numsanples = GBI BIAER S ZH buf)/ si zeof (of | cat) ;
float_data = (ofl oat *) GBI BUAFER DATA(buf) ;

for (j =0 | < nmsamles; [+ {
float_datdj] * = exanpl e->vol une;
}

To make this dparams aware, a couple of changes are needed.

static vad
exanpl e chain (Gt Pd +*pad, GetBUfer * buf)
{

i j =0
Gt Exanpl e * exanpl e = GBT_BEXAMALH GBT_ RIECT PARENT (pad)) ;
int numsanpl es = GBI BIAHER 9 ZH buf)/ si zeof (gf | oat);

ofloat *float_data = (ofl ot *) GBT_BUFFER DATA(buf) ;
in frane countdown = GBI DAV AREFROESS exanpl e->dp nan, numsanpl es, GBI BUAER T MESTAVR buf)) ;
wi l e (GBT_DAVAN FROTESS CANDOAN exanpl e->dpnan, fr ane_coutdomwn, j)) {
float_data[j+1 * = exanpl e >vol une;
}
}
The biggest changes here are 2 new macETsiAVM FREFRIEESS and
GBI AWM\ PROIESS CONTBOM . You will also notice that the for loop has become a while loop
GBI AWM\ PROIESS CONTBOMI is called as the condition for the while loop so that any reepli

dparams can be updated in the middle of a buffer if requiréds 16 because one of the required
behaviours of dparams is that they cansaenple accurateThis means that parameters change at the
exact timestamp that they are supposed to - not after therhdis finished being processed.

66

Chapter 16. Supporting Dynamic Parameters

It may be alarming to see a macro as the condition for a whae,lbut it is actually very efficient. The
macro expands to the following.

#oefine GBI DAV FROTESS GOUNTBOMN dpnan, frane_coun tdown, frane count) \
(frane_countdow-- || \
(frane_countdown = GBI AN FRITESS dpnan, frane_coun t)))
So as long aérane_court down is greater than QGBT_AVN PRIESS will not be called at all. Also
in many case <GSl AW AROESS will do nothing and simply return 0, meaning that there is naren

data in the buffer to process.

The macra@ST AN FREFRIESS will do the following:

- Update any dparams which are due to be updated.
+ Calculate how many samples should be processed beforexheegeired update

- Return the number of samples until next update, or the numiteamples in the buffer - whichever is
less.

In fact GST_CAVAN FROEESS may do the same things &8I AW FRFRIESS depending on the
mode that the dparam manager is running in (see below).

16.4.1. DParam Manager Modes

A brief explanation of dparam manager modes might be usefid Bven though it doesn’t generally
affect the way your element is written. There are differeaysimedia applications will be used which
require that an element’s parameters be updated in difflgramese include:

- Timelined- all parameter changes are known in advance before theimagslrun.

- Realtime low-latency Nothing is known ahead of time about when a parameter migémge.
Changes need to be propagated to the element as soon adgpossib

When a dparam-aware application gets the dparam managean flement, the first thing it will do is set
the dparam manager mode. Current modes syrehr onous” and" asynchr onous”

If you are in a realtime low-latency situation then ttsgnchr onous” mode is appropriate. During
GBI AN PREFROESS this mode will poll all dparams for required updates and pigate them.
oI (AW FROESS will do nothing in this mode. To then achieve the desiredieyethe size of the
buffers needs to be reduced so that the dparams will be plotathdates at the desired frequency.

In a timelined situation, theasynchronous” mode will be required. This mode hasn’t actually been
implemented yet but will be described anyway. T AW FREFRIIESS call will precalculate
when and how often each dparam needs to update for the duddtibe current buffer. From then on
GBI AN PROESS will propagate the calculated updates each time it is caltgd end of the buffer.
If the application is rendering to disk in non-realtime, thader could be sped up by increasing the

67

Chapter 16. Supporting Dynamic Parameters

buffer size. In thetasynchr onous” mode this could be done without affecting the sample acgurfic
the parameter updates

16.4.2. Dynamic Parameters for Video

All of the explanation so far has presumed that the buffetaios audio data with many samples. Video
should be regarded differently since a video buffer oftemtams only 1 frame. In this case some of the
complexity of dparams isn’t required but the other benefitlsraake it useful for video parameters. If a
buffer only contains one frame of video, only a single cal®b AN FREFRIESS should be
required. For more than one frame per buffer, treat it theesasithe audio case.

68

Chapter 17. MIDI

WRITEME

69

Chapter 18. Interfaces

Previously, in the chaptekdding Argumentswe have introduced the concept of GObject properties of
controlling an element’s behaviour. This is very powerhuf it has two big disadvantages: first of all, it
is too generic, and second, it isn’t dynamic.

The first disadvantage is related to the customizabilithhefénd-user interface that will be built to

control the element. Some properties are more importantdtizers. Some integer properties are better
shown in a spin-button widget, whereas others would be betpgesented by a slider widget. Such
things are not possible because the Ul has no actual meanihg application. A Ul widget that
represents a bitrate property is the same as a Ul widgetépatsents the size of a video, as long as both
are of the sam&arangec ~ type. Another problem, is that things like parameter gragpfunction
grouping, or parameter coupling are not really possible.

The second problem with parameters are that they are nonaignn many cases, the allowed values for
a property are not fixed, but depend on things that can onlyebexcted at runtime. The names of inputs
fora TV card in a video4linux source element, for exampl®, caly be retrieved from the kernel driver
when we've opened the device; this only happens when theeglegoes into the READY state. This
means that we cannot create an enum property type to shototthis user.

The solution to those problems is to create very specialigeels of controls for certain often-used
controls. We use the concept of interfaces to achieve thie.bBsis of this all is the glib

Gypel nterface type. For each case where we think it's useful, we've cremttefaces which can be
implemented by elements at their own will. We've also crdatesmall extension tGlypel nterface

(which is static itself, too) which allows us to query forénfiace availability based on runtime properties.
This extension is calledGt I npl enent sl nt erf ace

(../../gstreamer/html/Gstimplementsinterface.html).

One important note: interfaces dotreplace properties. Rather, interfaces should be baitt to
properties. There are two important reasons for this. Bifsil, properties can be saved in XML files.
Second, properties can be specified on the commandgnédunch).

18.1. How to Implement Interfaces

Implementing interfaces is intiated in thget_type () of your element. You can register one or more
interfaces after having registered the type itself. Sonerfaces have dependencies on other interfaces
or can only be registered by certain types of elements. Ydlibeinotified of doing that wrongly when
using the element: it will quit with failed assertions, whiwill explain what went wrong. In the case of
GStreamer, the only dependency thameinterfaces have isGt | npl enent sl nterf ace
(../..Igstreamer/html/Gstimplementsinterface.hti®ér interface, we will indicate clearly when it
depends on this extension. If it does, you need to regismgratiforthatinterface before registering
support for the interface that you're wanting to supporte Bxample below explains how to add support

70

Chapter 18. Interfaces

for a simple interface with no further dependencies. For alkexplanation on
Gt | npl enent sl nterf ace (../..Igstreamer/html/Gstimplementsinterface.htsgg the next section
about the mixer interfacdlixer Interface

static vod gst_ny filter_sone interface int (GtSne Interface *iface);
Gype

gst_ny filter_get type (void)

{

static Gype ny filter_type = G;

if ('nyfilter_type) {

static const QGypelnfo ny filter_info = {
sizedf (GtMHIterGass),
(@eselnitFunc) gst_ny filter_baseinit,
NLLL,
(QasslnitFunc) gst_ny filter classinit,
NLLL,
NLLL,
sizeof (GtMHIter),
0,
(GnstancelnitFunc) gst_ny filter_init

b

static const Gnterfacelnfo soneinterface info = {
(GnterfacelnitFunc) gst_ny filter_sone interface in it,
NLLL,
NLLL

h

ny filter_type =
gtyperegster_static (GST_TYE M ALTER
"GtMF I ter”,
&y filter_info, 0);
g type add interface static (ny_filter_type,
GBT_TYFE SOME | NTHRFACE,
&sone_interface info);

}
return ny filter_type;
}
static vod
ost_ny filter_sone interface int (GtSonel nterface *jface)
{
/* here, you woud set virtua function ponters in the interfa ce x/
}

71

Chapter 18. Interfaces

18.2. Mixer Interface

The goal of the mixer interface is to provide a simple yet pduleAPI to applications for audio

hardware mixer/volume control. Most soundcards have harewmixers, where volume can be changed,
they can be muted, inputs can be modified to mix their contgatwhat will be read from the device by
applications (in our case: audio source plugins). The mierface is the way to control those. The
mixer interface can also be used for volume control in softwa.g. the “volume” element). The end
goal of this interface is to allow development of hardwarkiae control applications and for the control
of audio volume and input/output settings.

The mixer interface requires thet | npl enent sl nterface
(../../gstreamer/html/Gstimplementsinterface.htmi¢iface to be implemented by the element. The
example below will feature both, so it serves as an examplté® Gt npl enent sl nterf ace
(../..Igstreamer/html/Gstimplementsinterface.htitol, In this interface, it is required to set a function
pointer for the supported () function. If you don't, this function will always return FARE (default
implementation) and the mixer interface implementatiolh mat work. For the mixer interface, the only
required function igist_tracks () . All other function pointers in the mixer interface are apial,
although it is strongly recommended to set function posfer at least thget_vd une () and

set_vd une () functions. The API reference for this interface documeimésgoal of each function, so
we will limit ourselves to the implementation here.

The following example shows a mixer implementation for gwafe N-to-1 element. It does not show

the actual process of stream mixing, that is far too comf#it#or this guide.

#include <gst/nixer/nixer.h>

typedef struct GtMHIter {
[.]

gnt voune
Qist xtracks;
} GtMHIter;
static vod gst_ny filter_inplenents_interface int (G st 1 npl enent sl nt erf aceC ass *iface);
static vod gst_ny filter_nixer_interface init (GtNx erGass *iface);
Gype
ost_ny filter_get_type (void)
{
[..]
static const Gnterfacelnfo inplenents interface info = {
(GnterfacelnitFunc) gst_ny filter_inpl enents interf aceint,
NLLL,
NLL
h
static const Gnierfacelnfo mixer_interface info = {
(Gnterfacel nitFunc) gst_ny filter_nixer_interface i nt,
NLLL,
NLL
b

72

Chapter 18. Interfaces

gtype add interface static (ny filter_type,
GBT_TYFE | NFLBMVENTS | NTEHRFACE,

& npl enents interface info);
g type add interface static (ny_filter_type,
GST_TYFE MXER

Smxer_interface info);

static vod
gst_ny filter_init (GtMHIter *filter)
{
Gt Mixer Track xtrack = NUL;
[--]
filter->vo une = 100
filter->tracks = NULL;
track = g ogect_new (GBT_TYFE MXER TRAGK NULL);
track->abel = g strdup ("MTrack");
track->numchannel s = 1;
track->mn vo une = G;
track->nax_va une = 100G;
track->flags = GBT_MXER TRMK STTVRE
filter->tracks = g list_append (filter->tracks, track);

}
static ghod ean
ost_ny filter_interface supported (Gtlnpl enentsinte rface ~*iface
Gype iface type)
{
gretunva if fal (ifacetype = GILTYVFENXR FA H;
/* for the sake of this exanple, w'll aways support it. Hweve r, nornally,
* you wou d check vhether the device you ve opened supports ni xers. */
return TRE
}
static vod
gst_ny filter_inplenents interface init (Gtlnpl enen tslnterfaceQ ass *jface)
{
iface->supported = gst_ny filter_interface supported;
}
| *
* This function returns the list of support tracks (inputs, ou tputs)
* on this elenent instance. Henents usudly build this list d uring
* init () or wen going fronNLL to READY.
*/
static const Qi st *
ost_ny filter_nixer_list_tracks (GstNixer * nxer)
{

GtMFA | ter «filter = GBI W ALTER (nixer);

73

return filter->tracks;
}

| *
* St vdune. vdunes is an array of size track->numchannel s
* each vdue in the array gves the vanted vd une for one chane
* on the track.

*/
static vod
ost_ny filter_nixer_set_vo une (Gt Mxer * MXeEr,
Gt Mixer Track *track,
gint * vol unes)
{

GtMFlter «filter = GST_ W RALTER (nixer);
filter->vo une = va unes[Q];

gprint ("Wune set to %\n', filter->vd une);

}
static vod
ost_ny filter_nixer_get_vo une (Gt Mxer * Mxer,
Gt Nixer Track *track,
gint * vol unes)
{
GtMH I ter *filter = GSI_W _HLTER (nixer);
vo unes[0] = filter->vd une;
}
static vod
gst_ny filter_mixer_interface init (GtNixerGass * | face)
{
[+ the mxer interface requires a defintion of the mxer type
* hardware or softvere? */
G MXER TYE (iface) = GBT_MXER STFTWHRE
/* virtud function pointers */
iface->ist_tracks = gst_ny filter_nixer_list_tracks;
iface->set_ vdune = gst_ny filter_nixer_set_vol une;
iface->get_vdune = gst_ny filter_nixer_get_vol une;
}

Chapter 18. Interfaces

The mixer interface is very audio-centric. However, witle goftware flag set, the mixer can be used to
mix any kind of stream in a N-to-1 element to join (not aggtedjestreams together into one output
stream. Conceptually, that’s called mixing too. You canasvuse the element factory’s “category” to
indicate type of your element. In a software element thaesipandom streams, you would not be
required to implement theget_val une () or_set_vo une () functions. Rather, you would only

74

Chapter 18. Interfaces

implement theset_record () to enable or disable tracks in the output stream. to maketbate
mixer-implementing element is of a certain type, check tleenent factory’s category.

18.3. Tuner Interface

As opposed to the mixer interface, that's used to join togethstreams into one output stream by
mixing all streams together, the tuner interface is used-io{4 elements too, but instead of mixing the
input streams, it will select one stream and push the dateabfstream to the output stream. It will
discard the data of all other streams. There is a flag that@el$ whether this is a software-tuner (in
which case it is a pure software implementation, with N siakkpand 1 source pad) or a hardware-tuner,
in which case it only has one source pad, and the whole strebtti®n process is done in hardware.
The software case can be used in elements sustvidch The hardware case can be used in elements
with channel selection, such as video source elementsr{y4il2src, etc.). If you need a specific
element type, use the element factory’s “category” to make that the element is of the type that you
need. Note that the interface itself is highly analog-videatric.

This interface requires theGt | npl enensl nterf ace
(../..Igstreamer/html/Gstimplementsinterface.htmi¢iface to work correctly.

The following example shows how to implement the tuner fiaigz in an element. It does not show the

actual process of stream selection, that is irrelevantfisrgection.

#include <gst/tuner/turer.h>

typedef struct GtMHIter {
[..]

gnt activeinpu;
Gist *chards;
} GtMHIter;
static vod gst_ny filter_inplenents_interface int (G st 1 npl enent sl nt erf aceC ass *iface);
static vod gst_ny filter_tuner_interface init (GtTun erGass *iface);
Gype
gst_ny filter_get type (void)
{
[--]
static const Gnterfacelnfo inpl enents_interface info = {
(GnterfacelnitFunc) gst_ny filter_inpl enents interf aceint,
NLLL,
NLLL
b
static const Gnterfacelnfo tuner_interface info = {
(GnterfacelnitFunc) gst_ny filter_tuner_interface i nt,
NLLL,
NLLL
b

75

Chapter 18. Interfaces

gtype add interface static (ny filter_type,
GBT_TYFE | NFLBMVENTS | NTEHRFACE,

& npl enents interface info);
g type add interface static (ny_filter_type,
G_TYE TINR

&unerr_interface info);

static vod
gst_ny filter_init (GtMHIter *filter)
{

Gt Tuner Ghannel *channel = NULL;

[--]
filter->ective input = O
filter->channels = NULL;
channel = g oy ect_new (GBI TYFE TINERR GANNH, NULL);
channel - abel = g strdup ("MGame ");
chanel ->flags = GBI_TUNER GHNNEL | NAUTT;

filter->channels = g list_append (filter->channe s, cha el);
}
static ghod ean
ost_ny filter_interface supported (Gt lnpl enentsinte rface ~*iface
Gype iface type)
{
gretunva if fal (ifacetype = GLTVFETINR FAL H;
/* for the sake of this exaple, w'll aways support it. Hweve r, nornally,
* you wou d check whether the device you ve opened supports tu nng. */
reun TRE
}
static vod
gst_ny filter_inplenents interface init (Gtlnpl enen tslnterfaceQ ass *jface)
{
iface->supported = gst_ny filter_interface supported;
}
static const Qi st *
gst_ny filter_turer_list_channel s (Gt Tuner *tuner)
{

GtMH I ter *filter = GSI_W HLIER (turer);

return filter->channd s;

}

static Gt Tuner Gannel *

gst_ny filter_tuner_get_channel (Gt Tuner *tuner)
{

GtMH I ter *filter = GBI_W HLIER (turer);

76

Chapter 18. Interfaces

return glist nth data (filter->channd's,
filter->active input);

}
static vod
gst_ny filter_tuner_set_channel (Gt Tuner *tuner,
Gt Tuner Grannel * channel)
{
GtMH I ter *filter = GBI_W HLIER (turer);
filter->ective input = g list_index (filter->channd s, channel) ;
g assert (filter->ectiveinput >= 0);
}
static vod
ost_ny filter_tuner_interface init (Gt TunerQass *jface)
{
iface->ist_channels = gst_ny filter_tuner_list_chan ds;
i f ace->get _channel = gst_ny filter_tuner_get_channd ;
i face->set _channel = gst_ny filter_tuner_set_channd ;
}

As said, the tuner interface is very analog video-centtifedtures functions for selecting an input or
output, and on inputs, it features selection of a tuningdeswy if the channel supports frequency-tuning
on that input. Likewise, it allows signal-strength-acdpdyif the input supports that. Frequency tuning
can be used for radio or cable-TV tuning. Signal-strengtmisndication of the signal and can be used
for visual feedback to the user or for autodetection. Nexh#d, it also features norm selection, which is
only useful for analog video elements.

18.4. Color Balance Interface

WRITEME

18.5. Property Probe Interface

Property probing is a generic solution to the problem thapprties’ value lists in an enumeration are
static. We've shown enumerationsAdding ArgumentsProperty probing tries to accomplish a goal
similar to enumeration lists: to have a limited, explic#tlof allowed values for a property. There are two
differences between enumeration lists and probing. jretiumerations only allow strings as values;
property probing works for any value type. Secondly, thetents of a probed list of allowed values may
change during the life of an element. The contents of a enaitoerlist are static. Crrently, property
probing is being used for detection of devices (e.g. for O&ients, Video4linux elements, etc.). It
could - in theory - be used for any property, though.

77

Chapter 18. Interfaces

Property probing stores the list of allowed (or recommendatles in eG4 weAray and returns that
to the user. NULL is a valid return value, too. The processropprty probing is separated over two
virtual functions: one for probing the property to createueAray , and one to retrieve the current
GHaueAray . Those two are separated because probing might take a loeg $everal seconds). Also,
this simpliies interface implementation in elements. farapplication, there are functions that wrap
those two. For more information on this, have a look at the AsfRdrence for thest Aropert yRr obe

interface.

Below is a example of property probing for the audio filtemeét; it will probe for allowed values for
the “silent” property. Indeed, this value is a ghoolean sip#sn’t make much sense. Then again, it's
only an example.

#incl ude <gst/ propert yprobe/ propert yprobe. h>

static vod gst_ny filter_probe interface int (GtRo pertyRrobel nterface *iface);
Gype
ost_ny_filter_get_type (void)
{
[..]
static const Grterfacelnfo probe interface info = {

(GnrterfacelnitFunc) gst_ny filter_probe interface i nt,

NLLL,

NLL

b
[..]
gtype add interface static (ny filter_type,
GST TYFE FROFERTY FREE,
&robe interface info);

static const @Gist *
gst_ny filter_probe get_properties (Gt R opertyRobe * probe)
{

Gy ect @ ass *klass = G@IECT (T QASS (probe);
static Gist *props = N

if (!props) {
Garengpec * pspec

pspec = g oy ect_class find property (klass, "silent");
props = g list_append (props, pspec);
}

return props;
}

static ghod ean
gst_ny filter_probe needs probe (Gt RropertyRobe * probe,
oui rt propid,

78

Chapter 18. Interfaces

const GRar angec * PSPEC)
ghoo ean res = FAE

swtch (propid) {
case ARG LENT
res = FAE
break;
defaul t:
G @IETT WRN | NAL D FRERIY ID (probe, propid, psp €0);
break;
}

return res;

}

static vad
gst_ny filter_probe probe property (Gt RropertyRobe * probe,
qui nt prop.id,
const Grar andec * PSPeEC)
{
swtch (propid) {
case ARG S LENT:
[+ don't need to do noch here... */
br eak;
oefaul t:
G @IECT WRN I NALI D FRIERIY ID (probe, propid, psp €0);
break;
}
}

static Gal veAray *
ost_ny filter_get silent_values (GtMH Iter *filter)
{

GAl veAray *array = g value array new (2);

Gaue vdue ={ 0 };

gvadueint (&aue, GTYEBIDMEW;

[+ add TRE */
g va ue set_bod ean (&a uve, TRE);
gvdue aray append (array, &l ue);

[+ add FAE */
g va ue set_bod ean (&al uve, FAE);
gvaue aray append (array, &l ue);

g va ue unset (&a ue);

return array;

}

static Gal ueAray *

79

Chapter 18. Interfaces

ost_ny filter_probe get_va ues (Gt PRropertyRrooe * probe,
Qui nt propid,
const GRar angec * PSPEC)

{

GtMH I ter *filter = GSI_W HLITER (probe);
GA veAray *array = NLL

swtch (propid) {

case ARG S LENT
array = gst_ny filter_get silent_vaues (filter);
br eak;
oefaul t:
G @IECT WARN I NALI D FRIERIY ID (probe, propid, psp €0);
break;
}
return array;,
}
static vod
ost_ny filter_probe interface init (GtRopertyRobe Interface *iface)
{
iface->get_properties = gst_ny filter_probe get_prope rties;
i f ace->needs_probe = gst_ny filter_probe needs probe;
i face->probe property = gst_ny filter_probe probe pro perty;
i face->get_val ues = gst_ny filter_probe get_vdl ues;
}

You don't need to support any functions for getting or settialues. All that is handled via the standard
Gy ect _set_property () and_get_property () functions.

18.6. X Overlay Interface

An X Overlay is basically a video output in a XFree86 drawaBllements implementing this interface
will draw video in a X11 window. Through this interface, ajgaltions will be proposed 2 different
modes to work with a plugin implemeting it. The first mode isassgive mode where the plugin owns,
creates and destroys the X11 window. The second mode is igr awdde where the application handles
the X11 window creation and then tell the plugin where it ddautput video. Let’s get a bit deeper in
those modes...

A plugin drawing video output in a X11 window will need to habeat window at one stage or another.
Passive mode simply means that no window has been given ugm before that stage, so the plugin
created the window by itself. In that case the plugin is resjide of destroying that window when it's
not needed anymore and it has to tell the applications thandow has been created so that the
application can use it. This is done using tages xvindowi d signal that can be emitted from the
plugin with thegst_x overlay got_xwndowi d method.

80

Chapter 18. Interfaces

As you probably guessed already active mode just meansrggad 11 window to the plugin so that
video output goes there. This is done usingdtex overl ay set_xwndowi d method.

Itis possible to switch from one mode to another at any monsenthe plugin implementing this
interface has to handle all cases. There are only 2 methatipltigins writers have to implement and
they most probably look like that :

static vod
gst_ny filter_set_xwndowid (GtXverlay *overlay, XD xwndowid)
{

GtMHF I ter *ny filter = GSI_MW HLTER (overl ay);

if (ny_filter->wndow
ost_ny filter_destroy wndow (ny filter->wndow;

ny filter->wndow = xw ndowi d

}
static vod
gst_ny filter_get_desired size (GtXQerlay * overl ay,
gunt *~wdh qguint * hei ght)
{

GtMH I ter »ny filter = GGT_W HLTER (overl ay);

*wdth = ny filter->wdth;
*height = ny filter->he ght;
}

static vod
ost_ny filter xoverlay init (GtXerlayGass *iface)
{
iface->set xwndowid = gst_ny filter_set xwndowid;
iface->get_desired size = gst_ny filter_get desired s iz
}

You will also need to use the interface methods to fire sigwaisn needed such as in the pad link
function where you will know the video geometry and maybeteehe window.

static MH |terWndow *
gst_ny filter_wndowcreate (GtMH Iter *ny filter, gnt wdh gnt height)
{

NH | ter Wndow *wWndow = g new (MH | terWndow 1);

.g.s'.[_x_werlay_got_MrmN_id (BT XORAY (ny filte r), wWndow>wn);
}

static GtPadli nkReturn
ost_ny filter_sink link (GtPRad *pad, const GtCGyps * Caps)
{

GtMH I ter »ny filter = GGT_W HLTER (overl ay);

81

Chapter 18. Interfaces

gn wath, bheght;
ghodl ean ret;
ret = gst_structure get_int (structure, "wdh', &wdth)

ret & gst_structure get_int (structure, "height”, &eig ht);
if (Iret) return GST_PD U NKRERED

if (!ny filter->wndow

ny filter->wndow = gst_ny filter_create wndow (ny fi Iter, wdh, bhedgt);
ost_x overlay got_desired size (GST_X OERAY (ny fil ter),
wdth, helgt);

18.7. Navigation Interface

WRITEME

82

Chapter 19. Tagging (Metadata and Streaminfo)

Tags are pieces of information stored in a stream that artheatontent itself, but they rathdescribe

the content. Most media container formats support taggirane way or another. Ogg uses
VorbisComment for this, MP3 uses ID3, AVI and WAV use RIFRHO list chunk, etc. GStreamer
provides a general way for elements to read tags from tharste:nd expose this to the user. The tags (at
least the metadata) will be part of the stream inside thelippeThe consequence of this is that
transcoding of files from one format to another will autoroally preserve tags, as long as the input and
output format elements both support tagging.

Tags are separated in two categories in GStreamer, evegtitapplications won't notice anything of
this. The first are callethetadatathe second are callesireaminfo Metadata are tags that describe the
non-technical parts of stream content. They can be changbdwt needing to re-encode the stream
completely. Examples are “author”, “title” or “album”. The®ntainer format might still need to be
re-written for the tags to fit in, though. Streaminfo, on thieey hand, are tags that describe the stream
contents technically. To change them, the stream needsr®ércoded. Examples are “codec” or
“bitrate”. Note that some container formats (like ID3) gmarious streaminfo tags as metadata in the
file container, which means that they can be changed so tatin’t match the content in the file
anymore. Still, they are called metadata becaashknically they can be changed without re-encoding
the whole stream, even though that makes them invalid. fiigssuch metadata tags will have the same
tag twice: once as metadata, once as streaminfo.

A tag reading element is callGeg&tter in GStreamer. A tag writer is callethgStter
(../..Igstreamer/html/GstTagSetter.html). An elememisorting both can be used in a tag editor for quick
tag changing.

19.1. Reading Tags from Streams

The basic object for tags is@t TagLi st (../../gstreamer/html/gstreamer-GstTagList.html). An
element that is reading tags from a stream should create ptyeaglist and fill this with individual tags.
Empty tag lists can be created wigt tag list_new () . Then, the element can fill the list using
gst_tag list_add val ues () . Note that an element probably reads metadata as stringsaloes
might not necessarily be strings. Be sure to gsseval ue transform () to make sure that your data
is of the right type. After data reading, the application bemotified of the new taglist by calling
gst_elenent_found tags () . The tags should also be part of the datastream, so theydsheul
pushed over all source pads. The functisinevent_newtag () creates an event from a taglist. This
can be pushed over source pads uggtgead push () . Simple elements with only one source pad
can combine all these steps all-in-one by using the fungtioml enent_found tags for_pad ()

The following example program will parse a file and parse thiés metadata/tags rather than as actual
content-data. It will parse each line as “name:value”, heme is the type of metadata (title, author,
...) and value is the metadata value. Thelire () is the same as the one givenSometimes pads

83

Chapter 19. Tagging (Metadata and Streaminfo)

static vod
ost_ny filter_| oopfunc (Gt H enent * el enent)

{

next:

GtMH I ter *filter = GSI_W HLTER (e enent);
Gt Buffer * buf ;
Gt Tag st xtagist = gst_taglist_new ();

/* get each line ad parse as netadata */
vhile ((buf = gst_ny filter_getline (filter))) {
ochar *line = GBT_ BIAER DATA (huf), * col on pos, *type = NUL;a
/* get the position of the ':’ and go beyond it */
if (!(cdonpos = strchr (ling, ':")))
goto next:
/* get the string before that as type of netadata */

type = gstrndup (line, cdonpos - ling);

/* cotet is one character beyod the ':’ */
caon pos = &cal on pos[1];
if (*cdonpos = '\0)

goto next;

/* get the netadata category, it’'s value type, store it in thet
* type and add it to the tagist. */
if (gst_tagexists (type)) {

Gaue fron={ 0}, to={ 0};

Gype to type;

totype = gst_tag get_type (type);

gvaueint (&rom GTYESRNG;

gvaueset_string (&rom col on pos);

gvaueint (&o, totype);

gva ue transform (&from &0);

g va ue unset (&rom;

gst_tag list_add val ues (tagist, GBI TAGMIRE AHEN
type, &o, NLL);

g va ue unset (&0);

g free (type);
ost_buffer_uref (buf);

/* signal netadata */
gst_elenent_found tags for_pad (el enent, filter->srcp
ost_tag list_free (tagist);

[+ send BB */
ost_pad send evert (filter->srcpad, GBT_DATA (gst_even
ost_el enent_set_eos (e enant);

ad, 0 tagist);

t_new (GSI_BENT_E®));

84

Chapter 19. Tagging (Metadata and Streaminfo)

}
We currently assume the core to alredaiypwthe mimetypedst_tag exists ()). You can add new
tags to the list of known tags usimgt_tag register () . If you think the tag will be useful in more

cases than just your own element, it might be a good idea tit&mldsttag. ¢ instead. That's up to you
to decide. If you want to do it in your own element, it's eastegegister the tag in one of your class init
functions, preferrablyclass init ()

static vod
ost_ny filter class init (GtNHIterQass * Kl ass)
{
[..]
gst_tag register ("ny_tag nane’, GSI_TAGHAGMETA
GMESIRNZ
("ny om tag’),
("atag that is specific to ny om € enent"),
NLL);

19.2. Writing Tags to Streams

Tag writers are the opposite of tag readers. Tag writers takg metadata tags into account, since that's
the only type of tags that have to be written into a stream.\idigrs can receive tags in three ways:
internal, application and pipeline. Internal tags are ta&gsl by the element itself, which means that the
tag writer is - in that case - a tag reader, too. Applicatiggstare tags provided to the element via the
TagSetter interface (which is just a layer). Pipeline tagstags provided to the element from within the
pipeline. The element receives such tags via the GST_EVHNG event, which means that tags
writers should automatically be event aware. The tag wisteesponsible for combining all these three
into one list and writing them to the output stream.

The example below will receive tags from both applicatiod pipeline, combine them and write them to
the output stream. It implements the tag setter so appicaitan set tags, and retrieves pipeline tags
from incoming events.

Gype
gst_ny_filter_get_type (void)

]
static const Grterfacelnfo tag setter_info = {
NLL,

—

85

Chapter 19. Tagging (Metadata and Streaminfo)

NLLL,
NLLL
3
[.-]
g type add interface static (ny_filter_type,
G_TYE TAG FTTER
&ag setter_info);

static vod
ost_ny filter_init (GtMHIter *filter)
{

GBI AAG ST (filter, GST_HEMENT BANT AMRD);
[-]
}

| *
* Wite one tag.
*/

static vad

ost_ny filter_wite tag (const Gt Tegli st xtagist,
const gchar * t agnane,
gpoi nt er det &)

GtMH I ter *filter = GBI W HLTER (data);
GtBirfer *xpbuffer;

guint numvalues = gst_tag list_get tagsize (list, tag_
const GA ue *from

GAue to={ 0};

gvadueinit (&o, GTYESIRNY;

foo (n =0 n < numva ues; N {

from= gst_tag list_get vadueindex (tagist, tagnane, n
g vd ue transform (from &o);

buf = gst_buffer_new ();
G BFERDATA (buf) = gstrdup printf ("9%:%", tagnam
gvaueget string (&0));
G BRI ZE (buf) = strlen (G BIFFER DAVTA (buf));
gst_ped push (filter->srcpad, GST_DATA (buf));
}

g va ue uset (&0);
}

static vod
gst_ny filter_| oopfunc (GtH enent * el enent)
{

GtMH [ter *filter = GBI_W HLTER (€ enent);

Gt Tagtter +tagsetter = GBI _TAG ETTER (6 enant);

86

Chapter 19. Tagging (Metadata and Streaminfo)

Gthta *data

Gt Brent *event;

ghool ean eos = FAE

Gt Tag st xtaglist = gst_taglist_new ();

wile (leos) {
data = gst_pad pul (filter->sinkpad);

/+* \Wre not very nuch interested in data right now
if (GBISBHER (data))

ost_buffer_uref (G BHER (detd));
evet = GoI_ BANT (data);

swtch (GBI BVBENT_TYFE (event)) {
case GBI BANT_TAG
ost_tag list_insert (taglist, gst_event_tag et list (
GBT_TAG MIRE FREFEND) ;
ost_evert_uref (evert);
break;
case G5 BENT_ KB
ecs = TRE
ost_event_uref (evert);
break;
defaul t:
ost_pad evert_default (filter->sinkpad, evert);
break;
}
}

/* nerge tags wth the ones retrieved fromthe application
if (gst_teg setter_get list (tagsetter)) {

gst_tag list_insert (tagist,

gst_tag setter_get list (tagsetter),

gst_tag setter_get_nerge node (tagsetter));
}

/* wite tags */
ost_tag list_foreach (taglist, gst_ny filter_wite ta

/* sigd E® */

ost_pad push (filter->srcpad, GBI DATA (gst_evert_new (
gst_el enent_set_eos (e enent);

*/

g filter);

GT_BANTE));

Note that normally, elements would not read the full streafofe processing tags. Rather, they would

read from each sinkpad until they’ve received data (sings tesually come in before the first data
buffer) and process that.

87

Chapter 20. Events: Seeking, Navigation and
More

There are many different event types but only 2 ways they izt across the pipeline: downstream or
upstream. It is very important to understand how both of¢hmgethods work because if one element in
the pipeline is not handling them correctly the whole evgstem of the pipeline is broken. We will try
to explain here how these methods work and how elements pposad to implement them.

20.1. Downstream events

Downstream events are received through the sink pad’s datdllepending if your element is loop or
chain based you will receive events in your loop/chain figrcas a GstData withst_pad pu | or
directly in the function call arguments. So when receiviagaflow from the sink pad you have to check
first if this data chunk is an event. If that’s the case you &heleat kind of event it is to react on relevant
ones and then forward others downstream ugthgad event_def aul t . Here is an example for
both loop and chain based elements.

/* Gan based e enent */
static vod
gst_ny filter_chain (GtPad * pad,
Gthta *data)
{
GtMH I ter *filter = GSI_MW HLTER (gst_pad get_parent (pad));

it (GBTISRANT (ki) {
GtEet +event = GST BVENT (data);

swtch (GST_BVENT TYFE (evert)) {
case G5 BENT_ KB

/* end-of-stream we shoud close don al streamleftovers he re */
ost_ny filter_stop processing (filter);
[+ fal-through to default event handing */
defaul t:
ost_ped evert_default (pad, event);
break;
}
return;
}
}
/+ Loop based € enent */
static vod
gst_ny filter_loop (GstH enent * el enent)
{

GtMWH I ter *filter = GSI_W HLTER (e enent);

88

Chapter 20. Events: Seeking, Navigation and More
GtDta *daa = NLL

dota = gst_pad pull (filter->sirkpad);

if (GBTISBENT (data)) {
GtEet +event = GST BVENT (data);

swtch (GST_BVEN_TYFE (event)) {
case G5 BENT KB

/* end-of-stream we shoud close don al streamleftovers he re */
ost_ny filter_stop processing (filter);
[+ fal-through to default event handing */
defaul t:

gst_pad event_default (filter->sinkpad, event);
br eak;

}

return;

}

20.2. Upstream events

Upstream events are generated by an element somewheregipéii@e and sent using the

gst_pad send event function. This function simply realizes the pad and calldleéault event handler
of that pad. The default event handler of padgsispad evernt_defaul t , it basically sends the event
to the peer pad. So upstream events always arrive on the drafyaur element and are handled by the
default event handler except if you override that handldrandle it yourself. There are some specific
cases where you have to do that :

* If you have multiple sink pads in your element. In that case will have to decide which one of the
sink pads you will send the event to.

* If you need to handle that event locally. For example a retidg event that you will want to convert
before sending it upstream.

The processing you will do in that event handler does notyeadtter but there are important rules you
have to absolutely respect because one broken elementresmdfier is breaking the whole pipeline
event handling. Here they are :

» Always forward events you won't handle upstream using thiadltgst_pad event_defaul t
method.

« If you are generating some new event based on the one yowedaon't forget to gst_event_unref
the event you received.

89

Chapter 20. Events: Seeking, Navigation and More
» Event handler function are supposed to return TRUE or FAliflicating if the event has been

handled or not. Never simply return TRUE/FALSE in that handixcept if you really know that you
have handled that event.

Here is an example of correct upstream event handling fougiplthat wants to modify navigation

events.
static ghod ean
gst_ny filter_hand e src event (Gt Pad * pad,
Gt Brent * evert)
{
GtMH I ter *filter = GSI_MWY HLTER (gst_pad get_parent (pad));
swtch (GBI BVENT_TYFE (evert)) {
case GBI_BVENT_NA GNITON
Gt Brent *newevent = gst_event_new (GG BENL. NN G QN ; ;
[+ Qeate a new event based on received one and then send it */
ost_event_urref (evert);
return gst_pad event_default (pad, newevent);
Oefaul t:
[+ Falling back to defalt event handing for that ped */
return gst_pad event_default (pad, evert);
}
}

20.3. All Events Together

In this chapter follows a list of all defined events that areeutly being used, plus how they should be
used/interpreted. Events are stored iBtdvent (../../gstreamer/html/gstreamer-GstEvent.html)
structure, which is simply a big C union with the types forleawent in it. For the next development
cycle, we intend to switch events over@Sructure
(../../gstreamer/html/gstreamer-GstStructure.htinl),you don’t need to worry about that too much for
now.

In this chapter, we will discuss the following events:

- End of Stream (EOS)
« Flush

. Stream Discontinuity
« Seek Request

+ Stream Filler

- Interruption

90

Chapter 20. Events: Seeking, Navigation and More

- Navigation

- Tag (metadata)

20.3.1. End of Stream (EOS)

End-of-stream events are sent if the stream that an elererds®ut is finished. An element receiving
this event (from upstream, so it receives it on its sinkpaitl\generally forward the event further
downstream and set itself to EOSt(el enent_set_eos ()). gst_ped evert_default () takes
care of all this, so most elements do not need to support¥BisteExceptions are elements that explicitly
need to close a resource down on EOS, and N-to-1 elements thaitthe stream itself isot a resource
that should be closed down on EOS! Applications might seek bma point before EOS and set the
pipeline to PLAYING again. N-to-1 elements have been disedgreviously irMulti-Input Elements

The EOS event (GST_EVENT_EOS) has no properties, and thegsiitone of the simplest events in
GStreamer. It is created usigg_event_new (GST_BENI BY);

Some elements support the EOS event upstream, too. Thelsidye element to go into EOS as soon as
possible and signal the EOS event forward downstream. Shiseful for elements that have no concept
of end-of-stream themselves. Examples are TV card sousiceln card sources, etc. This is not (yet)
part of the official specifications of this event, though.

20.3.2. Flush

The flush event is being sent downstream if all buffers antiesiin the pipeline should be emptied.
“Queue” elements will empty their internal list of bufferdien they receive this event, for example. File
sink elements (e.g. “filesink”) will flush the kernel-to-Risache {dat async () orfflush ())when
they receive this event. Normally, elements receiving évisnt will simply just forward it, since most
filter or filter-like elements don’t have an internal cachalafa.gst pad event_default () does

just that, so for most elements, it is enough to forward theneusing the default event handler.

The flush event is created witkt_event_new (GST BENT AL ; . Like the EOS event, it has no
properties.

20.3.3. Stream Discontinuity

A discontinuity event is sent downstream to indicate a ditionity in the data stream. This can happen
because the application used the seek event to seek to rediffsition in the stream, but it can also be
because a real-time network source temporarily lost th@ection. After the connection is restored, the
data stream will continue, but not at the same point wheretitast. Therefore, a discontinuity event is
being sent downstream, too.

91

Chapter 20. Events: Seeking, Navigation and More

Depending on the element type, the event can simply be foledansinggst_pad event _defaul t

() , orit should be parsed and a modified event should be senthanlast is true for demuxers, which
generally have a byte-to-time conversion concept. Theinis usually byte-based, so the incoming
event will have an offset in byte units (GST_FORMAT_BYTE®). Elements downstream, however,
expect discontinuity events in time units, so that it can $eduto update the pipeline clock. Therefore,
demuxers and similar elements should not forward the ebeihparse it, free it and send a new
discontinuity event (in time units, GST_FORMAT_TIME) fber downstream.

The discontinuity event is created using the functistnevent_new di sconti nuous () . It should
set a boolean value which indicates if the discontinuitynéigsent because of a new media type (this
can happen if - during iteration - a new location was set ont&ork source or on a file source). then, it
should give a list of formats and offsets in that format. Tisedhould be terminated by 0 as format.

static vad
ny filter_sone function (GtMH Iter *filter)
{
Gt Bvent *event;
[..]
evert = gst_event_newd sconti nuous (FALE
GBT_FORAT_BYTES 0,
G FARAT TIME 0,
0;
gst_pad push (filter->srcpad, GBI DNA (event));
[..]
}

Elements parsing this event can use macros and functiomséssthe various properties.

GBI BVENT D STONT NBWMED A (event) checks the new-media boolean value.
gst_event_discont_get val ue (event, fornat, &al ue) gets the offset of the new stream
position in the specified format. If that format was not sfiediwhen creating the event, the function
returns FALSE.

20.3.4. Seek Request

Seek events are meant to request a new stream position temerithis new position can be set in
several formats (time, bytes or “units” [a term indicatimgrhes for video, samples for audio, etc.]).
Seeking can be done with respect to the end-of-file, stafiteobr current position, and can happen in
both upstream and downstream direction. Elements regesgek events should, depending on the
element type, either forward it (filters, decoders), chathgeformat in which the event is given and
forward it (demuxers), handle the event by changing the Biater in their internal stream resource (file
sources) or something else.

Seek events are, like discontinuity events, built up usiogjtpns in specified formats (time, bytes,
units). They are created using the functign event_new seek () , where the first argumentis the
seek type (indicating with respect to which position [catrend, start] the seek should be applied, and

92

Chapter 20. Events: Seeking, Navigation and More

the format in which the new position is given (time, bytestslnand an offset which is the requested
position in the specified format.

static vad
ny filter_sone function (GtMH Iter *filter)
{
Gt Bvent * event ;
[..]
/* seek to the start of a resource */
evet = gst_event_newseek (GBI K &FT | GBI_FRAT_BY T 0);

ost_ped push (filter->srcped, GST_DATA (evert));
[.]
}

Elements parsing this event can use macros and functiorséssthe properties. The seek type can be
retrieved usingsT BVENI K TYFE (event) . This seek type contains both the indicator of with
respect to what position the seek should be applied, andtheat in which the seek event is given. To
get either one of these properties separately@EE&ENT K FORAT (evert) or

GBI BVANT K METHD (evert) . The requested position is available through

GBI BVANT K FFET (evert) , and is given in the specified format.

20.3.5. Stream Filler

The filler event s, as the name says, a “filler” of the streantivihas no special meaning associated
with itself. It is used to provide data to downstream eleraamid should be interpreted as a way of
assuring that the normal data flow will continue further detweam. The event is especially intended for
real-time MIDI source elements, which only generate dataméomethinghangesMIDI decoders will
therefore stall if nothing changes for several secondstlaefore playback will stop. The filler event is
sent downstream to assure the MIDI decoder that nothingggirso that the normal decoding process
will continue and playback will, too. Unless you intend torwavith MIDI or other
control-language-based data types, you don’t need thigteYeu can mostly simply forward it with

ost_ped evert_default ()

The stream filler is created usimgt_event_new (GBI BENT_ALLER); . It has no properties.

20.3.6. Interruption

The interrupt event is generated by queue elements and @enstream if a timeout occurs on the
stream. The scheduler will use this event to get back in its main loop and schedule other elements.
This prevents deadlocks or a stream stall if no data is géeetaver a part of the pipeline for a
considerable amount of time. The scheduler will processatiént internally, so any normal elements do
not need to generate or handle this event at all.

93

Chapter 20. Events: Seeking, Navigation and More

The difference between the filler event and the interrupheigethat the filler event is a real part of a
pipeline, so it will reach fellow elements, which can useitdo nothing else than what | used to do".
The interrupt event never reaches fellow elements.

The interrupt eventgst_evert_new (GBT_BVENT_| NTERRPT);) has no properties.

20.3.7. Navigation

WRITEME

20.3.8. Tag (metadata)

Tagging events are being sent downstream to indicate tlseataparsed from the stream data. This is
currently used to preserve tags during stream transcodamg 6ne format to the other. Tags are
discussed extensively @Dhapter 19Most elements will simply forward the event by calling

ost_ped evert_default ()

The tag event is created using the functist event_newtag () . It requires a filled taglist as
argument.
Elements parsing this event can use the funagorevent_tag get list (event) to acquire the

taglist that was parsed.

94

I\VV. Other Element Types

By now, we have looked at pretty much any feature that can beedded into a GStreamer element.
However, we have limited ourselves to the simple model ofterfélement. In this chapter, we will look
at the specific difficulties and things to keep in mind wherting specific types of elements. We will
discuss output elements (sinks), input elements (soyrtde}N elements, N-to-1 elements, N-to-N
elements, autopluggers and managers. Some of these nefpesaents that don’t actually exist. Rather,
they represent a general concept.

Chapter 21. Writing a Source

Source elements are the start of a data streaming pipelinecS elements have no sink pads and have
one or more source pads. We will focus on single-sourcepadestts here, but the concepts apply
equally well to multi-sourcepad elements. This chaptel&xiplain the essentials of source elements,
which features it should implement and which it doesn’t hiayeand how source elements will interact
with other elements in a pipeline.

21.1. The get()-function

Source elements have the special option of havingta () -function ratherthanaoop () -or
_chain () -function. A_get () -functionis called by the scheduler every time the next elet® needs
data. Apart from corner cases, every source element wilkwabe get () -based.

static Gtlxta * gst_ny source get (Gt Pad * pad);
static vod
gst_ny source init (GtMSource * SrC)
{
[--]
ost_pad set_get function (src->srcpad, gst_ny source get);
}
static Gtlxta *
gst_ny_source get (Gt PRed * pad)
{

GtBirfer *xpbuffer;

buffer = gst_buffer_new ();

GBI BAERDATA (buf) = gstrdup ("hello pipeing™);
G BHER IS ZE (buf) = strlen (GT_BRERDATA (buf));
/* termnating '/0O */

G BAFERMZS ZE (buf) = G BRI ZE (buf) + 1

return GBI DATA (buffer);

21.2. Events, querying and converting

One of the most important functions of source elements imf@eément correct query, convert and event
handling functions. Those will continuously describe therent state of the stream. Query functions can
be used to get stream properties such as current positioleagth. This can be used by fellow elements
to convert this same value into a different unit, or by agjgias to provide information about the

96

Chapter 21. Writing a Source

length/position of the stream to the user. Conversion fonstare used to convert such values from one
unit to another. Lastly, events are mostly used to seek titipos inside the stream. Any function is
essentially optional, but the element should try to proddenuch information as it knows. Note that
elements providing an event function should also list teepported events in aiget_event_nask

() function. Elements supporting query operations shoutdhis supported operations in a

_get_query types () function. Elements supporting either conversion or qugrgrations should
also implement aget_fornats () function.

An example source element could, for example, be an elerhantontinuously generates a wave tone at
44,1 kHz, mono, 16-bit. This element will generate 44100@sdmples per second or 88,2 kB/s. This
information can be used to implement such functions:

static Gt Fornat * gst_ny source fornat _|ist (GtPad * pad);
static GtQeryType * gst_ny source query list (GtRxd * pad);

static goodean gst_ny source covert (GtPRad * pad,
Gt For nat fromfn,
gnted fromva ,
Gt For nat *to fm,
gnt64 *tova);
static ghodean gst_ny source query (GtPd * pad,
Gt QeryType type,
Gt For nat *to fm,
gne4 *tova);

static vod

gst_ny source init (GtMSource * SIC)

{

[-]
ost_ped set_convert_function (src->srcpad, gst_ny sou rce_convert);
ost_ped set_fornats function (src->srcpad, gst_ny sou rce fornat_list);
ost_pad set_query function (src->srcpad, gst_ny sourc e query);
gst_ped set_query type function (src->srcped, gst_ny_ source query list);

*

This function returns an enuneration of supported GtForna t
types in the query() o convert() functions. See gst/gstfor nat. h
for a ful list.

*

*

*/

static Gt Fornat *

gst_ny source fornat_|ist (GtRad * pad)

{

static const GtFornat fornats[] = {

GST_FORWT_TIME
GST_FORAT [EFAULT, / * neans "audio sanpl es” */
GBT_FORAT_BYTES
0

97

Chapter 21. Writing a Source

return fornats;

}
| *
* This function returns an enuneration of the supported query 0O
* operations. Snce ve generate audio internaly, we only pro vi de
* an indcaion of hownany sanples w've played so far. Fle so urces
* o such denents cold dso provide GBI QHEY TOAL for the tota
* streamlength, or other things. See gst/gstquery.h for deta ils.
*/
static GtQeryType *
gst_ny source query list (GtRad * ped)
{
static const Gt QeryType cuery types[] = {
G QR RETIQN
0,
b

return query_types,
}

| *
* Ad below are the logicad inplenentations.
*/

static ghod ean
gst_ny source convert (Gt Rad * pad,
GtFornat fromfn,
ginte4 fromval ,
Gt For nat *to fm,
gne4 *tova)
{

ghod ean res = TRE
Gt MSour ce *src = GBI_W SARE (gst_ped get_parent (ped));

swtch (fromfm) {
case GBI _FORWT_TI ME
swtch (xtofm) {
case GBI FORWT_TI ME
[+ mthing =/
break;

case GST_ FORWT BYTES
*tova = fromvd / (GBS SN/ (44100 * 2);
br eak;

case GoI_FORWI_DHAULT:
xtova = fromva / (GIL_.SEIND/ 44100);
break;

defaul t:
res = FAE

98

br eak;
}
break;

case GST FORWY BYTES
swtch (*tofm) {
case GBT_FORWT TI NE

*toval = fromva
break;

case Gl FORWT_BYTES
[+ nothing */
break;

case GBI_FORWI_DHAULT:

*tova = fromval /
bresk;

defaul t:
res = FAE

case GBI_FORWT_[H-AUT:
swtch (*tofm) {
case GoI_FORW_TI ME

*tova = fromval
break;

case GBI FORWY BYTES

xtova = fromva
bresk;

case GBI FORW DHFAUT:
[+ nothing =/
break;

defaul t:
res = FAE
break;
}
break;

oefaul t:

res = FASE
break;
}

return res;

}

static ghod ean

* (GBI SEIND / (44100

2

*+ (GBI KD/ 44100);

* 2

* 2);

Chapter 21. Writing a Source

99

Chapter 21. Writing a Source

gst_ny_source query (Gt Rad * pad,
Gt QeryType type,
Gt For nat *to fn,
gnea xtova)

{

Gt Sour ce xsrc = GBI W SARE (gst_pad get_parent (ped));
ghod ean res = TRE

swtch (type) {
case GBI QERY B TIQON
res = gst_pad convert (pad, GST_FORW BYTES src->tatd _bytes,
tofm, tova);
break;

oefaul t:
res = FAE
break;

return res;

Be sure to increase src->total_bytes after each call to yeur() function.

Event handling has already been explained previously irteats chapter.

21.3. Time, clocking and synchronization

The above example does not provide any timing info, but wiffise for elementary data sources such as
a file source or network data source element. Things becdgtelglmore complicated, but still very
simple, if we create artificial video or audio data sourceshsas a video test image source or an
artificial audio source (e.ginesrc orsilence). It will become more complicated if we want the
element to be a realtime capture source, such as a videadowrce (for reading video frames from a
TV card) or an ALSA source (for reading data from soundcatgypsrted by an ALSA-driver). Here, we
will need to make the element aware of timing and clocking.

Timestamps can essentially be generated from all the irdtiam given above without any difficulty. We
could add a very small amount of code to generate perfeatigstamped buffers from ouget
() -function:

static vad
gst_ny sourceinit (GtMSource * SrC)
{
[..]
src->total _bytes = O
}

100

Chapter 21. Writing a Source

static Gtlta *

ost_ny source get (GtPRad * pad)

{
Gt MSour ce *src = GBI_MWY SARE (gst_ped get_parent (ped));
GtBifer * buf;
GtFornat fnd = GBT_FORT_TI ME

[--]
G BAER DRI AN (buf) = GST_ BIFFER S ZE (buf) * (GB_SHIND / (44100 * 2);
GBT BAER TIMESTAWP (buf) = src->tota _bytes * (GBI / (44100 * 2);
src->tota _bytes += GBS BAER S ZE (huf);

return GSI_DNTA (huf);
}

static GtIateRturn
gst_ny source change state (Gt H enent * el enent)

{
Gt MSour ce *src = GBI_W SARE (€ enant);

swtch (GBT_STATE FEND NG (€ enent)) {
case G_STATE PALED TO RD¥:
src->tata _bytes = O
break;

defaul t:
br eak;
}

if (GST_HEMENT QASS (parent_cl ass)->change state)
return GST_HBMENT @ ASS (parent_cl ass)->change state (el enant);

retun G STATE SUBESS

That wasn’t too hard. Now, let's assume real-time elemdriisse can either have hardware-timing, in
which case we can rely on backends to provide sync for us (inlwtase you probably want to provide

a clock), or we will have to emulate that internally (e.g. tmaire sync in artificial data elements such as
sinesrc). Let’s first look at the second option (software sync). Theat fhption (hardware sync +
providing a clock) does not require any special code witpeesto timing, and the clocking section
already explained how to provide a clock.

enum {
AGO,

[--]
AGSING

[--]

b

static vad
gst_ny source class init (GtMSourceCass * ki ass)

101

Chapter 21. Writing a Source

{
Gy ect @ ass *opject_class = GAIETT AASS (K ass);
[--]
goyect_class instal_property (oect _class, ARGSY NG
g paramspec_bod ean ("sync", "Snc’, "Synchronize to d ock”,
FAE GPRVIRADRTE);
[--]
static vod
gst_ny sourceint (GtMSource * SrC)
{
[--]
src->sync = FAASE
}
static Gthta *
gst_ny source get (GtPRd * ped)
{
Gt ySour ce xsrc = GBI W SARE (gst_pad get_parent (ped));
GtBirfer * ouf;
[.]
if (src->sync) {
/* wait on clock */
gst_elenent vait (GST_ BHBEMENT (src), GBI BAER T MEST AW (buf));
}
return GeT_ DATA (luf);
}
static vod
gst_ny_source get_property (G ect * o ect,
oui rt propid,
Gar angoec * PSPEC,
GAl ue * val ue)
{
Gt MSour ce *src = GBI_W SARE (gst_ped get_parent (pad));
swtch (propid {
[--]
case ARGSINC
g va ue set_bod ean (val ue, src->sync);
break;
[--]
}
}
static vod
gst_ny_source get_property (Gj ect * ol ect,
oui nt propid,
Grar anpec * PSPeC,
const G ue * val ue)
{

102

Chapter 21. Writing a Source

Gt Sour ce xsrc = GBI W SARE (gst_pad get_parent (ped));

swtch (propid) {
[--]
case ARGSINC
src->sync = g va ue get_bod ean (va ue);
break;

Most of this is GObject wrapping code. The actual code to diwsoe-sync (in theget () -function)
is relatively small.

21.4. Using special memory

In some cases, it might be useful to use specially allocatdony (e.gmmap () ’'ed DMAable

memory) in your buffers, and those will require special Hargdwhen they are being dereferenced. For
this, GStreamer uses the concept of buffer-free functibhsese are special functions pointers that an
element can set on buffers that it created itself. The givection will be called when the buffer has
been dereferenced, so that the element can clean up or reamery internally rather than using the
default implementation (which simply calisfree () on the data pointer).

static vad
ost_ny source buffer_free (GtBuffer * uf)

{
Gt MSour ce *src = GBI W SORE (G BAER FRVATE (huf));

/* do usefu things here, like re-queueing the buffer which
* nakes it avalable for DMh again. The default hand er wil
* not free this buffer because of the GoI BIHFER DONTHREE
* flag. =/

}

static Gthta *
ost_ny source get (Gt Pad * pad)
{
Gt MSour ce *src = GBI_W SARE (gst_ped get_parent (pad));
GtBifer * buf;
[--]
buf = gst_buffer_new ();
GBIl BIFFER FREE DATA RUNC (buf) = gst_ny source buffer _freg
G BFFERFR\ATE (buf) = srg;
G BAERAAG ST (buf, G BAERRAOOLY | GBI BF FER DONTFRE) ;
[--]

return GST_DANTA (buf);

103

Chapter 21. Writing a Source

Note that this concept shoulbtbe used to decrease the number of calls made to functionsasuch
gnalloc () inside your element. We have better ways of doing that elsesvfGStreamer core, Glib,
Glibc, Linux kernel, etc.).

104

Chapter 22. Writing a Sink

Sinks are output elements that, opposite to sources, haseuroe pads and one or more (usually one)
sink pad. They can be sound card outputs, disk writers, édtis. dhapter will discuss the basic
implementation of sink elements.

22.1. Data processing, events, synchronization and
clocks

Except for corner cases, sink elements will biein () -based elements. The concept of such
elements has been discussed before in detail, so that wskipped here. What is very important in sink
elements, specifically in real-time audio and video sou¢sesh assssink orximagesink), is event
handling inthechain () -function, because most elements rely on EOS-handlingeos$itik element,
and because A/V synchronization can only be perfect if teeneht takes this into account.

How to achieve synchronization between streams depend$ether you're a clock-providing or a
clock-receiving element. If you're the clock provider, yoan do with time whatever you want. Correct
handling would mean that you check whether the end of theiquebuffer (if any) and the start of the
current buffer are the same. If so, there’s no gap betweetwth@nd you can continue playing right
away. If there is a gap, then you'll need to wait for your clackeach that time. How to do that depends
on the element type. In the case of audio output elementsygold output silence for a while. In the
case of video, you would show background color. In case diittedy show no subtitles at all.

In the case that the provided clock and the received clockairéhe same (or in the case where your
element provides no clock, which is the same), you simplyt feaithe clock to reach the timestamp of
the current buffer and then you handle the data in it.

A simple data handling function would look like this:

static vod

gst_ny sink chain (GtPad * pad,
Gthta *data)

{

Gt MS nk *sink = GBI W S NK (gst_pad get_parent (pad));
GtBirfer * uf;
Gt @ ockTine ti ne;

/* only needed if the denent is GST_BVENT AMRE */
if (SLISBAN (data)) {
Gt Brent *event = GBI BVANT (data);

swtch (GST_BVENT TYFE (evert)) {

case G5 BENT KB
[if you elenent provides a clock, disable (inactivate) it h ere]

105

Chapter 22. Writing a Sink

[= pass-through */

defaul t:
[+ the defadt hand er hand es discontinuities, even if your
* eenent provides a clock! */
ost_ped event_default (ped, event);
break;
}
return;

}

buf = GST_BAER (data);
if (G BAERTMISWID (buf))
tine = GSI_BUAFER T MESTAWP (buf);
el se
tine = sink->expected next_tine;

/* Sychronization - the property is only usefu in case the
* elenent has the ogtion of not syncing S it is not usefu
* for hardware-sync (clock-provid ng) el enents. */
if (sink->sync) {
/* This check is oly needed if you provide a clock. Hse,
* you can avays execute the 'els€ clause. */
if (sink->provided cl ock = sink->rece ved cl ock) {
[+ G EHIND/ 10 is 0,1 sec, it’s an arbitray vdue The
* casts are needed because ese it'll be unsigned and ve

* W't detect negative va ues. */
if (Ilas ((gnt6d) sink->expected next tine - (gint6d) t ing >
(Er =D/ 10) {
/* so are we ahead or behind? */

if (tine > sink->expected ting) {
[+ we need to vait a wile... In case of audio, output
* silence. In case of video, output background cdor.
* |n case of subtitles, display nothing. */
(-]
} dse {
[+ Dop data */
(-]
}
}
} dse {
[+ You coud do nore sophisticated things here, but we'll
* keep it sinple for the purpose of the exanpl e */
ost_elenent_vait (GST_HEMENT (sink), tine);
}
}

/+ Ad now hand e the data * [

[..]
}

106

Chapter 22. Writing a Sink

22.2. Special memory

Like source elements, sink elements can sometimes proxtdenally allocated (such as X-provided or
DMAable) memory to elements earlier in the pipeline, anertdby prevent the need fosepy () for
incoming data. We do this by providing a pad-allocate-lntiaction.

static GtBifer * gst_ny sink buffer_alocate (GtPad * pad,
Quint64 of fset,
oui nt si ze);

static vad

gst_ny sinkinit (GtMSnk * Si nk)

{

[.-]
ost_ped set_buffera | oc_function (sink->si nkpad,
gst_ny sink buffer_alocate);
}

static vad
ost_ny sink buffer_free (GtBuffer * buf)
{
Gt M3 nk *sink = GBI_W SN (G BIHFFER FR\ATE (huf));

[+ Do whatever is needed here. */
[..]
}

static GtBiffer *

ost_ny sink buffer_allocate (GtRad * pad,
Quint64 of fset,
oui nt Si ze)

GtBiffer *pbuf = gst_buffer_new ();

/+ S here it’s up to you to wap your private buffers and
* retun that. */
GBT_BIHER FREE DATA RUNC (buf) = gst_ny_sink buffer_f ree
G BAERRVATE (buf) = sirnk;
G BAERAAG ST (buf, GBI BHAER DNFRE);
[.]

return buf;

107

Chapter 23. Writing a 1-to-N Element, Demuxer
or Parser

1-to-N elements don’t have much special needs or requirestleat haven’t been discussed already. The
most important thing to take care of in 1-to-N elements @Biliketee -elements or so) is to use proper
buffer refcounting and caps negotiation. If those two akeecare of (see thee element if you need
example code), there’s little that can go wrong.

Demuxers are the 1-to-N elements that need very specialttemegh. They are responsible for
timestamping raw, unparsed data into elementary video dioaireams, and there are many things that
you can optimize or do wrong. Here, several culprits will bentioned and common solutions will be
offered. Parsers are demuxers with only one source pad, &kisg only cut the stream into buffers, they
don't touch the data otherwise.

23.1. Demuxer Caps Negotiation

Demuxers will usually contain several elementary streamd,each of those streams’ properties will be
defined in a stream header at the start of the file (or, ratlregm) that you're parsing. Since those are
fixed and there is no possibility to negotiate stream pragewith elements earlier in the pipeline, you
should always use explicit caps on demuxer source padsprénents a whole lot of caps negotiation or
re-negotiation errors.

23.2. Data processing and downstream events

Data parsing, pulling this into subbuffers and sending th#te source pads of the elementary streams is
the one single most important task of demuxers and parsstally, an element will have doop ()

function using thewtestream object to read data. Try to have a single point of data reafilorg the
bytestream object. In this single point, dmperevent handling (in case there is any) qrdpererror
handling in case that's needed. Make your element as falgltaint as possible, but do not go further than
possible.

23.3. Parsing versus interpreting

One particular convention that GStreamer demuxers folfothat of separation of parsing and
interpreting. The reason for this is maintainability, @dfaand code reuse. An easy example of this is
something like RIFF, which has a chunk header of 4 bytes, &length indicator of 4 bytes and then the
actual data. We write special functions to read one chungegk a chunk ID and all those; that’s the

108

Chapter 23. Writing a 1-to-N Element, Demuxer or Parser

parsingpart of the demuxer. Then, somewhere else, we like to wraenthin data processing function,
which calls this parse function, reads one chunk and thes dite the data whatever it needs to do.

Some example code for RIFF-reading to illustrate the abeegioints:

static ghod ean
gst_ny_denuxer_peek (Gt MyDenuxer * denuix,
guint 32 *id,
Qui nt 32 * Si 7€)
{
Qun8 xdaa
wile (gst_bytestreampeek bytes (denux->bs, &data, 4) ! =4 {

gui nt32 renai ni ng;
Gt Bvent * event;

ost_bytestreamget_status (denux->bs, &enaining, &eve n);
if (evet) {
Gt Brent Type type = GST_BVENT_TYFE (event);

[+ or naybe customevent handing, up to you - ve lose referencel */
ost_pad evert_default (denux->si nkpad, event);

if (type = GBI BVENT BB
retun FASE
} dse {
GBT_HLEMENT_ERRR (demux, STREAMI READ (N, (NLLL));
retun FASE
}
}

*id = GJNR2 FROMLE (((guint32 *) deta)[Q));
xsize = GJ N3 FRMLE (((ouint32 *) data)[Q]);

return TRE
}

static vad
gst_ny_denuxer_| oop (Gt H enent * el enent)
{
Gt MyCenuixer * demx = GBI W AR (€l enent);
unt3 id size

if (Ygst_ny demuxer_peek (denx, &d, &size))
return;

swtch (id {
[.. nornal chuk handiing ..]
}
}

109

Chapter 23. Writing a 1-to-N Element, Demuxer or Parser

Reason for this is that event handling is now centralizechia jplace and thdoop () functionis a lot
cleaner and more readable. Those are common code prattitesince the mistake ofot using such
common code practices has been made too often, we expliniehtion this here.

23.4. Simple seeking and indexes

Sources will generally receive a seek event in the exactatggdformat by the element. Demuxers,
however, can not seek in themselves directly, but need teezbfiom one unit (e.g. time) to the other
(e.g. bytes) and send a new event to its sink pad. Given t@setrvert () -function (or, more
general: unit conversion) is the most important functioa ilemuxer. Some demuxers (AVI, Matroska)
and parsers will keep an index of all chunks in a stream, ¥itstimprove seeking precision and
secondly so they won't lose sync. Some other demuxers vak fiee stream directly without index (e.g.
MPEG, Ogg) - usually based on something like a cumulativateit and then find the closest next
chunk from their new position. The best choice depends offottmeat.

Note that it is recommended for demuxers to implement ewemyersion and query handling functions
(using time units or so0), in addition to the ones (usuallyytehunits) provided by the pipeline source
element.

110

Chapter 24. Writing a N-to-1 Element or Muxer

N-to-1 elements have been previously mentioned and disdussothChapter 14and inChapter 12

The main noteworthy thing about N-to-1 elements is that #teyuldalways without any single
exception, beloop () -based. Apart from that, there is not much general that yed e know. We

will discuss one special type of N-to-1 elements here, theseg muxers. The first two of these sections
apply to N-to-1 elements in general, though.

24.1. The Data Loop Function

As previously mentioned i€hapter 12N-to-1 elements generally try to have one buffer from eack s
pad and then handle the one with the earliest timestampeB®me exceptions to this rule, we will
come to those later. This only works if all streams actuatigtmuously provide input. There might be
cases where this is not true, for example subtitles (theghtiie no subtitle for a while), overlay images
and so forth. For this purpose, there issdect () function in GStreamer. It checks whether input is
available on a (list of) pad(s). In this way, you can skip awerpads that are 'non- continuous’.

/* Pad sdection is curently broken, HXMVE sone day */

24.2. Events in the Loop Function

N-to-1 elements using a cache will sometimes receive eyantsit is often unclear how to handle those.
For example, how do you seek to a frame incartputfile (and what's the point of it anyway)? So, do
discontinuity or seek events make sense, and should yotnese’t

24.2.1. Discontinuities and flushes

Don’t do anything. They specify a discontinuity in the out@nd you should continue to playback as
you would otherwise. You generally do not need to put a dinaity in the output stream in muxers;
you would have to manually start adapting timestamps ofutiftames (if appliccable) to match the
previous timescale, though. Note that the output datarstsdeuld be continuous. For other types of
N-to-1-elements, it is generally fine to forward the dis@ounity once it has been received from all pads.
This depends on the specific element.

24.2.2. Seeks

Depends on the element. Muxers would generally not impletings) because the concept of seeking in
anoutputstream at frame level is not very useful. Seeking at byte leme be useful, but that is more

111

Chapter 24. Writing a N-to-1 Element or Muxer

generally dondy muxerson sink elements.

24.2.3. End-of-Stream

Speaks for itself.

24.3. Negotiation

Most container formats will have a fair amount of issues witlanging content on an elementary stream.
Therefore, you should not allow caps to be changed once gatarted using data from them. The
easiest way to achieve this is by using explicit caps, whatelbeen explained before. However, we're
going to use them in a slightly different way then what yowlsed to, having the core do all the work for
us.

The idea is that, as long as the stream/file headers have eotiréten yet and no data has been
processed yet, a stream is allowed to renegotiate. Aftépthiat, the caps should be fixed, because we
can only use a stream once. Caps may then only change witlatoaved range (think MPEG, where
changes in FPS are allowed), or sometimes not at all (sucbauilio). In order to do that, we will,
after data retrieval and header writing, set an explicitsoap each sink pad, that is the minimal caps
describing the properties of the format that may not chaAgen example, for MPEG audio inside an
MPEG system stream, this would mean a wide caps of audio/mijiegnpegversion=1 and layer=[1,2].
For the same audio type in MPEG, though, the sampleratatéjtayer and number of channels would
become static, too. Since the (request) pads will be remaweh the stream ends, the static caps will
cease to exist too, then. While the explicit caps exist, tha () - function will not be called, since
the core will do all necessary checks for us. Note that thegnty of using explicit caps should be added
along with the actual explicit caps, not any earlier.

Below here follows the simple example of an AVI muxer’s audaps negotiation. Theink
() -function is fairly normal, but theLoop () -function does some of the tricks mentioned above. There
isno_getcaps () - function since the pad template contains all that inforarealready (not shown).

static GtPadli nkReturn

gst_avi_mx audio |ink (GtPad * pad,
const - Gt Gaps * Caps)

{
Gt Ari Mix *mx = GGILA_MX (gst_pad get_parent (ped));
GtSructure xstr = gst_caps get_structure (caps, 0);
const gchar *mne = gst_structure get_nane (str);

if (!strenp (str, "audi o/npeg’)) {
/* get version, nake sure it’s 1, get layer, nake sure it’s 1-3
* then create the 2-byte audo tag (Ox0055) and fill an audio
* streamstructure (strivstrf). */

[..]

112

Chapter 24. Writing a N-to-1 Element or Muxer

return GST_PAD LINK (K
} ese if !strenp (str, "audid x-rawint")) {
/* See above, but now wth the raw aud o tag (Ox0001). */
[.-]
return GoI PAD LINK K
} ese[.]
[..]
}

static vad
gst_avi_nox | oop (Gt H enent * el enent)
{
Gt Avi Mix *mXx = GGLA_MX (€ enant);
[..]
[+ Fs ve get here, we shoud have witten the header if we hadn't d one
* that before yet, and we're supposed to have an internad huffe r from
* each pad, aso fromthe audo one. S here, we check again whet her
* this is the first run ad if so, ve set static caps. */
if (nx->first_cycle) {
const @i st *padist = gst_elenent_get_ped list (e enent);
Gist =xitem

for (item= padist; item!= NLL, item= item>ext) {
GtRd *pad = item>dat g

GtGps *caps;
if (!GT_PDISINK (pad))
corti nue
[+ set static caps here */
if (!strrenp (gst_ped get nene (ped), "audo”, 6)) {
[+ the strf is the struct you filled in the _link () function */

swtch (strf->fornat) {
case Ox0055: / * 3 */
caps = gst_caps newsinple (“aud o npeg’,
"npegversi o', GTYEINT 1

"l ayer", GTYEIN 3,
"hitrate", GTYEINI, strf->av_bps,
"rae’, GTYEINI, strf->rate,
"channdl ", GTYEINI, strf->hannd s,
NLL);

break;

case Ox000L / * pcm */
caps = gst_caps newsinple ("aud o/ x-rawint”,
[..1):
break;
(-]
}
} dse if (!strncnp (gost_ped get_nane (pad), "video ", 6)) {
(-]
} dse {
gvarning ("a!");
cortinue;

113

Chapter 24. Writing a N-to-1 Element or Muxer

}

[+ set static caps */
ost_pad use explicit_caps (pad);
gst_ped set_explicit_caps (ped, caps);

}
}
[-]
/+ Next runs wll never be the first again */
nx->first_cycle = FASE
}

Note that there are other ways to achieve that, which mighisieéul for more complex cases. This will
do for the simple cases, though. This method is providedtpléy negotiation and renegotiation in
muxers, it is not a complete solution, nor is it a pretty one.

24.4. Markup vs. data processing

As we noted on demuxers before, we love common programmiraglgans such as clean, lean and
mean code. To achieve that in muxers, it's generally a goed id separate the actual data stream
markup from the data processing. To illustrate, here’s hdiviAuxers should write out RIFF tag chunks:

static vod
ost_avi_nmx wite chunk (Gt Avi Mix * NIX,
quint 32 id,

GtBffer +daa)
GtBffer «hdr;
ht = gst_buffer_rewand aloc (8);

((guint32 *) GBT_BIAFER DATA (buf))[Q]
((guint32 *) GBT_BIFFER DATA (buf))[1]

GJ NI TOLE (id);
GJNI32 TOLE (ST BFFER. SZE (detd));

ost_pad push (nux->srcpad, hdr);
gst_pad push (nux->srcpad, datad);
}

static vod
gst_avi_nox | oop (GstH enent * el enent)
{
Gt Ari Mix *mx = GGL_A_MX (e enent);
GtBifer * buf;
[--]
buf = gst_ped pul | (nux->si nkped 0]);
[--]
gst_avi_mx wite chuk (GBI MKEFQRIC ('0,'0,'d . b)), buf);

114

Chapter 24. Writing a N-to-1 Element or Muxer

In general, try to program clean code, that should covetypratich everything.

115

Chapter 25. Writing a N-to-N element

FIXME: write.

116

Chapter 26. Writing an Autoplugger

FIXME: write.

117

Chapter 27. Writing a Manager

Managers are elements that add a function or unify the fanaf another (series of) element(s).
Managers are generally@Bn with one or more ghostpads. Inside them is/are the actualesigs)
that matters. There is several cases where this is usefuéXaonple:

- To add support for private events with custom event handbtrenother element.
- To add support for custom paduery () or_covert () handling to another element.

- To add custom data handling before or after another elesidata handler function (generally its
_chain () function).

This chapter will explain the setup of managers. As a speex@nple, we will try to add EOS event
support to source elements. This can be used to finish cagtan audio stream to a file. Source
elements normally don’t do any EOS handling at all, so a maniagerfect to extend those element’s
functionalities.

Specifically, this element will contain two child elemerttse actual source element and a “helper
element” that implement an event handler on its source plid.évent handler will respond to EOS
events by storing them internally and returning the eveath@r than data) on the next call to thet

() function. After that, it will go into EOS and set the paremidehereby the contained source element)
to EOS as well. Other events will be forwarded to the souremeht, which will handle them as usual.

118

V. Appendices

This chapter contains things that don’t belong anywhere els

Chapter 28. Things to check when writing an
element

This chapter contains a fairly random selection of thingste@ care of when writing an element. It's up
to you how far you're going to stick to those guidelines. Hoarekeep in mind that when you're writing
an element and hope for it to be included in the mainstreame@Bter distribution, ihas tomeet those
requirements. As far as possible, we will try to explain whgge requirements are set.

28.1. About states

- Make sure the state of an element gets reset when goilglto. Ideally, this should set all object
properties to their original state. This function shoulsiabe called from _init.

- Make sure an element forgeggerythingabout its contained stream when going freft8D to
RADY . In RADY |, all stream states are reset. An element that goes floBD to R2DY and back to
PAED should start reading the stream from he start again.

- People that usgst-launch for testing have the tendency to not care about cleaning hig.i$wrong
An element should be tested using various applicationsreviesting not only means to “make sure it
doesn't crash”, but also to test for memory leaks using teoth asvalgrind. Elements have to be
reusable in a pipeline after having been reset.

28.2. Debugging

- Elements shouldeveruse their standard output for debugging (using functioch ssprintf ()
orgprint ()). lInstead, elements should use the logging functions gea/by GStreamer, named
G G () ,EILAGG () ,GEINO() , GTWRNNG () andGT BRR () . The various
logging levels can be turned on and off at runtime and cantleussed for solving issues as they turn
up. Instead of ST LG5 () (as an example), you can also (e LG5 @RIECT () to print the
object that you're logging output for.

- ldeally, elements should use their own debugging catedogt elements use the following code to
do that:

GBI LG GNTEGIRY_STATI C (nyel enent_debug) ;
#oefine GBT_CNT_CHALLT nyel enent _debug

(-]

static vod
ost_nyelenent_class init (Gt Mel enent G ass * Kl ass)
{
[-]
Gol G OVEERY INT (nyel enent_debug, "nyel enent™ ,
0, "M omn € enent");

120

Chapter 28. Things to check when writing an element

At runtime, you can turn on debugging using the commandIpt®a --gst-debug=myelement: 5.

28.3. Querying, events and the like

- All elements to which it applies (sources, sinks, demux&nsuld implement query functions on their

pads, so that applications and neighbour elements canseiipgecurrent position, the stream length
(if known) and so on.

All elements that are event-aware (th€ir B EVENT BVENT AMRE flag is set) should implement
event handling foall events, either specifically or usirg_pad event_defaut () . Elements
that you should handle specifically are the interrupt evardgrder to properly bail out as soon as
possible if state is changed. Events may never be droppedaispecifically intended.

Loop-based elements should always implement event hapdtirorder to prevent hangs (infinite
loop) on state changes.

28.4. Testing your element

gst-launch is nota good tool to show that your element is finished. Applicatisnch as Rhythmbox
and Totem (for GNOME) or AmaroK (for KDEjre. gst-launch will not test various things such as
proper clean-up on reset, interrupt event handling, qugrgind so on.

Parsers and demuxers should make sure to check their imputt ¢cannot be trusted. Prevent possible
buffer overflows and the like. Feel free to error out on unxecable stream errors. Test your demuxer
using stream corruption elements suchuasknydat a (included in gst-plugins). It will randomly
insert, delete and modify bytes in a stream, and is theref@eod test for robustness. If your element
crashes when adding this element, your element needs fixiihgrrors out properly, it's good

enough. ldeally, it'd just continue to work and forward dasamuch as possible.

Demuxers should not assume that seeking works. Be prepavectk with unseekable input streams
(e.g. network sources) as well.

Sources and sinks should be prepared to be assigned anlottietteen the one they expose
themselves. Always use the provided clock for synchroionatlse you'll get A/V sync issues.

121

Chapter 29. GStreamer licensing

29.1. How to license the code you write for GStreamer

GStreamer is a plugin-based framework licensed under tieLLGhe reason for this choice in licensing
is to ensure that everyone can use GStreamer to build apphisausing licenses of their choice.

To keep this policy viable, the GStreamer community has naaféev licensing rules for code to be
included in GStreamer’s core or GStreamer’s official moduli&e our plugin packages. We require that
all code going into our core package is LGPL. For the plugidegave require the use of the LGPL for

all plugins written from scratch or linking to external ldnies. The only exception to this is when
plugins contain older code under more liberal licenseg (liie MPL or BSD). They can use those
licenses instead and will still be considered for inclusidfe do not accept GPL code to be added to our
plugins module, but we do accept LGPL-licensed pluginsgiamexternal GPL library. The reason for
demanding plugins be licensed under the LGPL, even wheiyas®PL library, is that other developers
might want to use the plugin code as a template for plugingrmto non-GPL libraries.

We also plan on splitting out the plugins using GPL librairgs a separate package eventually and
implement a system which makes sure an application will eddlide to access these plugins unless it
uses some special code to do so. The point of this is not t& @&t -licensed plugins from being used
and developed, but to make sure people are not unintenfyyonalating the GPL license of said plugins.

This advisory is part of a bigger advisory with a FAQ which yaan find on the GStreamer website
(http://gstreamer.freedesktop.org/documentatioefiging.html)

122

	GStreamer Plugin Writer's Guide (0.8.9)
	Table of Contents
	List of Tables
	I. Introduction
	Chapter 1. Preface
	1.1. Who Should Read This Guide?
	1.2. Preliminary Reading
	1.3. Structure of This Guide

	Chapter 2. Basic Concepts
	2.1. Elements and Plugins
	2.2. Pads
	2.3. Data, Buffers and Events
	2.3.1. Buffer Allocation

	2.4. Mimetypes and Properties
	2.4.1. The Basic Types

	II. Building a Plugin
	Chapter 3. Constructing the Boilerplate
	3.1. Getting the GStreamer Plugin Templates
	3.2. Using the Project Stamp
	3.3. Examining the Basic Code
	3.4. GstElementDetails
	3.5. GstStaticPadTemplate
	3.6. Constructor Functions
	3.7. The plugininit function

	Chapter 4. Specifying the pads
	4.1. The link function
	4.2. The getcaps function
	4.3. Explicit caps

	Chapter 5. The chain function
	Chapter 6. What are states?
	6.1. Managing filter state

	Chapter 7. Adding Arguments
	Chapter 8. Signals
	Chapter 9. Building a Test Application
	Chapter 10. Creating a Filter with a Filter Factory
	III. Advanced Filter Concepts
	Chapter 11. How scheduling works
	11.1. The Basic Scheduler
	11.2. The Optimal Scheduler

	Chapter 12. How a loopfunc works
	12.1. MultiInput Elements
	12.2. The Bytestream Object
	12.3. Adding a second output
	12.4. Modifying the test application

	Chapter 13. Types and Properties
	13.1. Building a Simple Format for Testing
	13.2. Typefind Functions and Autoplugging
	13.3. List of Defined Types

	Chapter 14. Request and Sometimes pads
	14.1. Sometimes pads
	14.2. Request pads

	Chapter 15. Clocking
	15.1. Types of time
	15.2. Clocks
	15.3. Flow of data between elements and time
	15.4. Obligations of each element.
	15.4.1. Source elements
	15.4.2. Sink elements

	Chapter 16. Supporting Dynamic Parameters
	16.1. Comparing Dynamic Parameters with GObject Properties
	16.2. Getting Started
	16.3. Defining Parameter Specifications
	16.3.1. Direct Method
	16.3.2. Callback Method
	16.3.3. Array Method

	16.4. The Data Processing Loop
	16.4.1. DParam Manager Modes
	16.4.2. Dynamic Parameters for Video

	Chapter 17. MIDI
	Chapter 18. Interfaces
	18.1. How to Implement Interfaces
	18.2. Mixer Interface
	18.3. Tuner Interface
	18.4. Color Balance Interface
	18.5. Property Probe Interface
	18.6. X Overlay Interface
	18.7. Navigation Interface

	Chapter 19. Tagging (Metadata and Streaminfo)
	19.1. Reading Tags from Streams
	19.2. Writing Tags to Streams

	Chapter 20. Events: Seeking, Navigation and More
	20.1. Downstream events
	20.2. Upstream events
	20.3. All Events Together
	20.3.1. End of Stream (EOS)
	20.3.2. Flush
	20.3.3. Stream Discontinuity
	20.3.4. Seek Request
	20.3.5. Stream Filler
	20.3.6. Interruption
	20.3.7. Navigation
	20.3.8. Tag (metadata)

	IV. Other Element Types
	Chapter 21. Writing a Source
	21.1. The get()function
	21.2. Events, querying and converting
	21.3. Time, clocking and synchronization
	21.4. Using special memory

	Chapter 22. Writing a Sink
	22.1. Data processing, events, synchronization and clocks
	22.2. Special memory

	Chapter 23. Writing a 1toN Element, Demuxer or Parser
	23.1. Demuxer Caps Negotiation
	23.2. Data processing and downstream events
	23.3. Parsing versus interpreting
	23.4. Simple seeking and indexes

	Chapter 24. Writing a Nto1 Element or Muxer
	24.1. The Data Loop Function
	24.2. Events in the Loop Function
	24.2.1. Discontinuities and flushes
	24.2.2. Seeks
	24.2.3. EndofStream

	24.3. Negotiation
	24.4. Markup vs. data processing

	Chapter 25. Writing a NtoN element
	Chapter 26. Writing an Autoplugger
	Chapter 27. Writing a Manager
	V. Appendices
	Chapter 28. Things to check when writing an element
	28.1. About states
	28.2. Debugging
	28.3. Querying, events and the like
	28.4. Testing your element

	Chapter 29. GStreamer licensing
	29.1. How to license the code you write for GStreamer

