
GNU Classpath Tools Guide

The GNU Classpath Team

Copyright c© 2006 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this document provided
the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this document under
the conditions for verbatim copying, provided that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

i

Table of Contents

1 Applet Tools . 1
1.1 The appletviewer Tool . 1
1.2 The gcjwebplugin Tool . 2

2 Security Tools . 3
2.1 The jarsigner Tool . 3

2.1.1 Common options . 3
2.1.2 Signing options . 4
2.1.3 Verification options . 4

2.2 The keytool Tool . 5
2.2.1 Getting help . 6
2.2.2 Common options . 7
2.2.3 X.500 Distinguished Names . 8
2.2.4 Add/Update commands . 8

2.2.4.1 The ‘-genkey’ command . 8
2.2.4.2 The ‘-import’ command . 9
2.2.4.3 The ‘-selfcert’ command . 10
2.2.4.4 The ‘-cacert’ command . 11
2.2.4.5 The ‘-identitydb’ command . 12

2.2.5 Export commands . 12
2.2.5.1 The ‘-certreq’ command . 12
2.2.5.2 The ‘-export’ command . 13

2.2.6 Display commands . 14
2.2.6.1 The ‘-list’ command . 14
2.2.6.2 The ‘-printcert’ command . 14

2.2.7 Management commands . 15
2.2.7.1 The ‘-keyclone’ command . 15
2.2.7.2 The ‘-storepasswd’ command . 15
2.2.7.3 The ‘-keypasswd’ command . 16
2.2.7.4 The ‘-delete’ command . 16

3 Other Tools . 17
3.1 The jar Tool . 17
3.2 The javah Tool . 18
3.3 The gcjh Tool . 18
3.4 The native2ascii Tool . 19
3.5 The orbd object request broker daemon . 19
3.6 The serialver version command . 20
3.7 The rmid RMI activation system daemon . 20
3.8 The rmiregistry Tool . 21
3.9 The tnameserv Tool . 21

ii

4 Generating HTML Documentation 22
4.1 Invoking the Standard Doclet . 22
4.2 Option Summary by Type . 22
4.3 Selecting which Source Files to Process . 23
4.4 Specifying the Format of Input Files . 24
4.5 Interlinking with other Documentation Sets 24
4.6 Selecting which Information to Generate . 25
4.7 Custom Documentation Tags . 28
4.8 Running Other Doclets . 29
4.9 Adding Information to the Output . 29
4.10 Controlling the Output. 31
4.11 Verbosity Options . 32
4.12 Virtual Machine Options . 32
4.13 Invoking a Custom Doclet . 33
4.14 Gjdoc Option Summary . 33

5 Generating Other Output Types 34
5.1 Using the Built-in Doclets . 34

5.1.1 TexiDoclet: Generating Info, PDF, and other formats 34
5.1.2 XmlDoclet: Generating XML Documentation 34
5.1.3 IspellDoclet: Spell-checking Source Code 34
5.1.4 DebugDoclet: Inspecting the Doclet API 34

5.2 Using Third-Party Doclets . 34
5.2.1 DocBook Doclet . 34
5.2.2 PDFDoclet . 34
5.2.3 JUnitDoclet . 34

6 Advanced Concepts . 35
6.1 Adding Custom Tags to the Documentation 35
6.2 Writing Doclets . 35

6.2.1 Implementing the Doclet Invocation Interface 35
6.2.2 Deriving Your Doclet from AbstractDoclet 35
6.2.3 Preparing for the GNU Doclet Service Provider Interface . . 36

6.3 Well-formed Documentation Fragments . 37
6.4 How Gjdoc Determines where the First Sentence Ends 37
6.5 Adding Images and Other Resources . 38

7 I18N Issues . 39
7.1 Language-specific resources . 39
7.2 Message formats . 40

Chapter 1: Applet Tools 1

1 Applet Tools

Two Applet Tools are available with GNU Classpath: appletviewer and gcjwebplugin.

To avoid conflicts with other implementations, the appletviewer executable is called
“gappletviewer”.

If while using these tools you think you found a bug, then please report it at
classpath-bugs.

1.1 The appletviewer Tool

SYNOPSIS

appletviewer [OPTION]. . . URL. . .

appletviewer [OPTION]. . . ‘-code’ CODE

appletviewer [OPTION]. . . ‘-plugin’ INPUT,OUTPUT

DESCRIPTION The appletviewer tool loads and runs an applet.

Use the first form to test applets specified by tag. The URL should resolve to an HTML
document from which the appletviewer will extract applet tags. The APPLET, EMBED
and OBJECT tags are supported. If a given document contains multiple applet tags, all
the applets will be loaded, with each applet appearing in its own window. Likewise, when
multiple URLs are specified, each applet tag instance is given its own window. If a given
document contains no recognized tags the appletviewer does nothing.

appletviewer http://www.gnu.org/software/classpath/

Use the second form to test an applet in development. This form allows applet tag
attributes to be supplied on the command line. Only one applet may be specified using the
‘-code’ option. The ‘-code’ option overrides the URL form – any URLs specified will be
ignored.

appletviewer -code Test.class -param datafile,data.txt

gcjwebplugin uses the third form to communicate with the appletviewer through
named pipes.

URL OPTIONS

-debug This option is not yet implemented but is provided for compatibility.

-encoding CHARSET

Use this option to specify an alternate character encoding for the specified
HTML page.

APPLET TAG OPTIONS

-code CODE

Use the ‘-code’ option to specify the value of the applet tag CODE attribute.

-codebase CODEBASE

Use the ‘-codebase’ option to specify the value of the applet tag CODEBASE
attribute.

http://www.gnu.org/software/classpath/bugs.html

Chapter 1: Applet Tools 2

-archive ARCHIVE

Use the ‘-archive’ option to specify the value of the applet tag ARCHIVE
attribute.

-width WIDTH

Use the ‘-width’ option to specify the value of the applet tagWIDTH attribute.

-height HEIGHT

Use the ‘-height’ option to specify the value of the applet tag HEIGHT attri-
bute.

-param NAME,VALUE

Use the ‘-param’ option to specify values for the NAME and VALUE attributes
of an applet PARAM tag.

PLUGIN OPTION

-plugin INPUT,OUTPUT

gcjwebplugin uses the ‘-plugin’ option to specify the named pipe the
appletviewer should use for receiving commands (INPUT) and the one it
should use for sending commands to gcjwebplugin (OUTPUT).

DEBUGGING OPTION

-verbose Use the ‘-verbose’ option to have the appletviewer print debugging messages.

STANDARD OPTIONS

-help Use the ‘-help’ option to have the appletviewer print a usage message, then
exit.

-version Use the ‘-version’ option to have the appletviewer print its version, then
exit.

-JOPTION Use the ‘-J’ option to pass OPTION to the virtual machine that will run the
appletviewer. Unlike other options, there must not be a space between the
‘-J’ and OPTION .

1.2 The gcjwebplugin Tool

gcjwebplugin is a plugin that adds applet support to web browsers. Currently
gcjwebplugin only supports Mozilla-based browsers (e.g., Firefox, Galeon, Mozilla).

Chapter 2: Security Tools 3

2 Security Tools

Two Security Tools are available with GNU Classpath: jarsigner and keytool.

To avoid conflicts with other implementations, the jarsigner executable is called
gjarsigner and the keytool executable is called gkeytool.

If while using these tools you think you found a bug, then please report it at
classpath-bugs.

2.1 The jarsigner Tool

The jarsigner tool is invoked from the command line, in one of two forms, as follows:

jarsigner [OPTION]... FILE ALIAS

jarsigner ‘-verify’ [OPTION]... FILE

When the first form is used, the tool signs the designated JAR file. The second form,
on the other hand, is used to verify a previously signed JAR file.

FILE is the .JAR file to process; i.e., to sign if the first syntax form is used, or to verify
if the second syntax form is used instead.

ALIAS must be a known Alias of a Key Entry in the designated Key Store. The private
key material associated with this Alias is then used for signing the designated .JAR file.

2.1.1 Common options

The following options may be used when the tool is used for either signing, or verifying, a
.JAR file.

-verbose Use this option to force the tool to generate more verbose messages, during its
processing.

-internalsf

When present, the tool will include –which otherwise it does not– the .SF file
in the .DSA generated file.

-sectionsonly

When present, the tool will include in the .SF generated file –which otherwise
it does not– a header containing a hash of the whole manifest file. When that
header is included, the tool can quickly check, during verification, if the hash
(in the header) matches or not the manifest file.

-provider PROVIDER_CLASS_NAME

A fully qualified class name of a Security Provider to add to the current list
of Security Providers already installed in the JVM in-use. If a provider class
is specified with this option, and was successfully added to the runtime –i.e. it
was not already installed– then the tool will attempt to remove this Security
Provider before exiting.

-help Prints a help text similar to this one.

http://www.gnu.org/software/classpath/bugs.html

Chapter 2: Security Tools 4

2.1.2 Signing options

The following options may be specified when using the tool for signing purposes.

-keystore URL

Use this option to specify the location of the key store to use. The default value
is a file URL referencing the file named ‘.keystore’ located in the path returned
by the call to java.lang.System#getProperty(String) using user.home as
argument.

If a URL was specified, but was found to be malformed –e.g. missing proto-
col element– the tool will attempt to use the URL value as a file-name (with
absolute or relative path-name) of a key store –as if the protocol was file:.

-storetype STORE_TYPE

Use this option to specify the type of the key store to use. The default va-
lue, if this option is omitted, is that of the property keystore.type in the
security properties file, which is obtained by invoking the static method call
getDefaultType() in java.security.KeyStore.

-storepass PASSWORD

Use this option to specify the password which will be used to unlock the key
store. If this option is missing, the User will be prompted to provide a password.

-keypass PASSWORD

Use this option to specify the password which the tool will use to unlock the
Key Entry associated with the designated Alias.

If this option is omitted, the tool will first attempt to unlock the Key Entry
using the same password protecting the key store. If this fails, you will then be
prompted to provide a password.

-sigfile NAME

Use this option to designate a literal that will be used to construct file names
for both the .SF and .DSA signature files. These files will be generated, by the
tool, and placed in the ‘META-INF’ directory of the signed JAR. Permissible
characters for NAME must be in the range "a-zA-Z0-9 -". All characters will
be converted to upper-case ones.

If this option is missing, the first eight characters of the ALIAS argument will
be used. When this is the case, any character in ALIAS that is outside the
permissible range of characters will be replaced by an underscore.

-signedjar FILE

Use this option to specify the file name of the signed JAR. If this option is
omitted, then the signed JAR will be named the same as FILE; i.e., the input
JAR file will be replaced with the signed copy.

2.1.3 Verification options

The following options may be specified when using the tool for verification purposes.

-verify Use this option to indicate that the tool is to be used for verification purposes.

Chapter 2: Security Tools 5

-certs This option is used in conjunction with the ‘-verbose’ option. When present,
along with the ‘-verbose’ option, the tool will print more detailed information
about the certificates of the signer(s) being processed.

2.2 The keytool Tool

Cryptographic credentials, in a Java environment, are usually stored in a Key Store. The
Java SDK specifies a Key Store as a persistent container of two types of objects: Key
Entries and Trusted Certificates. The security tool keytool is a Java-based application for
managing those types of objects.

A Key Entry represents the private key part of a key-pair used in Public-Key Crypto-
graphy, and a signed X.509 certificate which authenticates the public key part for a known
entity; i.e. the owner of the key-pair. The X.509 certificate itself contains the public key
part of the key-pair.

A Trusted Certificate is a signed X.509 certificate issued by a trusted entity. The Trust
in this context is relative to the User of the keytool. In other words, the existence of a
Trusted Certificate in the Key Store processed by a keytool command implies that the
User trusts the Issuer of that Trusted Certificate to also sign, and hence authenticates,
other Subjects the tool may process.

Trusted Certificates are important because they allow the tool to mechanically construct
Chains of Trust starting from one of the Trusted Certificates in a Key Store and ending with
a certificate whose Issuer is potentially unknown. A valid chain is an ordered list, starting
with a Trusted Certificate (also called the anchor), ending with the target certificate, and
satisfying the condition that the Subject of certificate #i is the Issuer of certificate #i + 1.

The keytool is invoked from the command line as follows:

keytool [COMMAND] ...

Multiple COMMANDs may be specified at once, each complete with its own options.
keytool will parse all the arguments, before processing, and executing, each COMMAND. If
an exception occurs while executing one COMMAND keytool will abort. Note however
that because the implementation of the tool uses code to parse command line options that
also supports GNU-style options, you have to separate each command group with a double-
hyphen; e.g

keytool -list -- -printcert -alias mykey

Here is a summary of the commands supported by the tool:

1. Add/Update commands

-genkey [OPTION]...

Generate a new Key Entry, eventually creating a new key store.

-import [OPTION]...

Add, to a key store, Key Entries (private keys and certificate chains aut-
henticating the public keys) and Trusted Certificates (3rd party certificates
which can be used as Trust Anchors when building chains-of-trust).

-selfcert [OPTION]...

Generate a new self-signed Trusted Certificate.

Chapter 2: Security Tools 6

-cacert [OPTION]...

Import a CA Trusted Certificate.

-identitydb [OPTION]...

NOT IMPLEMENTED YET.
Import a JDK 1.1 style Identity Database.

2. Export commands

-certreq [OPTION]...

Issue a Certificate Signing Request (CSR) which can be then sent to a
Certification Authority (CA) to issue a certificate signed (by the CA) and
authenticating the Subject of the request.

-export [OPTION]...

Export a certificate from a key store.

3. Display commands

-list [OPTION]...

Print one or all certificates in a key store to STDOUT.

-printcert [OPTION]...

Print a human-readable form of a certificate, in a designated file, to STDOUT.

4. Management commands

-keyclone [OPTION]...

Clone a Key Entry in a key store.

-storepasswd [OPTION]...

Change the password protecting a key store.

-keypasswd [OPTION]...

Change the password protecting a Key Entry in a key store.

-delete [OPTION]...

Delete a Key Entry or a Trusted Certificate from a key store.

2.2.1 Getting help

To get a general help text about the tool, use the -help option; e.g.

keytool -help

To get more specific help text about one of the tool’s command use the -help option
for that command; e.g.

keytool -genkey -help

In both instances, the tool will print a help text and then will exit the running JVM.

It is worth noting here that the help messages printed by the tool are I18N-ready. This
means that if/when the contents of the tool’s Message Bundle properties file are available
in languages other than English, you may see those messages in that language.

Chapter 2: Security Tools 7

2.2.2 Common options

The following ‘OPTION’s are used in more than one COMMAND. They are described here to
reduce redundancy.

-alias Alias

Every entry, be it a Key Entry or a Trusted Certificate, in a key store is uniquely
identified by a user-defined Alias string. Use this option to specify the Alias
to use when referring to an entry in the key store. Unless specified otherwise,
a default value of mykey shall be used when this option is omitted from the
command line.

-keyalg ALGORITHM

Use this option to specify the canonical name of the key-pair generation al-
gorithm. The default value for this option is DSS (a synonym for the Digital
Signature Algorithm also known as DSA).

-keysize SIZE

Use this option to specify the number of bits of the shared modulus (for both
the public and private keys) to use when generating new keys. A default value
of 1024 will be used if this option is omitted from the command line.

-validity DAY_COUNT

Use this option to specify the number of days a newly generated certificate will
be valid for. The default value is 90 (days) if this option is omitted from the
command line.

-storetype STORE_TYPE

Use this option to specify the type of the key store to use. The default va-
lue, if this option is omitted, is that of the property keystore.type in the
security properties file, which is obtained by invoking the static method call
getDefaultType() in java.security.KeyStore.

-storepass PASSWORD

Use this option to specify the password protecting the key store. If this option
is omitted from the command line, you will be prompted to provide a password.

-keystore URL

Use this option to specify the location of the key store to use. The default value
is a file URL referencing the file named ‘.keystore’ located in the path returned
by the call to java.lang.System#getProperty(String) using user.home as
argument.

If a URL was specified, but was found to be malformed –e.g. missing proto-
col element– the tool will attempt to use the URL value as a file-name (with
absolute or relative path-name) of a key store –as if the protocol was file:.

-provider PROVIDER_CLASS_NAME

A fully qualified class name of a Security Provider to add to the current list
of Security Providers already installed in the JVM in-use. If a provider class
is specified with this option, and was successfully added to the runtime –i.e. it
was not already installed– then the tool will attempt to removed this Security
Provider before exiting.

Chapter 2: Security Tools 8

-file FILE

Use this option to designate a file to use with a command. When specified with
this option, the value is expected to be the fully qualified path of a file accessible
by the File System. Depending on the command, the file may be used as input
or as output. When this option is omitted from the command line, STDIN will
be used instead, as the source of input, and STDOUT will be used instead as the
output destination.

-v Unless specified otherwise, use this option to enable more verbose output.

2.2.3 X.500 Distinguished Names

A Distinguished Name (or DN) MUST be supplied with some of the COMMANDs using a
-dname option. The syntax of a valid value for this option MUST follow RFC-2253 specifi-
cations. Namely the following components (with their accepted meaning) will be recognized.
Note that the component name is case-insensitive:

CN The Common Name; e.g. host.domain.com

OU The Organizational Unit; e.g. IT Department

O The Organization Name; e.g. The Sample Company

L The Locality Name; e.g. Sydney

ST The State Name; e.g. New South Wales

C The 2-letter Country identifier; e.g. AU

When specified with a -dname option, each pair of component/value will be separated
from the other with a comma. Each component and value pair MUST be separated by an
equal sign. For example, the following is a valid DN value:

CN=host.domain.com, O=The Sample Company, L=Sydney, ST=NSW, C=AU

If the Distinguished Name is required, and no valid default value can be used, the tool will
prompt you to enter the information through the console.

2.2.4 Add/Update commands

2.2.4.1 The ‘-genkey’ command

Use this command to generate a new key-pair (both private and public keys), and save these
credentials in the key store as a Key Entry, associated with the designated (if was specified
with the ‘-alias’ option) or default (if the ‘-alias’ option is omitted) Alias.

The private key material will be protected with a user-defined password (see ‘-keypass’
option). The public key on the other hand will be part of a self-signed X.509 certificate,
which will form a 1-element chain and will be saved in the key store.

-alias ALIAS

For more details see [ALIAS], page 7.

-keyalg ALGORITHM

For more details see [ALGORITHM], page 7.

Chapter 2: Security Tools 9

-keysize KEY_SIZE

For more details see [KEY SIZE], page 7.

-sigalg ALGORITHM

The canonical name of the digital signature algorithm to use for signing certi-
ficates. If this option is omitted, a default value will be chosen based on the
type of the key-pair; i.e., the algorithm that ends up being used by the -keyalg
option. If the key-pair generation algorithm is DSA, the value for the signature
algorithm will be SHA1withDSA. If on the other hand the key-pair generation
algorithm is RSA, then the tool will use MD5withRSA as the signature algorithm.

-dname NAME

This a mandatory value for the command. If no value is specified –i.e. the
‘-dname’ option is omitted– the tool will prompt you to enter a Distinguis-
hed Name to use as both the Owner and Issuer of the generated self-signed
certificate.

For more details see [X.500 DISTINGUISHED NAME], page 8.

-keypass PASSWORD

Use this option to specify the password which the tool will use to protect the
newly created Key Entry.

If this option is omitted, you will be prompted to provide a password.

-validity DAY_COUNT

For more details see [DAY COUNT], page 7.

-storetype STORE_TYPE

For more details see [STORE TYPE], page 7.

-keystore URL

For more details see [URL], page 7.

-storepass PASSWORD

For more details see [PASSWORD], page 7.

-provider PROVIDER_CLASS_NAME

For more details see [PROVIDER CLASS NAME], page 7.

-v For more details see [verbose], page 8.

2.2.4.2 The ‘-import’ command

Use this command to read an X.509 certificate, or a PKCS#7 Certificate Reply from a
designated input source and incorporate the certificates into the key store.

If the Alias does not already exist in the key store, the tool treats the certificate read from
the input source as a new Trusted Certificate. It then attempts to discover a chain-of-trust,
starting from that certificate and ending at another Trusted Certificate, already stored in
the key store. If the ‘-trustcacerts’ option is present, an additional key store, of type JKS
named ‘cacerts’, and assumed to be present in ‘${JAVA_HOME}/lib/security’ will also
be consulted if found –${JAVA_HOME} refers to the location of an installed Java Runtime
Environment (JRE). If no chain-of-trust can be established, and unless the -noprompt

option has been specified, the certificate is printed to STDOUT and the user is prompted for
a confirmation.

Chapter 2: Security Tools 10

If Alias exists in the key store, the tool will treat the certificate(s) read from the input
source as a Certificate Reply, which can be a chain of certificates, that eventually would
replace the chain of certificates associated with the Key Entry of that Alias. The substitu-
tion of the certificates only occurs if a chain-of-trust can be established between the bottom
certificate of the chain read from the input file and the Trusted Certificates already pre-
sent in the key store. Again, if the ‘-trustcacerts’ option is specified, additional Trusted
Certificates in the same ‘cacerts’ key store will be considered. If no chain-of-trust can be
established, the operation will abort.

-alias ALIAS

For more details see [ALIAS], page 7.

-file FILE

For more details see [FILE], page 7.

-keypass PASSWORD

Use this option to specify the password which the tool will use to protect the
Key Entry associated with the designated Alias, when replacing this Alias’
chain of certificates with that found in the certificate reply.

If this option is omitted, and the chain-of-trust for the certificate reply has been
established, the tool will first attempt to unlock the Key Entry using the same
password protecting the key store. If this fails, you will then be prompted to
provide a password.

-noprompt

Use this option to prevent the tool from prompting the user.

-trustcacerts

Use this option to indicate to the tool that a key store, of type JKS, named
‘cacerts’, and usually located in ‘lib/security’ in an installed Java Runtime
Environment should be considered when trying to establish chain-of-trusts.

-storetype STORE_TYPE

For more details see [STORE TYPE], page 7.

-keystore URL

For more details see [URL], page 7.

-storepass PASSWORD

For more details see [PASSWORD], page 7.

-provider PROVIDER_CLASS_NAME

For more details see [PROVIDER CLASS NAME], page 7.

-v For more details see [verbose], page 8.

2.2.4.3 The ‘-selfcert’ command

Use this command to generate a self-signed X.509 version 1 certificate. The newly generated
certificate will form a chain of one element which will replace the previous chain associated
with the designated Alias (if ‘-alias’ option was specified), or the default Alias (if ‘-alias’
option was omitted).

Chapter 2: Security Tools 11

-alias ALIAS

For more details see [ALIAS], page 7.

-sigalg ALGORITHM

The canonical name of the digital signature algorithm to use for signing the
certificate. If this option is omitted, a default value will be chosen based on the
type of the private key associated with the designated Alias. If the private key
is a DSA one, the value for the signature algorithm will be SHA1withDSA. If on
the other hand the private key is an RSA one, then the tool will use MD5withRSA
as the signature algorithm.

-dname NAME

Use this option to specify the Distinguished Name of the newly generated self-
signed certificate. If this option is omitted, the existing Distinguished Name of
the base certificate in the chain associated with the designated Alias will be
used instead.

For more details see [X.500 DISTINGUISHED NAME], page 8.

-validity DAY_COUNT

For more details see [DAY COUNT], page 7.

-keypass PASSWORD

Use this option to specify the password which the tool will use to unlock the
Key Entry associated with the designated Alias.

If this option is omitted, the tool will first attempt to unlock the Key Entry
using the same password protecting the key store. If this fails, you will then be
prompted to provide a password.

-storetype STORE_TYPE

For more details see [STORE TYPE], page 7.

-keystore URL

For more details see [URL], page 7.

-storepass PASSWORD

For more details see [PASSWORD], page 7.

-provider PROVIDER_CLASS_NAME

For more details see [PROVIDER CLASS NAME], page 7.

-v For more details see [verbose], page 8.

2.2.4.4 The ‘-cacert’ command

Use this command to import, a CA certificate and add it to the key store as a Trusted
Certificate. The Alias for this new entry will be constructed from the FILE’s base-name
after replacing hyphens and dots with underscores.

This command is useful when used in a script that recursively visits a directory of CA
certificates to populate a cacerts.gkr Key Store of trusted certificates which can then be
used commands that specify the ‘-trustcacerts’ option.

-file FILE

For more details see [FILE], page 7.

Chapter 2: Security Tools 12

-storetype STORE_TYPE

For more details see [STORE TYPE], page 7.

-keystore URL

For more details see [URL], page 7.

-storepass PASSWORD

For more details see [PASSWORD], page 7.

-provider PROVIDER_CLASS_NAME

For more details see [PROVIDER CLASS NAME], page 7.

-v For more details see [verbose], page 8.

2.2.4.5 The ‘-identitydb’ command

NOT IMPLEMENTED YET.

Use this command to import a JDK 1.1 style Identity Database.

-file FILE

For more details see [FILE], page 7.

-storetype STORE_TYPE

For more details see [STORE TYPE], page 7.

-keystore URL

For more details see [URL], page 7.

-storepass PASSWORD

For more details see [PASSWORD], page 7.

-provider PROVIDER_CLASS_NAME

For more details see [PROVIDER CLASS NAME], page 7.

-v For more details see [verbose], page 8.

2.2.5 Export commands

2.2.5.1 The ‘-certreq’ command

Use this command to generate a PKCS#10 Certificate Signing Request (CSR) and write it
to a designated output destination. The contents of the destination should look something
like the following:

-----BEGIN NEW CERTIFICATE REQUEST-----

MI...QAwXzEUMBIGA1UEAwwLcnNuQGdudS5vcmcxGzAZBgNVBAoMElUg

Q2...A0GA1UEBwwGU3lkbmV5MQwwCgYDVQQIDANOU1cxCzAJBgNVBACC

...

FC...IVwNVOfQLRX+O5kAhQ/a4RTZme2L8PnpvgRwrf7Eg8D6w==

-----END NEW CERTIFICATE REQUEST-----

IMPORTANT: Some documentation (e.g. RSA examples) claims that the Attributes

field, in the CSR is OPTIONAL while RFC-2986 implies the opposite. This implementation
considers this field, by default, as OPTIONAL, unless the option ‘-attributes’ is specified
on the command line.

Chapter 2: Security Tools 13

-alias ALIAS

For more details see [ALIAS], page 7.

-sigalg ALGORITHM

The canonical name of the digital signature algorithm to use for signing the
certificate. If this option is omitted, a default value will be chosen based on the
type of the private key associated with the designated Alias. If the private key
is a DSA one, the value for the signature algorithm will be SHA1withDSA. If on
the other hand the private key is an RSA one, then the tool will use MD5withRSA
as the signature algorithm.

-file FILE

For more details see [FILE], page 7.

-keypass PASSWORD

Use this option to specify the password which the tool will use to unlock the
Key Entry associated with the designated Alias.

If this option is omitted, the tool will first attempt to unlock the Key Entry
using the same password protecting the key store. If this fails, you will then be
prompted to provide a password.

-storetype STORE_TYPE

For more details see [STORE TYPE], page 7.

-keystore URL

For more details see [URL], page 7.

-storepass PASSWORD

For more details see [PASSWORD], page 7.

-provider PROVIDER_CLASS_NAME

For more details see [PROVIDER CLASS NAME], page 7.

-v For more details see [verbose], page 8.

-attributes

Use this option to force the tool to encode a NULL DER value in the CSR as
the value of the Attributes field.

2.2.5.2 The ‘-export’ command

Use this command to export a certificate stored in a key store to a designated output
destination, either in binary format (if the ‘-v’ option is specified), or in RFC-1421 compliant
encoding (if the ‘-rfc’ option is specified instead).

-alias ALIAS

For more details see [ALIAS], page 7.

-file FILE

For more details see [FILE], page 7.

-storetype STORE_TYPE

For more details see [STORE TYPE], page 7.

Chapter 2: Security Tools 14

-keystore URL

For more details see [URL], page 7.

-storepass PASSWORD

For more details see [PASSWORD], page 7.

-provider PROVIDER_CLASS_NAME

For more details see [PROVIDER CLASS NAME], page 7.

-rfc Use RFC-1421 specifications when encoding the output.

-v Output the certificate in binary DER encoding. This is the default output
format of the command if neither ‘-rfc’ nor -v options were detected on the
command line. If both this option and the ‘-rfc’ option are detected on the
command line, the tool will opt for the RFC-1421 style encoding.

2.2.6 Display commands

2.2.6.1 The ‘-list’ command

Use this command to print one or all of a key store entries to STDOUT. Usually this command
will only print a fingerprint of the certificate, unless either the ‘-rfc’ or the ‘-v’ option is
specified.

-alias ALIAS

If this option is omitted, the tool will print ALL the entries found in the key
store.

For more details see [ALIAS], page 7.

-storetype STORE_TYPE

For more details see [STORE TYPE], page 7.

-keystore URL

For more details see [URL], page 7.

-storepass PASSWORD

For more details see [PASSWORD], page 7.

-provider PROVIDER_CLASS_NAME

For more details see [PROVIDER CLASS NAME], page 7.

-rfc Use RFC-1421 specifications when encoding the output.

-v Output the certificate in human-readable format. If both this option and the
‘-rfc’ option are detected on the command line, the tool will opt for the human-
readable form and will not abort the command.

2.2.6.2 The ‘-printcert’ command

Use this command to read a certificate from a designated input source and print it to STDOUT
in a human-readable form.

-file FILE

For more details see [FILE], page 7.

-v For more details see [verbose], page 8.

Chapter 2: Security Tools 15

2.2.7 Management commands

2.2.7.1 The ‘-keyclone’ command

Use this command to clone an existing Key Entry and store it under a new (different) Alias
protecting, its private key material with possibly a new password.

-alias ALIAS

For more details see [ALIAS], page 7.

-dest ALIAS

Use this option to specify the new Alias which will be used to identify the
cloned copy of the Key Entry.

-keypass PASSWORD

Use this option to specify the password which the tool will use to unlock the
Key Entry associated with the designated Alias.

If this option is omitted, the tool will first attempt to unlock the Key Entry
using the same password protecting the key store. If this fails, you will then be
prompted to provide a password.

-new PASSWORD

Use this option to specify the password protecting the private key material of
the newly cloned copy of the Key Entry.

-storetype STORE_TYPE

For more details see [STORE TYPE], page 7.

-keystore URL

For more details see [URL], page 7.

-storepass PASSWORD

For more details see [PASSWORD], page 7.

-provider PROVIDER_CLASS_NAME

For more details see [PROVIDER CLASS NAME], page 7.

-v For more details see [verbose], page 8.

2.2.7.2 The ‘-storepasswd’ command

Use this command to change the password protecting a key store.

-new PASSWORD

The new, and different, password which will be used to protect the designated
key store.

-storetype STORE_TYPE

For more details see [STORE TYPE], page 7.

-keystore URL

For more details see [URL], page 7.

-storepass PASSWORD

For more details see [PASSWORD], page 7.

Chapter 2: Security Tools 16

-provider PROVIDER_CLASS_NAME

For more details see [PROVIDER CLASS NAME], page 7.

-v For more details see [verbose], page 8.

2.2.7.3 The ‘-keypasswd’ command

Use this command to change the password protecting the private key material of a desig-
nated Key Entry.

-alias ALIAS

For more details see [ALIAS], page 7.

Use this option to specify the password which the tool will use to unlock the
Key Entry associated with the designated Alias.

If this option is omitted, the tool will first attempt to unlock the Key Entry
using the same password protecting the key store. If this fails, you will then be
prompted to provide a password.

-new PASSWORD

The new, and different, password which will be used to protect the private key
material of the designated Key Entry.

-storetype STORE_TYPE

For more details see [STORE TYPE], page 7.

-keystore URL

For more details see [URL], page 7.

-storepass PASSWORD

For more details see [PASSWORD], page 7.

-provider PROVIDER_CLASS_NAME

For more details see [PROVIDER CLASS NAME], page 7.

-v For more details see [verbose], page 8.

2.2.7.4 The ‘-delete’ command

Use this command to delete a designated key store entry.

-alias ALIAS

For more details see [ALIAS], page 7.

-storetype STORE_TYPE

For more details see [STORE TYPE], page 7.

-keystore URL

For more details see [URL], page 7.

-storepass PASSWORD

For more details see [PASSWORD], page 7.

-provider PROVIDER_CLASS_NAME

For more details see [PROVIDER CLASS NAME], page 7.

-v For more details see [verbose], page 8.

Chapter 3: Other Tools 17

3 Other Tools

This is a list of currently undocumented classpath tools: jar, javah, gcjh, native2ascii, orbd,
serialver, rmid, rmiregistry and tnameserv.

3.1 The jar Tool

gjar is an implementation of Sun’s jar utility that comes with the JDK.

If any file is a directory then it is processed recursively. The manifest file name and the
archive file name needs to be specified in the same order the ‘-m’ and ‘-f’ flags are specified.

Operation mode:

-c Create new archive.

-t List table of contents for archive.

-x Extract named (or all) files from archive.

-u Update existing archive.

-i FILE Compute archive index.

Operation modifiers:

-f FILE Specify archive file name.

-0 Store only; use no ZIP compression.

-v Generate verbose output on standard output.

-M Do not create a manifest file for the entries.

-m manifest

Include manifest information from specified manifest file.

File name selection:

-C DIR FILE

Change to the DIR and include the following FILE.

-@ Read the names of the files to add to the archive from stdin. This option is
supported only in combination with ‘-c’ or ‘-u’. Non standard option added in
the GCC version.

Standard options:

-help Print help text, then exit.

-version Print version number, then exit.

-JOPTION Pass argument to the Java runtime.

java(1), . . .

Chapter 3: Other Tools 18

3.2 The javah Tool

The gjavah program is used to generate header files from class files. It can generate both
CNI and JNI header files, as well as stub implementation files which can be used as a basis
for implementing the required native methods.

-d DIR Set output directory.

-o FILE Set output file (only one of ‘-d’ or ‘-o’ may be used).

-cmdfile FILE

Read command file.

-all DIR Operate on all class files under directory DIR.

-stubs Emit stub implementation.

-jni Emit JNI stubs or header (default).

-cni Emit CNI stubs or header (default JNI).

-verbose Set verbose mode.

-force Output files should always be written.

Class path options:

-classpath PATH

Set the class path.

-IDIR Add directory to class path.

-bootclasspath PATH

Set the boot class path.

-extdirs PATH

Set the extension directory path.

Standard options:

-help Print help text, then exit.

-version Print version number, then exit.

-JOPTION Pass argument to the Java runtime.

javac(1), . . .

3.3 The gcjh Tool

The gcjh program is used to generate header files from class files. It can generate both CNI
and JNI header files, as well as stub implementation files which can be used as a basis for
implementing the required native methods. It is similar to javah but has slightly different
command line options, and defaults to CNI.

See javah for a full description; this page only lists the additional options provided by
gcjh.

CNI text options

Chapter 3: Other Tools 19

-add text

Insert text into class body.

-append text

Append text after class declaration.

-friend text

Insert text as a friend declaration.

-prepend text

Insert text before start of class.

Compatibility options (unused)

-td DIR

-M

-MM

-MD

-MMD Unused compatibility option.

Standard options:

-help Print help text, then exit.

-version Print version number, then exit.

-JOPTION Pass argument to the Java runtime.

javac(1), javah(1), . . .

3.4 The native2ascii Tool

To be written . . .

-encoding NAME

Set the encoding to use.

-reversed

Convert from encoding to native.

Standard options:

-help Print help text, then exit.

-version Print version number, then exit.

-JOPTION Pass argument to the Java runtime.

javac(1), . . .

3.5 The orbd object request broker daemon

To be written . . .

-ORBInitialPort PORT

Port on which persistent naming service is to be started.

-ior FILE

File in which to store persistent naming service’s IOR reference

Chapter 3: Other Tools 20

-directory DIR

Directory in which to store persistent data.

-restart Restart persistent naming service, clearing persistent naming database.

Standard options:

-help Print help text, then exit.

-version Print version number, then exit.

-JOPTION Pass argument to the Java runtime.

java(1), . . .

3.6 The serialver version command

Print the serialVersionUID of the specified classes.

-classpath PATH

Class path to use to find classes.

Standard options:

-help Print help text, then exit.

-version Print version number, then exit.

-JOPTION Pass argument to the Java runtime.

javac(1), . . .

3.7 The rmid RMI activation system daemon

rmiregistry starts a remote object registry on the current host. If no port number is
specified, then port 1099 is used.

Activation process control:

-port PORT

Port on which activation system is to be started.

-restart Restart activation system, clearing persistent naming database, if any.

-stop Stop activation system.

Persistence:

-persistent

Make activation system persistent.

-directory DIR

Directory in which to store persistent data.

Debugging:

-verbose Log binding events to standard out.

Standard options:

-help Print help text, then exit.

Chapter 3: Other Tools 21

-version Print version number, then exit.

-JOPTION Pass argument to the Java runtime.

java(1), . . .

3.8 The rmiregistry Tool

grmiregistry starts a remote object registry on the current host. If no port number is
specified, then port 1099 is used.

Registry process control:

-restart Restart RMI naming service, clearing persistent naming database, if any.

-stop Stop RMI naming service.

Persistence:

-persistent

Make RMI naming service persistent.

-directory DIR

Directory in which to store persistent data.

Debugging:

-verbose Log binding events to standard out.

Standard options:

-help Print help text, then exit.

-version Print version number, then exit.

-JOPTION Pass argument to the Java runtime.

java(1), . . .

3.9 The tnameserv Tool

To be written . . .

-ORBInitialPort PORT

Port on which naming service is to be started.

-ior FILE

File in which to store naming service’s IOR reference.

Standard options:

-help Print help text, then exit.

-version Print version number, then exit.

-JOPTION Pass argument to the Java runtime.

java(1), . . .

Info entry for ‘gjdoc’. Please report bugs to http://savannah.gnu.org/bugs/?group=classpath.
Julian Scheid

http://savannah.gnu.org/bugs/?group=classpath

Chapter 4: Generating HTML Documentation 22

4 Generating HTML Documentation

Gjdoc can be used in two ways: as a stand-alone documentation tool, or as a driver for a
user-specified Doclet. See Chapter 5 [Other Doclets], page 34.

In the default mode, Gjdoc will use the Standard Doclet ‘HtmlDoclet’ to generate a set
of HTML pages. The canonical usage is:

gjdoc -s src/java/ -all -d api-docs/

Here, ‘src/java/’ is the root of your source code class hierarchy, ‘-all’ means that all
valid Java files found under this root directory should be processed, and ‘api-docs/’ is the
directory where the generated documentation should be placed.

To learn more about running Doclets other than the Standard Doclet, refer to the
manual. See Section 4.13 [Invoking a Custom Doclet], page 33.

4.1 Invoking the Standard Doclet

Running the Gjdoc Standard Doclet ‘HtmlDoclet’ is the default mode of operation for
Gjdoc. This section lists the command line options you can specify in this mode. It doesn’t
distinguish between general Gjdoc options and options specific to the Standard Doclet.

If you want to learn which options are accepted when Gjdoc is used as a doclet driver,
See Section 4.13 [Invoking a Custom Doclet], page 33.

4.2 Option Summary by Type

Here is a summary of all the options of both Gjdoc and the Standard Doclet, grouped by
type. Explanations are in the following sections.

Source Set Options
See Section 4.3 [Options For Specifying the Source Files To Operate on], pa-
ge 23.

-sourcepath pathlist -subpackages pkglist -exclude pkglist

Source Format Options
See Section 4.4 [Options For Specifying the Source Format], page 24.

-source release -encoding encoding -breakiterator

Interlinking Options
See Section 4.5 [Options For Specifying the Source Files To Operate on], pa-
ge 24.

-link url -linkoffline url file -noqualifier pkg:pkg:...

Generation Options
See Section 4.6 [Options Controlling What is Included in the Output], page 25.

-author -licensetext -use -version -splitindex -noindex -nodeprecated -nodeprecatedlist -

nohelp -nonavbar -nosince -notree -public -protected -package -private -docfilessubdirs -

excludedocfilessubdir dirname -linksource

Output Options
See Section 4.6 [Options Controlling the Output], page 25.

-d -locale name -charset charset -docencoding charset -validhtml -baseurl url

Chapter 4: Generating HTML Documentation 23

Decoration Options
-windowtitle text -doctitle text -title text -header text -footer text -

bottom text -helpfile file -stylesheetfile file -addstylesheet file -group group-

heading pkgpattern:pkgpattern:...

Taglet Options
See Section 4.7 [Options For Specifying user-defined Taglets], page 28.

-tagletpath -taglet classname -tag tagspec

Doclet Options
See Section 4.8 [Options For Specifying the Doclet to use], page 29.

-docletpath -doclet classname

Verbosity Options
See Section 4.11 [Options Controlling Gjdoc Behavior], page 32.

-quiet -verbose

Virtual Machine Options
See Section 4.12 [Options Controlling Gjdoc Behavior], page 32.

-classpath

-bootclasspath

-J

vmopt

4.3 Selecting which Source Files to Process

-s pathlist

-sourcepath pathlist

Look for source files in the specified directory or directories.

pathlist should be one or more directory paths separated by your platform’s
path separator (usually ‘:’ or ‘;’).

If this option is not given, gjdoc will look for source files in the current directory.

The directories specified should be root directories in terms of the Java pac-
kage system. For example, if you want to generate documentation for classes
in package ‘foo.bar’, you must specify the directory containing the top-level
‘‘foo’’ sub-directory, not the directory ‘‘foo/bar/’’ in which the Java source
files reside.

The short-hand alias ‘-s’ is specific to gjdoc and not compatible to Sun
javadoc.

-all [EXPERIMENTAL] Process all valid Java source files found in the directories
listed in the source path and their sub-directories.

This is an option specific to gjdoc and not compatible to Sun javadoc.

-subpackages pkg:pkg:...

Process the classes in the given Java packages and all sub-packages, recursively.
Note that multiple package names must be separated with colons instead of
whitespace.

Chapter 4: Generating HTML Documentation 24

-exclude pkg:pkg:...

Do not process classes in the given Java packages and all sub-packages, recur-
sively. This option can be used in conjunction with ‘-all’ or ‘-subpackages’
in order to exclude individual packages or package sub-trees from the output.

packages...

Process all classes in the given Java packages.

sourcefiles...

Process the classes in the given Java source files.

4.4 Specifying the Format of Input Files

-source release

Assume that the source files are targeted at the given release of the Java plat-
form.

release should be the version number of a Java platform release in the format
MAJOR.MINOR, for example ‘1.4’.

This option is currently ignored except that an error is raised if a release number
other than ‘1.2’, ‘1.3’ or ‘1.4’ is specified.

-encoding charset

Assume that the source files are encoded using charset.

Examples for charset are ‘US-ASCII’, ‘ISO-8859-1’ or ‘UTF-8’.

The semantics of charset are identical to those of ‘java.nio.charset.Charset.forName(String)’.

-breakiterator

Use the locale’s java.text.BreakIterator instead of the internal first sentence
detector.

By default, gjdoc uses an internal algorithm to determine where a
sentence ends. When this option is given, it will instead use the
‘java.text.BreakIterator’ instance for the locale given with ‘-locale’ (or
the default locale).

This option should be specified when applying gjdoc to source code commented
in a non-latin language for which the default first sentence detector does not
work. For all other cases, the default (do not use BreakIterator) produces better
results at the time of this writing.

4.5 Interlinking with other Documentation Sets

-link url

Create hyperlinks to another documentation set.

By default, gjdoc will only create hyperlinks to classes in the source set. Use
this option to additionally create hyperlinks to classes covered by the specified
documentation set.

url should be the root URL of the other documentation set. For example, to
add hyperlinks to GNU Classpath, specify the following:

Chapter 4: Generating HTML Documentation 25

-link http://developer.classpath.org/doc/

The ‘-link’ option can be specified multiple times.

Note that specifying the ‘-link’ option will cause an HTTP access every time
gjdoc is invoked. You can use ‘-linkoffline’ instead to avoid this access.

-linkoffline url file

Create hyperlinks to another documentation set which is also present on the
local file system.

This option works exactly like ‘-link’, except that it accesses the local file
system instead of the network for determining which classes are covered by the
linked documentation set.

When using ‘-linkoffline’ the remote documentation set is not accessed at
all, which can significantly speed up generation time depending on your net-
work connection. The generated hyperlinks to the documentation set however
refer to the remote set, not to the local one, so that you can distribute the
documentation without any further dependencies.

The ‘-linkoffline’ option can be specified multiple times.

-noqualifier pkg:pkg:...

Do not qualify names of classes in the given packages with their package name.

By default, a class name is displayed unqualified only if the class is part of the
source set or a linked documentation set, and qualified with the name of its
containing package if it is not. You can use this option to force unqualified
names for classes even if they are not part of the documentation set.

For example, usually a reference to the String class is represented fully-qualified
as ‘java.lang.String’ (unless you link to the appropriate documentation set
using ‘-link’) because it isn’t part of the documentation set. You can specify
‘-noqualifier java.lang’ to render the same references just as ‘String’.

Note that for all unqualified class names, a tooltip is provided when you place
your mouse pointer over it in the HTML documentation.

-noqualifier ‘all’

Omit package name qualifier from all class names.

Specify this option to omit package name qualifiers altogether,

4.6 Selecting which Information to Generate

-public Only include public members of public classes in the output. By default, pro-
tected class members are included as well.

-protected

Include public or protected members of public classes in the output. This is
the default.

-package

Include public, protected and package-private members of public and package-
private classes.

Chapter 4: Generating HTML Documentation 26

-private

Include all classes and class members regardless of their access level.

-splitindex

Generate one index page per letter instead of a single, monolithic index page.

By default, the index created by the Standard Doclet contains all entries on a
single page. This is fine for small documentation sets, but for large sets you
should specify this option.

-nosince Ignore ‘@since’ tags in javadoc comments.

By default, the generated output contains sections listing the version of your
API since which the package, class or class member in question exists when this
tag is encountered. Specify this option to omit this information.

-notree Do not generate any tree pages.

By default, the generated output includes one inheritance tree per package, and
- if the documentation set consists of multiple packages - a page with the full
inheritance tree. Specify this option to omit generation of these pages.

-noindex Do not output the alphabetical index.

By default, gjdoc generates an alphabetical index of all program elements in
the documentation set (packages, classes, inner classes, constructors, methods,
and fields). Specify this option to omit this information.

-nohelp Do not generate the help page.

This option is currently ignored as the Standard Doclet doesn’t provide a help
page.

-nodeprecated

Do not output inline information about deprecated packages, classes or class
members.

By default, the Standard Doclet adds a highlighted paragraph with deprecation
information to the description of each deprecated program element. Specify this
option to omit this information.

-nodeprecatedlist

Do not output the summary page for deprecated API elements.

By default, the Standard Doclet generates a page listing all deprecated API ele-
ments along with a deprecation description which usually includes the reason
for deprecation and possible alternatives. Specify this option to omit this in-
formation.

-nonavbar

Do not output the navigation bar, header, and footer.

By default, each output page is equipped with a top navigation bar (which
may include a user-specified header) and a bottom navigation bar (which may
include a user-specified footer). Specify this option to omit this decoration.

-nocomment

Omit all documentation text from the generated files and output only declara-
tions and program element relationships.

Chapter 4: Generating HTML Documentation 27

This option is here for compatibility with javadoc. If you plan on extracting
information about your project via gjdoc, you should consider using a different
Doclet for your purposes instead, for example XmlDoclet. You could also use
the Doclet API directly by implementing a new Doclet.

-linksource

Generate a page with syntax-highlighted source code for each class. By default,
this page is not generated.

The source code can be accessed by clicking on the button labelled "Source" in
the navigation bar, or by clicking on the name of a constructor, field, method,
or inner class in the detail section of a class documentation page.

-use

Generate a page with cross-reference information. By default, this page is not
generated.

The cross-reference information can be accessed by clicking on the button la-
belled ‘Use’ in the navigation bar.

The ‘Use’ page lists all classes/interfaces in the documentation set that ex-
tend/implement the class (type) in question; fields of the type; methods or
constructors accepting a parameter of the type; methods returning the type;
and methods or constructors throwing the type.

-author Include author information in the output.

When specified, author information as specified using the ‘@author’ tag in ja-
vadoc comments is incorporated into the output. By default, ‘@author’ tags
are ignored.

-version Include version information in the output.

When specified, version information as specified using the ‘@version’ tag in
javadoc comments is incorporated into the output. By default, ‘@version’ tags
are ignored.

-licensetext

Assume that the first comment in each source file contains the license text, and
add license information to the footer of each generated class page.

This is an option specific to gjdoc and not compatible to Sun javadoc.

This option is intended for use with free and open source projects where source
code is typically prefixed with a boilerplate license comment, when there are
legal reasons for including the license in the documentation.

-docfilessubdirs

Recursively copy all files in the ‘doc-files’ sub-directory of each package di-
rectory.

Usually, only the files in the ‘doc-files’ sub-directory are copied without des-
cending recursively.

See Section 6.5 [Adding Custom Resources], page 38.

-excludedocfilessubdir name:name:...

Do not copy some directories directly under the ‘doc-files’ sub-directories
when descending recursively.

Chapter 4: Generating HTML Documentation 28

The argument to this option should be a colon-separated list of directory names.

This option only makes sense if ‘-docfilessubdirs’ is also specified. In this
case, any sub-directory located directly beneath a ‘doc-files’ directory is omit-
ted if listed.

4.7 Custom Documentation Tags

-tagletpath pathlist

Search pathlist when loading subsequent Taglet classes specified using
‘-taglet’.

pathlist should be one or more paths to a directory or jar file, separated by
your platform’s path separator (usually ‘:’ or ‘;’).

-taglet classname

Register a Taglet.

classname should be the fully-qualified name of a Java class implementing
‘com.sun.tools.doclets.Taglet’.

The Taglet classes will be loaded from the classpath specified using
‘-tagletpath’, from the classpath specified using ‘-classpath’ and from the
default classpath.

See the documentation of ‘com.sun.tools.doclets.Taglet’ for further infor-
mation.

Note that for simple tags, there is also ‘-tag’.

-tag tagspec

Register a generic Taglet.

The format of tagspec must be ‘<tagname>:<flags>:"<taghead>"’.

tagname is the tag name to match, without the leading @ sign.

flags is one or more of the following characters, where each character specifies
a source code context in which the tag is to be recognized.

a all contexts

c constructors

f fields

m methods

o overview

p packages

t types (classes, interfaces, exceptions, errors)

X special character which temporarily disables the Taglet altogether.

taghead is the string to display in the header of the section devoted to the tag
in question.

For example, to define a tag matching ‘@cvsid’ which is to be accepted in
overview, package and type pages and which is labelled with the header ‘CVS
ID’, you would specify:

Chapter 4: Generating HTML Documentation 29

-tag cvsid:tpo:"CVS ID"

Let’s say that a class javadoc comment contains
@cvsid $Id: cp-tools.texinfo,v 1.7 2008/08/13 13:32:05 jsumali Exp $

Then the HTML output will contain something like
CVS ID:

$Id: cp-tools.texinfo,v 1.7 2008/08/13 13:32:05 jsumali Exp $

4.8 Running Other Doclets

-docletpath pathlist

Search pathlist when loading classes for the Doclet specified using ‘-doclet’.

pathlist should be one or more paths to a directory or jar file, separated by
your platform’s path separator (usually ‘:’ or ‘;’).

-doclet className

Run the specified doclet instead of the standard HtmlDoclet.

className should be the fully-qualified name of a class which has a public
default constructor and contain a method with the following signature:

import com.sun.javadoc.RootDoc;

public static boolean start(RootDoc rootDoc)

The Doclet classes will be loaded from the classpath specified using
‘-docletpath’, from the classpath specified using ‘-classpath’ and from the
default classpath.

The ‘start’ method should process the information exposed by the Doclet API
via ‘rootDoc’ and return ‘true’ on success, ‘false’ on failure.

If you are using a third-party doclet, refer to its documentation for further
instructions. Note that support for third-party doclets is experimental. Plea-
se report any problems you encounter, or provide feedback when successfully
running third-party applets.

This option can be specified multiple times, in which case all doclets are execu-
ted with the same information tree exposed via the Doclet API for each Doclet
run.

4.9 Adding Information to the Output

-windowtitle text

Use text as the browser window title prefix.

When specified, the browser window title for each page will be prefixed with
text instead of the default string ‘Generated API Documentation’.

text should be plain text (it should not contain HTML tags).

-doctitle text

Set the header text of the overview page to text.

text should be a short plain text string.

When generating documentation for a single package, specifying this option
forces generation of the overview page.

Chapter 4: Generating HTML Documentation 30

-header htmltext

Add htmltext to the right upper corner of every generated page. htmltext is
usually set to the name of the project being documented.

-footer htmltext

Add htmltext to the right bottom corner of every generated page. htmltext is
often set to the same value as for ‘-header’.

-bottom htmltext

Add htmltext to the very bottom of every generated page, spanning the whole
width of the page. When specified, htmltext usually consists of a copyright
notice and/or links to other project pages.

-addstylesheet file

Augment the default CSS style sheets with the user-specified stylesheet file.

The given stylesheet is simply loaded by each HTML page in addition to the
default ones, as the last stylesheet.

Note that the CSS cascading rules apply. That is, your style properties will only
be assigned if they have a higher cascading order than gjdoc’s default style.
One simple way to make sure that this is the case is to declare your overrides
‘!important’.

See http://www.w3.org/TR/REC-CSS2/cascade.html#cascading-order.

-group heading pkgwildcard:pkgwildcard:...

Arrange the given packages in a separate group on the overview page.

The first argument should be a short plain text which is used as the title of
the package group. The second argument should be a colon-separated list of
package wildcards. The group will consist of all packages in the documentation
set whose name matches any of the given wildcards.

There is only one wildcard character, ‘*’, which matches both letters in pac-
kage name components and the ‘.’ separating package name components. For
example, ‘j*regex’ would match package ‘java.util.regex’. A more useful
example would be ‘javax.swing*’ to match ‘javax.swing’ and all of its sub-
packages.

This option can be given multiple times.

FIXME: Information about group nesting here.

gjdoc -group "Core Classes" ’java*’ \

-group "Swing" ’javax.swing*’ \

-group "XML APIs" ’javax.xml*’ \

-group "Other Extensions" javax* \

...

-overview file

Add the XHTML body fragment from file to the overview page.

file should contain an XHTML fragment with the HTML ‘body’ tag as the root
node. See Section 6.3 [XHTML Fragments], page 37.

This option can be used to supply a description of the documentation set as a
whole.

http://www.w3.org/TR/REC-CSS2/cascade.html#cascading-order

Chapter 4: Generating HTML Documentation 31

When specified, the first sentence of the fragment will be put above the tables
listing the documented packages, along with a link to the full copy of the frag-
ment which is put below the tables. See Section 6.4 [First Sentence Detector],
page 37.

When generating documentation for a single package, specifying this option
forces generation of the overview page.

-stylesheetfile file

Use the CSS stylesheet in file instead of the default CSS stylesheets.

If you only want to override parts of the default stylesheets, use
‘-addstylesheet’ instead.

-title text

Deprecated. Use ‘-doctitle’ text instead.

-helpfile file

This option is currently ignored.

When implemented, it will use the XHTML fragment in file for the help page
contents instead of the default help text.

4.10 Controlling the Output.

-d directory

Place all output files into directory (and sub-directories). directory will be
created if it does not exist, including all non-existing parent directories and all
required sub-directories.

If not specified, output will be placed into the current directory.

-locale name

Use locale name instead of the default locale for all purposes.

name should be a locale specifier in the form ‘ll_CC[_VAR]’ where ‘ll’ is
a lowercase two-letter ISO-639 language code, ‘CC’ is an optional uppercase
two-letter ISO-3166 country code, and ‘VAR’ is an optional variant code. For
example, ‘en’ specifies English, ‘en_US’ specifies US English, and ‘en_US_WIN’
specifies a deviant variant of the US English locale.

Note that the semantics of this option correspond exactly to those of the cons-
tructors of class ‘java.util.Locale’.

This option currently only determines which Collator is being used for sorting
output elements. This means that the locale will only have an effect when you
are using non-ASCII characters in identifiers.

-charset charset

Deprecated. Override the specified encoding in output XHTML files with the
one given by ‘charset’.

If this option is not given, the encoding specification in output XHTML is
chosen to match the encoding used when writing the file (the encoding given
with ‘-docencoding’, or your platform’s default encoding).

Chapter 4: Generating HTML Documentation 32

The semantics for charset are specified here: http://www.w3.org/TR/2000/REC-xml-20001006#NT-EncName.
For all practical purposes, they are identical to those of the other options
accepting charset parameters.

This option is here for compatibility with javadoc and should be avoided.

-docencoding charset

Use the given charset encoding when writing output files instead of your plat-
form’s default encoding.

Examples for charset are ‘US-ASCII’, ‘ISO-8859-1’ or ‘UTF-8’.

The semantics of this option correspond exactly to those of the constructors of
class ‘java.util.Locale’.

-validhtml

Force generation of valid XHTML code. This breaks compatibility to the tra-
ditional Javadoc tool to some extent.

If this option is specified, anchor names will be mangled so that they are valid
according to the XHTML 1.1 specification. However, a documentation set
generated with this option cannot be linked to properly using the traditional
Javadoc tool. It can be linked to just fine using Gjdoc, though.

Without this option, anchor names for executable class members use the tra-
ditional format, for example: “foo(String,int[])”. This is compatible to the
traditional Javadoc tool, but according to both the HTML 4.0 and XHTML
1.0 and 1.1 specifications, this format includes illegal characters. Parentheses,
square brackets, and the comma are not allowed in anchor names.

-baseurl url

Hardwire a page URL relative to url into each generated page.

If you are generating documentation which will exclusively be available at a
certain URL, you should use this option to specify this URL.

This can help avoid certain redirect attacks used by spammers, and it can be
helpful for certain web clients.

4.11 Verbosity Options

-quiet Suppress all output except for warnings and error messages.

-verbose Be very verbose about what gjdoc is doing.

This option is currently ignored.

4.12 Virtual Machine Options

Sun’s javadoc tool seems to be based on javac and as such it seems to operate on the VM
level. gjdoc, in contrast, is a pure Java application.

Therefore, gjdoc can only fake, or simulate, the following VM-level options.

-classpath pathlist

Set the Virtual Machine ‘classpath’ to pathlist.

In most cases you should use ‘-docletpath’ or ‘-tagletpath’ instead of this
option.

http://www.w3.org/TR/2000/REC-xml-20001006#NT-EncName

Chapter 4: Generating HTML Documentation 33

pathlist should be one or more paths to a directory or jar file, separated by
your platform’s path separator (usually ‘:’ or ‘;’).

If this option is not intercepted at the wrapper level, gjdoc currently fakes it by
calling ‘System.setProperty("java.class.path", pathlist);’ and outputs
a warning.

-bootclasspath pathlist

Set the Virtual Machine ‘bootclasspath’ to pathlist.

If this option is not intercepted at the wrapper level, gjdoc outputs a warning.

-Jvmopt

Pass an arbitrary parameter to the Virtual Machine gjdoc runs on.

If this option is not intercepted at the wrapper level, gjdoc tries to emulate the
option and outputs a warning.

Currently, only the VM option ‘-D’ for setting system properties is emulated.

4.13 Invoking a Custom Doclet

For invoking one of the other doclets shipping with gjdoc or a third-party doclet, the
canonical usage is:

gjdoc -s src/java/ -all \

-docletpath /path/to/doclet.jar -doclet foo.BarDoclet \

(more Gjdoc core options and Doclet-specific options here)

‘/path/to/doclet.jar’ is a placeholder for a class path specifying where the Doclet
classes and dependencies can be found and ‘foo.BarDoclet’ is the fully-qualified name of
the Doclet’s main class.

4.14 Gjdoc Option Summary

Chapter 5: Generating Other Output Types 34

5 Generating Other Output Types

5.1 Using the Built-in Doclets

5.1.1 TexiDoclet: Generating Info, PDF, and other formats

Missing.

5.1.2 XmlDoclet: Generating XML Documentation

Missing.

5.1.3 IspellDoclet: Spell-checking Source Code

Missing.

5.1.4 DebugDoclet: Inspecting the Doclet API

Missing.

5.2 Using Third-Party Doclets

5.2.1 DocBook Doclet

Missing.

5.2.2 PDFDoclet

Missing.

5.2.3 JUnitDoclet

Missing.

Chapter 6: Advanced Concepts 35

6 Advanced Concepts

6.1 Adding Custom Tags to the Documentation

Missing.

6.2 Writing Doclets

If the various Doclets already available don’t suit your needs, you can write a custom Doclet
yourself.

6.2.1 Implementing the Doclet Invocation Interface

A Doclet is a class that contains a method with the following signature:

public static boolean start(RootDoc rootDoc);

rootDoc is the root of an object hierarchy containing the information gjdoc extracted
from the source files. See the Doclet API for more details.

‘start’ should process all the information and return ‘true’ on success, ‘false’ on
failure.

For printing status information, the Doclet should use methods ‘printNotice’,
‘printWarning’ and ‘printError’ instead of ‘System.err’. The Doclet can opt to use
‘System.out’ for redirectable output.

6.2.2 Deriving Your Doclet from AbstractDoclet

You may want your Doclet to provide functionality similar to HtmlDoclet. For example,
you may want it to support Taglets, generate Index, Tree, and Uses pages, or show other
cross-reference information like ‘Overrides’ and ‘All Implementing Classes’.

This information is not directly provided by the Doclet API, so your Doclet would
normally have to assemble it itself. For example, it would have to add the names of all
program elements to a list and sort this list in order to create the Index page.

If you want to provide this information or part of it, you should consider deriving your
class from ‘gnu.classpath.tools.doclets.AbstractDoclet’. This class provides the fo-
llowing benefits:

• Handles options ‘-tag’, ‘-taglet’, ‘-tagletpath’ (Taglets)

• Provides standard taglets for @version, @author, @since, @serial, @deprecated, @see,
@param, @return and handles all related options (‘-version’, ‘-author’, ‘-nosince’,
‘-nodeprecated’)

• Handles option ‘-d’ (destination directory)

• Handles option ‘-noqualifier’ (classes to omit qualifier for)

• Handles options ‘-docfilessubdirs’ and ‘-excludedocfilessubdir’ (resource cop-
ying)

• Can generate a full index or an index split by first letter

• Can generate a full tree and package trees

• Can generate cross-reference information

Chapter 6: Advanced Concepts 36

• Can aggregate interface information (all superinterfaces, all subinterfaces, all imple-
menting classes)

• Provides convenient access to constructors, fields, methods, and inner classes sorted by
name/signature instead of the default sort order.

• Provides various other convenience methods

If you derive from ‘AbstractDoclet’, there are a number of things you need to take care
of:

•

you should not implement the ‘start(RootDoc)’ method as it is already defined by
‘AbstractDoclet’ so that it can care about parsing the options.

Instead, you implement method ‘run()’, ‘getOptions()’ and the other abstract methods
to define your Doclet’s behavior.

Note that all information provided by ‘AbstractDoclet’ is evaluated lazily. That is, if
your Doclet doesn’t need to create an Index page, then ‘AbstractDoclet’ will not spend
resources on creating the corresponding information.

See the API documentation for ‘gnu.classpath.tools.doclets.AbstractDoclet’ for
more details.

You should be aware that if you base your Doclet on ‘AbstractDoclet’ then you have to
bundle this and all related classes with your Doclet, with all implications such as possible
licensing issues. Otherwise, your Doclet will only be runnable on ‘gjdoc’ and not on other
documentation systems. Also note that ‘AbstractDoclet’ has not been extensively tested
in environments other than ‘gjdoc’.

6.2.3 Preparing for the GNU Doclet Service Provider Interface

In addition to the standard Doclet invocation interface described above, gjdoc also offers
a Service Provider Interface conforming to the Java standard. Adding support for this
interface to your Doclet simplifies usage for gjdoc users because it makes your Doclet
“discoverable”.

In order to provide the alternate interface, you have to add a class im-
plementing ‘gnu.classpath.tools.gjdoc.spi.DocletSpi’ to your Doclet
classes, and bundle all Doclet classes in a Jar file along with a file named
‘META_INF/services/gnu.classpath.tools.gjdoc.spi.DocletSpi’ which contains the
name of your class implementing DocletSpi on a single line.

Note that if your Doclet depends on third-party classes bundled in separate Jar files,
you can link in these classes using the ‘Class-path:’ Manifest attribute of your Doclet Jar.

Your Doclet can then be invoked in one of the following ways:

gjdoc -docletjar /path/to/doclet.jar

gjdoc -docletpath /path/to/doclet.jar -docletname docletname

gjdoc -docletname docletname

Here, docletname is the name of your doclet as returned by ‘DocletSpi.getDocletName()’.

The last example will only work if your Doclet Jar is in gjdoc’s ‘doclets’ directory or
if it is on the classpath.

Chapter 6: Advanced Concepts 37

6.3 Well-formed Documentation Fragments

For many Doclets it is advantagous if the HTML code in the comments and HTML code
passed via the command line is well-formed. For example, HtmlDoclet outputs XHTML
code, and XmlDoclet XML code, both of which results in invalid files if the user-specified
HTML isn’t wellformed.

Unfortunately, comments were never required to contain well-formed HTML code, which
means that every Doclet must deal with non-wellformed code as well.

The gjdoc built-in Doclets deal with this problem by “fixing” the HTML code - making
sure that all tags are closed, attribute values are provided and quoted, tags are properly
nested, etc.

This approach works OK in most instances, but since it uses some crude heuristics it
can sometimes produce undesirable result.

Therefore, in order to make sure that your comments are always properly formatted, ma-
ke sure they are well-formed as described in XHTML 1.0: Documents must be well-formed.

In addition, you should use meaningful tags instead of text formatting tags to make your
output look better in other output formats derived from your HTML code. For example,
you should use the tag instead of if you want to emphasize text.

6.4 How Gjdoc Determines where the First Sentence Ends

For a package, class or member summary, gjdoc only shows the first sentence of the docu-
mentation comment in question. Because gjdoc is not human, it is not always obvious to
gjdoc where the first sentence ends.

You might be tempted to say that the first sentence ends at the first occurrence of a
punctuation character like ‘.’ or ‘!’. However, consider examples like this:

This work, by Thomas J. Shahan et al., is about the middle ages.

As you can see, it is not trivial to determine the end of the sentence.

gjdoc gives you the choice between two approaches. By default it uses built-in heuristics
which should be compatible to Sun’s javadoc tool. This approach works quiet well in most
cases, at least for english comments.

Alternatively, you can specify option ‘-breakiterator’ in which case gjdoc will use
‘java.text.BreakIterator.getSentenceInstance(locale).next()’ to find the end of
sentence, where locale is the locale specified by option ‘-locale’ or the default locale if
none specified.

NOT YET IMPLEMENTED:

gjdoc also allows you to explicitly delineate the first sentence by putting it in a ‘’
tag with the CSS class ‘first-sentence’. For example:

/**

* This. is. the. first.

* sentence. This is the second sentence.

*/

Note that this will only work with gjdoc, but shouldn’t hurt when using another docu-
mentation system since the ‘’ tag usually doesn’t show up in the output.

http://www.w3.org/TR/xhtml1/#h-4.1

Chapter 6: Advanced Concepts 38

6.5 Adding Images and Other Resources

Sometimes you want to decorate your documentation with secondary resources such as
images, SVG graphics, applets, and so on. To do so, simply put the required files in a
subdirectory ’doc-files’ in the package directory corresponding to the documentation entry
you want to decorate, and refer to it with the URL ‘doc-files/filename ’.

For example, if you want to add an image to the description of class ‘baz.FooBar’, create
a directory ‘doc-files’ in the directory ‘baz’ containing ‘FooBar.java’ and put your file,
say ‘diagram.png’, into that directory. Then, add the HTML code like this to a comment
in ‘FooBar.java’:

<img src="doc-files/diagram.png" width="200" height="150"

alt="Foo Diagram"/>

This works because the ‘doc-files’ subdirectories will be copied to the target docu-
mentation directory every time you generate the documentation.

Note however that by default, the ‘doc-files’ directory will not be copied deeply. In
other words, if you create subdirectories under ‘doc-files’ they will not be copied and any
resources located in these subdirectories will not be accessible in your generated documen-
tation. You can specify option ‘-docfilessubdirs’ to remove this limitation.

Sometimes you want to use option ‘-docfilessubdirs’, but there are certain directories
which you don’t want to be copied, for example because they contain source files for the
resources in ‘doc-files’. For cases like this, use ‘-excludedocfilessubdir’ to specify
directories to be omitted.

Chapter 7: I18N Issues 39

7 I18N Issues

Some tools –see Chapter 2 [Security Tools], page 3– allow using other than the English lan-
guage when prompting the User for input, and outputting messages. This chapter describes
the elements used to offer this support and how they can be adapted for use with specific
languages.

7.1 Language-specific resources

The Tools use Java ResourceBundles to store messages, and message templates they use
at runtime to generate the message text itself, depending on the locale in use at the time.

The Resource Bundles these tools use are essentially Java Properties files consisting of a
set of Name/Value pairs. The Name is the Property Name and the Value is a substitution
string that is used when the code references the associated Name. For example the following
is a line in a Resource Bundle used by the keytool Tool:

Command.23=A correct key password MUST be provided

When the tool needs to signal a mandatory but missing key password, it would referen-
ce the property named Command.23 and the message "A correct key password MUST be

provided" will be used instead. This indirect referencing of "resources" permits replacing,
as late as possible, the English strings with strings in other languages, provided of course
Resource Bundles in those languages are provided.

For the GNU Classpath Tools described in this Guide, the Resource Bundles are files
named ‘messages[_ll[_CC[_VV]]].properties’ where:

ll Is the 2-letter code for the Language,

CC Is the 2-letter code for the Region, and

VV Is the 2-letter code for the Variant of the language.

The complete list of language codes can be found at Code for the representation of
names of languages. A similar list for the region codes can be found at ISO 3166 Codes
(Countries).

The location of the Resource Bundles for the GNU Classpath Tools is specific to each
tool. The next table shows where these files are found in a standard GNU Classpath
distribution:

jarsigner

‘gnu/classpath/tools/jarsigner’

keytool ‘gnu/classpath/tools/keytool’

The collection of Resource Bundles in a location act as an inverted tree with a parent-
child relationship. For example suppose in the ‘gnu/classpath/tools/keytool’ there are
3 message bundles named:

1. messages.properties

2. messages_fr.properties

3. messages_fr_FR.properties

http://ftp.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://ftp.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://userpage.chemie.fu-berlin.de/diverse/doc/ISO_3166.html
http://userpage.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

Chapter 7: I18N Issues 40

In the above example, bundle #1 will act as the parent of bundle #2, which in turn
will act as the parent for bundle #3. This ordering is used by the Java runtime to
choose which file to load based on the set Locale. For example if the Locale is fr_CH,
messages_fr.properties will be used because (a) messages_fr_CH.properties does not
exist, but (b) messages_fr.properties is the parent for the required bundle, and it exists.
As another example, suppose the Locale was set to en_AU; then the tool will end up
using messages.properties because (a) messages_en_AU.properties does not exist, (b)
messages_en.properties which is the parent for the required bundle does not exist, but
(c) messages.properties exists and is the root of the hierarchy.

You can see from the examples above that ‘messages.properties’ is the safety net that
the Java runtime falls back to when failing to find a specific bundle and its parent(s). This
file is always provided with the Tool. In time, more localized versions will be included to
cater for other languages.

In the meantime, if you are willing to contribute localized versions of these resources,
grab the ‘messages.properties’ for a specific tool; translate it; save it with the appropriate
language and region suffix and mail it to classpath@gnu.org.

7.2 Message formats

If you open any of the ‘messages.properties’ described in the previous section, you may
see properties that look like so:

Command.67=Issuer: {0}

Command.68=Serial number: {0,number}

Command.69=Valid from: {0,date,full} - {0,time,full}

Command.70=\ \ \ \ \ until: {0,date,full} - {0,time,full}

These are Message Formats used by the tools to customize a text string that will then
be used either as a prompt for User input or as output.

If you are translating a ‘messages.properties’ be careful not to alter text between
curly braces.

	Applet Tools
	The appletviewer Tool
	The gcjwebplugin Tool

	Security Tools
	The jarsigner Tool
	Common options
	Signing options
	Verification options

	The keytool Tool
	Getting help
	Common options
	X.500 Distinguished Names
	Add/Update commands
	The -genkey command
	The -import command
	The -selfcert command
	The -cacert command
	The -identitydb command

	Export commands
	The -certreq command
	The -export command

	Display commands
	The -list command
	The -printcert command

	Management commands
	The -keyclone command
	The -storepasswd command
	The -keypasswd command
	The -delete command

	Other Tools
	The jar Tool
	The javah Tool
	The gcjh Tool
	The native2ascii Tool
	The orbd object request broker daemon
	The serialver version command
	The rmid RMI activation system daemon
	The rmiregistry Tool
	The tnameserv Tool

	Generating HTML Documentation
	Invoking the Standard Doclet
	Option Summary by Type
	Selecting which Source Files to Process
	Specifying the Format of Input Files
	Interlinking with other Documentation Sets
	Selecting which Information to Generate
	Custom Documentation Tags
	Running Other Doclets
	Adding Information to the Output
	Controlling the Output.
	Verbosity Options
	Virtual Machine Options
	Invoking a Custom Doclet
	Gjdoc Option Summary

	Generating Other Output Types
	Using the Built-in Doclets
	TexiDoclet: Generating Info, PDF, and other formats
	XmlDoclet: Generating XML Documentation
	IspellDoclet: Spell-checking Source Code
	DebugDoclet: Inspecting the Doclet API

	Using Third-Party Doclets
	DocBook Doclet
	PDFDoclet
	JUnitDoclet

	Advanced Concepts
	Adding Custom Tags to the Documentation
	Writing Doclets
	Implementing the Doclet Invocation Interface
	Deriving Your Doclet from AbstractDoclet
	Preparing for the GNU Doclet Service Provider Interface

	Well-formed Documentation Fragments
	How Gjdoc Determines where the First Sentence Ends
	Adding Images and Other Resources

	I18N Issues
	Language-specific resources
	Message formats

