GStreamer Application Development
Manual (0.8.9)

Wim Taymans
Steve Baker
Andy Wingo

Ronald S. Bultje

GStreamer Application Development Manual (0.8.9)
by Wim Taymans, Steve Baker, Andy Wingo, and Ronald S. Bultje

This material may be distributed only subject to the ternts @nditions set forth in the Open Publication License, \t.[ater (the latest version
is presently available at http://www.opencontent.org&sgml (http://www.opencontent.org/opl.shtml)).

Table of Contents

L. OVEBIVIBW ...ttt e ee ettt e e e e o4 e e eha bt ettt e e e e e ea sttt e ee e e aennbe bbb e e e e e e e e e e annnbenneeaaens Vil
I 1 (Yo [Tox 1o T o TR O S PUPPPUPPPPRRTPTR 1.
1.1, WRNAE IS GSIrEAIMEL? ..ttt ettt ettt e e e e e e e eb et eeee e e 1

1.2. Structure of this ManUal..............ooii e 1.
2. MOUIVALION & GOAIS.eeeeiiieeeei ittt e e e e e e e ettt e e e e e e e s e benneee e e e annnes 3
P I O 0 [T o1 o] o] o] [T 1 4 L= PP 3
2.2. The deSIgN QOAIS.cooiiiieie ettt e e e eee e 5
3. FOUNALIONS. ...ttt ettt e e e e e e s mene e e e e e e et rreaeaaeeas 8.
T I =T 03T o (PP TR PTT T 8
3.2.BiNS and PIPEIINES.uueiiiiiieii et e 8
TR T - (o L3O OPPPUPPPRPTT 8.
1 ST] o @0] o7 =T o PSSR 10
A, INIAlIZING GSITBAMEE. eiiiiieiee ettt ettt st e s ebb e e e eeeeeesees 11
4.1, SIMPIE INItIANTZALIONcoiiiiieie e 11
4.2. The POPLINIEITACEciiiiiii e 11
LT =T 3 oY o] £SO RSR 13
5.1. What are €lemMeNtS2........couuiiiiiiiee e e e e s e e e e e e e e e e eeean 13
5.2. Creating @BtH EMBM ...vveiieiiiiiee ettt 15.
5.3.Using an element @SB €00 ...c.vvvvviiiiiiiieiiiieee st 17
5.4. More about element faCtONES.ccoii i ere e 18
5.5, LINKING @lEMENTS......oiiiiiiie e 19
5.6, ElEMENE StALESuiiiiiieeie it e e e e e e e e e e e rrn e e 20
G 2 10 USRS 22
B.1. What @re DiNS........ceeiieieeeie et e e e e e e s e e e e e e e e e 22
6.2, Creating @ DINL.......e it e e eeee s 22
6.3, CUSLOM DINS.. ..ottt ettt e e e e et e e e e e e s e sannneeee s e ennne 23
7. Pads and Capabilities............uiiiiiii et 25
4 T - o 3PP PPRPRRTN 25
7.2. Capabilities Of @ Pad.........oooiiiiiiiiie s 27
7.3. What capabilities are used fQr..............ooooiiiii e 29
T4, GROSE PAAS.eeeieeeii ettt ettt e e e e s e e e e e 31
8. BUfErS @nd BEVENTS.. ...ttt e ene e e 34
8L BUI IS ettt e e 34
B2, EVBINES. ..ttt e e s 34
9. YOUTr firSt @PPICAION.........eeeeiiie ettt e ennne e e e 36
LS 20 o 1= Fo MY o] o o U T P UUURPRPP 36
9.2. Compiling and Running helloworld.C.......... ... 38
LS TR T 0o 1 (o1 011 o o PP EUUTUPRRRPTN 39
1T IaNe \V7= T [of=To M €2 = Y= T g [=T oo g [od =T o £ USSR 40
10. Position tracking and SEEKINGccuuriiiiiiiiiei e 41.
10.1. Querying: getting the position or length of a stream...........cccccceeeviiviiiiiinnenee 41
10.2. Events: seeKing (N0 MOIE)........ccooiiiiiiiiiiiiiis i eeeie e 42
B 117 =T - | - W OO 43
11.1. Stream iNfOrMatiQN..........ouviiiiie e e e e e s r e e e e ean 43
8 - To I == Vo L] o PP RRP 43

3G T = To IV 1] o VPRSPPSO 43

2 [01 1= 5 7= Lo SO SPP PRI 44
12.1. The MIXer INTEITACE.eiii it 44
12.2. The TUNEI INEITACE. ettt 44
12.3. The Color Balance iNterface..........c.ueeiiiiiiie it 44
12.4. The Property Probe interface.........cccouvveeiiiiiiiiiiiiec e 45
12.5. The X Overlay INtEIracCe..........ooiiiiiiieiii e 45

13, CIOCKS IN GSIIBAIMEE.....ciiitiiiieiiitie ettt ettt e e ettt e e sttt e e st e e e s st e e e s anbeeeenameeesane 46

14, DYNAMIC PAraMELEIS.....cciuiiiii ittt ettt e sttt e et e et eeesameeesane a7
14.1. Getting StArt@U........eeeiei e seaeee a7
14.2. Creating and Attaching Dynamic Parameters...........ccccovueeeiiiiieiie e a7
14.3. Changing Dynamic Parameter ValUES...........cooiiiviiiiiiiiiiie e 48
14.4. Different Types of Dynamic Parameter.........ccueeiiiiiiieiiiiiiee i 49

LT I 1 1= =T PRSPPI 51
15.1. When would you want to use a thread?.............cccccooiiiiiiiiin e 51
15.2. Constraints placed on the pipeline by the GstThread.............ccccvveiiiiiiiinee 52
15.3. A threaded example appliCation.............ceuieiiiiiiiiiiiiiiiiee e 53

16. SCREAUIING. ...ttt e et e e e e e e e e e e e e e e s s bbb e e eaaaeas 56
16.1. Managing elements and data throughput................cccccciiiniiiieeen 56

AN E | (o] o] 18 o o o FO PP TP 58
17.1. MIME-types as a way to identity Streams...........ccoooiiiiiiiiiiieinin e 58
17.2. Media stream type deteCtiON.............eiiiiiiiiiiiiiiiiiie e 59
17.3. Plugging together dynamic pipelines............oooeviiiiiiiiiiiiiee e 61

18. Pipeling ManipUIBtiON.ouuuiiieeie e e e 67
R I DT 1= U o] 0] o 1= 1SS PP PPRPP 67
18.2. Manually adding or removing data from/to a pipeline.............ccccccviiiiivinnnenenn. 61.
18.3. Embedding static elements in your appliCation............cccccoeviiiiiiiiiie e 69

IV. Higher-level interfaces for GStreamer applications...........occooeiiiiiiiiiiiiii e 71

RS O] 1 gTeTo] 0[] o K= TP PO PPPTPPPRPN 72
19,0, PIAYDIN. ..o e 72
19.2. DECOUEDIN. ...ttt e e e e 73
S TR TS oo =T PR 75
RS B N T | - | PR RRTP 76
S TR 11 | <o] (o | PP RPSRRRRPPPRPROY 4 o

20. XML IN GO I AMEeieiiitiiie ettt ettt ettt e e ettt e e e eat bt e e e e abb et e e e anbbee e e enebbe e eeneeeeaneees 77
20.1. Turning GStEIeMENtS iNt0 XML......cooiiiiiiiiiiiiee e 77
20.2. Loading a GstElement from an XML file..........cccccciviiiiiii v 48
20.3. Adding custom XML tags into the core XML data...........ccccoovvveeiiiiiieieniiieceane 79

RV Y o] 0 1= Lo [Tot T PRSPPI 82

21. Things to check when writing an appliCation.............ccccoiiiiiiiii e 83
21.1. Good programming habilS..........ooiiiiiiiii e 83
21.2. DEDUGGING ... ettt e e e e e e e 83
21.3. CONVErSION PIUGINS ...ccoiiiiite e e e e eas 84
21.4. Utility applications provided with GStreamer............cccceiiiiiiiiiiieeeeee e eeeeeee 84

P 1 (=To | = 11T o O PP EPPT TP 85
22.1. Linux and UNIX-like operating SYStEMS........ccoouiiiiiiiiiiieieeeieeieieee e 85
22.2. GNOME dESKEOP.ceeiiiiiitiiee ittt e e e e eee e 85

22.3. KDE AESKIOD.. ..t iuttitieeittiee ettt ettt e e ettt e ettt e e e st e e e s snbe e e e s sbneeeesnmeeenne 86

A S © 15 3 OSSPSR 86
22.5. WINAOWS. ...ttt e ettt e ettt e e e st e e e s anbe e e e e s rmeeenntbeeeenan 86
23. LICENSING AUVISOIY ... utiiiiiiiiiee et ettt ettt e ettt e e s anae e e s s abeeee e s stbeeeenseeeesand 38
23.1. How to license the applications you build with GStream...............ccccccvvveeeennnn. 88
24, WINGOWS SUPPOIL ...ttt ettt ettt st et e e st e e et e e e sttt e e e sbbe e e e s anbe e e e e s nmeeennsbeeeenan 90
24.1. Building GStreamer under WIN32..........coooiiiiiiiiiieeeiiee e 90
24.2. Installation 0N the SYSIEIML........cuuviiiii e a0
25. QUOLES frOM the DEVEIOPELS.ueiiiiiiiiiie ittt 92

List of Figures

5-1. Visualisation 0f & SOUICE @IEMENL............oooiii it e e e 13
5-2. Visualisation of a filter @l@MENL...........ooi e 14
5-3. Visualisation of a filter element with more than one @ipad...............ooccviiiiiiiieniiiiiiieee e 14
5-4. Visualisation of a SiNK @IeMENT...........cuiiiiiii e 14
5-5. Visualisation of three linked elements............c..ueiiiiiiii e 19
6-1. Visualisation of a bin with some elements iN.it............oociiiiiii e 22
7-1. Visualisation of atBn (../../gstreamer/html/GstBin.html) element without ghpads............ 31
7-2. Visualisation of atBn (../../gstreamer/html/GstBin.html) element with a ghoesl................ 31
9-1. The "hello WOrld" PIPEIINE........oo i eeeeeeees 38
T I 1] (=T To PR 51
15-2. atwo-threaded decoder With @ QUELIE.coiii ittt 52
17-1. The Hello world pipeline with MIME tyPES........c..uuuiiiiiiiiaaiiiiiee et 58

\Y

. Overview

GStreamer is an exremely powerful and versatile frameworlkcfeating streaming media applications.
Many of the virtues of the GStreamer framework come from itslodarity: GStreamer can seamlessly
incorporate new plugin modules. But because modularitypoveer often come at a cost of greater
complexity (consider, for example, CORBA (http://www.oroggy/)), writing new applications is not
always easy.

This guide is intended to help you understand the GStrearaerdwork (version 0.8.9) so you can
develop applications based on it. The first chapters wilufoon development of a simple audio player,
with much effort going into helping you understand GStreaocumcepts. Later chapters will go into
more advanced topics related to media playback, but alsthat torms of media processing (capture,
editing, etc.).

Chapter 1. Introduction

This chapter gives you an overview of the technologies desdiin this book.

1.1. What is GStreamer?

GStreamer is a framework for creating streaming media apfitins. The fundamental design comes
from the video pipeline at Oregon Graduate Institute, as agsome ideas from DirectShow.

GStreamer’s development framework makes it possible ttewany type of streaming multimedia
application. The GStreamer framework is designed to magasy to write applications that handle audio
or video or both. Itisn’t restricted to audio and video, aad process any kind of data flow. The pipeline
design is made to have little overhead above what the apifillie induce. This makes GStreamer a
good framework for designing even high-end audio applicetiwhich put high demands on latency.

One of the the most obvious uses of GStreamer is using it td bunedia player. GStreamer already
includes components for building a media player that campsti@a very wide variety of formats,
including MP3, Ogg/Vorbis, MPEG-1/2, AVI, Quicktime, maahd more. GStreamer, however, is much
more than just another media player. Its main advantagesat¢he pluggable components can be
mixed and matched into arbitrary pipelines so that it's pjuego write a full-fledged video or audio
editing application.

The framework is based on plugins that will provide the vasicodec and other functionality. The
plugins can be linked and arranged in a pipeline. This pigstiefines the flow of the data. Pipelines can
also be edited with a GUI editor and saved as XML so that pigdlbraries can be made with a
minimum of effort.

The GStreamer core function is to provide a framework fogpis, data flow and media type
handling/negotiation. It also provides an API to write apgiions using the various plugins.

1.2. Structure of this Manual

This book is about GStreamer from a developer’s point of yiedescribes how to write a GStreamer
application using the GStreamer libraries and tools. Fangianation about writing plugins, we suggest
the Plugin Writers Guide
(http://gstreamer.freedesktop.org/data/doc/gstredmmad/pwg/html/index.html).

Part | inGStreamer Application Development Manual (0.8®gs you an overview of GStreamer’s
motivation design goals.

Chapter 1. Introduction

Part Il in GStreamer Application Development Manual (0.8a)idly covers the basics of GStreamer
application programming. At the end of that chapter, youssthbe able to build your own audio player
using GStreamer

In Part 11l in GStreamer Application Development Manual (0.8v@} will move on to complicated
subjects which make GStreamer stand out of its competigeswill discuss application-pipeline
interaction using dynamic parameters and interfaces, Weliscuss threading and threaded pipelines,
scheduling and clocks (and synchronization). Most of tHop&s are not just there to introduce you to
their API, but primarily to give a deeper insight in solvingmication programming problems with
GStreamer and understanding their concepts.

Next, inPart IV in GStreamer Application Development Manual (0.8v@ will go into higher-level
programming APIs for GStreamer. You don’t exactly need towmll the details from the previous parts
to understand this, but you will need to understand basicga8ter concepts nevertheless. We will,
amongst others, discuss XML, playbin and autopluggers.

In Part V inGStreamer Application Development Manual (0.8y@&u will find some random
information on integrating with GNOME, KDE, OS X or Windowsme debugging help and general
tips to improve and simplify GStreamer programming.

In order to understand this manual, you will need to have a&hasglerstanding of the C language. Since
GStreamer uses GLib 2.0 (http://developer.gnome.org/gti/glib.html), the reader is assumed to
understand the basics of the GObject object model
(http://developer.gnome.org/doc/API/2.0/gobjectérdhtml). It is recommended to have skimmed
through the introduction of the GObject tutorial (httpWw.le-hacker.org/papers/gobject/index.html)
before reading this. You may also want to have a look at Eriddies book Developing Linux
Applications with GTK+ and GDK

Chapter 2. Motivation & Goals

Linux has historically lagged behind other operating systén the multimedia arena. Microsoft’s
Windows™ and Apple’s MacOS™ both have strong support fortimeldia devices, multimedia content
creation, playback, and realtime processing. Linux, orother hand, has a poorly integrated collection
of multimedia utilities and applications available, whicdn hardly compete with the professional level
of software available for MS Windows and MacOS.

GStreamer was designed to provide a solution to the curiientkimedia problems.

2.1. Current problems

We describe the typical problems in today’s media handlimgiioux.

2.1.1. Multitude of duplicate code

The Linux user who wishes to hear a sound file must hunt thrélugih collection of sound file players in
order to play the tens of sound file formats in wide use todayst\f these players basically
reimplement the same code over and over again.

The Linux developer who wishes to embed a video clip in thepli@ation must use crude hacks to run
an external video player. There is no library available thdeveloper can use to create a custom media
player.

2.1.2. 'One goal’ media players/libraries

Your typical MPEG player was designed to play MPEG video amndi@ Most of these players have
implemented a complete infrastructure focused on achggiair only goal: playback. No provisions
were made to add filters or special effects to the video oraddia.

If you want to convert an MPEG-2 video stream into an AVI filepy best option would be to take all of
the MPEG-2 decoding algorithms out of the player and dug@iti@em into your own AVI encoder.
These algorithms cannot easily be shared across applicatio

Attempts have been made to create libraries for handlinguamedia types. Because they focus on a
very specific media type (avifile, libmpeg2, ...), signifitauork is needed to integrate them due to a lack
of a common API. GStreamer allows you to wrap these libraxigis a common API, which significantly
simplifies integration and reuse.

Chapter 2. Motivation & Goals

2.1.3. Non unified plugin mechanisms

Your typical media player might have a plugin for differen¢dia types. Two media players will
typically implement their own plugin mechanism so that thdecs cannot be easily exchanged. The
plugin system of the typical media player is also very ta&itbto the specific needs of the application.

The lack of a unified plugin mechanism also seriously hintlegsreation of binary only codecs. No
company is willing to port their code to all the different gin mechanisms.

While GStreamer also uses it own plugin system it offers & vieh framework for the plugin developer
and ensures the plugin can be used in a wide range of applisatransparently interacting with other
plugins. The framework that GStreamer provides for the jlsigs flexible enough to host even the most
demanding plugins.

2.1.4. Poor user experience

Because of the problems mentioned above, application eitave so far often been urged to spend a
considerable amount of time in writing their own backendisgim mechanisms and so on. The result has
often been, unfortunately, that both the backend as weli@siser interface were only half-finished.
Demotivated, the application authors would start rewgitine whole thing and complete the circle. This
leads to gpoor end user experience

2.1.5. Provision for network transparency

No infrastructure is present to allow network transpareatim handling. A distributed MPEG encoder
will typically duplicate the same encoder algorithms foumd non-distributed encoder.

No provisions have been made for technologies such as theN@\@bject embedding using Bonobo
(http://developer.gnome.org/arch/component/bonahd)h

The GStreamer core does not use network transparent texdieslat the lowest level as it only adds
overhead for the local case. That said, it shouldn’t be harteate a wrapper around the core
components. There are tcp plugins now that implement a @®ee Data Protocol that allows pipelines
to be slit over TCP. These are located in the gst-plugins reodivectory gst/tcp.

2.1.6. Catch up with the Windows™ world

We need solid media handling if we want to see Linux succeati®@desktop.

Chapter 2. Motivation & Goals

We must clear the road for commercially backed codecs antimedia applications so that Linux can
become an option for doing multimedia.

2.2. The design goals

We describe what we try to achieve with GStreamer.

2.2.1. Clean and powerful
GStreamer wants to provide a clean interface to:
- The application programmer who wants to build a media pi@elirhe programmer can use an

extensive set of powerful tools to create media pipelingbauit writing a single line of code.
Performing complex media manipulations becomes very easy.

« The plugin programmer. Plugin programmers are provide@archnd simple API to create
self-contained plugins. An extensive debugging and taoiechanism has been integrated.
GStreamer also comes with an extensive set of real-lifeiptuthhat serve as examples too.

2.2.2. Object oriented

GStreamer adheres to the GLib 2.0 object model. A progranfeneitiar with GLib 2.0 or older versions
of GTK+ will be comfortable with GStreamer.

GStreamer uses the mechanism of signals and object pregerti
All objects can be queried at runtime for their various pmtigs and capabilities.

GStreamer intends to be similar in programming methodotody TK+. This applies to the object
model, ownership of objects, reference counting, ...

2.2.3. Extensible

All GStreamer Objects can be extended using the GObjectitahee methods.

All plugins are loaded dynamically and can be extended agdaged independently.

Chapter 2. Motivation & Goals

2.2.4. Allow binary only plugins

Plugins are shared libraries that are loaded at runtimeeSati the properties of the plugin can be set
using the GObject properties, there is no need (and in faetay) to have any header files installed for
the plugins.

Special care has been taken to make plugins completelgsstiined. All relevant aspects of plugins
can be queried at run-time.

2.2.5. High performance

High performance is obtained by:

« using GLib’sg nemchunk and fast non-blocking allocation algorithms where pogsiblminimize
dynamic memory allocation.

« extremely light-weight links between plugins. Data canétdahe pipeline with minimal overhead.
Data passing between plugins only involves a pointer degate in a typical pipeline.

« providing a mechanism to directly work on the target memarplugin can for example directly write
to the X server’s shared memory space. Buffers can also pmarbitrary memory, such as a sound
card’s internal hardware buffer.

- refcounting and copy on write minimize usage of memcpy. Buffers efficiently split buffers into
manageable pieces.

- the use of cothreads to minimize the threading overheadr€ads are a simple and fast user-space
method for switching between subtasks. Cothreads wereureghto consume as little as 600 cpu
cycles.

- allowing hardware acceleration by using specialized pisgi

- using a plugin registry with the specifications of the pligso that the plugin loading can be delayed
until the plugin is actually used.

- all critical data passing is free of locks and mutexes.

2.2.6. Clean core/plugins separation

The core of GStreamer is essentially media-agnostic. it bnbws about bytes and blocks, and only
contains basic elements. The core of GStreamer is fundtismmagh to even implement low-level
system tools, like cp.

All of the media handling functionality is provided by plugi external to the core. These tell the core
how to handle specific types of media.

Chapter 2. Motivation & Goals

2.2.7. Provide a framework for codec experimentation

GStreamer also wants to be an easy framework where codelgevgcan experiment with different
algorithms, speeding up the development of open and freémedia codecs like Theora and Vorbis
(http://www.xiph.org/ogg/index.html).

Chapter 3. Foundations

This chapter of the guide introduces the basic concepts tfe@®er. Understanding these concepts will

be important in reading any of the rest of this guide, all @thassume understanding of these basic
concepts.

3.1. Elements

An elements the most important class of objects in GStreamer. Youuwsllally create a chain of
elements linked together and let data flow through this chélements. An element has one specific
function, which can be the reading of data from a file, decgaifthis data or outputting this data to
your sound card (or anything else). By chaining togetheess\such elements, you creatpipelinethat
can do a specific task, for example media playback or capBB&reamer ships with a large collection of
elements by default, making the development of a large tyaoiemedia applications possible. If needed,
you can also write new elements. That topic is explained@&agdeal in the Plugin Writer's Guide.

3.2. Bins and pipelines

A binis a container for a collection of elements. A pipeline is acal subtype of a bin that allows
execution of all of its contained child elements. Since lairessubclasses of elements themselves, you
can mostly control a bin as if it where an element, therebyrabsng away a lot of complexity for your
application. You can, for example change state on all elésriara bin by changing the state of that bin
itself. Bins also forward some signals from their contaichdds (such as errors and tags).

A pipeline is a bin that allows toun (technically referred to as “iterating”) its contained Idisi. By
iterating a pipeline, data flow will start and media procegswill take place. A pipeline requires
iterating for anything to happen. you can also use threallishnautomatically iterate the contained
childs in a newly created threads. We will go into this in ddger on.

3.3. Pads

Padsare used to negotiate links and data flow between elementStire@mner. A pad can be viewed as a
“plug” or “port” on an element where links may be made with@tkelements, and through which data
can flow to or from those elements. Pads have specific datdihgredpabilities: A pad can restrict the
type of data that flows through it. Links are only allowed begéw two pads when the allowed data types
of the two pads are compatible. Data types are negotiatetleetpads using a process calteghs
negotiation Data types are described a&eCGps

Chapter 3. Foundations

An analogy may be helpful here. A pad is similar to a plug okjan a physical device. Consider, for
example, a home theater system consisting of an amplifiey,[a [@ayer, and a (silent) video projector.
Linking the DVD player to the amplifier is allowed becauselbdévices have audio jacks, and linking
the projector to the DVD player is allowed because both d=/fave compatible video jacks. Links
between the projector and the amplifier may not be made bed¢hagprojector and amplifier have
different types of jacks. Pads in GStreamer serve the sampoge as the jacks in the home theater
system.

For the most part, all data in GStreamer flows one way througtkdetween elements. Data flows out
of one element through one or m@eurce padsand elements accept incoming data through one or
moresink padsSource and sink elements have only source and sink pagectasly. Data is embodied
inaGtxa structure.

ll. Basic Concepts

In these chapters, we will discuss the basic concepts ofe@®ier and the most-used objects, such as
elements, pads and buffers. We will use a visual representat these objects so that we can visualize
the more complex pipelines you will learn to build later olu¥will get a first glance at the GStreamer
API, which should be enough for building elementary appi@es. Later on in this part, you will also
learn to build a basic command-line application.

Note that this part will give a look into the low-level API ardncepts of GStreamer. Once you're going
to build applications, you might want to use higher-level&\Fhose will be discussed later on in this

manual.

Chapter 4. Initializing GStreamer

When writing a GStreamer application, you can simply inelged/gst.h to get access to the library
functions. Besides that, you will also need to intialize @®treamer library.

4.1. Simple initialization

Before the GStreamer libraries can be uggtjnt has to be called from the main application. This
call will perform the necessary initialization of the liloyaas well as parse the GStreamer-specific
command line options.

A typical program' would have code to initialize GStreamer that looks like:this

#ind we <gst/gst. h>

int

nain (int arge,
char xargv])

{

guint naor, ninor, nIcro;

gst_init (&arge, Sargy);

gst_version (&ayjor, &mnor, &mcro);

printf ("This progpamis linked against (Breaner % % % \n",

naj or, nnor, nicro);

return O

Use the GST_VERSION_MAJOR, GST_VERSION_MINOR and GST_$ER_MICRO macros to
get the GStreamer version you are building against, or wséutictiongst _versi on to get the version
your application is linked against. GStreamer currentlysus scheme where versions with the same
major and minor versions are API-/ and ABI-compatible.

Itis also possible to call thgst_init function with two NULL arguments, in which case ho command
line options will be parsed by GStreamer.

11

Chapter 4. Initializing GStreamer

4.2. The popt interface

You can also use a popt table to initialize your own paransetershown in the next example:

#ind we <gst/gst. h>

in
nain (int aroe,
char +argV])
{
ghod ean silent = FASE
ochar xsavefile = NUL;
struct poptQotion options[] = {

{"silent", 's', RIPTL_AGNN RFLAFHAGSIRP, &sil ent, 0,
"do not output status infornation', NUL},

{"output", '0, PRPLAGSIRNGRPLARFALACGSIRP & avefile, O,
"save xnmh representation of pipeine to HLE and exit", "HL E'},

ROPT_TARLEEND
b

gst_int_wth popt_table (&arge, argy, options);
printf ("Rin ne wth --help to see the Apdication options ap pended. \n");

return G

As shown in this fragment, you can use a popt (http://deverigpome.org/doc/guides/popt/) table to
define your application-specific command line options, amskhis table to the function

gst_init_with popt_table . Your application options will be parsed in addition to th@mslard
GStreamer options.

Notes

1. The code for this example is automatically extracted ftbendocumentation and built under
exanpl es/ nanual in the GStreamer tarball.

12

Chapter 5. Elements

The most important object in GStreamer for the applicatimgpammer is thet B enent
(../../gstreamer/html/GstElement.html) object. An edarnis the basic building block for a media
pipeline. All the different high-level components you wike are derived frorGtBement . Every
decoder, encoder, demuxer, video or audio output is in fasttEhenent

5.1. What are elements?

For the application programmer, elements are best visedbs black boxes. On the one end, you might
put something in, the element does something with it and untgelse comes out at the other side. For
a decoder element, ifor example, you'd put in encoded dathttee element would output decoded data.
In the next chapter (sd@ads and capabilitigsyou will learn more about data input and output in
elements, and how you can set that up in your application.

5.1.1. Source elements

Source elements generate data for use by a pipeline, for@rasading from disk or from a sound card.
Figure 5-1shows how we will visualise a source element. We always drasuace pad to the right of
the element.

Figure 5-1. Visualisation of a source element

source_element

Src

Source elements do not accept data, they only generateYdataan see this in the figure because it only
has a source pad (on the right). A source pad can only gerdatdae

5.1.2. Filters, convertors, demuxers, muxers and codecs

Filters and filter-like elements have both input and outjpaids. They operate on data that they receive
on their input (sink) pads, and will provide data on theirputt(source) pads. Examples of such elements
are a volume element (filter), a video scaler (convertorQag demuxer or a Vorbis decoder.

13

Chapter 5. Elements

Filter-like elements can have any number of source or simlspA video demuxer, for example, would
have one sink pad and several (1-N) source pads, one for &amkmtary stream contained in the
container format. Decoders, on the other hand, will onlyeharwe source and sink pads.

Figure 5-2. Visualisation of a filter element

filter

sink src

Figure 5-2shows how we will visualise a filter-like element. This sfiiecélement has one source and
one sink element. Sink pads, receiving input data, are texpat the left of the element; source pads are
still on the right.

Figure 5-3. Visualisation of a filter element with more than ame output pad

demuxer

video

sink

audio

Figure 5-3shows another filter-like element, this one having more thamoutput (source) pad. An
example of one such element could, for example, be an Oggxkarfar an Ogg stream containing both
audio and video. One source pad will contain the elementagovstream, another will contain the
elementary audio stream. Demuxers will generally fire digmdoen a new pad is created. The
application programmer can then handle the new elementiagrs in the signal handler.

5.1.3. Sink elements

Sink elements are end points in a media pipeline. They acagptbut do not produce anything. Disk
writing, soundcard playback, and video output would alligliemented by sink elementsigure 5-4
shows a sink element.

14

Chapter 5. Elements

Figure 5-4. Visualisation of a sink element

sink_element

sink

5.2. Creating a Gt H enent

The simplest way to create an element is to gssesl enent_factory nake ()
(http://gstreamer.freedesktop.org/data/doc/gstretadle/gstreamer/html/GstElementFactory.html#gst-
element-factory-make). This function takes a factory namean element name for the newly created
element. The name of the element is something you can us®tate look up the element in a bin, for
example. The name will also be used in debug output. You cas WBILL as the name argumentto get a
unique, default name.

When you don’t need the element anymore, you need to unrefriggst_ogj ect_uvef ()
(http://gstreamer.freedesktop.org/data/doc/gstretadle/gstreamer/html/GstObject.html#gst-object-
unref). This decreases the reference count for the elenyehtAn element has a refcount of 1 when it
gets created. An element gets destroyed completely wheeft@unt is decreased to 0.

The following examplé shows how to create an element nansedrcefrom the element factory named
fakesrc It checks if the creation succeeded. After checking, iefsthe element.

#nclude <gst/ gst. h>

int
nain (int arge,
char xargv])

{
Gt H enent * e enent ;

[+ init GBreaner * [
gst_int (&rge, &argv);

/* create e enent */
eenet = gst_elenent_factory nake ("fakesrc", "source');
if ('denent) {
gprint ("Failed to create denent of type 'fakesrc'\n');
return -1
}

15

Chapter 5. Elements

gst_object_uref (GBI BIECT (e enert));

return O
}

gst_el enent_factory nake is actually a shorthand for a combination of two functions. A

Gt H enent

(http://gstreamer.freedesktop.org/data/doc/gstreamtadle/gstreamer/html/GstElement.html) object is
created from a factory. To create the element, you have taapetss to &t H enent Fectory
(http://gstreamer.freedesktop.org/data/doc/gstreamtadle/gstreamer/html/GstElementFactory.html)
object using a unique factory name. This is done withel enent_factory find ()
(http://gstreamer.freedesktop.org/data/doc/gstretadle/gstreamer/html/GstElementFactory.html#gst-
element-factory-find).

The following code fragment is used to get a factory that ;anded to create tHakesrcelement, a fake
data source. The functiapt_d enent_factory create ()
(http://gstreamer.freedesktop.org/data/doc/gstretadle/gstreamer/html/GstElementFactory.html#gst-
element-factory-create) will use the element factory eate an element with the given

name.

#ind we <gst/gst. h>

int
nain (int aroc,
cher *xargv])
{
Gt H enent Fact ory +factory;
Gt H enent * ¢ enant;

[* init CRreaner */
gst_int (&rge, &argy);

|/ x create e enent, nethod #2 x [
factory = gst_e enent_factory find ("fakesrc");
if (Mfactory) {
gpint ("Feiled to find factory of type 'fakesrc'\n');
return -1
}
elenent = gst_el enent_factory creste (factory, "source");
if (denent) {
gprint ("Failed to create e enent, even though its factory exists'\n');
return -1
}

ost_object_uref (GBI BIETT (e enent));

retun O

16

Chapter 5. Elements

5.3. Using an element as a Gj ect

A Gt H enent
(http://gstreamer.freedesktop.org/data/doc/gstretmtadle/gstreamer/html/GstElement.html) can have
several properties which are implemented using standajett properties. The usugy ect

methods to query, set and get property values@aangecs are therefore supported.

Every Gt H enent inherits at least one property from its par@ttject :the "name" property. This

is the name you provide to the functiogss_e enent_factory nake () or
gst_el enent_factory create () . You can get and set this property using the functions
gst_obj ect_set_nane andgst_ogject_get_nane oruse the@ject property mechanism as

shown below.
#nclude <gst/gst. h>

int
nain (int arge,
char xargv])

{
Gt H enent * e enant ;
const gchar * NN,

[* init CRreaner */
gst_int (&rge, &argv);

[+ create e enent */
elenent = gst_el enent_factory nake ("fakesrc", "source');

[+ gt nane */

gobect get (GARIECT (e enat), "nang', &nane, NULL);
gprint ("The nane of the eenent is "% .\n", nane);
gst_object_uref (GBI BIECT (e enent));

return O

Most plugins provide additional properties to provide mimfermation about their configuration or to
configure the elemengst-inspectis a useful tool to query the properties of a particular eletnié will
also use property introspection to give a short explanattwout the function of the property and about
the parameter types and ranges it supports. See the apgendetails abougst-inspect

17

Chapter 5. Elements

For more information aboud ect properties we recommend you read the GObject manual
(http://developer.gnome.org/doc/API/2.0/gobjectérdhtml) and an introduction to The Glib Object
system (http://le-hacker.org/papers/gobject/indemiht

A GtH enent
(http://gstreamer.freedesktop.org/data/doc/gstremtadle/gstreamer/html/gstreamer/html/GstElemestttg. html)
also provides variou&hect signals that can be used as a flexible callback mechanisre, tber, you

can usgyst-inspectto see which signals a specific elements supports. Togsigasls and properties

are the most basic way in which elements and applicatiopsant.

5.4. More about element factories

In the previous section, we briefly introduced t&eH enent Fect ory
(http://gstreamer.freedesktop.org/data/doc/gstremtadle/gstreamer/html/GstElement.html) object
already as a way to create instances of an element. Elenwtotiés, however, are much more than just
that. Element factories are the basic types retrieved flar@Streamer registry, they describe all plugins
and elements that GStreamer can create. This means thadrel&otories are useful for automated
element instancing, such as what autopluggers do, anddating lists of available elements, such as
what pipeline editing applications (e.g. GStreamer Editor
(http://gstreamer.freedesktop.org/modules/gst-editml)) do.

5.4.1. Getting information about an element using a factory

Tools likegst-inspectwill provide some generic information about an elementhsagthe person that
wrote the plugin, a descriptive name (and a shorthame),laaad a category. The category can be used
to get the type of the element that can be created using tmsegit factory. Examples of categories
includexdec/ Decoder/ M deo (video decoder)adec/ Bncoder/ M deo (video encoder),

Source/ M deo (avideo generatorgnk’Mdeo (a video output), and all these exist for audio as well,
of course. Then, there’s al€bdec/ Denuxer andQdec/ Mxer and a whole lot moregst-inspectwill
give a list of all factories, angst-inspect <factory-name>will list all of the above information, and a

lot more.

#indwe <gst/gst. h>

int
nain (int arge,
char xargV])
{
Gt H enent Fact ory *factory;
[* init Breaner */

gst_int (&rge, &rgy);

/* oget factory */
factory = gst_el enent_factory find ("sinesrc");

18

Chapter 5. Elements

if (Mfactory) {
gprint ("You don't have the 'sinesrc’ eenent installed, g 0 get ith\n");
return -1

}

[+ dspay infornation */

gpint ("The % eenment is a nener of the category %.\n"
"Description: 96\n",
ost_plugn feature get_nane (GBT_ALWB N FEATURE (fact oay)),
ost_eenent_factory get_klass (factory),
ost_e enent_factory get_description (factory));

return G

You can useyst_registry pood feature list (GSI TYFE HENENT FAC T®RY) to geta list of
all the element factories that GStreamer knows about.

5.4.2. Finding out what pads an element can contain

Perhaps the most powerful feature of element factoriesaisttiey contain a full description of the pads
that the element can generate, and the capabilities of fhexd® (in layman words: what types of media
can stream over those pads), without actually having to fbaske plugins into memory. This can be used
to provide a codec selection list for encoders, or it can leeldisr autoplugging purposes for media
players. All current GStreamer-based media players armptuggers work this way. We'll look closer at
these features as we learn abGititad andGtGps in the next chaptePads and capabilities

5.5. Linking elements

By linking a source element with zero or more filter-like elemis and finally a sink element, you set up a
media pipeline. Data will flow through the elements. Thiis basic concept of media handling in
GStreamer.

Figure 5-5. Visualisation of three linked elements

source_element filter sink_element

src sink Src sink

19

Chapter 5. Elements

By linking these three elements, we have created a very sigtin of elements. The effect of this will
be that the output of the source element (“element1”) willbed as input for the filter-like element
(“element2”). The filter-like element will do something Withe data and send the result to the final sink
element (“element3”).

Imagine the above graph as a simple Ogg/Vorbis audio decdhersource is a disk source which reads
the file from disc. The second element is a Ogg/Vorbis audomder. The sink element is your
soundcard, playing back the decoded audio data. We willhisesimple graph to construct an
Ogg/Vorbis player later in this manual.

In code, the above graph is written like this:
#nclude <gst/gst. h>

int
nain (int arge,
char xargV])

{
Gt H enent * SOUr Ce, «filter, * Sink;

[+ int =/
gst_int (&arge, &argy);

/* create eenents */
source = gst_el enent_factory nake ("fakesrc', "source') ;
filter = gst_eenent_factory nake ("identity", "filter");

sink = gst_e enent_factory nake ("fakesink', "sink');

[* link =/
ost_eenent_|ink nany (source, filter, sink, NLL);

[..]

For more specific behaviour, there are also the functisns! enent_link () and
gst_el enent_|ink pads () . You can also obtain references to individual pads and liols¢ using
variousgst_pad link » () functions. See the API references for more details.

5.6. Element States

After being created, an element will not actually perforny actions yet. You need to change elements
state to make it do something. GStreamer knows four elentatatss each with a very specific meaning.
Those four states are:

- GBI STATE NJL . this is the default state. This state will deallocate abugrces held by the element.

20

Chapter 5. Elements

« GOT_STATE RADY . in the ready state, an element has allocated all of its ¢l@lsaurces, that is,
resources that can be kept within streams. You can thinktadpning devices, allocating buffers and
so on. However, the stream is not opened in this state, sdréens positions is automatically zero. If
a stream was previously opened, it should be closed in this,sind position, properties and such
should be reset.

« (BT_STATE PALED :in this state, an element has opened the stream, but is tiMelggrocessing it.
An element should not modify the stream’s position, datangtlaing else in this state. When set back
to PLAYING, it should continue processing at the point whieteft off as soon as possible.

« BT _STAIE ALAY NG :in the PLAYING state, an element does exactly the same deiRAUSED
state, except that it actually processes data.

You can change the state of an element using the fungtiod enent_set_state () . If you set an
element to another state, GStreamer will internally trageall intermediate states. So if you set an
element from NULL to PLAYING, GStreamer will internally stte element to READY and PAUSED
in between.

Even though an element &T_STATE ALAY NG is ready for data processing, it will not necessarily do
that. If the element is placed in a thread (&Fapter 1%, it will process data automatically. In other
cases, however, you will neediteratethe element’s container.

Notes

1. The code for this example is automatically extracted ftoendocumentation and built under
exanpl es/ nanual in the GStreamer tarball.

21

Chapter 6. Bins

A bin is a container element. You can add elements to a birceSirbin is an element itself, a bin can be
handled in the same way as any other element. Therefore ltbkeyprevious chapteE{ement applies

to bins as well.

6.1. What are bins

Bins allow you to combine a group of linked elements into agidal element. You do not deal with the
individual elements anymore but with just one element, the\We will see that this is extremely
powerful when you are going to construct complex pipeliriesesit allows you to break up the pipeline

in smaller chunks.

The bin will also manage the elements contained in it. It figlire out how the data will flow in the bin
and generate an optimal plan for that data flow. Plan gemeraione of the most complicated
procedures in GStreamer. You will learn more about this pssccalled scheduling, @hapter 16

Figure 6-1. Visualisation of a bin with some elements in it

bin

elementl

Src

element2

sink

Ssrc

element3

sink

There are two specialized types of bins available to the €&s&ter programmer:

- A pipeline: a generic container that allows scheduling ef¢bntaining elements. The toplevel bin has
to be a pipeline. Every application thus needs at least otteesk. Applications can iterate pipelines

usinggst biniterate ()

to make it process data while in the playing state.

« Athread: a bin that will be run in a separate execution thr&ad will have to use this bin if you have
to carefully synchronize audio and video, or for bufferilygu will learn more about threads in

Chapter 15

22

Chapter 6. Bins

6.2. Creating a bin

Bins are created in the same way that other elements areedréat. using an element factory. There are
also convenience functions availabdst (bi n_new () , gst_thread rew () and

gst_pipelinre new ()). To add elements to a bin or remove elements from a bin, yowsea
gst_binadd () andgst_kin renove () . Note that the bin that you add an element to will take
ownership of that element. If you destroy the bin, the elemeéihbe dereferenced with it. If you remove
an element from a bin, it will be dereferenced automatically

#nd ude <gst/get. h>

int
nain (int arge,
cher xargv])

{
Gt H enent xbin, *pipeineg * SOUr Ce, * Sirk;

[+ int =/
gst_int (&arge, &argy);

[+ creste x/

pipeline = gst_pipeline new ("ny_pipeline’);

bin = gst_pipeline new ("ny bin’);

source = gst_el enent_factory nake ("fakesrc', "source')
sink = gst_e enent_factory nake ("fakesink', "sink');

/* set up pipdine */

gst_binadd nany (GST BN (bin), source, sink, NLL);
gst_ binadd (G BN (pipdine), hin);
ost_eenent_link (source, sirk);

[.-]

There are various functions to lookup elements in a bin. Youalso get a list of all elements that a bin
contains using the functiagst_bin get list () . See the API references GftB n
(http://gstreamer.freedesktop.org/data/doc/gstremtadle/gstreamer/html/GstBin.html) for detalils.

6.3. Custom bins

The application programmer can create custom bins packibdaléments to perform a specific task.
This allows you, for example, to write an Ogg/Vorbis decodh just the following lines of code:
int
nain (int arge
char *argv[])

23

Chapter 6. Bins

Gt H enent + pl ayer;

I+ int */
gst_int (&rge, &rgy);

/* create player */

player = gst_elenent_factory nake ("oggvorbisplayer”, " pl ayer”);

/* set the sowrce audio file */

goyect_set (GARIET (player), "location', "hell ovorl d oy, NLL);

[+ start playback */
ost_el enent_set_state (GST_HBEMENT (np3pl ayer), GST_ST ATE LAY NG;

[..]
}

Custom bins can be created with a plugin or an XML descriptimu will find more information about
creating custom bin in the Plugin Writers Guide
(http://gstreamer.freedesktop.org/data/doc/gstredmmad/pwg/html/index.html).

24

Chapter 7. Pads and capabilities

As we have seen iBlementsthe pads are the element’s interface to the outside wowdth Bireams

from one element’s source pad to another element’s sink aelspecific type of media that the element
can handle will be exposed by the pad’s capabilities. Wetalil more on capabilities later in this
chapter (se&ection 7.2

7.1. Pads

A pad type is defined by two properties: its direction and Wsilability. As we've mentioned before,
GStreamer defines two pad directions: source pads and sitsk Phis terminology is defined from the
view of within the element: elements receive data on thek piads and generate data on their source
pads. Schematically, sink pads are drawn on the left side efement, whereas source pads are drawn
on the right side of an element. In such graphs, data flows fedinto right.*

Pad directions are very simple compared to pad availabfifyad can have any of three availabilities:
always, sometimes and on request. The meaning of thosetyireis exactly as it says: always pads
always exist, sometimes pad exist only in certain casescandlisappear randomly), and on-request
pads appear only if explicitely requested by applications.

7.1.1. Dynamic (or sometimes) pads

Some elements might not have all of their pads when the eleimiereated. This can happen, for
example, with an Ogg demuxer element. The element will readXgg stream and create dynamic pads
for each contained elementary stream (vorbis, theora) ittgatects such a stream in the Ogg stream.
Likewise, it will delete the pad when the stream ends. Thiisgiple is very useful for demuxer elements,
for example.

Running gst-inspect oggdemux will show that the elemenbinésone pad: a sink pad called 'sink’. The
other pads are “dormant”. You can see this in the pad tempktause there is an “Exists: Sometimes”
property. Depending on the type of Ogg file you play, the pailide created. We will see that this is
very important when you are going to create dynamic pipslitveu can attach a signal handler to an
element to inform you when the element has created a new paddne of its “sometimes” pad
templates. The following piece of code is an example of hodatthis:

#indwe <gst/gst. h>

static vad
cb newpad (GtH enent * el enart,
Gt Pd * pad,
gpoi nt er dat)
{
gprint ("Anewpad % wves crestedn’, gst_pad get_nane (pa d);

25

Chapter 7. Pads and capabilities

/+ here, you woud setup a new pad link for the newy created pad */
[--]
}
int
nain(int argc, char *argv[])
{

Gt H enent *pipelineg, * SOUr Ce, * denux;

[+ int =/
gst_int (&arge, &argy);

[+ creste e enents */

pipeline = gst_pipeline new ("ny_pipeline’);

source = gst_e enent_factory nake (“filesrc', "source") ;
goyect_set (source, "location', argql], NLL);

denux = gst_el enent_factory nake ("oggdenux', "denuxer");

/* you woud nornal |y check that the el enents were crested prop ely */

/* put together a pipeline */
gst_binadd nany (GG BN (pipeline), source, denux, NL D;
ost_elenent_|ink (source, demi);

[+ listen for newy created pads */

g signa _comnect (demx, "newped’, GCALBAXK (cb new pad), NULL);
[+ start the pipdine */

ost_elenent_set_state (GST_HBEMANT (pipeine), GBI_STA TEAAMNG;

vhile (gst_biniterate (GST BN (pipdine)));

[..]

7.1.2. Request pads

An element can also have request pads. These pads are neticaetomatically but are only created on
demand. This is very useful for multiplexers, aggregatost@e elements. Aggregators are elements
that merge the content of several input streams togeth@oimé output stream. Tee elements are the
reverse: they are elements that have one input stream aydtusgstream to each of their output pads,
which are created on request. Whenever an application regexdber copy of the stream, it can simply
request a new output pad from the tee element.

The following piece of code shows how you can request a nepubyiad from a “tee” element:

26

Chapter 7. Pads and capabilities

static vod
sone_functi on (Gt H enent *tee)
{
GtRd * pad;
pad = gst_el enent_get request_pad (tee, "srcd');
gprint ("Anewpad % wves crested\n’, gst_pad get_nane (pa d);
/* here, you woud link the pad */
[--]
}
Thegst_e enent_get request_pad () method can be used to get a pad from the element based on

the name of the pad template. It is also possible to request &hat is compatible with another pad
template. This is very useful if you want to link an elemenatmultiplexer element and you need to
request a pad that is compatible. The metbsddel enent_get _conpeti bl e pad () can be used to
request a compatible pad, as shown in the next example.lltegilest a compatible pad from an Ogg
multiplexer from any input.

static vod
link tonltipexer (GtRad *tdink_ped,
Gt H enent * NOIX)
{
GtRad *ped

pad = gst_el enent_get_conpetibl e pad (mx, tolink ped);
gst_ped link (tdinkped, ped);

gprint ("Anewpad % wes created and linked to %\n",
gst_ped get_nene (ped), gst_ped get_rene (tolink ped))

7.2. Capabilities of a pad

Since the pads play a very important role in how the elemerieised by the outside world, a
mechanism is implemented to describe the data that can flowrcently flows through the pad by using
capabilities. Here,w e will briefly describe what capal@itare and how to use them, enough to get an
understanding of the concept. For an in-depth look into béipias and a list of all capabilities defined in
GStreamer, see the Plugin Writers Guide
(http://gstreamer.freedesktop.org/data/doc/gstredmmad/pwg/html/index.html).

Capabilities are attached to pad templates and to pads aledemplates, it will describe the types of
media that may stream over a pad created from this templatgdels, it can either be a list of possible

27

Chapter 7. Pads and capabilities

caps (usually a copy of the pad template’s capabilities)hith case the pad is not yet negotiated, or it is
the type of media that currently streams over this pad, irctvisse the pad has been negotiated already.

7.2.1. Dissecting capabilities

A pads capabilities are described i®Cps object. Internally, a&t Gps
(../../gstreamer/html/gstreamer-GstCaps.html) wilitzdn one or mor&t Sructure
(../..Igstreamer/html/gstreamer-GstStructure.hthdj will describe one media type. A negotiated pad
will have capabilities set that contain exaabiyestructure. Also, this structure will contain orfixed
values. These constraints are not true for unnegotiatesl paplad templates.

As an example, below is a dump of the capabilities of the “isatec” element, which you will get by
runninggst-inspect vorbisdec You will see two pads: a source and a sink pad. Both of theds aie
always available, and both have capabilities attachedetimtfhe sink pad will accept vorbis-encoded
audio data, with the mime-type “audio/x-vorbis”. The saipad will be used to send raw (decoded)
audio samples to the next element, with a raw audio mime-tgitleer “audio/x-raw-int” or
“audio/x-raw-float”). The source pad will also contain pesfes for the audio samplerate and the
amount of channels, plus some more that you don’t need toyvedrout for now.

Pad Tenpl at es:
K tepae ’'src
Aailability: Avays
Gpabilities:
audi of x-rawfl cat
rate: [8000, 50000]
chamels: [1, 2]
end anness: 1234
wdth 32
buffer-franes: O

I\ tenplate: "sink
Aailability: Avays
Gpabilities:

audi o x-vorbi s

7.2.2. Properties and values

Properties are used to describe extra information for ciéipaeb. A property consists of a key (a string)
and a value. There are different possible value types thabeaised:

« Basic types, this can be pretty much a@ype registered with Glib. Those properties indicate a
specific, non-dynamic value for this property. Exampledlde:

- AnintegervalueGTYEINT): the property has this exact value.
- A boolean value@ TYrE BOD EAN): the property is either TRUE or FALSE.

28

Chapter 7. Pads and capabilities

. Afloat value GTYYERONT): the property has this exact floating point value.
. Astring value GTYFESIRNG): the property contains a UTF-8 string.

+ Range types ar@lype s registered by GStreamer to indicate a range of possiblesalThey are used
for indicating allowed audio samplerate values or suppbvtdeo sizes. The two types defined in
GStreamer are:

- An integer range value3T TYFE | NI RINE): the property denotes a range of possible integers,
with a lower and an upper boundary. The “vorbisdec” elemfemtexample, has a rate property that
can be between 8000 and 50000.

- Afloat range valueGT_TYE ALON RINE): the property denotes a range of possible floating
point values, with a lower and an upper boundary.

« Alist value BT _TYELU ST): the property can take any value from a list of basic valuesrgin
this list.

7.3. What capabilities are used for

Capabilities describe the type of data that is streameddmatwwo pads, or that one pad (template)
supports. This makes them very useful for various purposes:

- Autoplugging: automatically finding elements to link to algzased on its capabilities. All
autopluggers use this method.

« Compatibility detection: when two pads are linked, GStrenoan verify if the two pads are talking
about the same media type. The process of linking two padslacking if they are compatible is
called “caps negotiation”.

- Metadata: by reading the capabilities from a pad, appticatcan provide information about the type
of media that is being streamed over the pad, which is inftionabout the stream thatis currently
being played back.

- Filtering: an application can use capabilities to limit ressible media types that can stream between
two pads to a specific subset of their supported stream typeapplication can, for example, use
“filtered caps” to set a specific (non-fixed) video size thdt stream between two pads.

7.3.1. Using capabilities for metadata

A pad can have a set (i.e. one or more) of capabilities atthtthi. You can get values of propertiesin a
set of capabilities by querying individual properties okatructure. You can get a structure from a caps
usinggst_caps get_structure ()

static vad
read vi deo props (Gt Gys * Caps)

29

Chapter 7. Pads and capabilities

gnt wdh, hegt;
const GtSructure *Str;

str = gst_caps get_structure (caps);
if (ost_structure get_int (str, "wdh', &idh) ||
lgst_structure get_int (str, "heignt”, &weight)) {
gprint ("No wdth/height availaden');
return;

}

gprint ("The video size of this set of capabilities is %A \n",
wdth, heigt);

7.3.2. Creating capabilities for filtering

While capabilities are mainly used inside a plugin to désxthe media type of the pads, the application
programmer also has to have basic understanding of catpedih order to interface with the plugins,
especially when using filtered caps. When you're using éliezaps or fixation, you're limiting the
allowed types of media that can stream between two pads tosesaf their supported media types. You
do this by filtering using your own set of capabilities. In erdo do this, you need to create your own
GtGps . The simplest way to do this is by using the convenience fangst_caps newsinpl e

(O

static vad
link pads wth filter (GtPad * 0Ne,
GthPd *ather)
{
GtQps *caps;

caps = gst_caps newsinple ("Vvided x-rawyw”,
"wdth', GTYEINI, 334,
"height", GTYFEINI, 283,
"franerate’, GTYEDRRE 25,
NULL);
gst_pad link filtered (one, other, caps);
}

In some cases, you will want to create a more elaborate setpattilities to filter a link between two
pads. Then, this function is too simplistic and you’'ll wamtise the methogst_caps rewfull ()

static vod
link pads wth filter (GtPad * ONg,
GthPad *ather)
{
GtGps *caps;

30

caps = gst_caps newful (

gst_structure new ("vi ded x-rawyw",

"wath', GTYEIN, 384

"heigt”, GTYREINT, 288

"franerate’, GTYWEDQBE 25,

NI,
gst_structure new ("vi ded x-rawrgb’,

"wath', GTYEIN, 384

"heigt”, GTYREINT, 288

"franerate’, GTYWEDRBRE 25,

NI,
NLL);

ost_pad link filtered (one, other, caps);
}

See the API references for the full APl @t Sructure andGt Gyps

7.4. Ghost pads

Chapter 7. Pads and capabilities

You can see fronfrigure 7-1how a bin has no pads of its own. This is where "ghost pads" dotoglay.

Figure 7-1. Visualisation of aGtB n (../../gstreamer/html/GstBin.html) element without ghcst

pads

bin

elementl element2

sink Src sink

Src

element3

sink

A ghost pad is a pad from some element in the bin that can besedalirectly from the bin as well.
Compare it to a symbolic link in UNIX filesystems. Using ghpats on bins, the bin also has a pad and

can transparently be used as an element in other parts otpaler

31

Chapter 7. Pads and capabilities

Figure 7-2. Visualisation of aGtB n (../../gstreamer/html/GstBin.html) element with a ghospad

bin

elementl

| sink

Src

element2

sink

Ssrc

element3

sink

sink

Figure 7-2is a representation of a ghost pad. The sink pad of elemerisam®v also a pad of the bin.

Obviously, ghost pads can be added to any type of elemeritgisido aGtBn

A ghostpad is created using the functign € enent_add ghost_pad ()

#ndl wde <t/ get. h>

int

nain (int aroe,
cher xargv])

{

Gt H enant xhbin *sink

[+ int =/
gst_int (&arge, &argy);

/* create denent, add to bin, add ghostpad

*/

sink = gst_e enent_factory nake ("fakesink', "sink');

bin = gst_binnew ("nybin");

gst_binadd (G BN (bin), sink);

gst_el enent_add ghost_pad (bin,
ost_el enent_get_ped (sink, "sirk'), "sink');

In the above example, the bin now also has a pad: the pad ¢siiegd of the given element. The bin
can, from here on, be used as a substitute for the sink eleamntould, for example, link another

element to the bin.

32

Chapter 7. Pads and capabilities

Notes

1. Inreality, there is no objection to data flowing from a smupad to the sink pad of an element
upstream (to the left of this element in drawings). Data,widwever, always flow from a source pad
of one element to the sink pad of another.

33

Chapter 8. Buffers and Events

The data flowing through a pipeline consists of a combinatidsuffers and events. Buffers contain the
actual pipeline data. Events contain control informatgurch as seeking information and end-of-stream
notifiers. All this will flow through the pipeline automatitawhen it's running. This chapter is mostly
meant to explain the concept to you; you don’t need to do amgtior this.

8.1. Buffers

Buffers contain the data that will flow through the pipelirmyhave created. A source element will
typically create a new buffer and pass it through a pad to &x¢ @lement in the chain. When using the
GStreamer infrastructure to create a media pipeline younsil have to deal with buffers yourself; the
elements will do that for you.

A buffer consists, amongst others, of:

- A pointer to a piece of memory.
« The size of the memory.
« A timestamp for the buffer.

- A refcount that indicates how many elements are using thfeb his refcount will be used to
destroy the buffer when no element has a reference to it.

The simple case is that a buffer is created, memory allocatgd put in it, and passed to the next
element. That element reads the data, does something (tikérg a new buffer and decoding into it),
and unreferences the buffer. This causes the data to bedraed the buffer to be destroyed. A typical
video or audio decoder works like this.

There are more complex scenarios, though. Elements carfyrimdfers in-place, i.e. without allocating
a new one. Elements can also write to hardware memory (suithrasvideo-capture sources) or
memory allocated from the X-server using XShm). Buffers bamead-only, and so on.

8.2. Events

Events are control particles that are sent both up- and dogars in a pipeline along with buffers.
Downstream events notify fellow elements of stream st&essible events include discontinuities,
flushes, end-of-stream notifications and so on. Upstream®waee used both in application-element
interaction as well as event-event interaction to requieshges in stream state, such as seeks. For
applications, only upstream events are important. Dowastrevents are just explained to get a more
complete picture of the data concept.

34

Chapter 8. Buffers and Events

Since most applications seek in time units, our examplevbdlmes so too:

static vod

seek to tine (GtH enent * el enant,
Qui nt 64 ti ne_ns)

{

Gt Bvert * evert ;

evert = gst_event_new seek (GBT_SHEK METHD ST |

GST_FORAT TIME
tine ns);
ost_el enent_send evert (el enent, event);
}
The functiongst_el enent_seek () is a shortcut for this. This is mostly just to show how it allnks.

35

Chapter 9. Your first application

This chapter will summarize everything you've learned ia fitevious chapters. It describes all aspects
of a simple GStreamer application, including initializililgraries, creating elements, packing elements
together in a pipeline and playing this pipeline. By doinglak, you will be able to build a simple
Ogg/Vorbis audio player.

9.1. Hello world

We're going to create a simple first application, a simple ®gthis command-line audio player. For
this, we will use only standard GStreamer components. Tégeplwill read a file specified on the
command-line. Let’s get started!

We've learned, irChapter 4that the first thing to do in your application is to initisdiZsStreamer by

callinggst_init () . Also, make sure that the application includsggst.h so all function names
and objects are properly defined. Usecl ude <gst/gst. h> to do that.
Next, you'll want to create the different elements usigig e enent_factory nake () . Foran

Ogg/Vorbis audio player, we’'ll need a source element thadisdiles from a disk. GStreamer includes
this element under the name “filesrc”. Next, we’ll need sdrimgf to parse the file and decoder it into
raw audio. GStreamer has two elements for this: the firstgzaxg streams into elementary streams
(video, audio) and is called “oggdemux”. The second is a Moalndio decoder, it's conveniently called
“vorbisdec”. Since “oggdemux” creates dynamic pads foheslementary stream, you'll need to set a
“new-pad” event handler on the “oggdemux” element, like'yelearned inSection 7.1.1to link the
Ogg parser and the Vorbis decoder elements together. Atadt also need an audio output element,
we will use “alsasink”, which outputs sound to an ALSA audavite.

The last thing left to do is to add all elements into a conta@hement, &&tRpdine |, and iterate this
pipeline until we've played the whole song. We've previgusirned how to add elements to a container
bin in Chapter 6and we've learned about element stateSéction 5.6We will use the function

gst_hin sync children state () to synchronize the state of a bin on all of its contained chitd

Let's now add all the code together to get our very first audtgyer:

#nd ude <gst/gst. h>

| *
* Gobad dyjects are usually a bad thing. For the purpose of thi s
* exanple, v wll use them hovever.
*
/

Gt H enent +pipeling * SOUr Ce, * par ser, * decoder, *Sink;

36

Chapter 9. Your first application

static vad
newpad (GtH enent * el enext,
Gt Pd * ped,
gpoi nt er dat a)
{
/* V@ can now link this pad wth the audio decoder and
* add both decoder and audio output to the pipeinre. */
gst_ped link (ped, gst_elenent_get pad (decoder, "sirnk’)
gst_binadd nany (GG BN (pipeline), decoder, sink, NL D;
/* This function synchronizes a bins state on al of its
* contained children. */
gst_binsync children state (GST_ BN (pipeine));
}
int
nain (int arge,
char *argv])
{
[+ initidize G3reanar */

gst_int (&roe, &argy);

/ * check input argunents */
if (argc =2 {

gpint ("Wage % <@g \orbis filenanex\n", argv[(]);

return -1,
}
/* create eenants */
pipeline = gst_pipeline new ("aud o-player”);
source = gst_el enent_factory nake ("filesrc', "file-sou rce');
perser = gst_el enent_factory nake ("oggdenux’, "ogg-per ser");
decoder = gst_el enent_factory nake ("vorbisdec”, "vorhi s-decoder");
sink = gst_e enent_factory nake ("a sasink’, "a sa-outp u");
/* set filenane property on the file source */
goyect_set (GARIET (source), "location', argv[1], NJ L);

/* lirk together - note that we canat link the parser and

* decoder yet, becuse the parser uses dynamic pads. For thet,

* ve set a newpad signd hand er. */

ost_elenent_|ink (source, parser);

gst_el enent_|ink (decoder, sink);

g signa _comect (parser, "newpad', GCYLBAXK (newpa d, NL);

/+ put al elenents inahbin- o a least the ones ve wll use
* instantly. */
gst_binadd nany (GG BN (pipeline), source, parser, NJ ;

/* Nowset to paying ad iterate. V€ wll set the decoder and

* audio output to ready so they initiaize their nenory aread y.
* This wll decrease the anount of tine spent on linking these

37

Chapter 9. Your first application

* eenents wen the Qg parser emits the newpad signdl . */
ost_el enent_set_state (decoder, GBI _STATE RADY);

ost_elenent_set_state (sink, GST_STATE REDY);

ost_e enent_set state (pipeline, GST STATE AAYND;

/+ and nowiterate - the rest wll be austonatic fromhere on
* Wen the file is finished, gst_biniterae () wll retun
* FAE thereby termnating this |oop. */

wile (gst_ biniterate (GG BN (pipeing)) ;

/* clean up nicdy */

ost_elenent_set_state (pipeline, GBI_STATE NLL);

gst_obj ect_urref (GB_ARIECT (pipeline));

return O

We now have created a complete pipeline. We can visualisgipledine as follows:

Figure 9-1. The "hello world" pipeline

pipeline

disk_source decoder play_audio

src sink src sink

9.2. Compiling and Running helloworld.c

To compile the helloworld example, usgcc -Wall $(pkg-config --cflags --libs gstreamer-0.8)
helloworld.c -o helloworld. GStreamer makes use jgifg-configto get compiler and linker flags needed
to compile this application. If you're running a non-stardiestallation, make sure the

PG GO\A G PATH environment variable is set to the correct locati@imidi r/ pkgconfi g).
application against the uninstalled location.

38

Chapter 9. Your first application

You can run this example application witthelloworld file.ogg Substitutefile.ogg with your
favourite Ogg/Vorbis file.

9.3. Conclusion

This concludes our first example. As you see, setting up dipgis very low-level but powerful. You

will see later in this manual how you can create a more powerédia player with even less effort using
higher-level interfaces. We will discuss all that in

Part IV in GStreamer Application Development Manual (0.8\8% will first, however, go more in-depth
into more advanced GStreamer internals.

It should be clear from the example that we can very easillampthe “filesrc” element with some other
element that reads data from a network, or some other dataeselement that is better integrated with
your desktop environment. Also, you can use other decodelparsers to support other media types.
You can use another audio sink if you’re not running Linux, lllac OS X, Windows or FreeBSD, or
you can instead use a filesink to write audio files to disk mdtef playing them back. By using an audio
card source, you can even do audio capture instead of playB#dchis shows the reusability of
GStreamer elements, which is its greatest advantage.

39

lll. Advanced GStreamer concepts

In this part we will cover the more advanced features of GBirer. With the basics you learned in the
previous part you should be able to creat@rapleapplication. However, GStreamer provides much
more candy than just the basics of playing back audio filethitnchapter, you will learn more of the
low-level features and internals of GStreamer, such aattgescheduling, synchronization, metadata,
interfaces and dynamic parameters.

Chapter 10. Position tracking and seeking

So far, we've looked at how to create a pipeline to do mediagssing and how to make it run
("iterate™). Most application developers will be intersdin providing feedback to the user on media
progress. Media players, for example, will want to show deslishowing the progress in the song, and
usually also a label indicating stream length. Transcodjpygjications will want to show a progress bar
on how much % of the task is done. GStreamer has built-in stif@odoing all this using a concept
known asquerying Since seeking is very similar, it will be discussed here ai.\8eeking is done using
the concept oévents

10.1. Querying: getting the position or length of a stream

Querying is defined as requesting a specific stream-propaletied to progress tracking. This includes
getting the length of a stream (if available) or getting tberent position. Those stream properties can be
retrieved in various formats such as time, audio samplego/irames or bytes. The functions used are

gst_el enent_query () andgst_pad query ()

Obviously, using either of the above-mentioned functi@wiires the application to knowhichelement
or pad to run the query on. This is tricky, but there are sonwgides to the story. The good thing is
that elements (or, rather, pads - singe e enent_query () internally callsgst_pad query ())
forward (“dispatch”) events and queries to peer pads (onelds) if they don’t handle it themselves. The
bad side is that some elements (or pads) will handle evemtsidt the specific formats that you want,
and therefore it still won’t work.

Most queries will, fortunately, work fine. Queries are alwalispatched backwards. This means,
effectively, that it's easiest to run the query on your vide@udio output element, and it will take care of
dispatching the query to the element that knows the answeh@s the current position or the media
length; usually the demuxer or decoder).

#ind we <gst/gst. h>

gt

nein (gn arge
ochar xargv])

{

Gt H enent xsink, *ppeing
[..]
/* run ppdine */
do {
gnted len pos;
GtFornat fnh = GBT_FORAT_TI ME

if (gst_eenent_query (sink, GBT QERYRCHTION &nb, & pos) &

41

Chapter 10. Position tracking and seeking

ost_eenent_query (sink, GST QERY TOA, &m, &en)) {
gprint ("Tinee % GST_TIMEFJIRAT " / 9% CBI_TI MEFORAT " \rt,
GBI TIME ARGS (pos), GBI TINEARSS (len));

}
} while (gst_biniterate (G BN (pipeling)));

[.-]
}

If you are having problems with the dispatching behavioauynbest bet is to manually decide which
element to start running the query on. You can get a list opsued formats and query-types with

gst_el enert_get_query_types () andgst_el enert_get_formats ()

10.2. Events: seeking (and more)

Events work in a very similar way as queries. Dispatchingefample, works exactly the same for
events (and also has the same limitations). Although therenare ways in which applications and
elements can interact using events, we will only focus okisgenhere. This is done using the seek-event.
A seek-event contains a seeking offset, a seek method (Widatates relative to what the offset was
given), a seek format (which is the unit of the offset, elg&j audio samples, video frames or bytes) and
optionally a set of seeking-related flags (e.g. whetheriatebuffers should be flushed). The behaviour
of a seek is also wrapped in the functigsn_el enent_seek ()

static vod

seek to tine (GtH enent * audi osi Nk,
gne4 ti ne_nanonseconds)

{

gst_el enent_seek (audi asi rk,
GOl K METHD ST | GBT_FORAT_TI ME |
GBI HK HAGH U8 tine_nanoseconds);

42

Chapter 11. Metadata

GStreamer makes a clear distinction between two types addagd, and has support for both types. The
first is stream tags, which describe the content of a streaamion-technical way. Examples include the
author of a song, the title of that very same song or the altiusrei part of. The other type of metadata is
stream-info, which is a somewhat technical descriptiorneffiroperties of a stream. This can include
video size, audio samplerate, codecs used and so on. Tagaratked using the GStreamer tagging
system. Stream-info can be retrieved froraeRd

11.1. Stream information

Stream information can most easily be read by reading them &GtPad . This has already been
discussed before iSection 7.3.1Therefore, we will skip it here.

11.2. Tag reading

Tag reading is remarkably simple in GStreamer Every elersgpports the “found-tag” signal, which
will be fired each the time the element reads tags from thastrd GtBn will conveniently forward
tags found by its childs. Therefore, in most applicatiorms) will only need to connect to the “found-tag”
signal on the top-most bin in your pipeline, and you will antdically retrieve all tags from the stream.

Note, however, that the “found-tag” might be fired multigla¢s and by multiple elements in the
pipeline. It is the application’s responsibility to put gibse tags together and display them to the user in
a nice, coherent way.

11.3. Tag writing

WRITEME

43

Chapter 12. Interfaces

In Section 5.3you have learned how to usject properties as a simple way to do interaction
between applications and elements. This method sufficébdémimple’n’straight settings, but fails for
anything more complicated than a getter and setter. For thre gtomplicated use cases, GStreamer uses
interfaces based on the Glibterface type.

Most of the interfaces handled here will not contain any eplemcode. See the API references for
details. Here, we will just describe the scope and purposach interface.

12.1. The Mixer interface

The mixer interface provides a uniform way to control thewok on a hardware (or software) mixer.
The interface is primarily intended to be implemented byredats for audio inputs and outputs that talk
directly to the hardware (e.g. OSS or ALSA plugins).

Using this interface, it is possible to control a list of tkkagsuch as Line-in, Microphone, etc.) from a
mixer element. They can be muted, their volume can be chaagedor input tracks, their record flag
can be set as well.

Example plugins implementing this interface include theS@%ments (osssrc, osssink, ossmixer) and
the ALSA plugins (alsasrc, alsasink and alsamixer).

12.2. The Tuner interface

The tuner interface is a uniform way to control inputs andpoite on a multi-input selection device. This
is primarily used for input selection on elements for TV- axaghture-cards.

Using this interface, it is possible to select one track fihst of tracks supported by that tuner-element.
The tuner will than select that track for media-processitigrinally. This can, for example, be used to
switch inputs on a TV-card (e.g. from Composite to S-video).

This interface is currently only implemented by the Vidéodk and Video4linux2 elements.

12.3. The Color Balance interface

The colorbalance interface is a way to control video-relgperties on an element, such as brightness,

44

Chapter 12. Interfaces

contrast and so on. It's sole reason for existance is thdaras its authors know, there’s no way to
dynamically register properties usiagy ect

The colorbalance interface is implemented by several pkigncluding xvimagesink and the
Video4linux and Video4linux2 elements.

12.4. The Property Probe interface

The property probe is a way to autodetect allowed values @@jact property. It's primary use (and
the only thing that we currently use it for) is to autodetestides in several elements. For example, the
OSS elements use this interface to detect all OSS devicesystem. Applications can then “probe”
this property and get a list of detected devices. Given tleglag between HAL and the practical
implementations of this interface, this might in time be @eated in favour of HAL.

This interface is currently implemented by many elememispiding the ALSA, OSS, Video4linux and
Video4linux2 elements.

12.5. The X Overlay interface

The X Overlay interface was created to solve the problem dfestding video streams in an application
window. The application provides an X-window to the elemiemglementing this interface to draw on,
and the element will then use this X-window to draw on rathantcreating a new toplevel window. This
is useful to embed video in video players.

This interface is implemented by, amongst others, the \Adeox and Video4linux2 elements and by
ximagesink, xvimagesink and sdlvideosink.

45

Chapter 13. Clocks in GStreamer

WRITEME

46

Chapter 14. Dynamic Parameters

14.1. Getting Started

The Dynamic Parameters subsystem is contained withigstioat rol library. You need to include
the header in your application’s source file:

#incl ude <gst/gst.h>
#include <gst/contra/contrad.h>

Your application should link to the shared libragycontral

Thegstcotra library needs to be initialized when your application is rlihis can be done after the
the GStreamer library has been initialized.

gst_init(&arge, &argy);
gst_contra _init(&argc, &argv);

14.2. Creating and Attaching Dynamic Parameters

Once you have created your elements you can create and dffacdims to them. First you need to get
the element’s dparams manager. If you know exactly what &frelement you have, you may be able to
get the dparams manager directly. However if this is notiptssyou can get the dparams manager by

calling gst_dpnan get _nanager

Once you have the dparams manager, you must set the modeehaanhager will run in. There is
currently only one mode implemented caltesginchr onous” - this is used for real-time applications
where the dparam value cannot be known ahead of time (suchkl@eain a GUI). The mode is called
" synchr onous” because the dparams are polled by the element for changee leefch buffer is
processed. Another yet-to-be-implemented modesigchr onous” . This is used when parameter
changes are known ahead of time - such as with a timelinedred@ie mode is called

" asynchr onous” because parameter changes may happen in the middle of a Ibeiffigg processed.

Gt H enent * S| NESIC;
Gt CPar anéinager * dpnan;

47

Chapter 14. Dynamic Parameters
sinesrc = gst_el enent_factory nake("si nesrc", "si ne-so urce');

dren = gst_den oet_rareger (sinesro);
gst_dpnan set_node(cnan, "synchr onous”) ;

If you don’t know the names of the required dparams for yoanmednt you can call

gst_dpnan i st_dpar amspecs(donan) to get a NULL terminated array of param specs. This
array should be freed after use. You can find the name of thérestjdparam by calling
g paramspec_get_nane on each param spec in the array. In our exampteune” will be the

name of our required dparam.

Each type of dparam currently has its ovew function. This may eventually be replaced by a factory
method for creating new instances. A default dparam ingtaao be created with thyst _dparamnew
function. Once it is created it can be attached to a requipadaim in the element.

Gt DParam * vol Une;

vdlre = gst_cheramnew GTYFE DOELD);
if (gst_donen attach doaram (donen, "vol une', vo une)){
/* the dparamwas successfully attached */

14.3. Changing Dynamic Parameter Values

All interaction with dparams to actually set the dparam eakidone through simple GObject properties.
There is a property value for each type that dparams supptitese currently beintya ue doubl €' ,

"val ue float" ,"vdueint” and"val ue i nt&4" . To set the value of a dparam, simply set the
property which matches the type of your dparam instance.

#oefine ZERQnem nenset (&nem O, si zeof (nem)

gdoudl e set_to val ue

Gt DParam * vol Une;

GA ue set_vdl;

ZHiset _val);

gvaueinit(&et va, GTYYEDQHRB);

g va ue set_doudl e(8set_val, set_to ve ue);
g o ect_set_property(G@IEC(vd une), "val ue doudl €', &et vd);

Or if you create an actual GValue instance:

48

Chapter 14. Dynamic Parameters

gdoudl e set_to val ue

GtDPram *vd une;

Gdue *set va;

set_vad = gnewGA e 1);
gvadueinit(set_vad, GTYWEDRHE);

g va ue set_doudl e(set_val, set_to va ue);
g o ect_set_property(G@IEC(vd une), "val ue doudl €', set va);

14.4. Different Types of Dynamic Parameter

There are currently only two implementations of dparamsasolthey are both for real-time use so
should be run in thésynchr onous" mode.

14.4.1. GstDParam - the base dparam type

All dparam implementations will subclass from this typepiibvides a basic implementation which
simply propagates any value changes as soon as it can. A se@am@e can be created with the function

GtDPram * gst_dparamnew (Gype type) . It has the following object properties:
"val ue_doudl € - the property to set and get if it is a double dparam
"val ue float" - the property to set and get if it is a float dparam
"va ue int" - the property to set and get if it is an integer dparam
"val ue i nt 64" - the property to set and get if it is a 64 bit integer dparam

"islog' -readonly boolean which is TRUE if the param should be diggdeon a log scale

- "israte' -readonly boolean which is TRUE if the value is a proportibthe sample rate. For
example with a sample rate of 44100, 0.5 would be 22050 Hz dfsivdould be 11025 Hz.

14.4.2. GstDParamSmooth - smoothing real-time dparam

Some parameter changes can create audible artifacts itt@ge too rapidly. The GstDParamSmooth
implementation can greatly reduce these artifacts by ilgithe rate at which the value can change. This
is currently only supported for double and float dparams -otther types fall back to the default
implementation. A new instance can be created with the fon@GtRram * gst_dpsnoath new

(Gype type) . It has the following object properties:

« "update period' - an int64 value specifying the number nanoseconds betwggates. This will
be ignored in'synchronous” mode since the buffer size dictates the update period.
« "slope tine' - an int64 value specifying the time period to use in the maximslope calculation

49

Chapter 14. Dynamic Parameters

+ "slope delta doud €' - a double specifying the amount a double value can chandeigiven
slope_time.

« "slope delta float” - a float specifying the amount a float value can change in thengi
slope_time.

Audible artifacts may not be completely eliminated by udinig dparam. The only way to eliminate
artifacts such as "zipper noise" would be for the elementplément its required dparams using the
array method. This would allow dparams to change paramateéh& sample rate which should eliminate
any artifacts.

14.4.3. Timelined dparams

A yet-to-be-implemented subclass of GstDParam will add Bhwhich allows the creation and
manipulation of points on a timeline. This subclass wilbgisovide a dparam implementation which
uses linear interpolation between these points to find tlagadp value at any given time. Further
subclasses can extend this functionality to implement rerodic interpolation algorithms such as
splines.

50

Chapter 15. Threads

GStreamer has support for multithreading through the usleed®t Thread
(http://gstreamer.freedesktop.org/data/doc/gstremtadle/gstreamer/html/GstThread.html) object. This
objectis in fact a speciaktB n
(http://gstreamer.freedesktop.org/data/doc/gstretadle/gstreamer/html/GstBin.html) that will start a
new thread (using Glib'Shread system) when started.

To create a new thread, you can simply gsethread new () . From then on, you can use it similar
to how you would use &tBn . You can add elements to it, change state and so on. Thetarges
difference between a thread and other bins is that the tldeas not require iteration. Once set to the
GoTI_STATE ALAY NG state, it will iterate its contained children elements anadtically.

Figure 15-1shows how a thread can be visualised.

Figure 15-1. A thread

thread

disk_source parse decoder play_audio

\ 4
\ 4
\ 4

Src sink src sink src sink

15.1. When would you want to use a thread?

There are several reasons to use threads. However, thes@'saame reasons to limit the use of threads as
much as possible. We will go into the drawbacks of threadinG$treamer in the next section. Let’s first
list some situations where threads can be useful:

- Data buffering, for example when dealing with network stnsaor when recording data from a live
stream such as a video or audio card. Short hickups elsewhtre pipeline will not cause data loss.
SeeFigure 15-Zor a visualization of this idea.

- Synchronizing output devices, e.g. when playing a streamiagoing both video and audio data. By
using threads for both outputs, they will run independeatiyg their synchronization will be better.

- Data pre-rolls. You can use threads and queues (thread baasjito cache a few seconds of data
before playing. By using this approach, the whole pipelifiealready be setup and data will already

51

Chapter 15. Threads

be decoded. When activating the rest of the pipeline, thecbvftiom PAUSED to PLAYING will be
instant.

Figure 15-2. a two-threaded decoder with a queue

thread
disk_source parse decoder
queue
—> —» —»
src sink src sink

Above, we've mentioned the “queue” element several times Boqueue is a thread boundary element.
It does so by using a classic provider/receiver model aséshin threading classes at universities all
around the world. By doing this, it acts both as a means to rdakethroughput between threads
threadsafe, and it can also act as a buffer. Queues haveab@¥pact properties to be configured for
specific uses. For example, you can set lower and upper tossfuo the element. If there’s less data than
the lower treshold (default: disabled), it will block outplf there’s more data than the upper treshold, it
will block input or (if configured to do so) drop data.

15.2. Constraints placed on the pipeline by the
GstThread

Within the pipeline, everything is the same as in any other Bhe difference lies at the thread boundary,
at the link between the thread and the outside world (coimgibin). Since GStreamer is fundamentally
buffer-oriented rather than byte-oriented, the naturlitsan to this problem is an element that can
"buffer" the buffers between the threads, in a thread-seghibn. This element is the “queue” element. A
gueue should be placed in between any two elements whosepaliisked together while the elements
live in different threads. It doesn’t matter if the queuelisged in the containing bin or in the thread
itself, but it needs to be present on one side or the otheradblerinter-thread communication.

If you are writing a GUI application, making the top-levehla thread will make your GUI more
responsive. If it were a pipeline instead, it would have tatemated by your application’s event loop,
which increases the latency between events (say, keyboasdgs) and responses from the GUI. In
addition, any slight hang in the GUI would delay iteratiortloé pipeline, which (for example) could
cause pops in the output of the sound card, if it is an audielipip.

52

Chapter 15. Threads

A problem with using threads is, however, thread contexgl connect to a signal that is emitted
inside a thread, then the signal handler for this thredidbe executed in that same threathis is very
important to remember, because many graphical toolkitsxoamun multi-threaded. Gtk+, for example,
only allows threaded access to Ul objects if you explicitedg mutexes. Not doing so will result in
random crashes and X errors. A solution many people use iste @n idle handler in the signal
handler, and have the actual signal emission code be extioutee idle handler, which will be executed
from the mainloop.

Generally, if you use threads, you will encounter some mwoid. Don't hesistate to ask us for help in
case of problems.

15.3. A threaded example application

As an example we show the helloworld program that we cod€thiapter Qusing a thread. Note that the
whole application lives in a thread (as opposed to half ofgmglication living in a thread and the other
half being another thread or a pipeline). Therefore, it do@sneed a queue element in this specific case.

#incl ude <gst/gst.h>
Gt H enant *thread, * SOUr Ce, * decodebi n, * audi osi nk;

static ghod ean

ideeos (gpointer data)

{
gpint ("Hwve idefuc in thread 9%\n", gthread self ());
gst_mainaut ();

/* do this fuction only once */
return FASE
}

| *
* EB wll be caled vihen the src eenent has an end of stream
* Note that this function will be caled in the thread context.
* V@ wil place an ide hander to the function that redly
* quits the application

* [

static vod

cb ecs (Gt H enent *thread,
gpoi nter dat @)

{

gprint ("Hwe eos in thread 9p\n', gthread sef ());
gideadd ((GourceFunc) ide eos, NLL);
}

| *
* On eror, too, youll vat to forvard signals to the nain
* thread, especially wen using GJ appications.

53

*/

static vad

chb error (GstH enent *thread,
Gt H enent * SOUr Ce,
&ror xerror,
ochar * debug,

gpoi nter det 8)

{
gprint ("Bror in thread %: 9%\n", gthread self (), erro
gide add ((GurceFunc) ide eos, NLL);

}

| *
* Link new pad from decodebin to aud osi nk.
* Gntains no further error checki ng.

*/

static vad

cb newped (Gt H enent * decodehi n,
Gt Pd * pad,
gboa ean | ast,

gpoi nter dat Q)
{
gst_pad link (pad, gst_e enent_get pad (audiosink, "sin
gst_hinadd (GST BN (thread), aud osirk);
gst_binsync children state (GST BN (thread));

}
gint
nain (gint aroc,
gchar *argv[])
{
[* init Breaner */

gst_int (&rge, &rgy);

/* nake sure ve have a filenane argunent */

if (argc =2 {
gprint ("usage % <@g/ \orhis filenanex\n", argv[(]);
retun -1;

}

|+ creste a new thread to hdd the € enents */

thread = gst_thread new ("thread");
g sign _comect (thread, "eos', GCOYLBAXK (cb ecs), NJ
g sign _comect (thread, "error”, GOYLBAXK (cb error

[+ create e enents */

source = gst_el enent_factory nake (“filesrc', "source")

goyect_set (GARIET (source), "location', argv[l], NJ

decodebin = gst_el enent_factory nake (“"decodebin', "dec

g signa _connect (decodebi n, " new decoded- pad”,
GOALBAK (cb nevped), NLL);

Chapter 15. Threads

r->nessage) ;

K);

54

audiosink = gst_el enent_factory nake ("a sasink”, "aud osi nk');
[+ setup */
gst_binadd nany (GST BN (thread), source, decodebin, N ub;

ost_elenent_|ink (source, decodebin);
ost_e enent_set state (audiosink, GST STATE PAS);
ost_elenent_set_state (thread, GST_STATE ALAYING;

/+* no need to iterate. V€ can now use a nai nl oop */
gst_nain ();

[+ uset */

gst_elenent_set state (thread, GST STATE NUL);

ost_object_unref (GBT_BIETT (thread));

return O

Chapter 15. Threads

55

Chapter 16. Scheduling

By now, you've seen several example applications. All ofitheould set up a pipeline and call
gst_biniterate () to start media processing. You might have started wondevimgt happens
during pipeline iteration. This whole process of media pssing is called scheduling. Scheduling is
considered one of the most complex parts of GStreamer. Mergyill do no more than give a global
overview of scheduling, most of which will be purely infortivee. It might help in understanding the
underlying parts of GStreamer.

The scheduler is responsible for managing the plugins dimen Its main responsibilities are:

- Managing data throughput between pads and elements in ngipehis might sometimes imply
temporary data storage between elements.

« Calling functions in elements that do the actual data pisings
- Monitoring state changes and enabling/disabling elemarite chain.

« Selecting and distributing the global clock.

The scheduler is a pluggable component; this means thatatiee schedulers can be written and
plugged into GStreamer. There is usually no need for intemadn the process of choosing the
scheduler, though. The default scheduler in GStreametlexdcapt”. Some of the concepts discussed
here are specific to opt.

16.1. Managing elements and data throughput

To understand some specifics of scheduling, it is importakhbw how elements work internally.
Largely, there are four types of elementdain () -based elements,op () -based elementsget

() -based elements and decoupled elements. Each of those bavefdeatures and limitations that are
important for how they are scheduled.

- chain () -based elements are elements that hawtan () -function defined for each of their
sinkpads. Those functions will receive data whenever idjata is available. In those functions, the
element campushdata over its source pad(s) to peer elementsin () -based elements canrmill
additional data from their sinkpad(s). Most elements inrf@&ner arechain () -based.

« lop () -basedelements are elements that havea () -function defined for the whole
element. Inside this function, the element can pull bufferm its sink pad(s) and push data over its
source pad(s) as it sees fit. Such elements usually requc#ispcontrol over their input. Muxers and
demuxers are usuallyoop () -based.

- gt () -basedelements are elements with only source pads. Foseaote pad, aget
() -function is defined, which is called whenever the peer elgmeeds additional input data. Most
source elements are, in factgt () -based. Such an element cannot actively push data.

56

Chapter 16. Scheduling

- Decoupled elements are elements whose source padgar® -based and whose sink pads are
_chain () -based.Thechain () -function cannot push data over its source pad(s), howéves.
such element is the “queue” element, which is a thread bayredament. Since only one side of such
elements are interesting for one particular scheduler,avesafely handle those elements as if they
were eitherget () -or_chain () -based. Therefore, we will further omit this type of elenseint
the discussion.

Obviously, the type of elements that are linked togetheehiaplications for how the elements will be
scheduled. If a get-based element is linked to a loop-bdseteat and the loop-based element requests
data from its sinkpad, we can just call the get-function aadibne with it. However, if two loop-based
elements are linked to each other, it's a lot more complata®émilarly, a loop-based element linked to a
chain-based element is a lot easier than two loop-basectalsrtinked to each other.

The default GStreamer scheduler, “opt”, uses a conceptaihstand groups. A group is a series of
elements that can that do not require any context switch#germediate data stores to be executed. In
practice, this implies zero or one loop-based elementsgetx®ased element (at the beginning) and an
infinite amount of chain-based elements. If there is a loagel element, then the scheduler will simply
call this elements loop-function to iterate. If there is nop-based element, then data will be pulled from
the get-based element and will be pushed over the chairdiedesments.

A chain is a series of groups that depend on each other for Bata&xample, two linked loop-based
elements would end up in different groups, but in the samackighenever the first loop-based element
pushes data over its source pad, the data will be tempostahed inside the scheduler until the
loop-function returns. When it's done, the loop-functidritee second element will be called to process
this data. If it pulls data from its sinkpad while no data isigable, the scheduler will “emulate” a
get-function and, in this function, iterate the first grougildata is available.

The above is roughly how scheduling works in GStreamer. ih&ssome implications for ideal pipeline
design. An pipeline would ideally contain at most one lo@sdd element, so that all data processing is
immediate and no data is stored inside the scheduler durmgpgswitches. You would think that this
decreases overhead significantly. In practice, this is adiagl, however. It's something to keep in the
back of your mind, nothing more.

57

Chapter 17. Autoplugging

In Chapter 9you've learned to build a simple media player for Ogg/Vertiles. By using alternative
elements, you are able to build media players for other miygies, such as Ogg/Speex, MP3 or even
video formats. However, you would rather want to build anleapion that can automatically detect the
media type of a stream and automatically generate the besiijpe pipeline by looking at all available
elements in a system. This process is called autopluggmbstreamer contains high-quality
autopluggers. If you're looking for an autoplugger, do'ad any further and go ©@hapter 19This
chapter will explain theonceptof autoplugging and typefinding. It will explain what system
GStreamer includes to dynamically detect the type of a m&tdéam, and how to generate a pipeline of
decoder elements to playback this media. The same prisciple also be used for transcoding. Because
of the full dynamicity of this concept, GStreamer can be matcally extended to support new media
types without needing any adaptations to its autopluggers.

We will first introduce the concept of MIME types as a dynamid @xtendible way of identifying media
streams. After that, we will introduce the concept of typéiing to find the type of a media stream.
Lastly, we will explain how autoplugging and the GStreansgjistry can be used to setup a pipeline that
will convert media from one mimetype to another, for exanfptamedia decoding.

17.1. MIME-types as a way to identity streams

We have previously introduced the concept of capabiliteea way for elements (or, rather, pads) to
agree on a media type when streaming data from one elemédrd ekt (se&ection 7.2 We have
explained that a capability is a combination of a mimetypa& @set of properties. For most container
formats (those are the files that you will find on your hard gd3gg, for example, is a container format),
no properties are needed to describe the stream. Only a MiME&is needed. A full list of MIME-types
and accompanying properties can be found in the Plugin Yi&uide
(http://gstreamer.freedesktop.org/data/doc/gstredmmad/pwg/html/section-types-definitions.html).

An element must associate a MIME-type to its source and sals pvhen it is loaded into the system.
GStreamer knows about the different elements and what ti/gata they expect and emit through the
GStreamer registry. This allows for very dynamic and extaeslement creation as we will see.

In Chapter 9we've learned to build a music player for Ogg/Vorbis filest’s look at the MIME-types
associated with each pad in this pipelikrggure 17-1shows what MIME-type belongs to each pad in this
pipeline.

58

Chapter 17. Autoplugging

Figure 17-1. The Hello world pipeline with MIME types

bin

disk_source parse decoder p
> - —>_
src sink src sink src S|
| | | | | |

| | | | |
| | | | | L

| | | | |

| | | | |

T T T T T

| | | | |

| audio/}npeg : audi(l)/mpeg :

audicl)/mpeg éudio/raw

Now that we have an idea how GStreamer identifies known médiaras, we can look at methods
GStreamer uses to setup pipelines for media handling andédia type detection.

17.2. Media stream type detection

Usually, when loading a media stream, the type of the streamti known. This means that before we
can choose a pipeline to decode the stream, we first needdotdie¢ stream type. GStreamer uses the
concept of typefinding for this. Typefinding is a normal pdragipeline, it will read data for as long as
the type of a stream is unknown. During this period, it wilbpide data to all plugins that implement a
typefinder. when one of the typefinders recognizes the strémntypefind element will emit a signal and
act as a passthrough module from that point on. If no type wasd, it will emit an error and further
media processing will stop.

Once the typefind element has found a type, the applicatiomsa this to plug together a pipeline to
decode the media stream. This will be discussed in the netibse

Plugins in GStreamer can, as mentioned before, implempefityder functionality. A plugin
implementing this functionality will submit a mimetype,tignally a set of file extensions commonly
used for this media type, and a typefind function. Once thpefind function inside the plugin is called,
the plugin will see if the data in this media stream matchgseaific pattern that marks the media type
identified by that mimetype. If it does, it will notify the tgfind element of this fact, telling which
mediatype was recognized and how certain we are that tieiarstis indeed that mediatype. Once this
run has been completed for all plugins implementing a tyjpffimctionality, the typefind element will

59

Chapter 17. Autoplugging

tell the application what kind of media stream it thinks tedaecognized.

The following code should explain how to use the typefind et will print the detected media type,
or tell that the media type was not found. The next sectiohimtloduce more useful behaviours, such as
plugging together a decoding pipeline.

#nclude <gst/gst. h>

static vod

ch typefound (Gt H enent * typefind,
oui nt probebi lity,
Gt Gps * Caps,
gpoi nter dat a)

gehar =+ type;

type = gst_caps tostring (caps);
gprint ("Mda type % found, probability 086", type p robability);
g free (type);

I+ dore */
(* (godean +) data) = TRE
}

static vad
chb error (Gt H enent *pipelineg
Gt H enent * SOUr Ce,
&ror xerror,
ochar * debug,
gpoi nter dat a)
{
gpint ("Bror: %\n', error->nessage);

[+ dore */
(* (godean «) data) = TRE
}

gint
nain (gint aroc,
ochar *argv])
{
Gt H enent +pipeling *filesrc, * typefind;
ghool ean dore = FALSE

[* init CRreaner */
gst_int (&rge, &argy);

/ * check args */

if (argc =2 {
gpint ("Wage % <ilenane\n', argv(]);
retun -1;

}

60

Chapter 17. Autoplugging

[+ create a newpipeine to had the € enents */
pipeline = gst_pipeline new ("pipe’);
gsign _comect (pipeine "error", GOYLBAK (cb err o), &dlore);

[+ create file source and typefind e enent */

filesrc = gst_el enent_factory nake ("filesrc', "source");

goyect set (GARIET (filesrc), "location', argq1], N ub;

typefind = gst_el enent_factory nake ("typefind', "typef i nder");

g signa _comnect (typefind, "have-type', GCALBAXK (cb _typefound), &dore);

[+ setup */

gst_binadd nany (GGT BN (pipeine), filesrc, typefind , NUL);
gst_eement link (filesrc, typefind);

gst_elenent_set state (GST AEMENT (pipdine), GST STA TE ALAYI NG;

/* nowiterate until the type is found */
do {
if (lgst_biniterate (G BN (pipeline))
break;
} vhile (!done);

[+ unset x/
ost_elenent_set_state (GST_HBEMANT (pipeine), GBI_STA TENLL);
ost_obj ect_unref (GST_@IECT (pipeline));

return O

Once a media type has been detected, you can plug an elentgrat emuxer or decoder) to the source
pad of the typefind element, and decoding of the media streiflrstart right after.

17.3. Plugging together dynamic pipelines

In this chapter we will see how you can create a dynamic pipelh dynamic pipeline is a pipeline that
is updated or created while data is flowing through it. We wiidlate a partial pipeline first and add more
elements while the pipeline is playing. The basis of thiyetavill be the application that we wrote in
the previous sectiorSection 17.2to identify unknown media streams.

Once the type of the media has been found, we will find elemisaritee registry that can decode this
streamtype. For this, we will get all element factories (@/hive've seen before iBection 5.2 and find
the ones with the given MIME-type and capabilities on theikpad. Note that we will only use parsers,
demuxers and decoders. We will not use factories for anyr@lleenent types, or we might get into a
loop of encoders and decoders. For this, we will want to bailidt of “allowed” factories right after
initializing GStreamer.

static Qi st xfactories;

61

Chapter 17. Autoplugging

| *
* This function is cdled by the registry loader. Its return va lue
* (TRE or FASH decides wether the gven feature will be inc | uded
* inthe list tha we're generating further domn.
*
/
static ghod ean
chb feaure filter (GtHuginFeature *feaure,
gpoi nt er dat)
{
const gchar * Kl ass;
guint rank;
[+ wve oly care about e enent factories */
if ('GBIlS HBEVINT FACTARY (feature))
return FASE
/* only parsers, demuxers and decoders */
klass = gst_eenent_factory get klass (GST_HEMEINT FAC TR (feature));

if (gstrrstr (klass, "Denx') = NUL &
gstrrstr (klass, "Decoder") = NLL &
gstrrstr (klass, "Rarse") = NULL)
return FASE

/* only select eenents wth autop ugging rank */
rank = gst_ pluginfeature get_rank (feature);
if (rank < GBT_RANK MFGNA)

return FASE

return TRE
}
| *

* This function is cdled to sort features by rank.

*/
static gnt
ch conpare ranks (Gt H ug nFeat ure *f1,

Gt H ugi nFest ure *f2)

{

return gst_pluginfeature get_rank (f2) - gst_pluginfe ature get_rank (f1);
}
static vod
int factories (void)
{

[+ first filter out the interesting el enent factories */

factories = gst_registry pod _feature filter (

(GtRuginFeatureF Iter) cb feature filter, FAASE NL D;
/* sort themaccording to their ranks */
factories = g list_sort (factories, (GnpareFunc) cb co npare ranks);

62

Chapter 17. Autoplugging

From this list of element factories, we will select the onattimost likely will help us decoding a media
stream to a given output type. For each newly created elemenwill again try to autoplug new
elements to its source pad(s). Also, if the element has dimpads (which we've seen before in
Section 7.1.}, we will listen for newly created source pads and handleghtoo. The following code
replaces theb type found from the previous section with a function to initiate autogging, which
will continue with the above approach.

static vod try to plug (GtRd *pad, const GtCGyps * Caps);
static GtH enent * audi osi rk;
static vad
cb nevpad (Gt H enent * el enext,
Gt Pd * ped,
gpoi nt er dat a)
{
GtGps *caps;
caps = gst_pad get_caps (ped);
try_topug (ped, caps);
ost_caps free (caps);
}
static vod
close link (GtRd * srcpad,
Gt H enent * si nkel enernt,
const gchar * padnane,
const Gi st *tenpl i st
{

ghod ean has_dynamic pads = FALSE

gprint ("Hugging pad %:9% to newy created 9%:9%\n",

gst_obj ect_get_nane (GBT_GBIECT (gst_ped get_parent (s repad))),
ost_ped get_nane (srcped),
gst_object_get_nane (GBI RIECT (sinkel enent)), padnam e);

/+ add the eenent to the pipeine and set corect state */

ost_elenent_set_state (sinke enent, GST_STATE PALET) ;

gst_ binadd (GBI BN (pipeine), sinke enent);

ost_pad link (srcpad, gst_el enent_get pad (sinkel enent , padnane));
gst_binsync children state (GST_ BN (pipdine));

/* if we have static source pads, link those. If we have dynamc

* source pads, listen for newpad signds on the € enent */
for (; tenpllist '= NUL; tenpllist = tenpllist->next) {

Gt PedTenpl at e *tenpl = GBT_PAD THVRATE (tenpl |ist->data);

/* only sourcepads, no request pads */
if (tenpl->direction |= GT_PDRC ||

63

Chapter 17. Autoplugging

tenpl ->presence = GBI PAD REQES) {
conti nue;
}

swtch (tenpl ->presence) {
case GBI PADAVAYS {
GtRd *pad = gst_eenent_get_pad (sinkel enent, tenpl ->nane tem pae);
GtGps *caps = gst_pad get_caps (ped);

% link x/
try_toplug (ped caps);
gst_caps_free (caps);
br eak;

}

case GBI PAD SOMETI MBS
has_dynanmic pads = TRE
break;

defaul t:
break;

}
}

/* listen for newy created pads if this e enent supports thet */
if (hes_dynamic_pads) {
g signa _comnect (sinkel enent, "newpad’, GCALBAXK (c b newpad), NLL);
}
}

static vod
try topug (GtPRd * pad,
const Gt Qs * Caps)
{
Gt Oy ect xparent = GBT_(BIECT (gst_ped get_parent (ped));
const gchar * NN,
const @i st *item
GtGps *res, *aud ocaps;

[+ do't pug if wre dready p ugged */
if (G PADISLINGED (gst_el enent_get_pad (aud osirk, "sink"))) {
gprint ("Omtting link for pad 9%:% because we're dready |'i nked\n",
gst_obj ect_get_nane (perent), gst_ped get_nane (ped));

return;

}

/* as sad above, ve only try to plug audio... Ont video */
nne = gst_structure get_nane (gst_caps get_structure (caps, 0);
if (gstrrstr (nmne, "vided")) {
gprint ("Omtting link for pad %:9% because mnetype % is nortaudi o\n',
gst_object_get_nane (perent), gst_ped get nene (ped), m ine);
return

}

/+ can it link to the aud opad? */

64

Chapter 17. Autoplugging

audi ocaps = gst_ped get_caps (gst_el enent_get_ped (audi osirk, "sirk"));
res = gst_caps_intersect (caps, aud ocaps);
if (res & !gst_caps is empty (res)) {
gprint ("Foud pad to link to audosink - plugging is now don an');
close link (pad, audosink, "sink', NLL);
gst_caps free (aud ocaps);
ost_caps free (res);
return
}
gst_caps _free (aud ocaps);
gst_caps free (res);

[+ try to plug fromour list */
for (item= factories; item!= NILL;, item= item>next) {
Gt H enent Factory *factory = GBT_HBMEINT FACTARY (item>datd);

const @i st * pads;

for (pads = gst_el enent_factory get pad tenpl ates (fact ory);
pads !'= NLL; pads = pads->next) {
Gt PadlTenpl at e «tenpl = GST_PAD TENRLATE (pads->tat a);

/= find the sirk tenplate - need an alvays pad */
if (tenpl->direction = G PDINK ||
tenpl ->presence = GBI PAD AVARYS {
continue;
}

[+ can it link? */
res = gst_caps_intersect (caps, tenpl->caps);
if (res & !gst_capsis empy (res)) {

Gt H enent * g enant ;

[+ close link and return */
gst_caps free (res);
denent = gst_eenent_factory create (factory, NUL);
close link (pad, e enent, tenpl->nane tenplate,
gst_el enent_factory get_ped tenplates (factary));
return;
}
gst_caps free (res);

[+ we only check one sink tenplate per factory, so nove on to the
* next factory now */
break;
}
}

[+ if we get here, no itemwves found */
gprint ("No conpetible pad found to decode % on 9%:9%\n",
nne, gst_obj ect_get_nane (perent), gst_pad get_nane (p ad));
}

static vad

65

Chapter 17. Autoplugging

cb typefound (Gt H enent * typefind,
ui nt probebility,
GtCGyps * Caps,
gpoi nter dat a)
{
gchar =,

s = gst_caps tostring (caps);
gprint ("Detected neda type %\n', s);

afree (s);
/* actudly plug now */
try toplug (gst_elenent_get pad (typefind, "src"), cap S);

By doing all this, we will be able to make a simple autoplughet can automatically setup a pipeline
for any media type. In the example below, we will do this fodauonly. However, we can also do this
for video to create a player that plays both audio and video.

The example above is a good first try for an autoplugger. Neextsswould be to listen for
“pad-removed” signals, so we can dynamically change thggad pipeline if the stream changes (this
happens for DVB or Ogg radio). Also, you might want speciaée code for input with known content
(such as a DVD or an audio-CD), and much, much more. Moregwet|l want many checks to prevent
infinite loops during autoplugging, maybe you'll want to ilement shortest-path-finding to make sure
the most optimal pipeline is chosen, and so on. Basicakyfeatures that you implementin an
autoplugger depend on what you want to use it for. For fudkbi implementations, see the “playbin”,
“decodebin” and “spider” elements.

66

Chapter 18. Pipeline manipulation

This chapter will discuss how you can manipulate your pipgelh several ways from your application
on. Parts of this chapter are downright hackish, so be adsbat you’ll need some programming
knowledge before you start reading this.

Topics that will be discussed here include how you can irdatd into a pipeline from your application,
how to read data from a pipeline, how to manipulate the pig&dispeed, length, starting point and how
to listen to a pipeline’s data processing.

18.1. Data probes

Probes are best envisioned as pad listeners. They areedttch pad in a pipeline, and you can add
callback functions to this probe. Those callback functiaiisbe called whenever data is being sent over
this pad. The callback can then decide whether the datadhbeuliscarded or it can replace the piece of
data with another piece of data. In this callback, it can &igger actions in the application itself. For
pipeline manipulation, probes are rather limited, but fipgine tracking, they can be very useful.

18.2. Manually adding or removing data from/to a pipeline

Many people have expressed the wish to use their own sowrdeiett data into a pipeline. Some people
have also expressed the wish to grab the output in a pipalid¢ske care of the actual output inside
their application. While either of these methods are stpdigcouraged, GStreamer offers hacks to do
this. However, there is no support for those methdtis.doesn’t work, you're on your own. Also,
synchronization, thread-safety and other things thatwebeen able to take for granted so far are no
longer guanranteed if you use any of those methods. It'syalwatter to simply write a plugin and have
the pipeline schedule and manage it. See the Plugin Writaride for more information on this topic.
Also see the next section, which will explain how to embedypis statically in your application.

After all those disclaimers, let’s start. There's threegbke elements that you can use for the
above-mentioned purposes. Those are called “fakesrc’hfaginary source), “fakesink” (an imaginary
sink) and “identity” (an imaginary filter). The same methgaphes to each of those elements. Here, we
will discuss how to use those elements to insert (using fakes grab (using fakesink or identity) data
from a pipeline, and how to set negotiation.

18.2.1. Inserting or grabbing data

The three before-mentioned elements (fakesrc, fakesidkdemtity) each have a “handoff” signal that
will be called inthe get () - (fakesrc) orchain () -function (identity, fakesink). In the signal

67

Chapter 18. Pipeline manipulation

handler, you can set (fakesrc) or get (identity, fakesird¢ado/from the provided buffer. Note that in the
case of fakesrc, you have to set the size of the providedhusiag the “sizemax” property. For both
fakesrc and fakesink, you also have to set the “signal-hifsidmroperty for this method to work.

Note that your handoff function shouttbt block, since this will block pipeline iteration. Also, do oy
to use all sort of weird hacks in such functions to accompimmething that looks like synchronization
or so; it's not the right way and will lead to issues elsewhé#rgou’re doing any of this, you're basically
misunderstanding the GStreamer design.

18.2.2. Forcing a format

Sometimes, when using fakesrc as a source in your pipelméll yant to set a specific format, for
example a video size and format or an audio bitsize and nupfldrannels. You can do this by forcing a
specificGtGps on the pipeline, which is possible by usifitlered capsYou can set a filtered caps on
a link by usinggst_pad link filtered () , Where the third argument is the format to force on the
link.

18.2.3. Example application

This example application will generate black/white (it &ies every second) video to an X-window
output by using fakesrc as a source and using filtered camsde & format. Since the depth of the image
depends on your X-server settings, we use a colorspace ionelement to make sure that the output
to your X server will have the correct bitdepth. You can alsbtBnestamps on the provided buffers to
override the fixed framerate.

#include <string.h> / * for nenset () */
#include <gst/gst. h>

static vaod

cb handoff (Gt H enent * f akesrc,
GtBiffer *buffer,
Gt Pad * pad,

gpoi nter user_dat a)
static goodean white = FAE

/* this nakes the inage black/vhite */
nenset (GST_BUAFER DATA (buffer), white ? Oxff @ OxG,
G BAFFER S ZE (buffer));
vhite = Iwite

}

gnt

nain (gint aroe,

oeher xargv])
{

68

Chapter 18. Pipeline manipulation

Gt H enent +pipeling * f akesrc, *CONV, *Videosink;
GtGps «filter;

[* init CRreaner */
gst_int (&rge, &argy);

/* setup pipeine */
pipeline = gst_pipeline new ("pipeline’);

fakesrc = gst_el enent_factory nake ("fakesrc", "source");

cov = gst_el enent_factory nake ("ffnpegcd orspace, "c onv');

Vi decsi nk = gst_el enent_factory nake ("xi nagesi nk', "vi deosi nk');
[+ setup */

filter = gst_caps newsinpl e ("vided x-rawrgd’,
"wath', GTYEIN, 384
"height", GTYFEINT, 288,
"franerate’, GTWEDDHE (gdoude) 10,
"bpp’, GTYFEINT, 16,
"depth’, GTYFEINT, 16,
"end anness”", GTYFEINI, GBYTE R
NLL);
ost_elenent |ink filtered (fakesrc, conv, filter);
gst_el enent_link (conv, videosink);
gst_binadd nany (GG BN (pipeline), fakesrc, cov, vid eosirnk, NLL);

/ * setup fake source */

goyect_set (GARIET (fakesrc),

"si gnd -handoffs", TRE

"si zenax', 334 * 288 * 2

"sizetype', 2, NULL);

g signa _comect (fakesrc, "handoff", GCALBAXK (cb ha ndoff), NLL);

[+ pay */

ost_e enent_set state (pipeline, GST STATE AAYND;
wile (gst_biniterate (GG BN (pipeing))) ;

/* clean up =/

ost_e enent_set state (pipeline, GST STATE NUL);
gst_obj ect_uref (GET_GRIECT (pi peline));

return O

18.3. Embedding static elements in your application

The Plugin Writer's Guide
(http://gstreamer.freedesktop.org/data/doc/gstredmmad/pwg/html/index.html) describes in great detail

69

Chapter 18. Pipeline manipulation

how to write elements for the GStreamer framework. In thigise, we will solely discuss how to embed
such elements statically in your application. This can lefuldor application-specific elements that
have no use elsewhere in GStreamer.

Dynamically loaded plugins contain a structure that's definsingGsr ALUB N [HA NE () . This
structure is loaded when the plugin is loaded by the GStreanre. The structure contains an
initialization function (usually callediugninit) that will be called right after that. It's purpose is to
register the elements provided by the plugin with the G$teraframework. If you want to embed
elements directly in your application, the only thing yowedéo do is to manually run this structure
using_gst pluginregister_static () . The initialization will then be called, and the elements
will from then on be available like any other element, withthem having to be dynamically loadable
libraries. In the example below, you would be able to gstllel enent_factory nake

("ny-€l enent -nang’, "sone- nang'") to create an instance of the element.
| *
* Hre, you woud wite the actua plugin code
*/
[..]
static ghod ean
register_eenents (GtRugin *pl ugi n)
{

return gst_elenent_register (plugin, "ny-el enent - nane” ,
GST RNK NDE W FLUWBN TYFB);
}

static GtHuginDesc plugindesc = {
GBT_\VERY N MIAR
GBT_\VERS N MINDR
"ny-private-pl ugi ns”,
"Rivate e enents of ny application’,
register_el enants,
NLLL,
"0.0.1",
"LGL,
"ny-appl i cation”,
"http://vwwny-appl i cation net/",
G PO NGINT

b

| *
* QI this function right after caling gst_init ().
*/

vod
ny e enents int (void
{
_ost_pluginregster_static (&l ugn desc);
}

70

I\VV. Higher-level interfaces for
GStreamer applications

In the previous two parts, you have learned many of the imlsrand their corresponding low-level
interfaces into GStreamer application programming. Maegpe will, however, not need so much
control (and as much code), but will prefer to use a standiyback interface that does most of the
difficult internals for them. In this chapter, we will intrade you into the concept of autopluggers,
playback managing elements, XML-based pipelines and athar things. Those higher-level interfaces
are intended to simplify GStreamer-based application iogning. They do, however, also reduce the
flexibility. It is up to the application developer to chooskigh interface he will want to use.

Chapter 19. Components

GStreamer includes several higher-level components tplginyour applications life. All of the
components discussed here (for now) are targetted at migibgek. The idea of each of these
components is to integrate as closely as possible with ae@®ier pipeline, but to hide the complexity of
media type detection and several other rather complexddpat have been discussed in

Part 11l in GStreamer Application Development Manual (0.8.9)

We currently recommend people to use either playbin Ssstion 19.)or decodebin (seBection 19.2,
depending on their needs. The other components discuseedfeeeither outdated or deprecated. The
documentation is provided for legacy purposes. Use of thtiser components is not recommended.

19.1. Playbin

Playbin is an element that can be created using the stand&trd&ner API (e.g.

gst_el enent_factory nake ()). The factory is conveniently called “playbin”. By being a
GtHenet |, playbin automatically supports all of the features of ti&ss, including error handling,
tag support, state handling, getting stream position&isgeand so on.

Setting up a playbin pipeline is as simple as creating amitg of the playbin element, setting a file
location (this has to be a valid URI, so “<protocol>://<Itioa>", e.g. file://tmp/my.ogg or
http://www.example.org/stream.ogg) using the “uri” peofy on playbin, and then setting the element to
the GBT_STATE ALAYI NG state. Internally, playbin uses threads, so there’s no fe#erate the element
or anything. However, one thing to keep in mind is that sigriiaéd by playbin might come from another
than the main thread, so be sure to keep this in mind in yomasigandles. Most application
programmers will want to use a function suchgasl e add () to make sure that the signal is
handled in the main thread.

#ind we <gst/gst. h>

static vad
ch ecs (Gt H enent *pl ay,
gpoi nter dat a)
{
gst_mainauit ();
}

static vad
chb error (Gt H enent *pl ay,
Gt H enent * SIC,
&ror e,
gcher * debug,
gpoi nter dat a)
{
gpint ("Bror: %\n', err->nessage);

72

Chapter 19. Components

}

gt

nein (gn age
ochar xargv])

{

Gt H enent *pl ay,

[* init CRreaner */
gst_int (&rge, &argy);

/* nake sure ve have a IR */
if (argc =2 {
gpint ("Wage % ARAN', agv(]);
return -1
}
[+ set up */

play = gst_elenent_factory nake ("playbin’, "play”);
gogect set (GAET (play), "ui”, argfl], NIL);

g sign _comect (play, "eos', GOALBAK (cb ecs), NIL);

gsigd _comect (pay, "erro", GOLBAK (cberrar), NLL);

if (gst_eenent_set_state (Pay, GBI SIAEAANG '= G ST STATE SOFS {
gprin ("Failed to pa\n');
return -1

}

/* nowrun */

gst_nain ();

/* dso clean up */

ost_elenent_set_state (play, GST_STATE NUL);
gst_obj ect_uef (GBT_@IECT (Pl ay));

return O

Playbin has several features that have been discussedpséui

« Settable video and audio output (using the “video-sink” &nelio-sink” properties).

« Mostly controllable and trackable as@Benent , including error handling, eos handling, tag
handling, state handling, media position handling andisgek

- Buffers network-sources.
- Supports visualizations for audio-only media.
« Supports subtitles, both in the media as well as from sepéitas.

« Supports stream selection and disabling. If your media haspte audio or subtitle tracks, you can
dynamically choose which one to play back, or decide to tuaff ialltogther (which is especially
useful to turn off subtitles).

73

19.2. Decodebin

Chapter 19. Components

Decodebin is the actual autoplugger backend of playbingclvhias discussed in the previous section.
Decodebin will, in short, accept input from a source thatrikdd to its sinkpad and will try to detect the
media type contained in the stream, and set up decoder esiftin each of those. It will automatically
select decoders. For each decoded stream, it will emit tee~“decoded-pad” signal, to let the client
know about the newly found decoded stream. For unknownrssgwhich might be the whole stream),
it will emit the “unknown-type” signal. The application ise¢n responsible for reporting the error to the

user.

The example code below will play back an audio stream of autifife. For readability, it does not

include any error handling of any sort.
#ncl ude <gst/gst. >

Gt H enant *pipeling * audi 0
GtRd *aud opad,;

static vod
cb newped (GstH enent * decodehi n,
Gt Pd * pad,
ghodl ean last,
gpoi nter dat a)
{
GtGes *caps
GtSructure *str;
/+ only link aud o, only link once */
if (GBS PADISLINGED (audi oped))
return
caps = gst_pad get_caps (pad);
str = gst_caps get_structure (caps, 0);
if (!gstrrstr (gst_structure get_nane (str), "audic'))
return
[+ link nplay */
gst_ped link (ped, aud oped);
gst_ binadd (GT BN (pipdine), audo);
gst_binsync children state (GST BN (pipdine));
}
gnt
nain (gint aroe,
ochar - xargv[])
{

Gt H enant xsrc, *dec, *conv, *scae, * Si nk;

[* init CRreaner */
gst_int (&rge, &argy);

74

Chapter 19. Components

/* nake sure we have input */

if (argc =2 {
gpint ("Wage % <ilenane\n', argv(]);
retun -1,

}

[+ setup */

pipeline = gst_pipeline new ("pipeline’);

src = gst_el enent_factory nake ("filesrc', "source");

goyect_set (GAIET (src), "location', argv[l], NLL) ;

dec = gst_e enent_factory nake ("decodebin', "decoder™) ;

g signa _comnect (dec, "newdecoded-pad’, GCAULBAXK (c b newpad), NLL);

audo = gst_hinnew ("aud obin');

cov = gst_el enent_factory nake (“audi oconvert”, "aconv ");
audi opad = gst_el enent_get_pad (conv, "sink');

sca e = gst_d enent_factory nake ("aud oscd €', "scal €');
sink = gst_e enent_factory nake ("a sasink’, "sink');

gst_binadd nany (GST BN (audi0), conv, scale sink, NL D;

ost_eenent_|ink nany (conv, scde sink, NLL);
gst_ binadd nany (ST BN (pipeling), src, dec, NLL);
ost_eenent_link (src, dec);

/* run x/

ost_elenent_set_state (audio, GBI_STAITE PALSD);
ost_e enent_set state (pipeline, GST STATE AAYND;
wile (gst_biniterate (GG BN (pipeing))) ;

/* cleanup */
ost_el enent_set state (pipeline, GST STATE NUL);
gst_obj ect_uref (GST_GRIECT (pi peline));

return G

Decodebin, similar to playbin, supports the following faats:

« Can decode an unlimited number of contained streams to édamatput pads.

« Ishandled as &tH enent in all ways, including tag or error forwarding and state hiangl

Although decodebin is a good autoplugger, there’s a whaleflthings that it does not do and is not
intended to do:

- Taking care of input streams with a known media type (e.g. ®Pah audio-CD or such).
- Selection of streams (e.g. which audio track to play in cdseuiti-language media streams).

« Overlaying subtitles over a decoded video stream.

Decodebin can be easily tested on the commandline, e.g.ihy te commandst-launch-0.8 filesrc
location=file.ogg ! decodebin ! audioconvert ! audioscaledlsasink

75

Chapter 19. Components

19.3. Spider

Spider is an autoplugger that looks and feels very much ld@debin. On the commandline, you can
literally switch between spider and decodebin and it'll thogist work. Try, for example,

gst-launch-0.8 filesrc location=file.ogg ! spider ! audioawert ! audioscale ! alsasink Although the
two may seem very much alike from the outside, they are vdfgréint from the inside. Those internal
differences are the main reason why spider is currentlyidensd deprecated (along with the fact that it
was hard to maintain).

As opposed to decodebin, spider does not decode pads ansignails for each detected stream.

Instead, you have to add output sinks to spider by createsaaquest pads and connecting those to sink
elements. This means that streams decoded by spider camdghbmic. Also, spider uses many
loop-based elements internally, which is rather heavy dalee-wise.

Code for using spider would look almost identical to the cofldecodebin, and is therefore omitted.
Also, featureset and limitations are very much alike, exéepthe above-mentioned extra limitations for
spider with respect to decodebin.

19.4. GstPlay

GstPlay is a GtkWidget with a simple API to play, pause ang stmedia file.

19.5. GstEditor

GstEditor is a set of widgets to display a graphical represgem of a pipeline.

76

Chapter 20. XML in GStreamer

GStreamer uses XML to store and load its pipeline definitiothdL is also used internally to manage
the plugin registry. The plugin registry is a file that contathe definition of all the plugins GStreamer
knows about to have quick access to the specifics of the [Hugin

We will show you how you can save a pipeline to XML and how yon ggoad that XML file again for
later use.

20.1. Turning GstElements into XML

We create a simple pipeline and write it to stdout with gstl xmmnite_file (). The following code
constructs an MP3 player pipeline with two threads and thetesvout the XML both to stdout and to a
file. Use this program with one argument: the MP3 file on disk.

#ncdude <stdibh>
#nclude <gst/ gt h>

ghool ean pl ayi ng,

int

nain (int arge, char *arov[])
{

Gt H enent +filesrc, * 08SSi 1K, *Queue, * queue2, * decode;
Gt H enent *hin
Gt H enent *thread, *thread2;

gst_int (&rgc,dargy);

if (argc =2 {
gprint ("usage % <3 filenanex\n", argv[(]);
eit (-1);
}
/* create a newthread to hod the e enents */

thread = gst_el enent_factory nake ("thread’, "thread");

g assert (thread !'= NUL);

thread? = gst_el enent_factory nake ("thread’, "thread?');
g assert (thread2 != NULL);

/* create a newhin to hdd the € enents */
bin = gst_binnew ("bin);
gassert (bin !'= NLL);

[+ creste a disk reader */
filesrc = gst_el enent_factory nake (“filesrc’, "d sk so urce');

77

Chapter 20. XML in GStreamer

gassert (filesrc = NLL);
goyect_set (GARIET (filesrc), "location’, argq1], N ub;

queve = gst_d enent_factory nake ("queue’, "queue');
queue2 = gst_el enent_factory nake ("oueue’, "queue?');

/* and an audio sink */
osssink = gst_el enent_factory nake ("osssink', "play au day;
g assert (osssink !'= NLL);

decode = gst_el enent_factory nake ("ned', "decode");
g assert (decode !'= NLL);

/* add djects to the nain bin */
gst_binadd nany (GT BN (bin), filesrc, queue, NLL);

gst_bin add nany (GST_BN (thread), decode, cueue2, NLL);
gst_binadd (GST BN (thread?), osssirK);

ost_eenent lirk nany (filesrc, queue, decode, queue2, o sssirk, NLL);
gst_bin add nany (GSTEN (bir), thread, threa?, NULL);

/* wite the bin to stdout */
ost_xnh_wite file (GST_HEMENT (bin), stdout);

[+ wite the bin to a file */
gst_xnh_wite file (GST_ BBMANT (bin), fopen ("xnhTest. gst", "w));
exit (0);

The most important line is:

gst_xnh wite file (GST ELEMENT (hin), stdout);

gst_xml_write_file () will turn the given element into an XdcPtr that is then formatted and saved to a
file. To save to disk, pass the result of a fopen(2) as the seamgument.

The complete element hierarchy will be saved along with titerielement pad links and the element
parameters. Future GStreamer versions will also allow patdre the signals in the XML file.

78

Chapter 20. XML in GStreamer

20.2. Loading a GstElement from an XML file

Before an XML file can be loaded, you must create a GstXML dbjsaved XML file can then be
loaded with the gst_ xml_parse_file (xml, filename, rootedathmethod. The root element can
optionally left NULL. The following code example loads theepiously created XML file and runs it.

#indwe <stdib h>
#indwe <gst/gst. h>

int

nain(in argc, char xargv[])

{

GtXML *xnh;

Gt H enant *hin
ghbool ean ret;

gst_int (&rge, &argy);

xnh = gst_xnh_new ();

ret = gst_xnh_parse file(xnh, "xnhTest.gst”, NILL);

g assert (ret = TRB;

bin = gst_xnh_get_eenent (xnh, "bin');
gassert (bin !'= NLL);

ost_elenent_set_state (bin, GBI_STATE AAY NG ;
wile (gst_biniterate(GS._BNhbin)));
ost_elenent_set_state (bin, GBI_STATE NLL);

eit (0);

gst_xml_get_element (xml, "name") can be used to get afipe@ment from the XML file.

gst_xml_get topelements (xml) can be used to get a list ¢djglevel elements in the XML file.

In addition to loading a file, you can also load a from a xmIDmed an in memory buffer using
gst_xml_parse_doc and gst_xml_parse_memory respeacteth of these methods return a gboolean

indicating success or failure of the requested action.

79

Chapter 20. XML in GStreamer

20.3. Adding custom XML tags into the core XML data

It is possible to add custom XML tags to the core XML createthwist_xml_write. This feature can be
used by an application to add more information to the savgiptu The editor will for example insert the
position of the elements on the screen using the custom Xgs. ta

It is strongly suggested to save and load the custom XML tagga namespace. This will solve the
problem of having your XML tags interfere with the core XMlg&g

To insert a hook into the element saving procedure you c&ralisignal to the GstElement using the
following piece of code:

XnMNsRr ns;

ns = xnNewNs (NLLL, "http://gstreaner. net/gst-test/10 /", "test");

th.e.a.d = gst_eenent_factory nake ("thread’, "thread'’);
g signa _comnect (G@BIETT (thread), "ob ect_saved',
GALBAK (o ect_saved), g strdup (“"decoder thread"))

When the thread is saved, the object_save method will beccallur example will insert a comment tag:

static vod
oh ect_saved (Gt @y ect *obect, xnhNodeRr parent, gpointer deta)
{

xnhNodeRtr chil d;

child = xnhNewdhi | d (parent, ns, "comment”, NLL);
xnhNewchi [d (child, ns, "text", (gcher *)data);
}

Adding the custom tag code to the above example you will getMh file with the custom tags in it.
Here’s an excerpt:

<gst: e enent >
<gst : nane>t hr ead</ gst : nane>
<gst : typest hread</ gst : type>
<gst : versi on>0. 1. 0</ gst : ver si on>

< gst:chil dren>
<test: conment >
<test:text>decoder thread</test:text>
< test: conment >
< gst: e enent >

80

Chapter 20. XML in GStreamer

To retrieve the custom XML again, you need to attach a signtiié GstXML object used to load the
XML data. You can then parse your custom XML from the XML trekemever an object is loaded.

We can extend our previous example with the following piefceoale.
xnh = gst_xnh_new ();

g signa _comnect (G@RIECT (xnh), "object | caded’,
GQOUBAXK (xnh_| caded), xnh);

ret = gst_xnh_parse file (xnh, "xnhTest.gst”, NLL);
g assert (ret = TRE);

Whenever a new object has been loaded, the xml_loaded dumetil be called. This function looks like:

static vod
xnh_| caded (Gst XML *xnh, Gty ect xobject, xnhNodeRr self, gpointer data)
{

xnhNodeRr children = sd f->xnhChi | drenNode;

vhile (children) {
if (!strenp (chil dren->nane, "comment™)) {
xnhNodePtr nodes = chi | dren->xnhQhi | drenNode;

wile (nodes) {
if (!strenp (nodes->nane, “"text")) {
ochar *nane = g strdup (xnhNodeGet Gntent (nodes));
gprint ("ogject % loaded Wth comment '9%'\n",
gst_obj ect_get_nene (object), nene);

}
nodes = nodes->next ;
}
}
children = chil dren->next;

}
}

As you can see, you'll get a handle to the GstXML object, thelpéoaded GstObject and the
xmINodePtr that was used to create this object. In the abxample we look for our special tag inside
the XML tree that was used to load the object and we print oorroent to the console.

81

V. Appendices

By now, you've learned all about the internals of GStreanmer application programming using the
GStreamer framework. This part will go into some random thieg are useful to know if you're going to
use GStreamer for serious application programming. Ittwilich upon things related to integration with
popular desktop environments that we run on (GNOME, KDE, Q8/Kdows), it will shortly explain
how applications included with GStreamer can help making Jife easier, and some information on
debugging.

Chapter 21. Things to check when writing an
application

This chapter contains a fairly random selection of thingg tan be useful to keep in mind when writing
GStreamer-based applications. It's up to you how much yogriing to use the information provided
here. We will shortly discuss how to debug pipeline problesiag GStreamer applications. Also, we
will touch upon how to acquire knowledge about plugins amarednts and how to test simple pipelines
before building applications around them.

21.1. Good programming habits

- Always connect to the “error” signal of your topmost pip&lito be notified of errors in your pipeline.

- Always check return values of GStreamer functions. Esjlgc@eck return values of
ost_elenent_link () andgst_el enert_set_state ()

- Always use your pipeline object to keep track of the curréatesof your pipeline. Don’t keep private
variables in your application. Also, don’t update your usgerface if a user presses the “play” button.
Instead, connect to the “state-changed” signal of your mgirpipeline and update the user interface
whenever this signal is triggered.

21.2. Debugging

Applications can make use of the extensive GStreamer détgiggstem to debug pipeline problems.
Elements will write output to this system to log what theyd@ng. It's not used for error reporting, but it
is very useful for tracking what an element is doing exaetllgich can come in handy when debugging
application issues (such as failing seeks, out-of-syndanett.).

Most GStreamer-based applications accept the commaraitnen - - gst - debug=L1 ST and related
family members. The list consists of a comma-separatedflisategory/level pairs, which can set the
debugging level for a specific debugging category. For exeyn{st - debug=oggdenux: 5 would

turn on debugging for the Ogg demuxer element. You can uskaitls as well. A debugging level of O
will turn off all debugging, and a level of 5 will turn on all Bagging. Intermediate values only turn on
some debugging (based on message severity; 2, for exaniplenly display errors and warnings).
Here’s a list of all available options:

« --gst-debug-hel p will print available debug categories and exit.
« --gst-debug-| evel = eA will set the default debug level (which can range from 0 (ntpat) to
5 (everything)).

83

Chapter 21. Things to check when writing an application

. --gst-debug= UST takes a comma-separated list of category _name:leveltoasest specific levels
for the individual categories. Examplesr AUGRLUG 5, avi denux: 3

+ --gst-debug-no-cd or will disable color debugging.
+ --gst-debug-disabl e disables debugging alltogether.
* --gst-pl ug n-spew enables printout of errors while loading GStreamer plugins

21.3. Conversion plugins

GStreamer contains a bunch of conversion plugins that npgdications will find useful. Specifically,
those are videoscalers (videoscale), colorspace comségftmpegcolorspace), audio format convertors
and channel resamplers (audioconvert) and audio samplewat/ertors (audioscale). Those convertors
don’t do anything when not required, they will act in passtigh mode. They will activate when the
hardware doesn’t support a specific request, though. Alliegpns are recommended to use those
elements.

21.4. Utility applications provided with GStreamer

GStreamer comes with a default set of command-line uslitiet can help in application development.
We will discuss onlygst-launchandgst-inspecthere.

21.4.1. gst-launch

gst-launchis a simple script-like commandline application that carubed to test pipelines. For
example, the commargst-launch sinesrc ! alsasinkwill run a pipeline which generates a sine-wave
audio stream and plays it to your ALSA audio cagdt-launchalso allows the use of threads (using
curly brackets, so “{" and “}") and bins (using brackets, 8 &nd “)”). You can use dots to imply
padnames on elements, or even omit the padname to autoliyatalact a pad. Using all this, the
pipelinegst-launch filesrc location=file.ogg ! oggdemux name=d { d.theoradec ! ffmpegcolorspace

I xvimagesink } { d. ! vorbisdec ! alsasink }will play an Ogg file containing a Theora video-stream and
a Vorbis audio-stream. You can also use autopluggers sudecaalebin on the commandline. See the
manual page ofst-launchfor more information.

21.4.2. gst-inspect

gst-inspectcan be used to inspect all properties, signals, dynamiapetexs and the object hierarchy of
an element. This acn be very useful to see witi@hect properties or which signals (and using what
arguments) an element supports. Rystrinspect fakesrdo get an idea of what it does. See the manual
page ofgst-inspectfor more information.

84

Chapter 22. Integration

GStreamer tries to integrate closely with operating systéuch as Linux and UNIX-like operating
systems, OS X or Windows) and desktop environments (SUCHNEBNEE or KDE). In this chapter, we’ll
mention some specific techniques to integrate your apicatith your operating system or desktop
environment of choice.

22.1. Linux and UNIX-like operating systems

GStreamer provides a basic set of elements that are useéul imkegrating with Linux or a UNIX-like
operating system.

- For audio input and output, GStreamer provides input anpudwlements for several audio
subsystems. Amongst others, GStreamer includes elenmms SA (alsasrc, alsamixer, alsasink),
OSS (osssrc, ossmixer, osssink) and Sun audio (sunaudasi@udiomixer, sunaudiosink).

« Forvideo input, GStreamer contains source elements fazdAdnux (v4lsrc, v4imjpegsrc,
vdlelement and v4imjpegisnk) and Video4linux2 (v412srl2element).

- For video output, GStreamer provides elements for outpMttandows (ximagesink), Xv-windows
(xvimagesink; for hardware-accelerated video), direatrfebuffer (dfbimagesink) and openGL image
contexts (glsink).

22.2. GNOME desktop

GStreamer has been the media backend of the GNOME (httpa#/arvome.org/) desktop since
GNOME-2.2 onwards. Nowadays, a whole bunch of GNOME apfitina make use of GStreamer for
media-processing, including (but not limited to) Rhythmiflottp://www.rhythmbox.org/), Totem
(http://www.hadess.net/totem.php3) and Sound Juicer
(http://www.burtonini.com/blog/computers/sound-giix

Most of these GNOME applications make use of some specifimtques to integrate as closely as
possible with the GNOME desktop:

+ GNOME applications calinone programinit () to parse command-line options and initialize
the necessary gnome modules. GStreamer applications wourddaally callgst_init () to do the
same for GStreamer. This would mean that only one of the twigease command-line options. To
work around this issue, GStreamer can provigepeQtion array which can be passed to
ghone_programinit ()

ncl ude <gnone. h>
#include <gst/gst. >

gn
min (gnt arge

85

Chapter 22. Integration

ocher xargv[])
{
struct popt@otion options[] = {
{NLL, '\O, RPFTLAGINDUETAHE NI, 0 "GEreaner ", NULLE,
FOPT_TAELEEND
b
[+ int GBreaner and GNDE using the (Breaner popt tables */
options[0].arg = (void *) gst_init_get popt_table ();
gnone_programinit ("ny-application’, "0.0.1", L B3NM Bl MDUE arge, argy,
GOME PARMPRDPT_TAHE ot ons,
NLLL);
[-]
}

« GNOME stores the default video and audio sources and sinkEionf. GStreamer provides a small
utility library that can be used to get the elements from #gistry using functions such as
ost_goonf_get _default_video sink () . See the header filest/ gconf/ gconf . h) for
details. All GNOME applications are recommended to usedhasiables.

- GStreamer provides data input/output elements for usetvélfESNOME-VFS system. These
elements are called “gnomevfssrc” and “gnomevfssink”.

22.3. KDE desktop

GStreamer has been proposed for inclusion in KDE-4.0. @tlyreGStreamer is included as an optional
component, and it's used by several KDE applications, otialg AmaroK (http://amarok.kde.org/) and
JuK (http://developer.kde.org/~wheeler/juk.html). Ackand for KMPlayer
(http://www.xs4all.nl/~jjvrieze/kmplayer.html) is ceemtly under development.

Although not yet as complete as the GNOME integration Hitste are already some KDE integration

specifics available. This list will probably grow as GStrearstarts to be used in KDE-4.0:

- AmaroK contains a kiosrc element, which is a source elentattihtegrates with the KDE VFS
subsystem KIO.

22.4. OS X

GStreamer provides native video and audio output element3$ X. It builds using the standard
development tools for OS X.

86

Chapter 22. Integration

22.5. Windows

GStreamer builds using Microsoft Visual C .NET 2003 and g€dygwin.

87

Chapter 23. Licensing advisory

23.1. How to license the applications you build with
GStreamer

The licensing of GStreamer is no different from a lot of otlilgraries out there like GTK+ or glibc: we
use the LGPL. What complicates things with regards to G8tegas its plugin-based design and the
heavily patented and proprietary nature of many multimedidecs. While patents on software are
currently only allowed in a small minority of world countséthe US and Australia being the most
important of those), the problem is that due to the centi@tgkhe US hold in the world economy and
the computing industry, software patents are hard to igndnerever you are. Due to this situation, many
companies, including major GNU/Linux distributions, getgped in a situation where they either get
bad reviews due to lacking out-of-the-box media playbagabdities (and attempts to educate the
reviewers have met with little success so far), or go agdimet own - and the free software movement's
- wish to avoid proprietary software. Due to competitivegsuere, most choose to add some support.
Doing that through pure free software solutions would h&eart risk heavy litigation and punishment
from patent owners. So when the decision is made to includpa@tifor patented codecs, it leaves them
the choice of either using special proprietary applicajan try to integrate the support for these codecs
through proprietary plugins into the multimedia infrastiure provided by GStreamer. Faced with one of
these two evils the GStreamer community of course prefes¢icend option.

The problem which arises is that most free software and operce applications developed use the GPL
as their license. While this is generally a good thing, ites a dilemma for people who want to put
together a distribution. The dilemma they face is that if/tmelude proprietary plugins in GStreamer to
support patented formats in a way that is legal for them, tteesisk running afoul of the GPL license of
the applications. We have gotten some conflicting repoots flawyers on whether this is actually a
problem, but the official stance of the FSF is that it is a peahlWe view the FSF as an authority on this
matter, so we are inclined to follow their interpretatiortioé GPL license.

So what does this mean for you as an application developelt?itveeans you have to make an active
decision on whether you want your application to be usedttmyeavith proprietary plugins or not. What
you decide here will also influence the chances of commaed@géiibutions and Unix vendors shipping
your application. The GStreamer community suggest younies/our software using a license that will
allow proprietary plugins to be bundled with GStreamer aadnapplications, in order to make sure that
as many vendors as possible go with GStreamer instead dféessolutions. This in turn we hope and
think will let GStreamer be a vehicle for wider use of freerfats like the Xiph.org formats.

If you do decide that you want to allow for non-free plugindtused with your application you have a
variety of choices. One of the simplest is using licenses li&PL, MPL or BSD for your application
instead of the GPL. Or you can add a exceptions clause to yBurli@ense stating that you except
GStreamer plugins from the obligations of the GPL.

88

Chapter 23. Licensing advisory

A good example of such a GPL exception clause would be, uemituine music player project as an
example: The Muine project hereby grants permission for@®i.-compatible GStreamer plugins to be
used and distributed together with GStreamer and Muines péimission goes above and beyond the
permissions granted by the GPL license Muine is covered by.

Our suggestion among these choices is to use the LGPL licas$eis what resembles the GPL most
and it makes it a good licensing fit with the major GNU/Linwskiop projects like GNOME and KDE.

It also allows you to share code more openly with projectshiaae compatible licenses. Obviously, pure
GPL code without the above-mentioned clause is not usalyleinapplication as such. By choosing the
LGPL, there is no need for an exception clause and thus cadbecahared more freely.

| have above outlined the practical reasons for why the G&tsx community suggest you allow
non-free plugins to be used with your applications. We feat tn the multimedia arena, the free
software community is still not strong enough to set the dgeand that blocking non-free plugins to be
used in our infrastructure hurts us more than it hurts themadwners and their ilk.

This view is not shared by everyone. The Free Software Fdiordarges you to use an unmodified GPL
for your applications, so as to push back against the teiopttd use non-free plug-ins. They say that
since not everyone else has the strength to reject them sedaey are unethical, they ask your help to
give them a legal reason to do so.

This advisory is part of a bigger advisory with a FAQ which yean find on the GStreamer website
(http://gstreamer.freedesktop.org/documentatioefiging.html)

89

Chapter 24. Windows support

24.1. Building GStreamer under Win32

There are different makefiles that can be used to build GBteeavith the usual Microsoft compiling
tools.

The Makefile is meant to be used with the GNU make program amft¢le version of the Microsoft
compiler (http://msdn.microsoft.com/visualc/vctoaB#003/). You also have to modify your system
environment variables to use it from the command-line. Yalualso need a working Platform SDK for
Windows that is available for free from Microsoft.

The projects/makefiles will generate automatically someaofiles needed to compile GStreamer. That
requires that you have installed on your system some GNU$ tadl that they are available in your
system PATH.

The GStreamer project depends on other libraries, namely :
. GLib

* popt

+ libxml2

- libintl

« libiconv

There is now an existing package that has all these depeieddnilt with MSVC7.1. It exists either as
precompiled librairies and headers in both Release and @elude, or as the source package to build it
yourself. You can find it on http://mukoli.free.fr/gstreandeps/.

Notes: GNU tools needed that you can find on http://gnuwin32.sourceforge.net/

« GNU flex (tested with 2.5.4)
« GNU bison (tested with 1.35)

and http://www.mingw.org/

+ GNU make (tested with 3.80)

the generated files from the -auto makefiles will be available soon separately on the net for
convenience (people who don’t want to install GNU tools).

90

Chapter 24. Windows support

24.2. Installation on the system

By default, GSTreamer needs a registry. You have to genenaséeng "gst-register.exe". It will create the
file in c:\gstreamer\registry.xml that will hold all the glins you can use.

You should install the GSTreamer core in c:\gstreamer\bthtae plugins in c:\gstreamer\plugins. Both
directories should be added to your system PATH. The libd@gendencies should be installed in c:\usr

For example, my current setup is :
» c:\gstreangr\registry. xnh

» C:\gstreaner\bin\gst-inspect. exe

e c:\gstreaner\bi n\gst- Il aunch. exe

o c:\gstreaner\hin\gst-register.exe
« c:\gstreaner\bin\gsthytestreamd |
e c:\gstreaner\bin\gstel enents.d |

« c:\gstreaner\bin\gstoptinal schedu er.d |
o c:\gstreaner\hin\gstspider.d|

e c:\gstreaner\bin\libgtreaner-0.8.d |
e c:\gstreaner\pl ugi ns\gst-libs.dl

« c:\gstreaner\pl ugi ns\gst nat roska d |
e c\usr\binicov.dl

e c\usr\binintl.dl

« c\usr\binlibgib200dl

o c:\usr\bin\libgnodu e-2.0-0.d |

« c\usr\bin\libgoyect-20-0.d |1

o c\usr\binlibgthread-2.0-0.d |

e c\usr\binlibxn2 dl

e c\usr\binpopt.dl

91

Chapter 25. Quotes from the Developers

As well as being a cool piece of software, GStreamer is aylipebject, with developers from around the
globe very actively contributing. We often hang out on thetégamer IRC channel on irc.freenode.net:
the following are a selection of amusinguotes from our conversations.

14 Oct 2004

* zaheermwonders how he can break gstreamer today :)

ensoniczaheerm, spider is always a good starting point

14 Jun 2004

teuf: ok, things work much better when | don’t write incrediblyiptd and buggy code

thaytan | find that too

23 Nov 2003

Uraeus ah yes, the sleeping part, my mind is not multitasking sosd stél thinking about exercise
dolphy Uraeus: your mind is multitasking

dolphy Uraeus: you just miss low latency patches

14 Sep 2002

--- wingo-partyis now known asvingo

* wingoholds head

16 Feb 2001

wtay: | shipped a few commerical products to >40000 people now I8tt&amer is way more
exciting...

16 Feb 2001

* tool-manis a gstreamer groupie

14 Jan 2001

Omega:did you run Idconfig? maybe it talks to init?

92

Chapter 25. Quotes from the Developers

wtay: not sure, don'’t think so... | did run gstreamer-registeuipio:-)

Omega:ah, that did it then ;-)

wtay: right

Omegaprobably not, but in case GStreamer starts turning into ansf®eone please let me know?

9 Jan 2001

wtay: me tar, you rpm?

wtay: hehe, forgot "zan"

Omega:?

wtay: me tar'zan", you ...

7 Jan 2001
Omegathat means probably building an agreggating, cache-mamsggeue to shove N buffers
across all at once, forcing cache transfer.
wtay: never done that before...

Omega:nope, but it's easy to do in gstreamer <g>

wtay: sure, | need to rewrite cp with gstreamer too, someday :-)

7 Jan 2001

wtay: GStreamer; always at least one developer is awake...

5/6 Jan 2001

wtay: we need to cut down the time to create an mp3 player down tasisco

richardb: :)

Omega:l’m wanting to something more interesting soon, | did thealdian mp3 player in 15sec”
back in October '99.

93

Chapter 25. Quotes from the Developers

wtay: by the time Omega gets his hands on the editor, you'll see ptadenaudio mixer in the
editor :-)

richardb: Well, it clearly has the potential...

OmegaWorking oniit... ;-)

28 Dec 2000

MPAA: We will sue you now, you have violated our IP rights!

wtay: hehehe

MPAA:How dare you laugh at us? We have lawyers! We have CongressiieehaveLARS
wtay: I'm so sorry your honor

MPAA: Hrumph.

* wtaybows before thy

4 Jun 2001

taaz:you witchdoctors and your voodoo mpeg2 black magic...
omega_um. | count three, no four different cults there <g>
ajmitch: hehe

omega_witchdoctors, voodoo, black magic,

omega_and mpeg

Notes

1. No guarantee of sense of humour compatibility is given.

94

	GStreamer Application Development Manual (0.8.9)
	Table of Contents
	List of Figures
	I. Overview
	Chapter 1. Introduction
	1.1. What is GStreamer?
	1.2. Structure of this Manual

	Chapter 2. Motivation & Goals
	2.1. Current problems
	2.1.1. Multitude of duplicate code
	2.1.2. 'One goal' media players/libraries
	2.1.3. Non unified plugin mechanisms
	2.1.4. Poor user experience
	2.1.5. Provision for network transparency
	2.1.6. Catch up with the Windows world

	2.2. The design goals
	2.2.1. Clean and powerful
	2.2.2. Object oriented
	2.2.3. Extensible
	2.2.4. Allow binary only plugins
	2.2.5. High performance
	2.2.6. Clean core/plugins separation
	2.2.7. Provide a framework for codec experimentation

	Chapter 3. Foundations
	3.1. Elements
	3.2. Bins and pipelines
	3.3. Pads

	II. Basic Concepts
	Chapter 4. Initializing GStreamer
	4.1. Simple initialization
	4.2. The popt interface

	Chapter 5. Elements
	5.1. What are elements?
	5.1.1. Source elements
	5.1.2. Filters, convertors, demuxers, muxers and codecs
	5.1.3. Sink elements

	5.2. Creating a GstElement
	5.3. Using an element as a GObject
	5.4. More about element factories
	5.4.1. Getting information about an element using a factory
	5.4.2. Finding out what pads an element can contain

	5.5. Linking elements
	5.6. Element States

	Chapter 6. Bins
	6.1. What are bins
	6.2. Creating a bin
	6.3. Custom bins

	Chapter 7. Pads and capabilities
	7.1. Pads
	7.1.1. Dynamic (or sometimes) pads
	7.1.2. Request pads

	7.2. Capabilities of a pad
	7.2.1. Dissecting capabilities
	7.2.2. Properties and values

	7.3. What capabilities are used for
	7.3.1. Using capabilities for metadata
	7.3.2. Creating capabilities for filtering

	7.4. Ghost pads

	Chapter 8. Buffers and Events
	8.1. Buffers
	8.2. Events

	Chapter 9. Your first application
	9.1. Hello world
	9.2. Compiling and Running helloworld.c
	9.3. Conclusion

	III. Advanced GStreamer concepts
	Chapter 10. Position tracking and seeking
	10.1. Querying: getting the position or length of a stream
	10.2. Events: seeking (and more)

	Chapter 11. Metadata
	11.1. Stream information
	11.2. Tag reading
	11.3. Tag writing

	Chapter 12. Interfaces
	12.1. The Mixer interface
	12.2. The Tuner interface
	12.3. The Color Balance interface
	12.4. The Property Probe interface
	12.5. The X Overlay interface

	Chapter 13. Clocks in GStreamer
	Chapter 14. Dynamic Parameters
	14.1. Getting Started
	14.2. Creating and Attaching Dynamic Parameters
	14.3. Changing Dynamic Parameter Values
	14.4. Different Types of Dynamic Parameter
	14.4.1. GstDParam the base dparam type
	14.4.2. GstDParamSmooth smoothing realtime dparam
	14.4.3. Timelined dparams

	Chapter 15. Threads
	15.1. When would you want to use a thread?
	15.2. Constraints placed on the pipeline by the GstThread
	15.3. A threaded example application

	Chapter 16. Scheduling
	16.1. Managing elements and data throughput

	Chapter 17. Autoplugging
	17.1. MIMEtypes as a way to identity streams
	17.2. Media stream type detection
	17.3. Plugging together dynamic pipelines

	Chapter 18. Pipeline manipulation
	18.1. Data probes
	18.2. Manually adding or removing data from/to a pipeline
	18.2.1. Inserting or grabbing data
	18.2.2. Forcing a format
	18.2.3. Example application

	18.3. Embedding static elements in your application

	IV. Higherlevel interfaces for GStreamer applications
	Chapter 19. Components
	19.1. Playbin
	19.2. Decodebin
	19.3. Spider
	19.4. GstPlay
	19.5. GstEditor

	Chapter 20. XML in GStreamer
	20.1. Turning GstElements into XML
	20.2. Loading a GstElement from an XML file
	20.3. Adding custom XML tags into the core XML data

	V. Appendices
	Chapter 21. Things to check when writing an application
	21.1. Good programming habits
	21.2. Debugging
	21.3. Conversion plugins
	21.4. Utility applications provided with GStreamer
	21.4.1. gstlaunch
	21.4.2. gstinspect

	Chapter 22. Integration
	22.1. Linux and UNIXlike operating systems
	22.2. GNOME desktop
	22.3. KDE desktop
	22.4. OS X
	22.5. Windows

	Chapter 23. Licensing advisory
	23.1. How to license the applications you build with GStreamer

	Chapter 24. Windows support
	24.1. Building GStreamer under Win32
	24.2. Installation on the system

	Chapter 25. Quotes from the Developers

