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Preface

This manual is about the polyxmass mass spectrometric software suite, a computing frame-
work that aims at predicting/analyzing mass spectrometric data on (bio)polymers. As such,
this manual is intended for people willing to learn how to install and use this multi-modular
software suite.

Mass spectrometry has gained popularity across the past five years or so. Indeed, devel-
opments in polymer mass spectrometry have made this technique appropriate to accurately
measure masses of polymers as heavy as many hundreds of kDa.

There are a number of utilities –sold by mass spectrometer constructors with their ma-
chines, usually as a marketing “plus”– that allow predicting/analyzing mass spectrometric
data of polymers. These programs are usually different from a constructor to another. Also,
there are as many mass spectrometric data prediction/analysis computer programs as there
are different polymer types. You will get a program for oligonucleotides, another one for pro-
teins, maybe there is one program for saccharides, and so on. Thus, the biochemist/massist,
for example, who happens to work on different biopolymer types will have to learn the use
of a number of different software packages. Also, if the software user does not own a mass
spectrometer, chances are he will need to buy all these software packages.

The polyxmass mass spectrometric computing framework is designed to provide free
solutions to all these problems. And it does this by:

✱ Allowing ex nihilo polymer chemistry definitions (in the polyxdef module);

✱ Allowing simple yet powerful mass computations to be made in a polymer chemistry
definition-specific manner (in the polyxcalc module);

✱ Allowing the highly sophisticated editing of polymer sequences on a polymer chemistry
definition-specific basis along with chemical reaction simulations, finely configured mass
spectrometric computations. . . (in the polyxedit module);

✱ Allowing customization of the way each monomer will show up graphically during the
program operation (in the polyxedit module);

1
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✱ Allowing polymer sequence editing with immediate visualization of the mass changes
elicited by the editing activity (in the polyxedit module);

✱ Unlimited number of polymer sequences opened at any given time and of any given
polymer chemistry definition type (in the polyxedit module).

This manual will progressively introduce all these functionalities in a timely and clear
fashion.

UNIX and GNU/Linux Histories
Thanks to the GNU Free Documentation License, I borrowed (and cosmetically modified
it) the material in this section from a remarkable document by David A. Wheeler: Secure
Programming for GNU/Linux and UNIX HOWTO. 1 I think that it is important to provide
some background to the choice of a development platform when the time comes to document
the software that one has taken so much time to code. . .

UNIX
In 1969-1970, Kenneth Thompson, Dennis Ritchie, and others at AT&T Bell Labs began
developing a small operating system on a little-used PDP-7. The operating system was soon
christened UNIX, a pun on an earlier operating system project called MULTICS. In 1972-
1973 the system was rewritten in the programming language C, an unusual step that was
visionary: due to this decision, UNIX was the first widely-used operating system that could
switch from and outlive its original hardware. Other innovations were added to UNIX as
well, in part due to synergies between Bell Labs and the academic community. In 1979, the
“seventh edition” (V7) version of UNIX was released, the grandfather of all extant UNIX
systems.

After this point, the history of UNIX becomes somewhat convoluted. The academic
community, led by Berkeley, developed a variant called the Berkeley Software Distribution
(BSD), while AT&T continued developing UNIX under the names “System III ” and later
“System V ”. In the late 1980’s through early 1990’s the “wars” between these two major
strains raged. After many years each variant adopted many of the key features of the other.
Commercially, System V won the “standards wars” (getting most of its interfaces into the
formal standards), and most hardware vendors switched to AT&T’s System V. However,
System V ended up incorporating many BSD innovations, so the resulting system was more
a merger of the two branches. The BSD branch did not die, but instead became widely used
for research, for PC hardware, and for single-purpose servers (e.g., many web sites use a BSD
derivative).

The result was many different versions of UNIX, all based on the original seventh edition.
Most versions of UNIX were proprietary and maintained by their respective hardware vendor,
for example, Sun Solaris is a variant of System V. Three versions of the BSD branch of
UNIX ended up as open source: FreeBSD (concentrating on ease-of-installation for PC-type
hardware), NetBSD (concentrating on many different CPU architectures), and a variant
of NetBSD, OpenBSD (concentrating on security). More general information about UNIX
history can be found at http://www.levenez.com/unix/.

1Get this paper and others at http://www.dwheeler.com

http://www.levenez.com/unix/
http://www.dwheeler.com
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Free Software Foundation
In 1984 Richard Stallman’s Free Software Foundation (FSF) began the GNU project,
a project to create a free version of the UNIX operating system. By free, Stallman meant
software that could be freely used, read, modified, and redistributed. The FSF successfully
built a vast number of useful components, including the GNU compiler collection (gcc),
an impressive text editor (GNU Emacs), and a host of fundamental tools. However, in
the 1990’s the FSF was having trouble developing the operating system kernel; without a
kernel the rest of their software would not work.

GNU/Linux
In 1991 Linus Torvalds began developing an operating system kernel, which he named
“Linux”. This kernel could be combined with the FSF material and other components
(in particular some of the BSD components and Massachusetts Institute of Technology’s
(MIT) X Window software) to produce a freely-modifiable and very useful operating sys-
tem. This book will term the kernel itself the “Linux” kernel and an entire combination as
“GNU/Linux”.

In the GNU/Linux community, different organizations have combined the available com-
ponents differently. Each combination is called a “distribution”, and the organizations that
develop distributions are called “distributors”. Common distributions include Red Hat,
Mandrake, SuSE and Debian. There are differences between the various distributions,
but all distributions are based on the same foundation: the Linux kernel and the GNU
glibc libraries. Since both are covered by “copyleft” style licenses, changes to these foun-
dations generally must be made available to all, a unifying force between the GNU/Linux
distributions at their foundation that does not exist between the BSD and AT&T-derived
UNIX systems.

Open Source vs Free Software
Increased interest in software that is freely shared has made it increasingly necessary to define
and explain it. A widely used term is “open source software”. Eric Raymond wrote several
seminal articles examining its various development processes. Another widely-used term is
“free software”, where the “free” is short for “freedom”: the usual explanation is “free speech,
not free beer”. Neither phrase is perfect. The term “free software” is often confused with
programs whose executables are given away at no charge, but whose source code cannot be
viewed, modified, or redistributed. Conversely, the term“open source” is sometimes (ab)used
to mean software whose source code is visible, but for which there are limitations on use,
modification, or redistribution. This book uses the term“open source” for its usual meaning,
that is, software which has its source code freely available for use, viewing, modification, and
redistribution; a more detailed definition is contained in the Open Source Definition. For
information on this definition of free software, and the motivations behind it, can be found
at http://www.fsf.org.

Those interested in reading advocacy pieces for open source software and free software
should see http://www.opensource.org and http://www.fsf.org. There are other doc-
uments in the internet which examine such software, for example, authors have found that
the open source software were noticeably more reliable than proprietary software (using their
measurement technique, which measured resistance to crashing due to random input).

http://www.fsf.org
http://www.opensource.org
http://www.fsf.org
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Typographical conventions
Throughout the book the following typographical conventions are used:

✱ emphasized text is used each time a new term or concept is introduced

✱ bash-2.04 $ shows the prompt at which a command should be entered as non-root

✱ bash-2.04 # shows the prompt at which a command should be entered as root

✱ this typography applies to commands that the user enters at the shell prompt

✱ this typography applies to options that the user gives to a command at the shell prompt

✱ " symbolizes pressing the Enter key.

✱ this typography applies to an output resulting from entering a command at the shell prompt

✱ emacs is the name of a program

✱ libglib is the name of a library

✱ GNOME , The Gimp is the name of a generic software (not a specific executable file)

✱ /usr/local/share , /usr/bin/polyxmass are names of a directory or of a file

✱ http://www.gnu.org is a URL (Uniform Resource Locator)

Program Availability, Technicalities
polyxmass has been primarily developed on a GNU/Linux system (RedHat distribution
versions successively 6.0, 7.0, 7.2, 7.3, 8.0, 9.0) using software from the Free Software
Foundation (FSF2).

Developing for GNU/Linux has been utterly exciting and extremely efficient. My warm
thanks do go to all the persons who have engaged themselves (energy and time) in the
Free/true Open Source Movement by coding, documenting, reviewing. . . software. The de-
velopment was mainly centered around the following programs and utilities:

✱ GNU software is central to my developing system:

✦ GNU Emacs, a text editor that is an environment per se

✦ Autotools, an integrated set of programs to make software development easy and
portable. Includes Autoconf , Automake and others. . .
(http://www.gnu.org, home of the Free Software Movement);

✦ GDK/GTK+, two libraries for windowing in the X Window graphic environ-
ment
(http://www.gtk.org);

✦ GTK-Doc, a system for automating the documentation of the source code and
making readable developer’s documentation in HTML format
(http://www.gtk.org);

2For an in-depth coverage of the philosophy behind the FSF, specifically creating a free operating system,
you might desire to visit http://www.gnu.org

http://www.gnu.org
http://www.gnu.org
http://www.gtk.org
http://www.gtk.org
http://www.gnu.org
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✦ The Gimp, a wonderful program for doing graphical illustrations in pixel mode
(raster images). Think of it as an excellent free replacement for the Photoshop
program. The “icons” representing each single monomer in the sequence editor
were made using The Gimp. It saves in xpm, png, jpg and many other graphic
formats
(http://www.gimp.org);

✦ GNOME , a graphical environment for the GNU/Linux desktop. I used the
GNOME canvas widget to tailor the sequence editor
(http://www.gnome.org);

✱ Thomas Esser has made a TEX/LATEX environment of exceptional quality. I used
it everyday, and typeset this manual using it. Of course, Prof. Donald Knuth is the
grand-daddy of all this, having invented TEX and Leslie Lamport is the father of LATEX!
. . .
(http://www.tug.org; search for teTeX );

✱ Glade is a wonderful graphical interface builder (by Damon Chaplin) that I used
to design the graphical interface of the program. I used it in conjunction with the
libglade library (by James Henstridge)
(http://glade.gnome.org and
http://www.daa.com.au/~james/software/libglade);

✱ RedHat is undoubtedly committed to the success of the Free Software Movement and
happens to be the maker of a popular (my) GNU/Linux distribution
(http://www.redhat.com);

✱ Bernhard Herzog has written a vector drawing package that I used for some illustrations
in the polyxmass package. It is called Sketch
(http://sketch.sourceforge.net);

✱ Lauris Kaplinski and co-workers have crafted a very powerful program to create and
handle scalar vector graphics. This program is called Sodipodi
(http://sodipodi.sourceforge.net);

✱ Owen Taylor has written a memory profiling tool that I used to detect memory leaks.
It is called memprof
(otaylor{@}redhat.com, remove the curly brackets);

✱ Of course I do forget many software packages that I used for this work. Thanks to
their authors and to their maintainers: without their hard work my GNU/Linux box
would not exist!

Organization Of This Manual
After having rapidly explained the general pattern about installing each of the modules that
make the polyxmass software suite, this manual aims at providing the required concept
toolset for understanding what to expect from a computer program project like polyxmass.
Thus, the general organization of this book is:

✱ Installation of polyxmass modules;

✱ The basics of polymer chemistry;

http://www.gimp.org
http://www.gnome.org
http://www.tug.org
http://glade.gnome.org
http://www.daa.com.au/~james/software/libglade
http://www.redhat.com
http://sketch.sourceforge.net
http://sodipodi.sourceforge.net
otaylor{@}redhat.com
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✱ The basics of mass spectrometry;

✱ Generalities about the polyxmass software suite;

✱ The polyxdef module (definition of a new polymer chemistry);

✱ The polyxcalc module (polymer chemistry-aware calculator);

✱ The polyxedit module (the main module of the suite, where actual simulations are
performed);

✱ The polyxmassdata module describing the polyxmass’ complex configuration hier-
archy;

✱ Appendices.

polyxmass’ Licensing Philosophy
The front matter of this manual contains a Copyright statement. I wish to retain the copy-
right to polyxmass and all related writings (source and configuration files, programmer’s
documentation, user manual. . . ) However, I do not deny others the right to make copies
of the work, to redistribute it freely, to modify it according to the GNU General Public
License for the polyxmass computer program, and according to the GNU Free Documen-
tation License.

The aim of this licensing is to favor spread of knowledge to the widest public possible.
Also, it encourages interested hackers3 to change the code, to improve it and to send patches
to the author so that their improvements get in the program to the benefit of the widest
public possible. For an in-depth study of the free software philosphy I kindly urge the reader
to visit http://www.gnu.org/philosophy.

Contacting The Author
The polyxmass program is the fruit of months of work on my part. While I’ve put a
lot of energy into making this program as stable and reliable a piece of software as possible,
polyxmass comes with no warranty of any kind. I hope that polyxmass will help numerous
researchers with their mass spectrometric data prediction/analysis work, which will hopefully
ease the creation of scientific knowledge.

The general policy for directing questions, comments, feature requests, polyxmass pro-
gram and/or polyxmass documentation bug reports should be self-explanatory by looking
at the addresses below:

3Hacker is a specialized term to design the programmer that codes programs; this term should not be
mistaken with cracker who is a person who uses computer science knowledge to break information systems’
security barriers.

http://www.gnu.org/philosophy
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To direct any comment(s) to the author through snail mail, use the following address:

Dr Filippo Rusconi

Chargé de recherches au CNRS
Centre national de

la Recherche scientifique

UMR CNRS 8646 - UR INSERM 565 - USM MNHN 0503
Muséum national d’Histoire naturelle

43, rue Cuvier
F-75231 Paris Cedex 05

France
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2
Installation

Overview
The polyxmass software suite is a multi-modular software framework. It is made of a
number of modular packages that depend on each other. The installation of the polyxmass
software suite can be achieved with no pain by following the instructions in this chapter.

The dependencies between the modules of the polyxmass software framework are “or-
dered”, which means that they require that the modules of the framework be installed on
the same system in an ordered manner. We will review this ordered installation procedure
below.

Each module of the polyxmass software suite may be developed independently, which
means that it is not required that they have the same version/package number. The depen-
dencies are dealt with at install time, so the best way to make a fresh install of the polyxmass
software suite is to take all the most recent packages from http://www.polyxmass.org. If
there are no errors (errare humanum est) in the dependency system, all the packages should
be installed with no difficulty.

Prior to analyzing the installation procedure as a whole, it is necessary to describe the
packaging systems that are available for the user to install, in the manner that suits her
needs, the individual packages.

Each package comes in a number of different flavors:

✱ Uncompiled source package

✦ tar.gz files which need to be compiled using the GNU make program;

✦ src.rpm files which need to be compiled using the rpm tool;

✱ Binary ready-to-install package

9

http://www.polyxmass.org


10 CHAPTER 2. INSTALLATION OVERVIEW

✦ i386.rpm files that are dependent on the computing platform architecture (must
be installed using the rpm tool);

✦ noarch.rpm files that are non-dependent on the computing platform architecture
(must be installed using the rpm tool).

Installing From The rpm Binary Package
Installing any rpm package using the rpm program1 is as easy as entering the following
command, as root:

bash-2.04 # rpm -ivh polyxcalc-1.i386.rpm "

What this command does is read the polyxcalc-1.i386.rpm file contents (this pack-
age file probably contains a number of files packed in it) and copy them to their destination
directories. The rpm file format allows to tell to which directory each file that it contains is
to be copied.

Note that when the installation is performed using the rpm binary package, the instal-
lation directory is in the /usr standard tree. Once the package is installed, do not move
the files from their installation directory, because each polyxmass module relies on these
precise directories to locate the files needed to operate correctly. The binary files (program
files, like the polyxedit or the polyxcalc program files) are installed in the /usr/bin
directory.

Indeed, it is noteworthy that the package is not relocatable, which means that the user is
strongly urged not to use the --prefix option (or the installation will be messed up). The
only way to install the software through a rpm binary package in a customized directory is
by recompiling the sources with the src.rpm file package. See below for instructions on how
to cheat with the rpm utility.

To see all the files that are provided by a given rpm-based package file, issue the follow-
ing command:

bash-2.04 $ rpm -qpl polyxcalc -1.i386.rpm "

The output of this command is a list of all the files –along with their destination
directories– that would be installed if the package were installed as above.

Installing From The rpm Source Package
We assume here that the system is a Red Hat GNU/Linux system, but the directions
provided here might also be useful for other rpm-based systems (like Mandrakesoft’s
or SuSe’s?). Installing any rpm-based package file from the src.rpm source package2 is
actually simply one more step (the building of the software) than in the previous binary
package installation case.

1For an in-depth manual on the rpm packet manager, you might want to read Maximum RPM, a book
by Ed Bailey, available from http://www.rpm.org.

2The filename has “src” in it, contrary to the binary package that has the platform name; for Intel
platforms this is “i386” in most cases.

http://www.rpm.org
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The src.rpm package simply contains two files: the source archive file (in the form of a
GNU classical tar.gz tarball (see next section), and a corresponding rpm spec file. The
tar.gz tarball is very similar to the one described in detail later, while the spec file is a very
simple text file that gives the rpm software directions on how to build a binary i386.rpm
package out of the src.rpm file.

It is important to understand the functioning of the rpm program (read its documen-
tation) before using a src.rpm package. After installing a src.rpm package,3 the program
itself is not available to the user (while with a binary package, the program is immediately
available to the user). Apparently nothing happened, but what happened is that the src.rpm
package’s contents are unpacked by the rpm program into two different /usr/src/redhat
subdirectories. In this /usr/src/redhat directory, indeed, the SPECSsubdirectory now
contains the spec file, and the SOURCESsubdirectory now contains the tar.gz source tarball
file. To build a binary package after having installed the rpm source package, it is necessary
to first change directory to the SPECSsubdirectory and next ask rpm to build the package.
All these steps are described below with the polyxcalc module package as an example:

bash-2.04 # rpm -ivh polyxcalc -1.src.rpm "
bash-2.04 # cd /usr/src/redhat/SPECS "
bash-2.04 # rpmbuild -ba polyxcalc .spec "

The -ba option tells the rpmbuild program to “build all” the package. After a while,4

the process stops. If the displayed result is 0, then that means that everything went correctly.
Further, near the end of the rpm output, there must be a line indicating that a i386.rpm
package file has been written. Change directory (from /usr/src/redhat/SPECS ) to
/usr/src/redhat/RPMS/i386 and see that the rpm binary package (in our example
that would be the polyxcalc -1.i386.rpm file) has been correctly produced. This binary
package is nothing but the rpm i386.rpm file package that was described in the previous
section. Just install this package as described above for the binary packages.

This newly built package is guaranteed to be compatible with your processor and with
your pre-installed programs and shared libraries, since the compilation completed without
trouble. Ideally, the process described here should be performed for any rpm package but,
since it is time-consuming, it is only performed on special critical mission software. . .

Note that there is a shortcut to the procedure described above:
bash-2.04 # rpmbuild -rebuild polyxcalc -1.src.rpm

It is possible to cheat with the rpm software so that the installation directory is not the
default one. This is done by editing manually the package’s spec file. It is simply a matter of
telling the rpmbuild program that the prefix to be used to construct the installation path
is not the default one (/usr ) but /opt , for example. In this case, just add the following
line on top of the spec file:
%define _prefix /opt

if you intended to install the software package in the /opt directory. For example, here is
how the polyxcalc.spec file would read if you intended to install the polyxcalc package
in the /opt directory:
%define _prefix /opt
%define name polyxcalc

3Using the same command as for a binary package.
4Automatic sources unpacking, configuration, building of the program, packaging into a binary package.
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Once this slight modification is done, just run:
bash-2.04 # rpmbuild -ba polyxcalc.spec "

And once the package is recompiled, this time you can install it the usual way:
bash-2.04 # rpm -ivh polyxcalc-1.i386.rpm "

Installing From The tar.gz Sources
Installing a package from the source is as easy as issuing the following commands in the
correct order:

bash-2.04 $ cp polyxcalc.tar.gz /tmp " copy the package into a safe place

bash-2.04 $ cd /tmp "
bash-2.04 $ tar -xvzf polyxcalc.tar.gz " this unpacks the sources into a source tree in

the polyxcalc directory

bash-2.04 $ cd polyxcalc "
bash-2.04 $ ./configure "
bash-2.04 $ make "
bash-2.04 $ su " become root if it is possible

bash-2.04 # make install "

Unlike with the previous rpm-based installation, it is possible to specify an installation
directory to the ./configure command. Indeed, the user can modify the default instal-
lation directory (which is the /usr/local tree) by using a qualified --prefix option to
the ./configure command.

For example, by default (with no qualified --prefix option), the polyxcalc module’s
configuration data and executable files would be installed respectively in these two directories:

✱ /usr/local/share/polyxcalc

✱ /usr/local/bin

To change the installation directory, the user may use the qualified --prefix option as
shown in the following example:

bash-2.04 $ ./configure --prefix=/usr "

Note that you will need to have root priviledges to be able to install the program in system
directories like /usr or /usr/local .

Interestingly, since version 4.0 of rpm, it is possible to build rpm files with a suitably
made source tar.gz tarball. This source tarball is nothing than a file containing the source
files of the software package along with the corresponding spec file (the same we discussed
above). The tar.gz source tarballs in any of the polyxmass software suite modules complies
with this format, and thus it is possible to build rpm-based files running this very simple
command as root, for package polyxcalc, for example:
bash-2.04 $ rpmbuild -ta polyxcalc.tar.gz "
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At the end of the package building process, the two source and binary files are ready in
the /usr/src/redhat subdirectories (see above).

Installation On A Mac OS X System With Fink
The Mac OS-X operating system can run GNU software when the Fink porting system
is installed (please, visit http://fink.sourceforge.net for details on this project). The
notes below were kindly provided to me by Dr Mark Tracy. If you find errors, they are mine,
and I am the only one to be blamed for badly transcribing these notes.

polyxmass was successfully installed on the Mac OS-X /Fink platform. For example,
version 0.6.0 of the modules of the polyxmass software suite could be installed using the
info files provided by Dr Mark Tracy. These Fink info files are scripts much like the rpm
spec files. The Fink packaging system relies on the usual tar.gz source files, which may be
used without modification5. However, the case may arise that the Mac OS-X /Fink platform
requires that the package maintainer changes the code of the source tree for one or more
packages in the polyxmass suite. In this case patches should be applied to the original
source tarballs so that these code modifications are recreated when intalling the packages
on the Mac OS-X /Fink platform. In this case, the patch files would be distributed along
with the source tarball files and the info files. Providing patch files for the software to build
correctly on any given platform is the task of the package maintainer.

Once you have downloaded all the required files (info, patch, tar.gz), the installation
process is as easy as doing the following:

First, since these info scripts may not yet be available through the Fink server, you need
to copy them to the right place and go there to continue (run command as superuser):

bash-2.04 # cp *.info /sw/fink/10.2/local/main/finkinfo
bash-2.04 # cd /sw/fink/10.2/local/main/finkinfo

Note that, in the future, the info scripts will be placed in the right directory by the Fink
server. Now, install the packages –in order– by issuing the following commands:6

bash-2.04 # fink install polyxmassdata "
bash-2.04 # fink install libpxmutils0 "
bash-2.04 # fink install libpxmchem1 "
bash-2.04 # fink install polyxdef "
bash-2.04 # fink install polyxcalc "
bash-2.04 # fink install polyxedit "

If the software packager did everything right, Fink will calculate the dependencies, and
ask you if you want to install the dependent packages. When all is finished, open a new
X-terminal window to run the software (yes, it has to be new and it has to be X).

This is all is needed to understand how to perform the installation of any package in the
polyxmass mass spectrometric software suite. The next chapters will deal with each module

5That’s the case for the version 0.6.0 of all the polyxmass modules.
6While the rest of the process happens you can read the user documentation. During the installation of

the libraries, Fink will ask if you want to install the -shlibs also: say yes.

http://fink.sourceforge.net
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separately. The software packages in the polyxmass software suite should be installed in
the following order:

1. polyxmassdata

2. libpxmutils

3. libpxmchem

4. polyxdef

5. polyxcalc

6. polyxedit

Each module is described in its own chapter, with all the details that are required so that
the user gets an intimate knowledge of the way the whole polyxmass mass spectrometric
software suite works.



3
Basics in
Polymer

Chemistry
This chapter will introduce the basics of polymer chemistry. The way this topic is going to be
covered is admittedly biased towards mass spectrometry and biological polymers. Moreover,
the aim of this chapter is to provide the reader with the specialized words that will later be
used to describe and explain the (inner) workings of the polyxmass program. This manual
is not a “crash course” in biochemistry!

Polymers? Where? Everywhere!
Indeed, polymers are everywhere. If you ask somebody to show you something polymeric,
he/she will point you at the first plastic object in the vicinity. Right, plastic materials are
made of hydrocarbon polymers. But we have many different polymers in our body. Proteins
are polymers, complex sugars are polymers, DNA (the so-called “molecule of heredity” is a
huge polymer. There are polymers in wine, in wood... Where? Everywhere!

The Oxford Advanced Learner’s Dictionary of Current English gives for polymer the
following definition: natural or artificial compound made up of large molecules
which are themselves made from combinations of small simple molecules.

15
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A polymer is indeed made by covalently linking small simple molecules together. These
small simple molecules are called monomers, and it is immediate that a polymer is made of
a number of monomers. A general term to describe the process that leads to the formation
of a polymer is polymerization. It should be noted that there are many ways to polymerize
monomers together. For example, a polymer might be either linear or branched. A polymer
is linear if the monomers that are polymerized can be joined at most two times. The first
junction links the monomer to an elongating polymer (thus making it the new end of the
elongating polymer which, by the way, is longer than before by one unit) and the second
junction links the new elongating polymer’s end to another monomer. This process goes on
until the reaction is stopped, the point at which the polymer reaches its finished state. A
branched polymer is a polymer in which at least one monomer is able to contract more than
two bonds. It is thus clear that a single monomer linked three times to other monomers will
yield a “T-structure”, which is nothing but a branched structure.

In the following sections we’ll describe a number of different kinds of polymers. Each time,
they will be described by initially detailing the structure of their constitutive monomers; next
the formation of the polymer is described. At each step we shall try to set forth each polymer
characteristics in such a manner as to introduce the way polyxmass’ “thinks polymers” and
to introduce specialized terminologies.

Once the basic chemistries (of the different polymers) have all been described, we will
enter a more complex subject that is of enormous importance to the mass spectrometry
specialist: polymer chain disrupting chemistry. We shall see that this terminology actually
involves two kinds of chemistries: cleavage on the one hand and fragmentation on the other
hand.

While polyxmass is basically oriented to linear single stranded polymer chemistries, it
also can be used to simulate highly complex polymer chemistries. Biological polymers are
the main focus of this manual, however all the concepts described here may be applied with
no modification (or so slight) to synthetic polymer chemistries.

Well, time has come to make a “biochemical polymers” tour. The reader who feels at
home with biopolymers may skip joyfully the next sections. However, the section pertaining
to polymer lysis and fragmentation should be of interest even to the expert because they are
the opportunity to introduce a “funny” terminology that is not encountered anywhere else
(have you ever heard of “leftrighrules” or of “fragrules”?!).

Various Biopolymer Structures
Biopolymers are amongst the most sophisticated and complex polymers on earth and it cer-
tainly is not a mistake to take them as examples of how monomers (be these complex or not)
can assemble covalently into life-enabling polymers. In this section we will visit three differ-
ent polymers encountered in the living world: proteins, nucleic acids and polysaccharides.
We shall be concerned with 1) the monomers’ structure, 2) the polymerization reaction and
3) the final capping reaction responsible for putting the polymer in its finished state.

Proteins
These biopolymers are made of amino acids. There are twenty major amino acids in nature,
and each protein is made of a number of these amino acids. The combinations are infinite,
providing enormous diversity of proteins to the living world.
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Figure 3.1: Peptidic bond formation by condensation. The left end monomer R1 is
condensed to the right end monomer R2 to yield a peptidic bond. A water molecule is lost
during the process.

A protein is a polar polymer: it has a left end and a right end. This means that the
polymerization process is something ordered, from left to right.

The Figure 3.1 shows that the chemical reaction at the basis of protein synthesis is a
condensation. A protein is the result of the condensation of amino acids with each other in
an orderly polar fashion. A protein has a left end (called N terminus; amino terminal end)
and a right end (called C terminus; carboxyl terminal end). The left end is an amino group
(2HN–) corresponding to the amino group of the non-reacted amino acid. Upon condensation
of a new amino acid onto the first one, the carboxyl group of the first amino acid reacts with
the amino group of the second amino acid. A water molecule is released, and the formation
of a bond between the two amino acids yields a dipeptide. The right end of the dipeptide
(and of a polypeptide –i.e. of a protein– also, of course) is a carboxyl group (–COOH)
corresponding to the un-reacted carboxyl group of the last amino acid to have “polymerized
in”.

The bond formed by condensation of two amino acids is an amide bond, also called –in
protein chemistry– a peptidic bond. The elongation of the protein is a simple repetition of the
condensation reaction shown in Figure 3.1, granted that the elongation always proceeds in
the described direction (a new monomer arrives to the right end of the elongating polymer,
and elongation is done from left to right).

Now we should point at a protein chemistry-specific terminology issue: we have seen
that a protein is a polymer made of a number of monomers, called amino acids. In protein
chemistry, there is a subtlety: once a monomer is polymerized into a protein it is no more
called a monomer, it is called a residue. We could say that a residue is an amino acid less a
water molecule.

From what we have seen until now, we could define a protein this way: —“A protein
is a chain of residues linked together in an orderly polar fashion, with the residues being
numbered starting from 1 and ending at n, from the first residue on the left end to the last
one on the right end”. This definition is still partly inexact, however. Indeed, from what is
shown in Figure 3.2, there is still a problem with the extremities of the polymer chain: what
about the amino group on the left end of a protein (the amino group sits right onto the first
amino acid of the protein), and what about the carboxyl group of the right end of a protein
(the carboxyl group sits right onto the last amino acid of the protein)? These two groups are
un-reacted, in fact. If we followed the new “residue-based” definition of a protein polymer,
we would say that there is a proton in excess on the left end and a hydroxyl in excess on the
right end. However, these two chemical groups are not actually in excess, they are called (in
polyxmass) the cappings or caps of the polymer (this terminology is also used in polymer
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Figure 3.2: End capping chemistry of the protein polymer. A protein is made of a
chain of residues and of two caps. The left cap is the N-terminal proton and the right cap is
the C-terminal hydroxyl. Altogether, the residual chain (enclosed here in the blue polygon)
and both red-colored caps (H and OH) do form a complete protein polymer.

science). They ensure that the polymer is in a finished state, which means that it cannot be
elongated anymore, on whichever end. The proton is the left cap of the protein polymer and
the hydroxyl is the right cap of the protein polymer.

Now comes the question of unambiguously defining the structure of a protein. It is
commonly accepted that the simple ordered sequence of each residue code in the protein, from
left to right, constitutes an unambiguous description of the protein’s primary structure. Of
course, proteins have three-dimensional structures, but this is of no interest to a program like
polyxmass, which is aimed at calculating masses of polymers. To enunciate unambiguously
the sequence of a protein, you would use a symbology like this:
using the 3-letter code of the amino acids:

Ala Gly Trp Tyr Glu Gly Lys
or, using the 1-letter code of the amino acids:

A G W Y E G K
Alanine is thus the residue 1 and Lysine is the last residue (n = 7).

This primer in protein chemistry should be sufficient for the moment. Let us now go to
see how nucleic acids differ from the proteins (and they do no little).

Nucleic Acids
These biopolymers are more complex than the proteins are. This is mainly due to the fact
that nucleic acids are composed of monomers that have three different parts, and because
those parts differ in DNA and RNA. Nucleic acids are made of nucleotides. A nucleotide
is the nucleic acid’s brick: a nucleotide consists of a nitrogenous base combined with a ri-
bose/deoxyribose sugar and with a phosphate group. There are two different kinds of nucleic
acids: deoxyribonucleic acid, also known as DNA (the sugar is a deoxyribose) and ribonucleic
acid, also known as RNA (the sugar is a ribose). DNA is most often found in its double
stranded form, while RNA is most often found in single strand form. There are four nitroge-
nous bases for each: Adenine, Thymine, Guanine, Cytosine for DNA; in RNA only one of
these bases changes: Thymine is replaced by Uracile.

A nucleic acid is a polar polymer: it has a left end and a right end (same as for proteins,
remember?). This means that the polymerization process is something ordered, from left to
right (sometimes left is up and right is down in certain vertical representations found mainly
in textbooks).

This manual is not to teach biochemistry, which is why I am not going to describe the
structure of the monomers in atomic detail. However, since it is important to understand how
the polymerization occurs, I drew the Figure 3.3 which shows the polymerization reaction
mechanism between a nucleotide and another one, to yield a dinucleotide.

The Figure 3.3 shows that the chemical reaction that is at the basis of nucleic acid
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Figure 3.3: Phosphodiester bond formation by esterification. The arriving monomer
(on the right) has its triphosphate on the 5’ carbon of the sugar esterified by nucleophilic
attack of the first phosphorus by the alcohol function beared by the 3’ carbon of the (de-
oxy)ribose sugar ring of the left monomer. The bond that is formed is a phosphodiester
bond, with release of a pyrophosphate group (Pi). Note that the sugar and nitrogenous
bases are schematically represented in this figure.

synthesis is an esterification. A nucleic acid has a left end (called 5’ end; often this end is
phosphorylated) and a right end (called 3’ end; hydroxyl end). The reaction is the attack
of the phosphorus of the new (deoxy)nucleotide triphosphate by the 3’OH of the right end
of the elongating nucleotidic chain. Upon esterification, an inorganic pyrophosphate (PPi)
is released, and the formation of a phosphodiester bond between the two nucleotides yields
a dinucleotide. The elongation of the nucleic acid polymer is a simple repetition of this
esterification reaction so that the chain growth is always in the 5’=⇒3’ direction. This is
achieved in the living cells by what is called the 5’=⇒3’ polymerase enzymatic activity.

The conventional representation of a nucleic acid involves showing the 5’ end on the left,
and the 3’ end on the right, horizontally. Sometimes, to clearly indicate that the left end is
phosphorylated, while the right end is not, the ends are indicated as “5’P” and “3’OH”.

Figure 3.4 shows a simple way to formalize what a nucleic acid polymer is. The molecule
represented on the left is the representation of the “monomer” in the sense that the polymer
is made of a number of these monomers (if you put in the presented formula the proper
nitrogenous base and the proper sugar –ribose or deoxyribose–, you will get the nucleotide
of your choice). We have seen previously that, in the specific case of the protein polymer
chemistry, the monomer is called residue once it is polymerized into the polymer chain. In
the case of the nucleic acids, there is no such specific term, we just call the monomeric unit a
nucleotide. The formula represented on the left of the Figure 3.4 shows the repetitive element
in a nucleic acid polymer, exactly the same way as we had shown the residue formula in the
protein polymer chemistry section. Indeed, as we had explained earlier with proteins, the
formula shown on the right of the Figure 3.4 illustrates that the nucleic acid polymer needs
to be set to a finished state. The atoms shown in red (outside the boxed repetitive elements)
are the nucleic acid caps. Thus, we see clearly that in the case of the nucleic acid polymers,
the left cap is a hydroxyl and the right cap is a proton. This anecdotically happens to be
the exact converse of what we described earlier for proteins.

Now comes the question of unambiguously defining the structure of a nucleic acid. It is
commonly accepted that the simple ordered sequence of the named nitrogenous bases in the
nucleic acid, from left (5’ end) to right (3’ end), constitutes an unambiguous description of
the nucleic acid sequence. To enunciate the sequence of a gene, you would use a symbology
like this:
for a DNA, using the 1-letter code of the nitrogenous bases: A T G C A G T C
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Figure 3.4: End capping chemistry of the nucleic acid polymer. A nucleic acid is made
of a chain of nucleotides (left formula) and of two caps. The left cap is the hydroxyl group
that belongs to the terminal phosphate of the 5’ carbon of the sugar. The right cap is the
proton that belongs to the hydroxyl group of the 3’ carbon of the sugar ring (right formula).
Altogether, a finished nucleic acid polymer is made of the nucleotidic chain (enclosed here in
the blue polygon), made of the repetitive elements (one of which is shown on the left), and
of the two caps (red-colored OH and H, out of the box on the right).

for an RNA, using the 1-letter code of the nitrogenous bases: A U G C A G U C
Adenine is thus the base 1 and Cytosine is the last base (n = 8).

Polysaccharides
These biopolymers are almost certainly amongst the more complex in the living world. This
is mainly due to the fact that saccharides are usually heavily modified in living cells. There
are a huge variety of chemical modifications occurring on these biopolymers. Furthermore,
the ramifications in the polymer structure are more often the normal situation than not.
Interestingly these molecules are first thought of as the “fuel” for the cell, which is certainly
far from being total non-sense, but it is clear that their structural role is extremely important.
Their ability to form complex structures has been exploited in living systems for identification
processes. There are a number of complex sugars on the cell walls. . .

Nonetheless, the general picture is not that complex, if we only think of the way monomers
are polymerized together. As far as we are concerned, in fact, the polymerization mechanism
is a simple condensation. In this respect, everything looks much like with proteins; some
people do use the same terminology: a monomer sugar becomes a residue once polymerized
in the saccharidic chain.

There are two main different kinds of sugars: pentoses (in C5) and hexoses (in C6); it
should be noted, however, that there is a variety of other common molecules, like sialic acids,
heptose. . .

A saccharidic polymer is polar: it has a left end and a right end (same as for proteins and
nucleic acid, should you remember!). This means that the polymerization process is some-
thing ordered, from left to right. The terminology regarding the ends of a saccharidic polymer
is rather unexpected at first sight: the left end is said to be the non-reducing end while the
right end is said to be the reducing end. Historically this was observed with monosaccharides
(also called monoses), which reduced cupric (Cu2+) ions, thus getting oxydized themselves
on the carbonyl (when in the open ring aldehydic form).

Figure 3.5 shows the polymerization reaction between a sugar and another one (2 glucose
monomers, actually), to yield a maltose disaccharide. The polymerization mechanism is a
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Figure 3.5: Osidic bond formation by condensation. The two monomers are subject
to condensation with loss of one molecule of water.

1 n

Figure 3.6: End capping chemistry of the polysaccharidic polymer. A polysaccharide
is made of a chain of osidic residues (blue-boxed formula) and of two caps (red-colored atoms).
The left cap is the proton group that belongs to the non-reducing end of the polymer. The
right cap is the hydroxyl group that belongs to the reducing end of the polymer.

simple condensation. The elongation of the polysaccharidic polymer is a simple repetition of
this condensation reaction so that the chain growth is always in the same orientation, from
non-reducing end to reducing end.

The conventional representation of a polysaccharide involves showing the non-reducing
end on the left, and the reducing end on the right, horizontally.

Figure 3.6 shows a simple way to formalize what a saccharidic polymer is. The top formula
is the representation of the “monomer” in the sense that the polymer is made of a number
of these monomers. The bottom formula represents a polysaccharide, with the repetitive
elements boxed (there are n monomers polymerized). The atoms shown in red (outside the
boxed repetitive elements) are the saccharidic polymer caps. Thus, we see clearly that in
the case of polysaccharides, the left cap is a proton and the right cap is a hydroxyl. This
anecdotically happens to be identical to the protein case and the exact converse of what we
described previously for nucleic acids.

Now comes the question of unambiguously defining the structure of a saccharidic polymer.
It is commonly accepted that the simple ordered sequence of the named monoses in the
saccharidic polymer, from left (non-reducing end) to right (reducing end), constitutes an
unambiguous description of the glycan sequence. To enunciate the sequence of a glycan, you
would use a symbology like this:
using a 3-letter code:
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polymer name code formula left cap right cap

protein H OH
Glycine G C2H3O1N1

Alanine A C3H5O1N1

Tyrosine T C9H9O2N1

nucleic acid OH H
Adenine A C10H12O5N5P1

Cytosine C C9H12O6N3P1

saccharide H OH
Arabinose Ara C5H8O4

Heptose Hep C7H12O8

Note: LC=left cap; RC= right cap

Table 3.1: Quick comparison of three biopolymers with examples of monomers

Ara Gal Xyl Glc Hep Man Fru
Arabinose is thus the monose 1 and Fructose is the last monose (n = 7).

Incidentally, this is where the ability of polyxmass to handle monomer codes of non-
limited length comes in handy!

To Sum Up
We have very rapidly made an overview of the three major polymers in the living world. A
great many other polymers exist around us.

Table 3.1 on page 22 tries to sum up all the informations gathered so far. Note that the
formulae given for the monomers are the “residual” ones. For example, the formula of the
glycyl residue corresponds to the formula of the Glycine monomer less one molecule of water.

Many synthetic polymers are much simpler than the ones we have rapidly reviewed, and
it should be clear that, if polyxmass can deal with the complex biopolymers described so
far, it certainly will be very proficient with less complex synthetic polymers. Describing the
formation of polymers is one thing, but we also have to describe how to disrupt polymers.
This is what we shall do in the next section.

Polymer Chain Disrupting Chemistry
As we initially spoke of “polymer chain disrupting chemistry” earlier, we said that this was a
complex subject, and that it was of enormous importance to the mass spectrometrist. This
is why we will treat this subject in a pretty thorough manner.

First of all we should insist on the fact that chemically modifying a polymer does not
necessarily mean that the chain structure of the polymer is perturbed. Here, however,
we are concerned specifically with the chemical modifications that yield a polymer chain
perturbation; cleavage and fragmentation:

✱ A cleavage is a chemical process by which a molecule will act directly on the
polymer making it fall into at least two separated pieces (the oligomers). As a result
of the cleavage reaction, groups originating in the cleaving molecule remain attached
to the polymer at the precise cleavage location;
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✱ A fragmentation is a chemical process by which the polymer structure is dis-
rupted into separated pieces (the fragments) mainly because of energy-dependent elec-
tron doublet rearrangements leading to bond breakage.

Here are the details pertaining to each one of these two very different processes:

Polymer Cleavage
We said above that, upon cleavage of a polymer, the cleaving molecule reacts with it, and
by doing so directly or indirectly “dissolves” an inter-monomer bond. A polymer cleavage
always occurs in such a way as to generate a set of true polymers (smaller in size than the
parent polymer, evidently, which is why they are called oligomers). Indeed, let us take the
example shown in Figure 3.7, where a tripeptide (a very little protein, containing a methionyl
residue at position 2) is submitted either to a water-mediated cleavage (hydrolysis, upper
panel) or to a cyanogen bromide-mediated cleavage (lower panel). The two cases presented
in this figure are similar in some respects but different in other respects:

✱ in both cases the bond that is cleaved is the inter-monomer bond (in protein chemistry
this is a peptidic bond);

✱ in both cases the Oligomer 2 has the same structure;

✱ in the first case the molecule that is responsible for the cleavage is water, while in the
second case it is cyanogen bromide;

✱ the structures of the Oligomer 1 species differ when produced using water or cyanogen
bromide as the cleaving molecule.

The difference between hydrolysis and cyanogen bromide cleavage is the Oligomer 1
species: the cyanogen bromide cleavage has a side effect of generating a homoserine as
the right end monomer of Oligomer 1, while hydrolysis generates a genuine methionine
monomer. This is because water reverses in a very symmetrical manner what polymerization
did (hydrolysis is the converse of condensation), while cyanogen bromide did some chemical
modification onto the generated Oligomer 1 species.

Nonetheless, the reader might have noted that –interestingly– all the four oligomers do
effectively have their left cap (a proton) and their right cap (the hydroxyl). This means
that in both water and cyanogen bromide-mediated cleavage, all the generated oligomers are
indeed true polymers in the sense that: 1) they are a chain of monomers (modified or not)
and 2) they are correctly capped (i.e. they are polymers in their finished state). This is
important because it is the basis on which we shall make the difference between a cleavage
process and a fragmentation process.

Thus, the polyxmass definition of an oligomer might be: an oligomer is a polymer (of
at least one monomer) in its finished state that was generated upon cleavage of a longer
polymer.

When the polymer cleavage reaction precisely reverses the reaction that was performed
for the same polymer’s synthesis, there is no special difficulty. But when the cleavage reaction
modifies the substrate, then this should be carefully modelled. How? To answer this question
we might start by comparing the two different Oligomer 1 species that were yielded upon
the water-mediated and the cyanogen bromide-mediated cleavage reactions: “the hydrolysis-
generated Oligomer 1 is equal to the cyanogen bromide-generated Oligomer 1 +S1 +C1 +H2
-O1”; this is a big difference! The observations we did so far might be worded this way:
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Figure 3.7: Protein cleavage by water and cyanogen bromide. A tripeptide (pretty
small protein) is cleaved at position 1 either by hydrolysis (top) or by cyanogen bromide
(bottom). Cyanogen bromide cleaves specifically on the right of a methionine monomer.
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Whenever a protein undergoes a cyanogen bromide-mediated cleavage, the

“-C1H2S1+O1”

chemical reaction should be applied to the resulting oligomers if and only if they have a
methionine monomer at their right end. This logical condition is called, in polyxmass’
jargon, a leftrightrule, and will be described later (see page 52).

Well, this sounds reasonable. But what about the “normal” case, when the cleavage is
done using water? Nothing special: the mass of the oligomer is calculated by summing the
mass of each monomer in the oligomer (since the monomers are not modified this is easily
done) and the masses corresponding to both the left and right caps (these are defined in the
polymer chemistry definition; in our present case it would be a proton on the left end, and
a hydroxyl on the right end). In this way, the oligomer complies with its definition, which
states that it is a faithful polymer made of monomers and that it is in its finished state.

Yes, but then how will polyxmass manage to calculate the mass of the modified oligomer,
like our Oligomer 1 in the case of the cyanogen bromide-mediated cleavage? Simple enough,
in a first step it does exactly the same way as for the unmodified oligomer. Next, each
oligomer is checked for presence or absence of a methionine residue on its right end. If
a methionine is found, the mass corresponding to the “-C1H2S1+O1” chemical reaction is
applied. And that’s it!

In the previous cyanogen bromide example, the logical condition was involving the iden-
tity of the oligomers’ right end monomer, but other examples can involve not the right end
monomer, but the left end monomer, if some chemical modification was to occur to the
monomer sitting right of the cleavage location. In this case the user would have to analyse
the situation and provide polyxmass with the proper chemical reaction by stating some-
thing analog to: if and only if they have a Xyz monomer at their left end (note the partial
analogy with the case described above).

For the moment this is enough polymer cleavage abstraction, as the rest of the description
pertaining to the cleavage specification definition is thoroughly detailed at page 52.

Polymer Fragmentation
In a fragmentation process, the bond that is broken is not necessarily the inter-monomer
bond. Indeed, fragmentations are oft-times high energy chemical processes that can affect
bonds that belong to the monomers’ internal structure. This is one of the reasons why
fragmentations do differ from cleavages: they are specific of the polymer type in which
they occur. Hydrolyzing a protein and an oligosaccharide is just the same process, from a
chemical point of view. But fragmenting a protein or an oligosaccharide are truly different
processes because the way that the fragmentation happens in the polymer sequence is so
much dependent on the nature of each monomer that makes it.

Another peculiarity of the fragmentations, compared with the cleavages that were de-
scribed above, is the fact that there is no cleaving molecule starting the process. Instead, a
fragmentation process is often initiated by an intra molecular electron doublet rearragement
that propagates more or less in the polymer structure to eventually break it. Fragmentations
are mainly a gas phase process, not some reaction that happens in solution as a result of
putting in contact the polymer and some reagent. It is precisely because no cleaving molecule
is involved in the fragmentation process that the fragments are not necessarily capped like a
normal polymer should be; and this is another really important difference between cleavage
and fragmentation.

Let us illustrate these concepts through two examples: proteins and nucleic acids.
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Protein Fragmentation

There is a pretty important number of different kinds of fragments that can be generated
upon fragmentation of peptides. We are going to detail the most common ones; the user is
invited to use the polyxmass’ fragmentation-specification grammar to add less frequent (or
newly discovered) fragmentation types.

As can be seen from Figure 3.8, the fragmentations do generate fragments of three cat-
egories: the ones that include the left end of the precursor polymer (a, b, c), the ones that
include the right end of the precursor polymer (x, y, z), and finally the special case in which
the fragment is an internal fragment, like the immonium ions. When looking at the fragmen-
tations described in the figure it becomes immediately clear why a fragmentation cannot be
mistaken for a cleavage: the ionization of the fragment is not necessarily due to the captation
of a proton by the fragment. Furthermore, we can also see that a fragmentation is not a
cleavage because the fragment that is generated is absolutely not necessarily what we call a
polymer, in the sense that the fragment might not be capped the same way as the precursor
polymer is (in its finished state).

The two observations above should make clear to the reader that calculating masses
for fragments is a more difficult process than what was described above for the oligomers.
Indeed, while it was simple to calculate the mass of an oligomer (by simply adding the masses
of its constitutive monomer units, plus the left and right caps, plus ionization), here there
is no chemical formalism generally applicable to all the fragment types. This is why the
specification of the fragmentation is left to the user’s responsibility.

By looking at Figure 3.8, the reader should have noticed that the fragment naming
scheme takes into consideration the fact that the fragment bears the left or the right end of
the precursor polymer (or none, also). Indeed, the numbering of fragments holding the left
end of the precursor polymer sequence begins at the left end, and for fragments that hold the
right end at the right end. Thus the third fragment of series a –a3– would involve monomers
[1→3]; and the third fragment of series y –y3– would involve monomers [6→4] (in the figure
these left-to-right and right-to-left directions are symbolized using arrows). Therefore, it
should appear to the reader how important –when specifying a fragmentation– it is to clearly
indicate from which end of the precursor polymer the fragment is generated (in polyxmass
jargon this is “LE” for left end, “RE” for right end and “NE” for no end). polyxmass knows
what action it should take when it encounters one of these three specifications; for example,
if a “LE” specification is found for a given fragmentation specification, polyxmass adds to
the fragment’s mass the mass corresponding to the left cap of the precursor polymer.

Now that the stage is set we can start rationalizing fragment specifications, and thus
mass calculations.

a fragment series If we take the a fragment series, the Figure 3.8 indicates that the
fragments include the left end and that their last monomer lacks its carbonyl group (see, on
top of Figure 3.8, that the a1 arrow goes between the CαH and the CO of monomer 1?).
So we would say that each fragment of the a series should be challenged with the following
chemical treatments: 1) addition of the mass corresponding to the left cap (proton), 2)
removal of the mass corresponding to the lacking CO group. This way we have the mass of
fragment a1. If we were interested in the fragment a4 we would have summed the masses
of monomers 1 to 4, added the mass of the left cap, and finally removed the mass of a CO;
that’s it. The mass calculation is thus mathematically expressed

ai = LC +
i∑
1

Mi − CO
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m (z1) = m (monomer 6) −N1H1 + right cap (O1H1) (variant: +H1)

m (y1) = m (monomer 6) + H2 + right cap (O1H1)

m (x1) = m (monomer 6) + C1O1 + right cap (O1H1)

canonical monomer

+
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+
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m (a1) = m (monomer 1) − C1O1 + left cap (H1)

m (b1) = m (monomer 1) + left cap (H1)

m (c1) = m (monomer 1) + N1H3 + left cap (H1)

In some cases (high CID energy) the z fragment is often seen as a species of mass z+1

*

Note how a z fragment is identical to a [y −NH3] fragment. *

Figure 3.8: Protein fragmentation patterns most widely encountered. An hexapep-
tide is fragmented in the seven most widely encountered manners, such as to generate a, b,
c, x, y, z and immonium fragment ions. The figure illustrates the position of the cleavage for
each kind of fragment (exemplified using the case of the smallest fragment possible) and the
mass calculation method is described for each fragment kind; consider that each fragment
bears only one positive charge.
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b fragment series Similarly, the mass calculation is mathematically expressed

bi = LC +
i∑
1

Mi

c fragment series The mass calculation is mathematically expressed

ci = LC +
i∑
1

Mi + NH3

x fragment series For this series of fragments we do not add the left cap anymore, but
replace it with the right cap, since the fragments hold the right end of the precursor poly-
mer. Note also that the numbering of the monomers using the variable i in the following
mathematical expressions goes from right to left (contrary to what happened for the a, b,
c fragment series. All the fragments that hold the precursor polymer right end are num-
bered this way, so this applies to fragments x, y, z. The mass calculation is mathematically
expressed

xi = RC +
i∑
1

Mi + CO

y fragment series The calculation is mathematically expressed

yi = RC +
i∑
1

Mi − CO

z fragment series In low energy CID, the z fragments are expressed this way:

zi = RC +
i∑
1

Mi − CO

which is equivalent to y-NH3; in high energy CID an additional proton is often measured:

zi = RC +
i∑
1

Mi − CO + H

immonium fragment series These fragments are internal fragments in the sense that
they do not hold neither of the two precursor polymer’s ends. polyxmass understands that
the user is speaking of this kind of fragment when the “from which end” piece of data –in
the fragmentation specification– states “NE” instead of “LE” or “RE” (see page 55). The
mass calculation for these fragments does not take into account the monomers surrounding
the one for which the calculation is done. The mass for an immonium ion –at position i in
the precursor polymer– will be the mass of the monomer at position i, less the mass of a
CO, plus the mass of a proton. The mass calculation for these special internal fragments is
expressed

immi = Mi + H − CO
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Nucleic Acid Fragmentation

The fragmentations that can be obtained with nucleic acid are numerous and it is more
complicated than with proteins to describe them fully. The main reason for this is that there
are a big number of fragmentation combinations because of the loss of nitrogenous bases
from the skeleton. The mechanisms by which this loss happens are fairly complex, and I
am not going to detail any of them. Figure 3.9 shows the most common fragmentations
(without taking into consideration the potential loss of bases). An example of fragment is
given for each fragment series (pretty the same way as we did before for proteins). Note that
the fragment representations are aimed at helping the reader to figure out what the product
ion is, not taking into account where the negative charge lies on the fragment, since this
charge can float around at every de-protonatable group. All the fragments shown bear one
and one only negative charge.

The reader might have noticed –at the bottom of the figure– that a provision is made in the
case the fragmented molecular species are not 5’ end-phosphorylated but 5’ end-hydroxylated.
Indeed, the canonical monomer is such that, upon polymerization and left capping, the 5’
end is phosphorylated. However, oft-times the oligonucleotides are synthesized chemically
without the 5’ end phosphate group, thus ending in hydroxyl. This special case should
be accounted for by applying to all the fragments that bear the left end of the precursor
polymer the following chemical reaction: −HPO3. This chemical reaction should be applied
in addition to the chemical reaction that yields the fragment per se.

Exactly as we did for the protein fragments, we are giving below the mathematical ex-
pressions used to calculate the mass of different series of nucleic acid fragments; in these
calculations we assume that the left end of the precursor polymer is phosphorylated (5’ P)
and the reader should bear in mind that this precise phosphate might itself be expelled by
the fragmentation. The fragment naming scheme consideration that we emitted for protein
fragments above (left-to-right or, conversely, right-to-left) applies here also in an identical
manner.

a fragment series These fragments most often appear with base loss.

ai = LC +
i∑
1

Mi −O

b fragment series

bi = LC +
i∑
1

Mi

c fragment series

ci = LC +
i∑
1

Mi −HPO2

d fragment series

di = LC +
i∑
1

Mi −HPO3
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Figure 3.9: DNA fragmentation patterns most widely encountered. A short DNA
sequence is fragmented in the eight most widely encountered manners, such as to generate
a, b, c, d, w, x, y, z fragment ions. The figure illustrates the position of the cleavage for
each kind of fragment (exemplified using the case of the smallest fragment possible). and the
mass calculation method is described for each fragment kind; considering that each fragment
is protonated only once (+1).
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w fragment series

wi = RC +
i∑
1

Mi + O

x fragment series

xi = RC +
i∑
1

Mi

y fragment series

yi = RC +
i∑
1

Mi −HPO2

z fragment series

zi = RC +
i∑
1

Mi −HPO3

There are also a variety of fragments for which a base is lost. But we cannot describe
them all!

More Complex Patterns Of Fragmentation

Before finishing with fragmentations, it is necessary to describe a powerful feature of the
fragmentation specification grammar available in polyxmass. This feature was required for
the fragmentation of oligosaccharides and also sometimes for proteins. When the fragmenta-
tion (the bond breakage reaction itself) occurs at the level of certain monomers, it might be
necessary to be able to specify some particular chemistry that would arise on the monomer
in question.

We have seen in the cleavage documentation that, upon cleavage of a protein sequence
with cyanogen bromide, for example, a particular chemical reaction had to be applied to the
oligomers that were generated with a methionine monomer as their right end monomer. Well,
in a fragmentation specification it is possible to apply comparable chemical reactions but in
a more thorough manner. Indeed, while in the cleavage it was possible to say something
like “apply a given chemical reaction to the oligomer if the right end monomer is Xyz”,
in the fragmentation the logical condition can be bound not only to the identity of the
currently fragmented monomer, but also (optionally) to the identity of the previous and/or
next monomer in the precursor polymer sequence. For example: —“Apply a given chemical
reaction if fragmentation occurs at the level of “Xyz” monomer only if it is preceded by a
“Yxz” monomer and followed by a “Zyx” monomer”.

These logical conditions are called fragrules. A fragspecif can hold as many fragrules as
necessary. Thus we see that a fragmentation specification is a multi-part specification, with
a fragspecif optionally integrating fragrule objects. . . All of this is described in great detail
at page 55.
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To Sum Up

To sum up all what we have seen so far with polymer chain disrupting chemistries:

✱ A polymer sequence gets cleaved into oligomers when a chemical reaction occurs in it at
the level of one or more inter-monomer bond(s); monomer-specific chemical reactions
can be modelled into the cleavage specification using at most one leftrighrule;

✱ A polymer sequence gets fragmented into fragments when a bond breakage occurs,
without the help of any exterior molecule, at any level of the polymer structure, with
no limitation to the inter-monomer bond; monomer-specific chemical reactions can be
modelled into the fragmentation specification using any number of fragrules;

✱ Oligomers are automatically capped –on both ends– using the rules described in the
precursor polymer’s definition;

✱ Fragments are capped automatically only –on the end they hold, if any– using the rules
described in the precursor polymer’s definition;

✱ Oligomers are automatically ionized (if required by the user) using the rules described
in the precursor polymer’s definition;

✱ Fragments are never ionized automatically; ionization (gain/loss of a charged group)
is necessarily integrated in the fragmentation specification.
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Mass
Spectrometry

Mass spectrometry has become a “buzz word” in the field of structural biology. While it has
been used for long to measure the molecular mass of little molecules, its recent developments
have brought it to the center of the analytical arsenal in the field of structural biology (also of
“general” polymer science). It is now current procedure to use mass spectrometry to measure
the mass of polypeptides, oligonucleotides (even complete transfer RNAs!) and saccharides,
amongst other complex biomolecules.

A mass spectrometer is usually described by giving to its three main different “regions”
a name suggestive of their function:

✱ the source, where production of ionized analytes takes place,

✱ the analyzer, where the ions are electrically/magnetically “tortured”,

✱ the detector, where the ions arrive, are detected and counted.

Before letting Mass Spectrometry in, I would like to state once for all: mass spectrometry
is aware of ionized molecular species only . . .

Now, enter Mass Spectrometry

33
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Ion Production: The Source

Indeed, mass spectrometry cannot do anything as long as the molecule to analyze (analyte)
is not in a charged state. The process of creating an ion from an un-charged analyte is
called ionization. Well, most of the times the ionization is favored by adapting the sam-
ple’s pH to a value higher/lower than the isoelectric pH of the analyte, which will elicit
the appearance of (a) charge(s) onto it. In cases where the analyte cannot be charged by
simple pH variations (small molecule that does not bear any ionizable chemical group), the
ionization step might require –on the massist’s part– use of starker ionization techniques,
like electronic impact ionization or chemical ionization. In biopolymer mass spectrometry,
the pH strategy is usually considered the right way to proceed. The ionization process might
involve complex charge transfer mechanisms (not fully understood yet, at least for certain
ionization/desorption methods) which tend to ionize the analyte in a way not predictable by
looking at the analyte’s chemical structure.

Ion production should not be uncoupled from one important feature of mass spectrom-
etry: solvent evaporation –in case of liquid sample delivery to the mass spectrometer– and
sample desorption –in case of solid state sample introduction. The general idea is that mass
spectrometry works on gas phase ions. This is because it is of crucial importance, for a
correct mass measurement to take place, that the analyte be totally freed of its chemical im-
mediate environment. That is, it should be “naked” in the gas phase. Equally important is
the fact that ions must be capable of travelling long distances without ever encountering any
other molecule in their way. This is achieved by pumping very hard in the two regions called
“analyzer” and “detector”. In this respect, the source is a special region because, depending
on the design of the mass spectrometer, it might be partially at the atmospheric pressure
during mass spectrometer operation. It is not the aim of this manual to provide insights into
mass spectrometer design topics (I just would not be able to enter into the physics details!),
but the general principle is that mass spectrometry involves working on gas phase ions. This
is why a mass spectrometer is usually built on extremely reliable pumping technology aimed
at maintaining for long periods of time (with no sudden interruption, otherwise the detec-
tor might suffer seriously) a good vacuum in the conduit in which ions must flow during
operation.

The Analyzer

Once an ion has been generated in the gas phase, its mass should be measured. This is a
complex physical process. Depending on the mass spectrometer design, the mass measure-
ment is based on more or less complex physical events. Magnetic mass spectrometers are
usually thought of as pretty complex devices; this is also the case for the Fourier transform
ion cyclotronic resonance devices. An analyzer like the time of flight analyzer is much more
simple. I will refrain from trying to explain the physics of the mass measurement, just limit
myself saying that –at some stage of the mass measurement process– forces are exerted on
the ions by electric/magnetic fields (incidentally, this explains why it is so important that an
analyte be ionized, otherwise it would not be subject to these fields). The ionized analytes
submitted to these forces have their trajectory modified in such a way that the detector
should be able to quantify this modification. Roughly, this is the measurement process.
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What Is Really Measured?
Prior to entering into some detail, it seems necessary to make a few definitions1:

✱ unified mass scale (u): IUPAC & IUPAP (1959-1960) agreed upon scale with 1 u equal
to 1/12 the mass of the most abundant form of carbon; the dalton is taken as identical
to u (but not accepted as standard nomenclature by IUPAC or IUPAP), it is abbreviaed
in Da.

✱ a former unit was “a.m.u.” (i.e. “atomic mass unit”). It should be considered obsolete,
since based on an old 1/16 of 16O standard;

✱ the mass of a molecule (also “molecular mass”) is expressed in daltons. The symbol
commonly used is “M” (not “m”), as in “M+H” or “M+Na”. . . Symbol “m” is already
employed for ion mass (as in “m/z”);

✱ the mass-to-charge ratio (“m/z”) of an ion is the ion’s mass (in daltons) divided by
the number (z) of elementary charges. Hence “m/z” is “mass per charge” and units of
“m/z” are “daltons per charge”;

✱ nominal mass: the integral sum of the nucleons in an atom (it is also the atomic mass
number);

✱ exact (also known as accurate) mass: the sum of the masses of the protons and neutrons
plus the nuclear binding energy;

In the previous sections I used to say that a mass spectrometer’s task is to measure
masses. Well, this is not 100 % exact. A mass spectrometer actually allows to measure
something else: it measures the m to z ratio of the analyte, which is denoted m/z. What
is this “m to z ratio” all about? Well, we said above that a mass spectrometer has to exert
forces on the ions in order to determine their m/z. Now, let us say that we have an electric
field of constant value, E. We also have two ions of identical masses, one bearing one charge
(q) and the other one bearing two charges (2q) –positive or negative, no matter in this
discussion. These two ions, when put in the same electric field E, will “feel” two different
forces exerted on them: F1 and F2. It is possible to calculate these forces (F1 = qE and
F2 = 2qE). Evidently, the ion that bears two charges is submitted to a force that is twice
as intense as the one exerted on the singly charged ion.

What does this mean? It means simply that the numeric result provided by the mass
spectrometer is not going to be the same for both ions, since the physics of the mass spec-
trometer takes into account the charge level on each different analyte. Our two ions weigh
exactly the same, but the mass spectrometer simply can not know that; all it knows is how
a given ion reacts to the electric field it is put in. And our two ions, evidently, will react
differently.

When we say that a mass spectrometer measures a m/z ratio, the z of this ratio represents
the sum of all the charges (this is a net charge!) that sit onto the analyte. But what does
the m stand for? The molecular mass? No! The m stands for the mass of the whole analyte
ion, which is –in a word– the measured mass. This is not the molecular mass (which would
be M), it is the molecular mass plus/less the mass of the chemical entity that brings the
charge to the analyte. When ionizing a molecule, what happens is that something brings (or
removes) a charge. In biopolymer chemistry, for example, often the ionization is a simple

1Interesting posting signed by Ken I. Mitchelhill in the ABRF mailing list at http://www.abrf.org/

archives, and a document published by the California Institute of Technology.

http://www.abrf.org/archives
http://www.abrf.org/archives
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protonation/deprotonation. If it is a protonation, that means that an electronic doublet (on
some basic group of the analyte) captures a proton. This brings the mass of a proton to the
biopolymer (' 1 Da). Conversely, if it is a deprotonation (loss of a proton by some acidic
group, say a carboxylic that becomes a carboxylate) the polymer looses the mass of a proton.
Of course, if the ionization involves a single electron transfer the mass difference is going to
be so feeble as to be un-measurable on a variety of mass spectrometers.

Let us try to formalize this in a less verbose manner by using a sweet amino acid as an
example:

✱ the un-ionized analyte (Glycine) has the following formula: C2H5O2N1;
the molecular mass is thus M = 75.033 Da;

✱ the analyte gets protonated in the mass spectrometer:

C2H5O2N1 + H ⇀ C2H6O2N1

the measured mass of the ion is thus m = 75.033 + 1.00782 Da and the charge beared
by the ion is thus z = +1.

✱ the peak value read on the mass spectrum for this analyte will thus be:

value =
m

z
=

M + 1.00782
z

= 76.04

with z = +1

We see here that the label on the mass spectrum does not correspond to the nominal
molecular mass of the analyte: the ionizing proton is “weighed” with the Glycine molecule.

Imagine now that, by some magic, this same Glycine molecule just gets protonated a
second time. Let’s do exactly the same type of calculation as above, and try to predict what
value will be printed onto the mass spectrum:

✱ the un-ionized analyte (Glycine) has the following formula: C2H5O2N1;
the molecular mass is thus M = 75.033 Da;

✱ the analyte gets protonated in the mass spectrometer two times:

C2H5O2N1 + 2H ⇀ C2H7O2N1

the molecular mass of the ion is thus M = 75.033 + 2.01564 Da and the charge beared
by the ion is thus z = +2.

✱ the peak value read on the mass spectrum for this analyte will thus be:

value =
m

z
=

M + 2.01564
z

= 38.52

with z = +2

Oh! yes!, this time it is absolutely clear that a m/z is not a molecular mass! By the way,
if the Glycine happened to be ionized negatively the calculation would have been analogous
to the one above, but instead of adding the mass of the proton(s) we would have removed
it. It is that simple.

Summing up all this in a few words: an ionization involves one or more charge transfer(s)
and in most cases (at least in biopolymer mass spectrometry) also involves matter transfer(s).
It is crucial not to forget the matter transfer(s) when ionizing an analyte. This means that
when an ionization process is described, its description ought to be complete, clearly stating
three different pieces of information:
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✱ the charge transfer (net charge that is beared by the analyte after the ionization has
completed);

✱ the matter transfer (optional; usually something like “+H1”);

✱ the ionization level (0 means “no ionization”; usually this would be 1 for a single
ionization, but might be as large as 30 if, for example, you were ionizing myoglobin with
electrospray ionization (protonation). In this case the m/z value would be computed
this way:

value =
m

z
=

M + 30 · 1.00782
30

=
16959 + 30.2346

30
= 566.30

with z = +30

By now, the reader should have grasped the importance of understanding well the ion-
ization formalisms for accurately predicting/analyzing mass spectrometric data!

In the next chapters of this manual we will describe how polyxmass works and how the
user might take advantage of its powerful capabilities. In a first chapter I will introduce some
general concepts around the way the program behaves. Next, in the remaining part of this
manual, a chapter will be dedicated to each important polyxmass function or characteristic.
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5
polyxmass

Generalities
In this chapter, I wish to introduce some general concepts around the polyxmass program.

General polyxmass Concepts
The polyxmass mass spectrometry software suite has been designed to be able to “work”
with every polymer on earth. Well, in a certain way this is true. . . A more faithful account of
the polyxmass’ capabilities would be: “The polyxmass software suite works with whatever
polymer chemistry the user cares to define; the more accurate the polymer chemistry defini-
tion, the more polyxmass will be accurate”. Sounds like much of the responsibility for the
proper functioning of the polyxmass framework is in the hands of the user? That is true!
However, with polyxmass the user has a framework at hand to define polymer chemistries
so as to suit his needs.

The main concept that drove the design of the entire polyxmass framework is abstrac-
tion. Indeed, for the program to be able to understand a variety of possibly very different
polymers, it had to be written using some abstraction layer between the way masses are
computed and the way the polymer is described “in memory”. This abstraction layer is
implemented by using a “polymer chemistry definition-driven” set of functionalities. The
polymer chemistry definition drives all the mass computations, all the polymer sequence
editing, all the polymer chemistry reactions. . . This is how the polyxmass software suite
makes it possible to handle any polymer type. To implement this abstraction paradigm, the
polyxmass mass spectrometry framework was designed to be modular, as described below.
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The polyxmass mass spectrometry software suite comprises the following packages (not
all of them installing actual executable programs):

1. libpxmutils where housekeeping functions are implemented; this library is not graphical and of

little interest to the pure chemist;

2. libpxmchem where all the chemical intelligence of the polyxmass software framework lies; this

library is not graphical and may be interesting to the chemist so as to understand what a monomer

or an oligomer is, from a programmatic standpoint;

3. polyxmassdata where all the configuration files are stored, like the different sample polymer

chemistry definition files, the little graphics files that are used in the polymer sequence editor to render

and display graphically the polymer sequence in a polymer chemistry definition-specific manner. . .

4. polyxdef where the user will easily define brand new polymer chemistries, which will produce a

polymer chemistry definition, later saved in a polymer chemistry definition file; this module is an

executable graphical user interface file;

5. polyxcalc where the user will easily perform sophisticated mass calculations either using an avail-

able polymer chemistry definition or simply using the predefined set of atoms; this module is an

executable graphical user interface file;

6. polyxedit where the user will easily create/edit polymer sequence files that are of any available

polymer chemistry definition, so that mass spectrometric simulations may be performed; this graphical

user interface module is the core module for all the user-driven chemical reaction simulations, like

modifying a monomer, cleaving the polymer sequence, gas phase fragmenting an oligomer. . .

The fact that the polyxmass software suite is able to handle any polymer chemistry
is, as we said above, due to its ability to interface a polymer sequence with a polymer
chemistry definition. To explain this clearly, imagine a protein sequence that would be this
tetrapeptide: “ATGC”, which reads as “AlanineThreonineGlycineCysteine”. Now imagine
a DNA sequence: “ATGC”, which reads as “AdenineThymineGuanineCytosine”. The two
sequences would be entered in a sequence editor by keying in the following key sequence:�� ��A

�� ��T
�� ��G

�� ��C . But, of course, you’d expect that the masses for the DNA sequence be much
higher than the masses for the protein sequence.

This is where abstraction comes in, and modularity also. In order to let the user per-
form as flexibly as possible the required computations, she first defines two different polymer
chemistries: the first named “protein” and the second named “dna”. In each of the poly-
mer chemistry definitions, the user will enter a formula corresponding to each monomer
(A,T,G,C). Of course the monomer formula for a Threonine is very different than the one
for a Thymine. This is performed in the polyxdef module (here is modularity). Once a
polymer chemistry definition is saved, it may be made available to the system (we’ll see how
this is done). And when a polymer chemistry definition is made available to the system, any
new polymer sequence may be created that abides by this polymer chemistry definition. By
having all the polymer chemistry specifications in a polymer defintion file, the polyxmass
mass spectrometry software suite is able to deal with any polymer sequence that complies
with the given polymer chemistry definition. This association between a polymer sequence
and a polymer defintion is the abstraction layer that we mentioned above. Once this is well
understood, the originality of the polyxmass software framework is understood. This is
precisely what sets polyxmass apart from the other mass spectrometry-related software
offerings.
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Since the different functionalities offered by the polyxmass framework are well confined
in three graphical user interface modules, we’ll review each of such modules in the later
chapters.

Before going on with the description of the different modules, I would like to introduce
some other more chemistry-oriented concepts that are going to be used throughout the
polyxmass framework.

On Formulae And Chemical Reactions
It is all the more frequent for any user who runs any of the polyxmass’ modules to make
use of formulae or of chemical reactions. These two chemical entities are not identical in
polyxmass. While a formula represents a chemical status (a monomer has a given formula,
and does not change it), a chemical reaction is something much more dynamic, I should say
“active”.

This difference is very important in polyxmass. Let’s take an example: the Lysyl
monomer (we call a protein “residue” a “monomer”) has the following formula: C6H12N2O.
If I wish to acetylate this Lysyl monomer, the reaction will read this way: “An acetic acid
molecule will condense onto the amine of the Lysyl side chain”. This can also read: —
“An acetyl group enters the Lysyl side chain while a hydrogen atom leaves the Lysyl side
chain; water is lost in the process”. If we wanted to put this into a more chemistry-oriented
representation, we could write this:

R−NH2 + CH3COOH 
 R−NH− CO− CH3 + H2O

That is more briefly stated this other way: “−H2O + CH3COOH”. This is exactly what
polyxmass calls an “actionformula” –or, for brevity– an “actform”. Simply because there
are actions that are associated with formulae; here the H2O formula is associated with the
−, which indicates that the water molecule leaves the molecules being reacted, while the
CH3COOH formula is associated with the +, which means that the acetic acid molecule
enters in to the target molecule. The net formula is thus, as stated earlier: —“An acetyl
group enters the Lysyl side chain while a hydrogen atom leaves the Lysyl side chain; water
is lost in the process”.

The formula and actform chemical entities are not interchangeable in the polyxmass
framework.

The polyxmass Framework Data Format
All the data in the polyxmass framework are stored on disk as XML-formatted files. XML
is the eXtensible Markup Language. This “language” allows to describe the structure of a
document. Have you ever opened an HTML file with a text editor? If so, you have certainly
seen some markup like <H1>This is the title</H1>. The browser that loads this file will
understand (because it has been programmed to do so) that the title “This is the title” is to
be displayed onto the screen using a bold sans-serif font, for example. Well, let us just say
that the XML file format is an immensely more powerful equivalent of HTML.

There would be a lot. . . a lot to say about XML and Document Type Definitions: I’ll
refrain from entering into the details.

The big advantage of using such XML format in polyxmass is that it is a text format, and
not a binary one. This means that any data in the polyxmass package is human-readable
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(even if the XML syntax makes it a bit difficult to read data, it is actually possible). Try to
read one polymer chemistry definition .xml file from the polyxmassdata package (say, the
protein-sample.xml file, for example), and you’ll see that this is pure text (the same
applies for the .pxm polymer sequence files in the same package. The advantages of using
text file formats, with respect to binary file formats are:

✱ if somebody sends you a file and you do not have the program that made it, you still
can extract information from the file, because it is readable by any text editor;

✱ if a text file (such as your most important polymer sequence XML file) gets corrupted
for some reason (i.e. during backup on a bad support, or whatever) you will still be
able to extract from the corrupted file all the bits of information that surround the
portion that is corrupted, thus minimizing the data loss. This would be impossible
with binary files, as they are just totally useless if a single part of them is corrupted;

✱ imagine you would like to write down a simple script that would allow you to find –in
a given directory– all the sequence files that contain the “myo” character string in the
polymer’s name field (in XML a field is called element). You can do it easily without
asking anybody for the file format specification –because your sequence files are just
text files.

As an example of how simple it is I’ll just write a bash shell script below that I’ll save
into the polname-find.sh file in order to execute it afterwards. That is how the shell
script looks like in the polname-find.sh file:

bash-2.04 $ cat polname-find.sh "

for i in *.pxm

do grep "<name>.*myo.*</name>" $i ;

if [ $? == 0 ]

then

echo "in file $i"

fi

done

Now we should make this brand new file executable so we can run it:
bash-2.04 $ chmod u+x polname-find.sh "

Upon execution of this script, the output looks like this:
bash-2.04 $ ./polname-find.sh "

<name>myoglobin-horse</name>

in file myoglob-h.pxm

<name>myosin-chicken</name>

in file myos-chck.pxm

<name>myo-fragment1</name>

in file myofrag1.pxm

<name>apomyoglobin-rabbit</name>

in file apomyo-rbt.pxm
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The script has gone through all the *.pxm files and for each file has searched a start tag
<name> followed by some string containing “myo” followed by the end tag </name>. If “myo”
is found, the corresponding line is printed to the screen, and the name of the file containing
this pattern is printed also.

With a binary file format this would simply have been impossible. This little script lets
you screen a big database like a snap. That’s the power of UNIX and UNIX -like operating
systems.

Editing the Data in polyxmass Files
The aim of polyxmass is to let people use the software the way they like, with no pre-
conception on the way they interact with it. The XML files (polymer sequence or polymer
chemistry definition files) can be edited using the graphical interface but also using a simple
text editor. Figure 5.1 shows two rather different means to the same end: editing a poly-
mer chemistry definition file. The Document Type Definition (DTD) is not shown on the
right pane of the figure, since it is at the top of the file being displayed. This DTD will
help the user to determine how to edit the file in a safe way, by telling where each element
is authorized to be, and so on. . . You’ll need to learn XML if you wish to understand the
DTD (a sunday afternoon will suffice). Usually, the safer way to do any editing is by using
the graphical interface, not because the polyxmass framework understands the edited data
better this way, but because the graphical interface layout (acting like a data correctness
censor) just prevents the user from writing badly-formed data directly in the XML file.

The example shown in Figure 5.1 can be transposed to the polymer sequence XML files in
a very same way. Of course all the process that leads to “creating” a new polymer chemistry
definition is going to be explained in detail in a later chapter(see chapter 6, page47).

General Polymer Element Naming Policy
Unless otherwise specified, it is strongly suggested not to insert any non-alphanumeric-non-
ASCII character (space, %, #, $. . . ) in the strings that the user enters to identify polymer
chemistry definition items. This means that, for example, the user must refrain from using
non-alphanumeric-non-ASCII characters for the atom name and symbol, the name, the code
or the formula of the monomers or of the modifications, or of the cleavage specifications, or
of the fragmentation specifications. . . It is important not to cripple these polymer data for
two main reasons:

✱ so that the program performs smoothly;

✱ so that the results can be easily and clearly displayed when time comes to print all the
data.

Graphical Interface Design
For those coming to UNIX after having used MS Windows (like me), I would like to state
some general graphical interface design specificities of the UNIX world. The MS Windows
graphical environment was designed in such a way that the user is very strictly restricted
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Figure 5.1: Comparison of a graphical and a text way of editing a polymer chem-
istry definition file. The left pane shows the graphical interface that is exposed to the user
when defining a polymer. The right pane shows the same XML file opened in the Emacs
editor with the XML editing mode switched on.
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to a narrow path each time she initiates an action. That policy has often led to arbitrary
limitations in the design of software running on the MS Windows systems.

This is not going to be exactly the same with a UNIX graphical environment: you almost
certainly are going to quickly have a great number of windows opened on your desktop; you
are the one who knows when to close a results window, not the program designer. When
a window is opened, it is not going to be systematically required that it be closed before
opening another one. This has a simple reason: imagine that you wanted to compare the
oligomers generated by using two different enzymes on the same polymer sequence; you’ll
need both results windows to be opened at the same time, otherwise how comparison of
oligomers could happen? That reasoning is true for a number of situations, and –yes– you’ll
be responsible for closing the windows you do not need anymore!

This general behaviour is highly desirable, since it indeed allows the user to make com-
parisons between the data from two different experiments right after having generated the
data. But this behaviour introduces a risk: how will it be possible to ascertain that any
given set of peptides does come from the cleavage of the first protein using cleaving-agent-1
and not from the cleavage of the first protein using cleaving-agent-2? In other words: how
are you going to recognize which results window contains the peptides of the first cleavage,
and which other results window contains the peptides obtained from the second cleavage?
There is an answer: each time a window is displayed –if there is a risk of ambiguity– it will
show the identity of the polymer to which it is related. This identity is nothing else than
the unique memory address of the polymer to which the window is related.

In any situation where an ambiguity exists about the identity of the data generated on
any given polymer sequence, a traceability system is used, as shown in Figure 5.2.

Feedback From polyxmass To The User
Something very specific to the UNIX and UNIX -like systems (and that I really like) is the
fact that the programs are usually designed to be “verbose” (if the user asks this). The
usual means to giving feedback in other systems is to pop up a “dialog” window in which a
message is displayed, and the user has to acknowledge in order to close the dialog window.
polyxmass has been implemented with the “console” philosophy in mind: every message
that it wishes to“hand out” to the user is sent to the console window from which the program
was started.

There are two levels of very important messages: the CRITICAL and the ERROR level
messages. The CRITICAL messages indicate that time has come to make a quick save of
all the data, because something bad might happen. ERROR messages cannot even be read
in the console window, because they elicit an abortion of the program. These abortions are
voluntary on the polyxmass’ part, because the error is so bad that it would crash anyway
soon or later.
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Figure 5.2: Unambiguous identification of polymer sequences and related data.
When a polymer sequence is loaded/created, it is assigned a numeric value that unambigu-
ously identifies it (for the programmer, this is the pointer to the polymer structure). Each time a
window is displayed that contains data pertaining to any given polymer sequence (oligomers
generated by cleavage of a given polymer sequence, for example), it is given a reference to
the polymer whence the data came, and this reference is the polymer’s identity number.
This is clearly visible in this Figure, where the sequence has a number 0x81e2d20 and all the
related windows display the same number. Note that the cleavage results data have another
identifying number (0x82c35a0) that is later used to trace the mass find results data (last
bottom window).
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The polyxdef

module:
Definition Of

Polymer
Chemistries

After having completed this chapter you will be able to accomplish the very first steps needed
to use the polyxmass framework’s features at best. In order to use the program, indeed, it
is required that the polymer on which you would like to experiment be defined according to
a number of rules that will be detailed in the remaining sections of this chapter.
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polyxdef Invocation
The polyxdef module is simply called by its name: polyxdef from a command line. The
user is invited to launch the following command and to inspect the various options that it
accepts:
bash-2.04 $ polyxdef --help "

This command produces the following output:

Usage: polyxdef [OPTION...]
-d, --details prints the copyright owner and the licensing

of the program
-l, --license prints the license type of the program
-v, --version prints the version of the program

Help options:
-?, --help Show this help message
--usage Display brief usage message

Various Identification And Singular Data
“Identification data” are pieces of information that should be defined in order to describe
the polymer (these are non-chemical pieces of information). For example, an identification
datum is the polymer chemistry definition type. “Singular data” are pieces of information
that are not present in more than one copy in the polymer definition. An example of a
singular datum is the string that describes how the elongating polymer sequence should
be left- or right-capped so that it gets in its “finished state”, after the polymerization has
terminated.

Looking at Figure 6.1 while reading the following paragraphs might help. This and
subsequent figures illustrate the process by which a polymer chemistry definition “protein”
is defined.

As the reader can see, there are a number of identification and singular data to be entered
at the top of the polymer chemistry definition window; these are described in the list below:

✱ Polymer Definition Type protein String describing the type of the new polymer chemistry
definition being elaborated;

✱ Polymer Ending’s Chemistry (Caps) Description of the chemical capping reaction that
should happen on both the left and the right ends of the polymer sequence, once it
is successfully polymerized and should be set to its “finished state”. This chemistry is
divided into two pieces of information:

✦ Left Cap +H String describing the actform that should be applied to the elongating
polymer on its left end;

✦ Right Cap +OH String describing the actform that should be applied to the elon-
gating polymer on its right end;

✱ Maximum Number of Allowed Characters For A Monomer Code 1 This integer value
indicates the maximum number of characters that may be used to describe monomer
codes. See below for details about this critical value;
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Figure 6.1: Interface for the definition of the polymer, monomers. This window
shows two different parts, the top half is for the user to enter the polymer identification and
singular data, and the bottom part is specialized for the plural data (here showing monomers
definition tab). The figure shows how the data should be entered. For example, no double
quotes are required when entering strings. Finally, a field is reserved for the number of
characters allowed to describe a monomer’s code (bottom of the window).



50 CHAPTER 6. THE POLYXDEF MODULE

✱ Polymer Ionization Rule This rule describes the manner in which the polymer sequence
should be ionized by default, when the mass is calculated. This rule actually holds two
elements:

✦ Actform +H String describing what chemical reaction should be applied to the
polymer in order to ionize it. Here we ask that all the proteins be protonated
once by default;

✦ Charge 1 Signed numerical value indicating what charge the polymer will hold
once the ionization rule’s actform has been applied to it. Here, it is asked that
the proteins bear one positive charge after that the default mono-protonation
mentioned above has taken place.

Now that we have defined the identification and singular data for the polymer, we will
go on with another type of data: “plural data”. Conversely to what said previously about
singular data, plural data are pieces of information that can be present in more than one
copy in the polymer chemistry definition. An example of plural data is the data pertaining
to the monomers. Of course, if your are working on polystyrene, you will almost certainly
have one monomer in your polymer chemistry definition. But what if you work on DNA or
proteins? Let us see what plural data are all about.

Various Plural Data

The Monomers
The monomers are the constitutive blocks of the polymer sequence. Their definition should
be done with great care, as all the mass calculations are based on the formulae of the
defined monomers. Remember that in our polyxmass’ jargon, “monomer” stands not for
the molecule that you bought from the chemicals vendor in order to synthesize the polymer;
it stands for this molecule less the chemical group(s) that left it when the polymerization
occurred. If this sounds strange to you, you definitely should read chapter 3, page 15 for a
detailed explanation of the polyxmass specialized words.

The lower part of Figure 6.1 shows how easy it is to define a new monomer. This is as
easy as entering three strings in each column of a row (that may be created by clicking onto
the Add button). Note that none of the two Name and Formula strings are limited in size.
You could give a monomer a name two gigabytes-long. . . Of course this would not make
much sense.

The case of the Code string is a bit more complicated and depends on the value that is
entered in the Maximum Number of Allowed Characters For A Monomer Code field. In our
example, this value is 1, which means that we are allowed to use only one character to
describe a monomer’s code. Thus, we can see in the figure that all the monomers have a
single-character code. It is possible however, to use another value, for example 3. In this
case there is a general rule which is enforced in polyxdef : “The first character of a monomer
code must be uppercase, while the remaining characters (if any) must be lowercase”. That
means that in our example of 3-character codes, “A”, “Al”, “Ala” would be perfectly fine,
while “Alan”, “AL”, “a”, “AlA” would be wrong.

The mechanism here is highly sophisticated, contrary to what may look like, because
you have to imagine what goes on in the different polyxmass modules, in particular in the
polymer sequence editor (polyxedit): how are monomer codes keyed in if “A” and “Ala”
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Figure 6.2: Interface for the definition of the polymer modifications. This is the
same window as for Figure 6.1, but this time the modifications definition tab of it is shown.
This figure shows that a modification is simply defined by two strings, a Name string and an
Actform string.

are valid monomer codes in a polymer chemistry definition? The magic is described in the
chapter about polyxedit.

Not conforming to the instructions above will yield unpredictable results.

The Modifications
Oft-times a polymer will be modified chemically by the user. This is especially true when
the user tries to mimick polymer chemical modifications that arise in biochemical processes,
in particular regulatory modifications, like protein phosphorylations, for example. Indeed,
a biopolymer is modified more often than not. A modification can be a phosphorylation
onto a protein residue (on an alcohol function-bearing residue) like a serine, for example, or
an acetylation onto a amino function-bearing residue. The polyxmass mass spectrometry
framework gives the user the entire freedom to define any number of modifications. Let us
see how; once again, looking at Figure 6.2 will help.

The Figure 6.2 shows, amongst others, how a Phosphorylation modification is defined.
Most evidently, a modification is defined by a Name string (of unlimited length) and by an
Actform string (of unlimited length). The syntax of an actform should by now be somewhat
familiar to the reader. In the phosphorylation case, it can be read like this: —“The polymer
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looses a proton and gains H2PO3”. When the polymer is modified with this modification,
its masses will change by the mass corresponding to this “reaction”. Of course, the fact that
the actform is written this way is related to the fact that a chemist always thinks in terms
of “leaving” and “entering” groups. However, a user might perfectly write “+HPO3” instead
of “-H+H2PO3”. Both actforms are exactly identical from a molecular mass point of view
(and thus also from the polyxmass’ point of view).

The Cleavage Specifications
It is common practice –in biopolymer chemistry, at least– to cut a polymer into pieces using
molecular scissors like the following:

✱ proteases, for proteins;

✱ nucleases, for nucleic acids;

✱ glycosidases, for saccharides. . .

For each different polymer type, the molecular scissors are going to be somewhat specific.
Indeed, a protease will almost certainly be unable to cleave whatever polysaccharide. The
specificity of a cleaving enzyme is thus something that should be described in each polymer
chemistry definition, since this specificity is indeed polymer chemistry-specific. Here we show
the way that the user can define the cleavage specificity of a molecular scissor. As usual,
looking at Figure 6.3 might help in reading the following paragraphs.

By looking at this figure, it should be obvious that defining a cleavage specification gets a
little more involved than what we saw earlier for modifications. This is true only for certain
chemical reagents that modify the substrate they cleave, which is not that frequent. In the
Figure 6.3, the first cleavage specification is “CyanogenBromide” (note that there is no space
between Cyanogen and Bromide in the Name column entry).

Let us analyze the data entered by the user in order to fully qualify this cleavage agent
(which, conversely to the other ones listed in the Name column of the treeview shown in the
figure, is not a protease but a chemical reagent):

✱ Name CyanogenBromide This is merely the name of the cleavage agent;

✱ Pattern M/ This tells the polyxmass framework where to cleave in the polymer se-
quence when a CyanogenBromide cleavage is asked. The syntax of the cleavage pattern
is detailed below;

✱ Left Code and Left Actform (Empty) This is a special case for those cleavage agents
that not only cut a polymer sequence (usually it is a hydrolysis) but that also modify
the substrate in such a way that must be taken into account by polyxmass so that
it computes correct molecular masses for the resulting oligomers. These rules are
optional. However, if Left Code is filled with something, then it is compulsory that Left
Actform be filled with something valid also, and conversely;

✱ Right Code and Right Actform M and -CH2S+O3, respecively. Same explanation
as above. Here, what we say is that each oligomer resulting from the cleavage of
the polymer sequence at a “M” monomer should be modified using the Right Actform
actform. Since the cleavage occurs right of “M”, it is logical that a “M” is found right of
the oligomer that was generated upon a “CyanogenBromide” cleavage. A special case
in which a “M” may be found at the right end of an oligomer, without resulting from a
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Figure 6.3: Interface for the definition of the polymer cleavage specifications. This
is the same window as for Figure 6.1, but this time the cleavage specifications definition tab
of it is shown. This figure shows that a cleavage specification is defined in a more complex
way than previously described for monomers or modifications; see text for further details.
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polymer sequence cleavage, is if the “M” was at the right end of the polymer sequence.
Of course this case is evaluated and if it is found, the the actform is not applied.

In order to best explicate the cleavage specification pattern syntax I shall provide below
some examples:

✱ Trypsin = K/;R/;-K/P “Trypsin cuts right of a K and right of a R. But it does not
cut right of a K if this K is immediately followed by a P”;

✱ EndoAspN = /D “EndoAspN cuts left of a D”;

✱ Hypothetical = T/YS; PGT/HYT; /MNOP; -K/MNOP “Hypothetical cuts
after T if it is followed by YS and also cuts after T if preceded by PG and followed
by HYT. Also, Hypothetical cuts prior to M if M is followed by NOP and if M is not
preceded by K”.

Please, do note that the letters above correspond to monomer codes and not to monomer
names. If, for example, we were defining a “Trypsin” cleavage specification pattern –in
a protein polymer chemistry definition with the standard 3-character monomer codes– we
would have defined it this way: “Trypsin = Lys/;Arg/;-Lys/Pro”.

Now comes the time to explain in more detail what the Left Code and Left Actform (along
with the Right siblings) are for. For this, we shall consider that we have the following polymer
sequence (1-character monomers codes):

THISMWILLMBECUTMANDTHATMALSO

If we cleave this polymer using “CyanogenBromide” and if the cleavage is total,1 we shall
get the following oligomers:

THISM WILLM BECUTM ANDTHATM ALSO

But if there is a partial cleavage, we would also get one or more of these oligomers:

THISMWILLM BECUTMANDTHATM ALSO WILLMBECUTM ANDTHATMALSO

and so on. . .

Now, the biochemist knows that when a protein is cleaved with cyanogen bromide, the
cleavage occurs effectively right of monomer“M”(this we also know already) and that the“M”
monomer that underwent the cleavage is changed from a methionyl residue to an homoseryl
residue (this chemical change involves this actform: “-CH2S+O”). The following two lines of
oligomers should definitely “undergo the actform”, one time only for each oligomer:

THISM, WILLM, BECUTM, ANDTHATM

and

THISMWILLM, BECUTMANDTHATM, WILLMBECUTM

while the two oligomers shown below should not “undergo the actform” because (even if
one of them does contain a “M”monomer) the cleavage did not occur at a this “M”monomer:

1Cleavage occurs at every possible position, right of each monomer “M”.
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ALSO ANDTHATMALSO

This example should clarify why we clearly indicate –in the cleavage specification for
“CyanogenBromide”– that the oligomers resulting from this cleavage should “undergo the
‘-CH2S+O’ actform” only if they have a “M” as their right end monomer code.

This would be of crucial importance, if we had a cleavage agent that would cleave not
only right of “M” but at some other places: we really would need to specify these rules
in a careful way. For example, imagine you had noted –in your many cyanogen bromide
experiments– that more often than rarely cyanogen bromide would cleave right of “C” (cys-
teine) residues, but with no chemical modification of the “C” monomer.2 In this case, you
would be glad that the possibility is given to you to specify that the generated oligomers
should“undergo the ‘-CH2S+O’ actform”only if they have a“M”as their right end monomer,
so that “C”-terminated oligomers are not chemically modified. You would thus safely define
this pattern: “M/;C/”. . . The logical conditions that the user can set forth for a cleavage
reaction are called (in an intuitive manner) Left Right Rules.

Now that we got trained to think in an abstract way with these leftrightrules, we can pro-
ceed to yet meatier stuff: the fragmentation specifications. A polymer chemistry definition
can hold as many fragmentation specifications as necessary. A fragmentation specification
holds a number of pieces of information, amongst which there is a compound datum de-
scribing logical conditions similar but more complex than leftrightrules: fragmentation rules.
Each fragmentation specification might have zero or more (with no limitation) fragmentation
rules. We review this complex matter in the next section.

The Fragmentation Specifications
As you might have noticed reading page 25, the fragmentation specification is a tricky busi-
ness. Figure 6.4 shows examples of protein fragmentation specifications for fragment types
a, b, c, z, y, x, imm.

Let’s concentrate on the fragmentation specification of type a. While the first row of this
fragmentation specification is effectively valid (for a “protein” polymer chemistry definition,
at least), the lower two rows (describing fragmentation rules named a-fgr-1 and a-fgr-2 ) are
fake, only to show the way fully qualified fragmentation specifications can be created.

Let us analyze the data that the user entered to fully qualify this a fragmentation speci-
fication:

✱ Name a This is the name of the fragmentation specification. Fragments obtained with
this specification will be named according to the following naming scheme: “a-i”, with
a being the fragmentation name and i being the position –in the precursor polymer
ion– of the monomer at which the fragmentation occurred (see page 25);

✱ End LE This is the end of the precursor polymer that is to be found in the fragment.
Accepted values are “LE” (left end), “RE” (right end) and “NE” (no end). We have
previously seen –for proteins and nucleic acids– that fragments a, b, c include the left
end (“LE”) of the precursor polymer, while“RE”applies to fragmentation specifications
that lead to fragments that contain the right end of the precursor polymer (for example,
fragments x, y, z ). Special cases, like proteinaceous immonium ions, do not bear any

2This is a purely hypothetical situation that I never observed personally!
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Figure 6.4: Interface for the definition of the polymer fragmentation specifications.
This is the same window as for Figure 6.1, but this time the fragmentation specifications
definition tab of it is shown. This figure shows that a fragmentation specification is defined
in a more complex way than previously described for cleavage specifications; see text for
further details.
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end of the precursor polymer, in which case “NE” (for no end) should be written here
instead of “LE”).

This End piece of information is important for two reasons: 1) because it tells the frag-
mentation engine from which end it should iterate (in the precursor polymer sequence)
when making all the fragments of a given fragment ion series and 2) because it guides
polyxmass to apply the conventional naming scheme using i with the proper value.
Therefore, the smallest fragment of the a series is a-1 (note subscript 1), which is the
left end monomer of the precursor polymer. The smallest fragment of the x series is
x-1 (note that subscript is also 1). This time, the x-1 fragment, however, corresponds
to the right end monomer of the polymer sequence. This is because the numbering of
the fragments always starts at the precursor polymer’s end that was specified by the
End piece of data from the polymer chemistry definition;

✱ Actform -C1O1 Optional. This is the chemical reaction that will actually change a
monomer chain into the proper fragment. Indeed, the mass calculation of the frag-
ment’s mass is performed by summing the mass of the monomers running from the
end of the precursor polymer up to the position where the fragmentation occurs, plus
adding the mass of the end’s cap as specified in the polymer chemistry definition. But,
for the a fragments, this is not enough, as it does not lead to a correct mass. It is
required that the actform “-C1O1” be applied to the monomer chain so that it is of the
correct mass (after having added the mass corresponding to the left cap; see below).
This actform is optional, because for some fragments (for example, fragments b in the
protein polymer chemistry) there is no need for any actform besides adding the masses
of the monomers and adding the mass corresponding to the left cap of the polymer
chemistry definition. As can be seen on the picture, “-H0” is set as an actform for b
fragments. Again, see page 25;

✱ Comment (Empty) Optional. This is simply a comment, if the user wants to set any.
Ad libitum.

A fragmentation specification can include zero or more fragmentation rule(s) that help model
–in a highly detailed manner– complex fragmentation patterns. Let’s see what it takes to
define a fragmentation rule:

✱ Name a-fgr-1 This is the name of the fragmentation rule. It should be self-explanatory
and should somehow provide a hint to the fact that this fragrule belongs to the a
fragmentation specification;

✱ Prev E Optional. This is one of the logical conditions that can be set to be verified so
that the actform can be applied to the fragment currently generated. In our example,
we are saying that if –in the precursor ion sequence– the monomer preceeding the
one that is currently fragmented is of code “E”, then this condition is verified and the
+H200 actform should be applied to the resulting fragment;

✱ This D Optional. This is an analogous condition as the one above, unless the monomer
onto which this condition applies is the monomer being actually fragmented;

✱ Next F Optional. This is similar condition, unless that it applies to the monomer that
is one position forward in the precursor ion sequence, with respect to the presently
fragmented position;
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✱ Actform +H200 This is the chemical action with which the fragment will actually be
challenged if the set of logical conditions above is verified. This actform is the raison
d’être of the fragmentation rule, so it is compulsory;

✱ comment comment here! Optional. Ad libitum.

A fragmentation rule is a set of one or more logical conditions that (if verified) determine
a user-specified chemical actform to be applied to the fragment that was generated in the first
place by fragmenting the precursor polymer using the fragmentation specification to which
the fragrule itself belongs. As can be seen in the example figure, the fragmentation spec-
ification for fragments a (fragmentation specification a) contains two fragmentation rules,
but it could have contained as many of them as necessary to finely describe experimentally
observed fragmentation events. . .

The following paragraph will explain thoroughly how fragmentation rules modify the way
fragments are generated, for a given fragmentation pattern.

We have seen, in our example of a fragmentation specification named a (Figure 6.4), that
it should generate fragments starting from the left end of the precursor polymer. Now we
see that the fragmentation specification includes a fragmentation rule: This is set to “D”,
which means that this fragmentation rule is evaluated further only if the monomer currently
fragmented is indeed a “D”. If not, the whole fragmentation rule is skipped. If Prev is set to
something (for us: “E”), then the fragmentation rule is evaluated further only if the monomer
at position [current -1] is a “E”. If not, the fragmentation rule is skipped. If Next is set to
something (for us: “F”), then the fragmentation rule is evaluated further only if the monomer
at position [current +1] is a “F”. If not, the fragmentation rule is skipped.

What is called a position [current +1] and a position [current -1] depends on the
kind of fragmentation specification: if the fragmentation specification states that End (seen
earlier) is “LE” (or “NE”), then the position [current +1] refers to the position right of the
currently fragmented monomer (in the standard left-to-right polar horizontal representation
of a polymer); if the fragmentation specification states that End is “RE”, then the position
[current +1] refers to the position left of the currently fragmented monomer. This has to do
with the way the fragmentations are normally described: the fragment numbering scheme
starts at the right end of the precursor polymer for “RE” fragments and at the left end of the
precursor polymer for “LE” fragments. This is also true here: for a fragment of the series a,
the fragmentation rule that we have described would effectively be applied to the following
sequence:

MYNAMEISEDFFIL

only upon generation of the MYNAMEISED fragment.

If we were using the same fragmentation rule for a fragment of the series x (for which End
is “RE”), the fragmentation rule would never have been evaluated. Instead, for the following
sequence:

MYNAMEISFDEFIL

it would have, and thus would have generated the fragment EDFIL.

Now, what about internal fragment specifications, like the immonium ions’ case, where the
End is defined to be “NE” in the polymer chemistry definition? polyxmass evaluates the
conditions from left to right; so the conditions are evaluated like for “LE” cases.
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Another important thing to figure out: how are the logical conditions tested? The main
condition (entered as This) is evaluated first, because this is the simplest evaluation: the
value of the This monomer can be compared with the currently fragmented monomer code
without depending on the End value. If the monomer context complies with this condition
(in our example that would mean that we are actually fragmenting at a “D”monomer), other
conditions (if any) are evaluated. Thus, in logic terminology the conditions are ANDed one
with the other: as soon as a condition is stated it must be verified. If any condition is not
verified, no fragment is created and the other fragmentation rules are analysed (if any).

If there are more than one fragmentation rule in a fragmentation specification, each
fragmentation rule is evaluated separately. If the monomeric context (previous/this/next
monomer codes) complies with the logical conditions stated in the evaluated fragmentation
rule, a new fragment is generated. When a fragmentation rule is found not to comply with
the monomer context, then it is simply skipped (no fragment is generated).

It should be noted that the presence of a fragmentation rule in a fragmentation specifica-
tion is not exclusive, in the sense that if the fragmentation rule contains never satisfied logical
condition(s),3 a single fragment is indeed generated, which corresponds to the fragmentation
specification without taking into account any framentation rule.

The fact that each fragmentation rule –that has logical conditions which are verified in
the sequence– yields a new fragment implies that the fragmentation rules are not summative:
a fragment is not generated by applying onto it the actform of each validated fragmentation
rule in a fragmentation specification. Each fragmentation rule, in a given fragmentation
specification, gives rise to a fragment that is a fragment ion resulting from the application of
both the actform specified in the fragmentation specification (if any) and the actform spec-
ified in the fragmentation rule (this one is compulsory). Next, when another fragmentation
rule of the same fragmentation specification is evaluated, a brand new fragment is generated
according to the same process as the one just described.

Saving A Polymer Chemistry Definition
Once the polymer chemistry definition is completed, the user can save it to a file. Prior to
actually writing to the file, the program checks the syntax validity of the elements that the
user has entered in the window. If an error is found in the polymer chemistry definition being
worked on, that error is displayed in a window so that the user may identify the problem
and fix it. If no error is detected, the program proceeds with writing the polymer chemistry
definition to an XML file.

The location where the file should be saved, and the manner that it may be made available
to the whole polyxmass framework is to described in another chapter. Indeed, polyxmass
is a very powerful framework, wholly designed to be modular. But this modularity and power
have a cost: complexity. A well configured system is the key to a powerful program running
smoothly. It is thus very important to grasp the polyxmass framework configuration data
hierarchy so that the program knows at each instant where to find the configuration data
required to perform properly both the polymer sequence display and the mass calculations.

But for now go on with the polymer chemistry definition-aware calculator: polyxcalc!

3Such as if “this monomer’s code” is “Y”, “next monomer’s code” is “Y” and “previous monomer’s code” is
“Y” and there is no “YYY” sequence element in the polymer, for example.
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7
The polyxcalc

module: A
Powerful Mass

Calculator
After having completed this chapter you will be able to perform sophisticated mass compu-
tations in a polymer chemistry-aware manner.

polyxcalc Invocation
The polyxcalc module is simply called by its name: polyxcalc from a command line. The
user is invited to launch the following command and to inspect the various options that it
accepts:
bash-2.04 $ polyxcalc --help "

This command produces the following output:
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Usage: polyxcalc [OPTION...]
-d, --details prints the copyright owner and the licensing of the

program
-l, --license prints the license type of the program
-v, --version prints the version of the program
-t, --type=poltype the type of the polymer chemistry definition

being requested (ie "protein", with no quotes)

Help options:
-?, --help Show this help message
--usage Display brief usage message

polyxcalc Operation: An Easy Task
The way polyxcalc is operated is very easy. This is partly due to the very self-explanatory
graphical user interface of the module, which is illustrated in Figure 7.1.

As the reader can see, there are a number of items that polyxcalc can handle. We are
going to review these one by one:

✱ Initial Masses This is the place where the mass calculator may be seeded so as to
start computations on pre-existing molecules of which masses are known already. The
user may enter either a Mono Mass or an Avg Mass or both masses. When any of these
masses are set and the Result Masses are empty, they are taken into account (polyxcalc
considers that the system is seeded with them) in the first mass calculation that is
elicited by clicking onto the Apply button. Once the Result Masses are no more empty,
these masses are no more taken into account, and instead will be updated to reflect
the previous mass calculation results. Thus, each time a calculation is performed, the
previous results are stored in the Initial Masses text entry widgets. This way, the user
has the ability to always “undo” the last calculation step;

✱ Atom This is a drop-down list widget that contains all the atoms available in the
polyxmass mass spectrometry software framework. The user may select any of these
atoms and enter any number (positive or negative) in the related Count text entry
widget. Entering a positive value means that the selected chemical entity must be
added to the masses, while a negative value will remove this entity from the masses;

✱ Formula/Actform This is a text entry widget where the user may enter as complicated
actforms (or a formula) as she wishes. Same as above applies for the Count text entry
widget;

✱ Monomers If a polymer chemistry definition file was chosen by clicking onto the New
toolbar menu button, this drop-down list widget contains all the monomers listed in the
chosen polymer chemistry definition. For example, if the “protein” polymer chemistry
definition file had been opened in polyxcalc, then this drop-down list widget would
have contained the twenty names of all the naturally-occurring most common monomers
(amino-acids). Same as above applies for the Count text entry widget;

✱ Modifications This is exactly the same as for the Monomers drop-down list widget,
unless the“chemical elements”listed here are the modifications described in the polymer
chemistry definition file, such as“Acetylation”or“Phosphorylation”, for example. Same
as above applies for the Count text entry widget;
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Figure 7.1: Interface of the polyxcalc module. This figure shows that the polyxcalc
polymer definition-aware module can handle atoms, actforms, monomers, modifications and
even polymer sequence for computing masses.
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✱ Polymer Sequence This is a text entry widget were the user may enter a polymer se-
quence complying with the polymer definition currently opened in polyxcalc. A “pro-
tein” sequence may be this “MAMISGMSGRKASPTSPINADK”, for example, which
is the N-terminal end of the chicken gizzard telokin.1 Same as above applies for the
Count text entry widget;

Noteworthy, when polyxcalc is launched without specifying a polymer chemistry defi-
nition, the polymer chemistry definition-specific widgets (monomers, modifications, polymer
sequence; all described above) are made insensitive. This is to make sure that the user cannot
enter data that would not make sense because the chemistry definition is loaded.

The multi-option menu button widget labeled Toggle Atoms Frame actually contains other
similar menu items that unfold when the widget is clicked. The other menu items do exactly
the same for all the other items that we have reviewed above: make them either disappear
or reappear in a switch-like manner. This is so that the graphical user interface may be
simplified if, for example, the user never needs to select individual atoms or modifications. . .

The Operations frame widget contains three widgets:

✱ Apply This button is the one through which all calculations are elicited. When this
button is clicked, all the widgets detailed above are screened and checked for content. If
content is found (let’s say a Modification entity is found in the corresponding widget),
the Count is checked. If this count is non-empty and non-0, the chemical entity is taken
into account in the mass calculations;

✱ Multi-Option Menu Button This widget contains the following sub-menu items:

✦ Add Initial To Result When this multi-option menu item is selected, the masses (if
any) located in the Initial Masses text entry widgetsare added to the ones located
in the Result Masses text entry widgets;

✦ Remove Initial From Result This is a rather similar approach as above, unless the
masses in the Initial Masses text entry widgets (if any) are removed from the ones
in the Result Masses text entry widgets;

✦ Send Result To Initial This is rather self-explanatory: masses from the Result Masses
text entry widgets are sent to the Initial Masses text entry widgets thus overwriting
the masses that could have been displayed there;

✦ Clear Initial Masses Self-explanatory;
✦ Clear Result Masses Self-explanatory;
✦ Clear All Chem. Data This will erase all the data that are currently displayed in the

chemistry-related widgets that we reviewed above. The Count text entry widgets
are also reset to empty;

✦ Cancel Operation This menu item is a “safe-conduit”: if the multi-option menu
was clicked and no available option needs to be chosen, the user must choose this
cancellation option, otherwise any other option that gets selected upon releasing
the widget will be executed.

✱ Clear All This button simply resets to empty all the mass-related and chemistry-related
entry widgets along with all the Count text entry widgets.

The reader may have noticed that, with this interface, any possibly imaginable molecule can
be constructed since the “granularity” of the polyxcalc module is atomic.

1If I remember well my PhD experimental work. . .
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Figure 7.2: Interface of the chemical pad. This figure shows that the chemical pad is
very similar to what a numerical calculator would display. Here, the user has programmed
a number of chemical reactions.

polyxcalc Is A Programmable Calculator
For the scientists who work on molecules that are usually modified in the same usual ways,
polyxcalc features a built-in mechanism by which they can easily program their polymer
chemistry-aware calculator. This programming involves the definition of how a chemical pad
(or chempad) may be arranged, exactly the same way as a usual calculator would display its
numerical keypad.

An example of such a chemical pad is shown in Figure 7.2, where a “protein” polymer
chemistry definition-associated chempad is featured. As shown, the user has programmed
a number of chemical reactions that may be applied to the masses in the polyxcalc main
window by simply clicking on their respective item.

The configuration of the Chempad is very easy, as shown in the code below (excerpt
taken from file polyxmassdata/protein/chempad.conf ):

#chempad_rows$3
chempad_columns$3

chempadkey=protonate%+H1%adds a proton
chempadkey=hydrate%+H2O1%adds a water molecule
chempadkey=0H-ylate%+O1H1%adds an hydroxyl group
chempadkey=acetylate%-H1+C2H3O1%adds an acetyl group
chempadkey=phosphorylate%-H+H2PO3%add a phosphate group
chempadkey=sulfide bond%-H2%oxydizes with loss of hydrogen

What this text file says is very simple:

✱ That the buttons should be arranged in rows of three columns;

✱ Follows the description of a number of buttons (chempad keys) to be laid out in the
chempad (each line describes one button).

Each button is defined in a line that begins with the text chempadkey=. Let’s look at
one button definition, the “phosphorylate” button. The phosphorylate text string after
the = character is the label that will decorate the button that is being configured. The
-H+H2PO3 text string is the actform that should be applied to the result masses in the
polyxcalc main window when this button is clicked; that’s a chemical reaction, in fact.
The add a phosphate group is a text string that is displayed as a tooltip when the mouse
cursor stays for a number of milliseconds over the button.

From a geometrical layout point of view, the user is allowed to set either a number
of rows (chempad_rows$3, in our example) or a number of columns (chempad_columns$3,
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Figure 7.3: The polyxcalc recorder window. This figure shows that the recorder window
is a simple textview widget that records all the mass-significant operations in the polyxcalc
calculator. The text in the recorder may be selected and later used in an electronic logbook
or printed.

in the example). The program then chooses the best layout corresponding to the user’s
requirement.

polyxcalc Is LogBook-Friendly
Each time an action that is chemically relevant –from a mass perspective– is performed, the
program dumps the calculations to the polyxcalc recorder window.

This recorder window is shown in Figure 7.3. The text in the recorder window is editable
for the user to customize the polyxcalc output, and selectable so that pasting to text editors
or word processors is easy.
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The polyxedit

module: A
Powerful

Simulator
After having completed this chapter you will be able to perform sophisticated polymer chem-
istry simulations on polymer sequences –that can be edited in place– along with automatic
mass recalculations.

polyxedit Invocation
The polyxedit module is simply called by its name: polyxedit from a command line. The
user is invited to launch the following command and to inspect the various options that it
accepts:
bash-2.04 $ polyxedit --help "

This command produces the following output:
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Usage: polyxedit [OPTION...]
-d, --details prints the copyright owner and the licensing of

the program
-l, --license prints the license type of the program
-v, --version prints the version of the program

Help options:
-?, --help Show this help message
--usage Display brief usage message

If the user passes to the command line strings that do not correspond to any of the
options above, then polyxedit considers them to be filenames of polymer sequences, and
thus tries to open these files. If a polymer sequence file could not be found or opened, a
warning message is logged to the console.

polyxedit Operation: In Medias Res
A typical polyxedit session looks like what is shown in Figure 8.1 on the facing page.

As the reader can see, there are a number of items that we need to describe and ex-
plain. This is the beginning of a journey in the guts of polyxedit. . . Keep reading the next
numerous sections!

polyxedit Main Program Window: The Menu
In this short section we will review the different menus that are currently available in
polyxedit. It is most probable that new menu items will be added when new features
are added to the program.

As with usual menus, the menus in polyxedit are hierarchical, and we’ll analyse each
parent menu along with its submenus (and subsubmenus):

✱ File

✦ −→New . . . Create a new polymer sequence;

✦ −→Open. . . Open a polymer sequence;

✦ −→Save. . . Save a polymer sequence;

✦ −→Save As. . . Save a polymer sequence with a new name;

✦ −→Close. . . Not yet implemented;

✦ −→Close All. . . Not yet implemented;

✦ −→Quit. . . Quit the program;

✱ View

✦ −→Calc. Options. . . View/Modify the way calculations are performed, be them
mass calculations or elemental composition calculations;

✦ −→Mass Display . . . Open a window where the mono/avg masses are displayed
both of the entire polymer sequence and of the currently selected region;
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Figure 8.1: Interface of the polyxedit module. This figure shows that the polyxedit’s
minimally useful environment is made of four different windows: the program’s main window,
with its menu and toolbar, the calculations options window, the masses display window and
finally a polymer sequence editor with a sequence loaded in it.
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✱ Chemistry

✦ −→Modifications

★ −→Monomer. . . Open a window so that a monomer (or any combination of
monomers) can be modified or unmodified;

★ −→Polymer. . . Open a window so that the polymer sequence can be modified
or unmodified either on its left end or its right end (or both);

✦ −→Cleave. . . Open a window so that a polymer sequence can be cleaved;
✦ −→Fragment. . . Open a window so that a polymer sequence can be fragmented;
✦ −→Compositions

★ −→Elemental. . . Open a window so that options can be set for the program
to compute the elemental composition of the polymer sequence or a region of
it;

★ −→Monomeric. . . Open a window so that options can be set for the program
to compute the monomeric composition of the polymer sequence or a region
of it;

✦ −→Search Masses. . . Open a window so that options can be set for the program
to search arbitrary oligomers in the polymer sequence that have the same mass
as the one(s) searched for.

Displaying Masses
As soon as a polymer sequence is read from disk, the user may want to have masses displayed
for it. The View−→Mass Display menu will open the polyxedit: mass display window that
is shown in Figure 8.1 on the page before. As can be seen, there are three frames in this
window, the first dealing with the polymer sequence data, the other two dealing with masses.

The first mass-related frame (Whole Sequence) contains two text entry widgets where
masses are displayed. The first text entry contains the monoisotopic mass of the whole
polymer sequence (for example, of the entire protein). The second text entry widget contains
the average mass of this same polymer sequence.

The second mass-related frame (Selection) contains two text entry widgets where masses
are displayed, exactly as above, unless this time the masses displayed correspond to the
currently selected region of the polymer sequence. If no selection is currently made, then the
virtual selection is considered to run from the first monomer in the polymer sequence up to
the monomer left of the current cursor location.

Try experimenting with an open polymer sequence and move the cursor around in the
sequence. See how only the Selection masses do change. Also, try selecting some regions in
the text and see how, here also, only the Selection masses do change. Check if, when the
entire polymer sequence is selected, the masses displayed in both the Whole Sequence and
Selection frames are identical or not.

There is only one polyxedit: mass display window in the polyxedit module, even if more
than one polymer sequences are opened. The way masses are displayed for different polymer
sequences is simply by updating the mass values in this window when the focus1 moves from
a polymer sequence to another. This system ensure that the masses that are displayed always
pertain to the currently “active polymer sequence editor window”.

1The focus is placed on a polymer sequence editor window when the mouse cursor hits it; as soon as at
least one polymer sequence window is open, there is always a “last active polymer sequence window”, which
is the polymer sequence window that was hit last with the mouse cursor.
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Configuring The Calculations
As soon as the user wants to have masses displayed for a given polymer sequence, it is
almost certain that she will want to configure the way these masses are computed. The
View−→Calc. Options menu will open a window entitled Calculation Options. This window
is visible on the Figure 8.1 on page 69. As usual, there is a frame that deals with the name
and identity of the polymer sequence for which these options are available.

Another frame, Polymer Sequence contains a number of widgets –mainly checkbuttons– so
that the user can configure which chemical entities must be taken into account when masses
are computed. The checkbuttons are rather self-explanatory.

Another frame, Monomer will let the user define if the monomer chemical modifications
must be taken into account when computing masses.

The last frame, Ionization Rules, will let the user define the way both the whole polymer
sequence and the selection must be ionized. The default ionization step is defined in the
polymer chemistry definition, but the user can modify it in the text entry widgets made
available to her here.

All the configurations that the user will perform in this Calculation Options window will
apply to both the whole polymer sequence masses and to the selection masses (see above for
the definition of these “whole sequence” and “selection” concepts).

Since it may be of great usefulness that two identical polymer sequences be either ionized
differently, or that their masses be computed in different manners, each polymer sequence
window has its own Calculation Options window. This is shown in Figure 8.2 on the next
page: a single polymer sequence file was opened twice as two entirely distinct objects in
memory, so that changing either the sequence or the way masses are computed for one of the
two polymer sequence editors will be relevant only to the corresponding polymer sequence.

This is clearly visible on the Figure 8.2 on the following page because, while both sequence
editor windows display the same Sequence Name text widget’s contents, the ID Number text
widgets do contain different data: the two polymer sequence objects in memory are different
and thus entirely distinct one from the other.

The top polymer sequence has its masses computed by taking into account the monomer
modifications, while the bottom polymer sequence has its masses computed by not taking
into account the monomer modifications. This mechanism gives the user a great flexibility
in the manner any comparison may be performed in the way masses are computed, sequence
differences are monitored real time, by editing one polymer sequence and not the other, for
example. . .

Editing Polymer Sequences
As we have seen in the polyxdef module, the user may stipulate that a polymer chem-
istry definition allows more than one character in order to define the codes of the different
monomers of this same polymer chemistry (see section 6 on page 50). Remember that it is
not because the number of allowed characters is 3, for example, that all your monomer codes
must be defined using three characters. 3 is the max number of characters that you may
use. This means that you are perfectly entitled, in this case, to have single-character or bi-
character monomer codes in this polymer chemistry definition. Let’s start by looking at how
the polymer sequence editor window behaves when the user tries to enter multi-character
monomer codes. Next, we’ll see that whatever the length of a monomer code, if its very
first character is unambiguous, the behaviour of the polymer sequence editor is flexible and
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Figure 8.2: The same polymer sequence opened twice in polyxedit. This figure shows
the same polymer sequence being loaded twice in polyxedit. The two polymer sequence
editor windows are entirely separated in memory.
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powerful.

Multi-Character Monomer Codes
In this section we will describe the editing of a polymer sequence for which monomers can
be described using more than one character.

The Figure 8.3 on the following page shows the case of a polymer sequence that is of a
polymer chemistry definition that allows three characters to define monomer codes. Let’s
now assume that the user wants to edit the sequence by insertion –at the cursor point– of
a new monomer “Aspartate”, of which the user knows only that its code starts with an ‘A’
(panel 1, Figure 8.3 on the next page).

So, naturally, the user keys-in
�� ��A (panel 2, Figure 8.3 on the following page). To her

dismay, nothing happens in the polymer sequence, but she sees an ‘A’ character now displayed
in the left text widget under the label Editing Feedback. The reason why we have this
behaviour is due to the fact that we are allowed up to 3 characters to describe a monomer
code. If no monomer icon is displayed in the polymer sequence, that may simply mean that
more than one monomer code start with an ‘A’ character: polyxedit cannot figure out
which monomer code the user actually means when keying-in

�� ��A .
There is a way, called completion, to know which monomer codes –in the current polymer

chemistry definition– start with the keyed-in character(s) (‘A’ for us now). The user can
always enter the completion mode by using the tabulation

�� ��TAB key. This is what is shown
in the small window right of panel 2, Figure 8.3 on the next page. In the current polymer
chemistry definition, four monomer codes start with an ‘A’ character, and these are “Ala”,
“Arg”, “Asp” and “Asn”. We could be selecting the right monomer by double-clicking onto
the proper list item, which would insert the corresponding monomer icon (“monicon”) in the
polymer sequence at the cursor location. But, since this is a manual, we are going through
another step.

Let’s continue editing the polymer sequence and key-in a
�� ��s (we did not forget that we

wanted to enter an “Asp” monomer code in the first place, did we?). The result is shown in
panel 3, Figure 8.3 on the following page. What we see here, is that this time also, nothing
changed in the polymer sequence. What changed is that there is now a “As” character
string in the left text widget under the label Editing Feedback. Let’s key-in once more the�� ��TAB key, and we get the small window right of the panel 3, Figure 8.3 on the next page.
This time, only two items are listed: “Asp” and “Asn”. This is easy to understand: there are
only two monomer codes that start with the letters “As” that we have keyed-in so far. At
this time, we either select one of the items (we wanted to enter the “Aspartate” monomer,
so we’ll double-click onto the first item of the list), or we just key-in a last character:

�� ��p .
At this point, the monomer is effectively inserted in the polymer sequence, as the seventh
monomer, shown in panel 4, Figure 8.3 on the following page.

Unambiguous Single-/Multi-Character Monomer Codes
Let’s imagine that we have now a polymer chemistry definition that allows up to 3 characters
for the definition of monomer codes, but that we have one monomer code (let’s say the one for
the “Glutamate”monomer) that is ‘E’. This monomer code ‘E’ is the only one of the polymer
chemistry definition that starts (and ends, since it is mono-character) with an ‘E’. In this
case, when we key-in

�� ��E , we’ll observe that the monomer code is immediately validated and
that its corresponding monomer icon is also immediately inserted in the polymer sequence.
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Figure 8.3: Multi-character code sequence editing in polyxedit. This figure shows
the process by which it is made possible to edit polymer sequences with a code set that
allows more than one character per code.
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Figure 8.4: Bad code character in polyxedit sequence editor. This figure shows the
feedback that the user is provided by the code editing engine, when a bad character code is
keyed-in.

This is because, if there is no ambiguity, polyxedit will immediately validate the code being
edited. This means that you are absolutely free to define only single-character monomer codes
in your polymer chemistry definition, so that you are not even conscious that the powerful
multi-character feature exists! Indeed, in this 1-character monomer code configuration, each
time you’ll key-in an uppercase character, you’ll be inserting its corresponding monomer into
the polymer sequence immediately.

Displaying All The Monomer Codes
Equally interesting is the fact that if you key-in the

�� ��TAB key while no monomer code is
being edited (the left text widget under the label Editing Feedback is empty), all the monomer
codes defined in your polymer chemistry definition are displayed, exactly as shown in the
panel ALL, Figure 8.3 on the preceding page.

Erroneous Monomer Codes
Let’s see now what happens when the user keys-in bad characters in the polymer sequence
editor window. This is described in the Figure 8.4. If the user enters a lowercase character
as the first character of a monomer code, the program immediately complains in the right
text widget under the label Editing Feedback. In this case, the monomer code is not put into
the left text widget, which means it is simply ignored.

If the user starts keying-in valid monomer character codes, like for example we did earlier
with “As”, and that she wants to erase these characters because she changed her mind, she
must not use the

�� ��BACKSPACE key, because this key will erase the monomer left of the
cursor point in the polymer sequence! The way that the user has to remove the characters
currently displayed in the left text widget under the label Editing Feedback, is to key-in the�� ��Esc key once for each character. For example, let’s say I’ve already keyed-in

�� ��A and
�� ��s .

In this case the left text widget, under label Editing Feedback, displays these two characters:
“As”. Now, I change my mind and do not want to enter the “Asp” monomer code anymore.
I want to enter the “Gly” code. All I have to do is key-in the

�� ��Esc key once for the ‘s’
character (which disappears) and once more to remove the remaining ‘A’ character which
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disappears also. At this point I can start fresh with the “Gly” monomer code by keying-in
sequentially

�� ��G ,
�� ��l and finally

�� ��y .

Chemically Modifying Polymer Sequences
It very much often happens that the (bio) chemist uses chemical reactions to modify the
polymer sequence she is working on. Mass spectrometry is then often used to check if the
reaction proceeded properly or not. Further, in nature, chemical modifications of biopolymer
sequences are very often encountered. For example, protein sequences get often modified as
a means to regulate their function (phophorylations, namely). Nucleic acid sequences are
very often and extensively modified with modifications such as methylation. . .

It is thus crucial that polyxmass be able to model with high precision and flexibility the
various chemical reactions that can be either made in the chemistry lab or found in nature.
The polyxmass program provides two different chemical modification processes:

✱ A process by which monomers in the polymer sequence can be individually modified;

✱ A process by which the whole polymer sequence can be modified, either on its left end
or on its right end or even on both ends.

We shall review these two processes separately in the two sections below.

Chemical Modification Of Monomers

Modification Of Monomers

There are a number of manners in which monomers can be modified in a polymer sequence.
The Figure 8.5 on the next page shows the simplest manner: the user first selects the
monomer icon to modify, next calls the Chemistry−→Modifications−→Monomer menu and
–as a result– is provided with a window where all the modifications currently available in the
polymer chemistry definition are listed. Since a monomer icon was initially selected in the
editor window, the Selected Monomer target radiobutton is on by default. It is then simply
a matter of choosing the right modification from the Available Modifications list and clicking
onto the Modify button.

The modified seryl residue is shown in the polymer sequence editor window: a transparent
graphics object (a red ‘P’) was overlaid onto the corresponding seryl monicon.

While the Modification Target(s) frame widget contains radiobuttons the signification of
which is rather easy to understand, we want to detail one of these: the Specific Monomer
Locations frame. If the user selects the radiobutton inside that specific frame (labelled
Positions Should Be Separated With ’;’), she also has to write the locations in the text entry
widget below it. This text entry widget receives textual strings that should describe what
locations on the polymer sequence should be modified. The syntax of the descriptive string
allows logical positions to be indicated. The user is invited to experiment, maybe using
variations on the themes described below as examples:

✱ ALL That would mean that the currently selected modification in the Available modifi-
cations list is to be applied to all the monomers in the polymer sequence. This is equal
to selecting the radiobutton labelled All Monomers;
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Figure 8.5: Modification of a monomer in a polymer sequence. This figure shows the
graphical rendering of a phosphorylation of a seryl residue in a protein polymer sequence.

✱ EVEN or even This will modify all monomers at even positions: 2, 4, 6. . .

✱ ODD or odd This will modify all monomers at odd positions: 1, 3, 5. . .

✱ EVEN;ODD is identical to ALL;

✱ [1-10];[20-30,odd] This will modify all the monomers from position 1 to position 10
inclusive, and all the odd-positioned monomers between position 20 and position 30
inclusive;

The user is responsible for correctly reading the results that are published in the paned
textview lying between the upper pane (labelled Monomer Modification Rules) and the two
buttons at the bottom of the window. Further, when a modification or un-modification is
performed, the count of successful events and of failed events is displayed in the messages’
text widget at the very bottom of the window. The messages that are displayed in this
widget are not permanent, they last some seconds and disappear. Care should be taken at
what is displayed in this messages’ text widget.

Attention should be paid to the fact that the user is responsible for applying chem-
ical modifications to monomers that are listed as modifiable with the modification
used. For example, if a phosphorylation modification is applied to a monomer that
is not listed as phosphorylatable in the relevant configuration file, then the modi-
fication is applied to it (which means that –internally– the monomer is modified)
but its corresponding monicon is not graphically changed because no graphical rule
is associated with the phosphorylation of this monomer (see section 9 on page 92,
the file of interest is monomer-modif.dic ).
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It is important to understand that, when a monomer is modified, its previous modification
(if any) is overwritten with the new one. The user is invited to experiment a bit with the
monomer modification process, so as to be confident of the results that she is going to obtain
when real polymer chemistry work is to be modelled in polyxmass.

Un-Modification Of Monomers

If a monomer is modified, then it also should be possible to revert the chemical reaction: to
un-modify it. There is, however, a subtlety here, that we ought to put into the limelight: an
example will do.

Let’s say that all the seryl residues of our protein polymer sequence are phosphorylated.2

Only seryl residues are phosphorylated in this polymer sequence. We thus see all their
corresponding monicons overlaid with a small ‘P’ on them (see the example above). Other
monomers are acetylated, like lysyl residues, for example. What we want to do is un-modify
all the phosphorylated seryl monomers in one go. We thus open the monomer modification
window, select the monomer code corresponding to the seryl residue in the Monomers list,
select the rabiobutton labelled Monomers From The List, we select “Phosphorylation” in the
Available Modifications list and finally we click the Unmodify button. All the seryl residues
currently phosphorylated are un-modified. This is OK.

Now, let’s assume that we had not selected “Phosphorylation” in the list of available
modifications, but “Acetylation”, for example: no phosphorylated seryl residue would have
been un-modified. This is a foolproof feature: if you select a modification name from the
list of available modifications, and next click onto the Unmodify button, that means that
your un-modifying action has –as targets– monomers that are currently modified with the
modification that you selected.

That means that if, in our example, you had selected, as monomer targets to the un-
modification, the All Monomers radiobutton, selected the “Phosphorylation” modification
and clicked onto the Unmodify button, only the phosphorylated monomers3 would have been
un-modified.

Now, if you un-select all the items in the list of available modifications4, that you select
the All Monomers radiobutton and next click onto the Unmodify button, then you’ll un-modify
absolutely all the monomers, because you are not restricting the monomer targets neither
by their code, neither by the identity of their potential modification.

The user is encouraged to play with these features. . . Also of great importance is to
understand that the modifications that can be set to the monomers do disappear when
the monomer is removed from the polymer sequence. These modifications are monomer
modifications, they belong to the monomer that is modified. We say that these modifications
are intrinsic.

Chemical Modification Of The Polymer Sequence
We have seen above that it is possible to modify any monomer in the polymer sequence and
that when the modified monomer is removed, the modification associated to it disappears
also.

2That’s protein chemistry stuff.
3Whatever they be, because the All Monomers radiobutton was selected.
4You may need to maintain the

�� ��Ctrl key pressed while clicking onto the currently selected item to
unselect it.
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Figure 8.6: Modification of a monomer in a polymer sequence. This figure shows
how simple it is to permanently modify a polymer sequence on either or both its left/right
ends. The permanent modifications currently set to a polymer sequence are conveniently
listed in two text widgets located under the polymer sequence rendering area.

The modifications that we describe here are not of this kind. They apply to either the
left end of the polymer sequence or its right end. But these modifications do belong to the
polymer sequence per se and are not removed from it even if the polymer sequence is edited
by removing the left end monomer or the right end monomer. We say that these polymer
modifications are permanent.

The way in which a polymer sequence is modified using polymer modifications is much
easier than the previous monomer modifications case. The modification window is opened
by choosing the Chemistry−→Modifications−→Polymer menu. The Figure 8.6 shows that
window.

The modification is absolutely easy to perform, with a clear feedback provided to the user
(by listing the permanent modifications in two convenient text widgets located under the
polymer sequence graphical rendering area, under label Left and Right Ends’ Modifications).
In the example (Figure 8.6), the top polymer sequence is not yet modified. By using the
window on the right, the polymer sequence is modified on its left end using the “Acetylation”
modification. The newly modified polymer sequence is shown in the window below, with the
left text widget displaying the name of the left end modification.

The Unmodify button is responsible for the un-modification of the selected polymer se-
quence end (left/right), so that reverting a modification is perfectly feasible.
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Figure 8.7: Cleavage options window. This figure shows the window with which the user
is provided when she performs a polymer sequence cleavage. The user can select one cleavage
specification and specify what level of partial cleavage the chemical cleavage should perform.

Cleavage Of Polymer Sequences
It happens very often that polymer sequences get cleaved in a sequence-specific manner.
These specific cleavages do occur very often in nature, and are made by enzymes that
do cleave biopolymer sequences, like the glycosidases (cleaving saccharides), the proteases
(cleaving proteins) or the nucleases (cleaving nucleic acids). But the scientist also uses pu-
rified enzymes to perform such cleavages in the test tube. polyxmass must be able to
perform thoses cleavages in silico. Let’s see how a polymer sequence can be cleaved using
polyxmass.

It is a matter of having a polymer sequence opened in an editor window and selecting
the Chemistry−→Cleave menu. The user is provided with a window where a number of
cleavage specifications are listed (Figure 8.7). These cleavage specifications are listed by
looking into the polymer chemistry definition corresponding to the polymer sequence to be
cleaved. The program knows, for example, that the polymer sequence to be cleaved is of the
“protein” chemistry type, and thus will list all the cleavage specifications that were defined
in the “protein” polymer chemistry definition. The cleavage specifications are available for
the user to select one of them to perform the cleavage.

The user selects the cleavage specification of interest and also sets the number of partial
cleavages that the cleaving agent may yield. In our example, 2 was entered, which means
that the cleavage reaction will yield the set of oligomers corresponding to a total cleavage
(no missed cleavages=partial cleavages 0) along with the set of oligomers corresponding to
1 missed cleavage and to 2 missed cleavages. The calculating process is extremely rapid, so
the user may enter rather high values here.
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Figure 8.8: Cleavage-generated oligomers window. This figure shows the window that
is opened so that the oligomers generated upon cleavage of a polymer sequence can be
displayed. Other data are also displayed (see text for details).
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Figure 8.9: Cleavage-generated oligomers’ data. This figure shows the notebook tab in
which data pertaining to a selected oligomer are displayed. In particular, this tab contains
a listview where monomer modifications of the selected oligomer (if any) are displayed.

Upon successful termination of the cleavage reaction, the user is provided with a new
window (Figure 8.8 on the preceding page) in which all the oligomers that were generated
are listed (upper pane). The listview widget on the upper pane sports a number of columns.
Each row of this listview widget describes the properties of a single oligomer. The different
columns are detailed below:

✱ Part. Cleav. This is the missed cleavage level for which the oligomer was generated;

✱ Number This is the number of the oligomer, so that the user may refer to it simply.
The syntax is simple: px -ny means that this oligomer is the oligomer number y from
the set of oligomers obtained in the x -missed cleavages series;

✱ Coordinates These are the coordinates of the oligomer as it is occurring in the polymer
sequence that was cleaved in the first place. For example, “[19-38]” would mean that
the oligomer starts at position 19 and ends at position 38 of the polymer sequence,
both values being inclusive;

✱ Mono Mass This is the monoisotopic mass of the oligomer, computed using the options
that are set in the Calculation Options window (see section 15 on page 71);

✱ Avg Mass Same as above, but for the average mass;

✱ Modified Indicates if the oligomer contains an intrinsically-modified monomer (it does
not mean that the modification’s mass was taken into account, it simply says that at
least one monomer is modified in the oligomer. See below for details).

The lower pane of the Cleavage Results window contains a number of additional data, dis-
played in a set of pages belonging to the Selected Oligomer Data notebook widget:

✱ Sequence (Figure 8.8 on the preceding page) This is the sequence that is displayed when
an oligomer is selected in the listview displaying the oligomers (in the upper pane);

✱ Oligomer Data (Figure 8.9) This is the place where monomer modifications are listed
as soon as an oligomer that contains modified monomers is selected in the listview.
Note that each modified monomer in the selected oligomer will show up as a row in
this listview.
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Figure 8.10: Cleavage specification data. This figure shows the notebook tab in which
data pertaining to the cleavage operation are displayed.

✱ Cleavage Data (Figure 8.10) This is the place where the cleavage operation configuration
is reported, so that each cleavage results’ displaying window is self-traceable to both
the cleavage configuration and the polymer sequence that was cleaved in the first place.

The button labelled Find will allow the user to find masses in the oligomers that were
generated upon the cleavage reaction simulation (see section 18 on the next page)

Fragmentation Of Polymer Sequences
It happens very often that polymer sequences need to be fragmented in the gas phase (in
the mass spectrometer) so that structure characterizations may be performed. For protein
chemistry, this happens very often in order to get sequence information for a given peptide
ion selected in the gas phase. polyxmass must be able to perform those fragmentations in
silico. Let’s see how a polymer sequence can be fragmented using polyxmass.

It is a matter of having a polymer sequence opened in an editor window and select-
ing the sequence region to be fragmented. Once this is done, the user selects the Chem-
istry−→Fragment menu. The user is provided with a window where a number of fragmen-
tation specifications are listed (Figure 8.11 on the following page). These fragmentation
specifications are listed by looking into the polymer chemistry definition corresponding to
the polymer sequence to be fragmented. The program knows, for example, that the poly-
mer sequence to be cleaved is of the “protein” chemistry type, and thus will list all the
fragmentation specifications that were defined in the “protein” polymer chemistry definition.

The user selects the fragmentation specification(s) of interest and clicks the Fragment
button.

Upon successful termination of the fragmentation reaction, the user is provided with a
new window (Figure 8.12 on page 85) in which all the oligomers that were generated are
listed (upper pane). The listview widget on the upper pane sports a number of columns.
Each row of this listview widget describes the properties of a single oligomer. The different
columns are detailed below:

✱ Frag. Spec. This is the name of the fragmentation specification that was used to
compute the corresponding fragment;

✱ Name This is the name of the oligomer, so that the user may refer to it simply. The
syntax is simple: x -y means that this oligomer is the oligomer number y from the
fragmentation specification x ;
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Figure 8.11: Fragmentation options window. This figure shows the window with which
the user is provided when she performs a polymer sequence fragmentation. The user can
select one or more fragmentation specifications (patterns).

✱ Mono Mass This is the monoisotopic mass of the oligomer, computed using the options
that are set in the Calculation Options window (see section 15 on page 71);

✱ Avg Mass Same as above, but for the average mass;

✱ Modified Indicates if the oligomer contains an intrinsically-modified monomer (it does
not mean that the modification’s mass was taken into account, it simply says that at
least one monomer is modified in the oligomer. See below for details).

The Sequence, Oligomer Data and Fragmentation Data pages of the notebook in the Se-
lected Oligomer Data frame widget are conceptually identical to the ones described at the
section 18 on page 80).

The button labelled Find will allow the user to find masses in the oligomers that were
generated upon the fragmentation reaction simulation (see section 18).

Finding Masses In The Results
It is often necessary to make sure that a mass –observed in the real mass spectrum– actually
corresponds to an oligomer that was generated during a previous simulation experiment
(like a cleaving of the polymer sequence with a given cleavage agent or a fragmentation of a
simple mass searching operation –see section 18 on page 88). To allow this, and as shown
in Figures 8.8 to 8.12 on pages 81–85, it is possible to ask that masses be found into the
oligomers resulting from any previous simulation (cleavage or fragmentation of a polymer
sequence or arbitrary mass search operations). Indeed, the button labelled Find will open a
window where the user may enter masses to be found.



85

Figure 8.12: Fragmentation-generated oligomers window. This figure shows the win-
dow that is opened so that the oligomers generated upon fragmentation of a polymer sequence
can be displayed.
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Figure 8.13: Finding masses in a set of oligomers. This figure shows how to ask that
masses be found in a set of oligomers that result, for example, from the cleavage of a polymer
sequence.
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Figure 8.14: Tolerances available in finding masses. This figure shows the three different
ways that tolerances can be configured.

The Figure 8.13 on the facing page illustrates how easy it is to defines the mass(es) to
be found in a set of oligomers, either in the monoisotopic mass list or in the average mass
list. There are two ways to actually trigger the mass finding operation:

✱ When the Unique Mass Find Mode checkbutton is checked: the user must enter one
mass in the single-line text entry widget and hitting the Find button or the

�� ��ENTER
issues the “Find Mass” request. For this to happen properly, it is necessary that only
one of the two single-line text entry widgets be filled with a mass (either monoisotopic
or average). This is because if there are two masses entered in the widgets, the program
would not know which one of the monoisotopic or average masses is to be found in the
set of oligomers.

✱ When the Unique Mass Find Mode checkbutton is not checked: the user may enter
masses in whatever the single- or multi-line widgets (either by keying-in one mass per
line or by pasting a preformatted list of masses). In the present case, hitting the�� ��ENTER key will trigger the “multi-mass” mass finding operation only if the Find
button has the focus. A click onto the Find button will do!

Prior to asking that masses be found, it is required that tolerances be entered for either
monoisotopic or average masses (or both if both kinds of masses are of interest) in their re-
spective text entry widget. In the example of Figure 8.13 on the preceding page, the tolerance
that is given to the mass finding operation on monoisotopic masses is of 0.1 amu, while the
one for the average masses is greater (1 amu). These values must be understood in a “broad”
manner (i.e. ± tolerance): for example, if we searched for a mass 1000 with a 0.5 amu
tolerance, we would get all the oligomers having masses ranging [1000− 0.5 → 1000 + 0.5]
(which is [999.5–1000.5] and not [999.75–1000.25]). The Figure 8.14 shows that there are
two other means to define the tolerance with which masses should be found. They all are
self-explanatory and should also be understood in the same“broad”manner described above.

The oligomers that were found to comply with the masses to find and with the tolerances
defined are displayed in a window similar to the one shown in Figure 8.15 on the next page.

Note that here also the traceability of the data is ensured using unambiguous identity
numbers (Results’ Set ID Number). This identity number is unique and describes the results
window in which the user has asked that masses be found (see Figure 8.13 on the facing
page).
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Figure 8.15: Finding masses in a set of oligomers. This figure shows oligomers that
were found in a set of oligomers after a mass finding operation has been performed.

Searching Masses In The Polymer Sequence
It may happen that the scientist needs to know if some polymer sequence region would have
a given mass. polyxmass allows for mass searching operations in the polymer sequence.
This is done by using the menu Chemistry−→Search Mass(es). The window illustrated
in Figure 8.16 on the next page shows up and the user enters masses to search for (see
section 18 on page 84 for details on the workings of a very similar window).

Once the masses have been searched, if results are found they are displayed in the window
shown in Figure 8.17 on page 90. This window has very similar characteristics to the ones
of the previously described results’ windows (see section 18 on page 80, for example).

The button labelled Find will allow the user to find masses in the oligomers that were
generated upon the mass searching operation (see section 18 on page 84.
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Figure 8.16: Finding masses in a polymer sequence. This figure shows how to ask that
masses be searched in a polymer sequence.
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Figure 8.17: Results window after searching masses in a a polymer sequence. This
figure shows the oligomers that were found upon a mass search operation.



9
The

polyxmassdata
module: The

Configuration
Data Hierarchy

The polyxmass software suite is designed to be compatible with any polymer chemistry
that the user may want to define. To be that flexible, polyxmass has to be able to store
polymer chemistry definition-related data in a very clearly designed set of data directories
and files. This configuration data hierarchy (which relates in some ways to a “filesystem”) is
what this chapter is all about.

After having read this chapter, the reader will be able to configure the polyxmass
configuration data filesystem hierarchy in such a way that a brand new polymer chemistry
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definition is made available to the polyxmass software suite. The creation of a brand
new polymer chemistry definition is typically performed using the polyxdef module; see
chapter 6 on page 47. This chapter will focus on how to register this new polymer chemistry
definition with the polyxmass software suite.

A polymer chemistry definition is only useful to edit any polymer sequence that complies
with it (this editing is typically done with the polyxedit module, see chapter 8 on page 67), if
it is associated with graphical files that are used by the sequence editor to render the sequence
graphically. This chapter will teach the user to configure the polyxmass filesystem in such a
way that the graphical files can be automatically used by the polymer sequence editor when
a given sequence is opened in polyxedit. Further, the chemical modification of a polymer
sequence, or chemical reactions simulations can only be performed if the polymer chemistry
definition file is correctly integrated in the whole polyxmass filesystem hierarchy.

What Gets Installed With polyxmassdata
When the user installs the polyxmassdata package, a number of files get installed in the
destination directory that was chosen by the user if the package was installed by a method
that allows using an option specifying in which directory the installation should be performed
(see the chapter 2 on page 9).

The following listing lists the files that are installed when the polyxmassdata package
is installed (using an un-modified polyxmassdata rpm package), in the /usr system
directory. This list was slightly edited to remove a number of lines that do not bring more
information than what is needed to start figuring out the general architecture of the filesystem
hierarchy of the polyxmass software suite.

✱ Non polymer-specific configuration files:

/usr/etc/polyxmass.d/polyxmassdata.conf

/usr/lib/pkgconfig/polyxmassdata.pc

/usr/share/polyxmassdata/polymer-definition.dtd

/usr/share/polyxmassdata/atoms.xml

/usr/share/polyxmassdata/chempad.conf

/usr/share/polyxmassdata/cursor.svg

/usr/share/polyxmassdata/poldefs-dictionary.dic

✱ Polymer-specific configuration files:

✦ “protein/peptide” polymer chemistry definition:

/usr/share/polyxmassdata/protein.xml
/usr/share/polyxmassdata/peptide.xml

/usr/share/polyxmassdata/protein/monomer-modif.dic
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/usr/share/polyxmassdata/protein/alanine-text.svg
/usr/share/polyxmassdata/protein/alanine.png
/usr/share/polyxmassdata/protein/alanine.svg
/usr/share/polyxmassdata/protein/acetyl-text.svg
/usr/share/polyxmassdata/protein/acetyl.png
/usr/share/polyxmassdata/protein/acetyl.svg
/usr/share/polyxmassdata/protein/arginine-text.svg
/usr/share/polyxmassdata/protein/arginine.png
/usr/share/polyxmassdata/protein/arginine.svg
...
/usr/share/polyxmassdata/protein/valine-text.svg
/usr/share/polyxmassdata/protein/valine.png
/usr/share/polyxmassdata/protein/valine.svg

✦ “dna” polymer chemistry definition:

/usr/share/polyxmassdata/dna.xml

/usr/share/polyxmassdata/dna/monomer-modif.dic

/usr/share/polyxmassdata/dna/adenine-text.svg
/usr/share/polyxmassdata/dna/adenine.png
/usr/share/polyxmassdata/dna/adenine.svg
...
/usr/share/polyxmassdata/dna/thymine-text.svg
/usr/share/polyxmassdata/dna/thymine.png
/usr/share/polyxmassdata/dna/thymine.svg

✦ “rna” polymer chemistry definition:

/usr/share/polyxmassdata/rna.xml

/usr/share/polyxmassdata/rna/monomer-modif.dic

/usr/share/polyxmassdata/rna/adenine-text.svg
/usr/share/polyxmassdata/rna/adenine.png
/usr/share/polyxmassdata/rna/adenine.svg
...
/usr/share/polyxmassdata/rna/methyl-text.svg
/usr/share/polyxmassdata/rna/methyl.png
/usr/share/polyxmassdata/rna/methyl.svg
/usr/share/polyxmassdata/rna/uracile-text.svg
/usr/share/polyxmassdata/rna/uracile.png
/usr/share/polyxmassdata/rna/uracile.svg

✦ “ose/saccharide” polymer chemistry definition:
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/usr/share/polyxmassdata/ose.xml
/usr/share/polyxmassdata/saccharide.xml

/usr/share/polyxmassdata/saccharide/monomer-modif.dic

/usr/share/polyxmassdata/saccharide/allose-text.svg
/usr/share/polyxmassdata/saccharide/allose.png
/usr/share/polyxmassdata/saccharide/allose.svg
...
/usr/share/polyxmassdata/saccharide/xylose-text.svg
/usr/share/polyxmassdata/saccharide/xylose.png
/usr/share/polyxmassdata/saccharide/xylose.svg
/usr/share/polyxmassdata/saccharide/xylulose-text.svg
/usr/share/polyxmassdata/saccharide/xylulose.png
/usr/share/polyxmassdata/saccharide/xylulose.svg

✱ Example polymer sequence files:

/usr/share/polyxmassdata/polseqs/dna-sample.pxm
/usr/share/polyxmassdata/polseqs/long-protein-sample.pxm
/usr/share/polyxmassdata/polseqs/ose-sample.pxm
/usr/share/polyxmassdata/polseqs/protein-fragments-sample.pxm
/usr/share/polyxmassdata/polseqs/protein-sample.pxm
/usr/share/polyxmassdata/polseqs/rna-sample.pxm

✱ User manual files:

/usr/share/polyxmassdata/userman/*

Let’s review these files and comment on them:

✱ The /usr/etc/polyxmass.d directory will contain default configuration files for
the different graphical modules that comprise the polyxmass software suite. For
example, when the user installs the polyxedit package, this directory will contain
the default configuration file for this package: polyxedit.conf . This directory also
contains the most crucial configuration file of the whole polyxmass software suite:
polyxmassdata.conf , that is described below.

✱ /usr/etc/polyxmass.d/polyxmassdata.conf This file contains one line:

polyxmassdata=/usr/share/polyxmassdata

This line indicates what is the directory that contains all the polyxmass’ filesystem
hierarchy, as it is installed by the polyxmassdata package. In the present case, since
the package was installed using an rpm package, the /usr system directory was the
target installation directory and all the data were installed in the
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/usr/share/polyxmassdata

directory.1 This directory is the main polyxmass configuration and polymer chemistry
data files repository. The polyxmass’ modules very often query this file in order to
know where to search for configuration data (typically to know where to search polymer
chemistry definition files).

We will see that the user may duplicate this repository in one of his owned directories
in order to modify the configuration and polymer chemistry definition files for her own
use. polyxmass can be made aware of this new user-owned location very easily, by
simply editing one or more files.

✱ /usr/share/polyxmassdata/atoms.xml This file contains the definition of all
the isotopes of all the chemical elements that a polymer scientist may have to use in
her chemistry simulations. Each atom (chemical element) is actually defined using a set
of isotopic mass/relative abundance pairs. The monoisotopic mass is by default (and
that is the normal chemical situation) the mass of the lightest isotope. The average
mass, as used by the polyxmass simulations, is computed by taking into account all
the isotopic mass/relative abundance ratios. There is only one file per system that
describes the atoms.

✱ /usr/share/polyxmassdata/poldefs-dictionary.dic This file contains a
number of lines, like the ones below:

protein=protein.xml%protein
long-protein=long-protein.xml%long-protein
dna=dna.xml%dna
rna=rna.xml%rna
saccharide=saccharide.xml%saccharide
ose=ose.xml%saccharide
peptide=peptide.xml%protein

Each line is made of 3 parts. The part left of the ‘=’ sign specifies a polymer chemistry
type, exactly as it may be referenced in a polymer sequence file. The part left the
‘%’ sign specifies in what file the polymer chemistry is defined. The last part of the
line is the name of the directory where the polymer chemistry definition-specific files
are located. This directory must itself be located in the directory that is described
in the polyxmassdata.conf main configuration file (see above). In our exam-
ple, that means that the “protein” chemistry-specific files should be located in the
/usr/share/polyxmassdata/protein directory.

Interestingly, as we can see, two different polymer chemistry definition types (“protein”
and “peptide” may point to the same protein polymer chemistry-specific directory,
while being defined in two different polymer chemistry definition files (respectively
protein.xml and peptide.xml ). The same applies for the “saccharide” and “ose”
polymer chemistry types.

✱ The /usr/share/polyxmassdata/protein.xml file is the file where the “pro-
tein”polymer chemistry is defined. This file is the one that is associated to the“protein”

1The /usr/share directory is a standard location for data installed by rpm packages, while source tar.gz
packages install their data in /usr/local/share by default.
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polymer chemistry definition type in the poldefs-dictionary.dic file described
above. These polymer chemistry definition files are typically produced by using the
polyxdef module.

✱ The /usr/share/polyxmassdata/protein/monomer-modif.dic file is the file
where a number of very important polymer chemistry-specific data are stored. This
file contains a number of lines like the following (the numbers at the beginning of some
lines were added to ease commenting below):

1 A=alanine.svg|alanine.png
C=cysteine.svg|cysteine.png
D=aspartate.svg|aspartate.png
4 S,T$Phosphorylation%T%phospho.svg|phospho.png
5 D$Amidation%O%asparagine.svg|asparagine.png
Y$Phosphorylation%T%phospho.svg|phospho.png
7 !$Acetylation%T%acetyl.svg|acetyl.png
E$Amidation%O%glutamine.svg|glutamine.png

The first line tells that the monomer having a code ‘A’ should be graphically rendered
–in the polymer sequence editor– using one of two graphics files: alanine.svg or
alanine.png . Indeed, when graphically rendering a monomer code in a polymer
sequence (by creating a “monomer icon”, or “monicon”), the polyxedit polymer se-
quence editor first tries to read the “scalar vector graphics” file (alanine.svg ). This
graphics format allows rendering the monomer icon at maximum quality whatever the
monicon size requested by the user in the polymer sequence editor. If this rendering
fails, for some reason, the program falls back to using the other graphics file (a “raster
graphics” file). The raster graphics file cannot be resized without loss of image quality
(see the chapter 8 on page 67).

The fourth line indicates that the monomers having code ‘S’ or ‘T’ (in protein chemistry,
these are seryl and threonyl residues) may be chemically modified using a modification
called “Phosphorylation”. The way the “Phosphorylation” modification should be ren-
dered graphically is by compositing ‘T’ransparently (see the %T%) the phospho.svg
or the phospho.png transparent graphics files onto the monicon of the monomer
being modified (see the chapter 8 on page 67).

The fifth line shows another graphical compositing rule. This time the rule is not
‘T’ransparency, but involves an ‘O’paque graphical compositing (see the %O%). This
line says that when a monomer of code ‘D’ is modified using an “Amidation” modifi-
cation, its monomer icon should be replaced using a monomer icon rendered ex novo
by reading either the scalar vector graphics file asparagine.svg or –if something is
wrong with this file– the raster graphics file asparagine.png .

The seventh line shows the use of the “joker” ‘!’ character. This ‘!’ character stands for
“all the monomer codes of the polymer chemistry definition”. This line means that any
monomer code in the “protein” polymer chemistry definition may be acetylated using
the “Acetylation” modification, according to a graphical rendering rule of transparent
compositing of the acetyl.svg (or the acetyl.png ) graphics file onto the monomer
icon of the modified monomer.

✱ The /usr/share/polyxmassdata/protein/alanine.svg is the file that con-
tains the scalar vector graphics representation of the “Alanine”monomer. This file was
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created using the Sodipodi software (see chapter 1 on page 1, section 1 on page 4),
by converting the textual representation of the monomer (that is a ‘A’ character) to
curves prior to saving the file as a svg-formatted file.

✱ The /usr/share/polyxmassdata/protein/alanine-text.svg is provided as
a convenience to the user. This is the file that was used to produce the previous one.
But this file contains a textual representation of the ‘A’ character. This file is not
correctly interpreted by the polyxedit polymer sequence editor and should only be
used as a model.

✱ The /usr/share/polyxmassdata/protein/alanine.png was prepared by ex-
porting the contents of the alanine.svg file to a png-formatted file (all this from
Sodipodi).

It is noteworthy that in theory, if all the scalar vector graphics files (svg files) are
correctly interpreted by the polymer sequence editor, the raster vector graphics files
(png files) should be totally redundant and useless. However, the png file-reading
libraries are much more robust than the svg file-reading libraries (svg is a rather
recent standard). This is why it is wise to always provide the polymer sequence editor
with a fall-back solution in the form of a raster graphics file to be used in case the
monicon rendering from the scalar vector graphics file fails.

✱ A number of files corresponding to a number of different polymer chemistry definitions
are shown so that the user may grasp the way these polymer chemistry definitions are
organized in the polyxmass filesystem hierarchy.

✱ The /usr/share/polyxmassdata/polseqs/protein-sample.pxm is an ex-
ample of a sequence of the polymer chemistry type “protein”. There are other polymer
sequences of other polymer chemistry types.

✱ The /usr/share/polyxmassdata/userman directory contains a number of files
(including the one that I’m typing right now) that are used to compile the user man-
ual file polyxmass.pdf . The command to issue so that the documentation file is
compiled is (issue this command twice to resolve the cross-references):

bash-2.04 $ pdflatex polyxmass.tex "
bash-2.04 $ pdflatex polyxmass.tex "

Other files are both polymer chemistry-specific or not. For example, each polymer chem-
istry may have a polyxcalc chemical pad configuration file. There is one chempad.conf
file that is general (see the listing above). This chempad.conf file is located in the main
polyxmass configuration data directory. The user may define one such file for any poly-
mer chemistry definition. In this case each polymer chemistry definition-specific directory
(itself located in the polyxmass main configuration directory, as we have seen above) may
have its own chempad.conf file. polyxcalc will thus read the chempad.conf file corre-
sponding to the polymer chemistry definition that is currently loaded in the calculator. If
no chempad.conf file is found in the polymer chemistry definition-specific directory, the
default one is read.
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Opening A Polymer Sequence: All The Events
In this section we’ll review the internal mechanisms that make the polyxedit module load
the proper polymer chemistry definition file when a polymer sequence is loaded. This will
enhance the reader’s understanding of the reason why the filesystem hierarchy is that com-
plex.

So, let’s start the polyxedit module of the polyxmass mass spectrometric software
suite, and open a file from the polyxmassdata distribution. We see that the file selection
window points directly to the polseqs subdirectory of the main polyxmass data configu-
ration directory. Let’s select the protein-sample.pxm file, that is a polymer sequence of
polymer chemistry type “protein”. What does the polyxedit program do in order to know
how to render that sequence in the polymer sequence editor? Let’s review that mechanics,
but first I suggest that you use your favorite text editor (mine is Emacs) to open that same
file. You’d see the following (only part of the file is reproduced below):

<polseqdata>
<polseqinfo>
<type>protein</type>
<name>Sample</name>
<code>SP2003</code>
<author>rusconi</author>
<date>
<year>2003</year>
<month>05</month>
<day>13</day>

</date>
</polseqinfo>
<polseq>

What you see here is that the protein-sample.pxm file contains the type of the
polymer of which it is (<type>protein</type>). That type is –in our present case–“protein”.

What we have done right now, the polyxedit module does exactly the same way: it
opens the file, reads it until it finds the <type></type> set of XML element tags. When
it has found them it just reads the contents of the <type> element. That is the “protein”
string.

By knowing of what polymer chemistry type the polymer sequence being opened is,
polyxedit can continue its work: it will first query the dictionary file responsible for mak-
ing the correspondence between each available polymer chemistry type and its definition
file. That dictionary file is poldefs-dictionary.dic , that we have described earlier.
polyxedit will thus search the line that starts with “protein”. This line reads as follows:

protein=protein.xml%protein

What polyxedit understands here is that the file that contains the polymer chemistry
definition of the polymer chemistry type “protein” is protein.xml (check the Appendix to
see what this file looks like). Now that polyxedit knows what file contains the “protein”
polymer chemistry definition, it has all the chemical“toolset”to compute masses and perform
chemical simulations, like cleavages or fragmentations or whatever.

But what about the graphical rendering of the polymer sequence we are asking to open
in the polyxedit’s polymer sequence editor window? What the line above tells polyxedit
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is that the “protein”-specific files are located in the protein directory, itself located in
the polyxmass main data configuration directory. We have briefly described above the
contents of this protein directory. What polyxedit now needs to know is what graph-
ics file to use for any given monomer found in the polymer sequence that is described in
the protein-sample.pxm file. The correspondence between each monomer code (in the
polymer chemistry definition) and the graphics file to be used to render it graphically in the
polymer sequence editor is made in a dictionary file located in the polymer chemistry-specific
directory (protein , for us now):

monomer-modif.dic
This file contains lines like the ones described above, that I reproduce here for convenience:

1 A=alanine.svg|alanine.png
C=cysteine.svg|cysteine.png
D=aspartate.svg|aspartate.png
4 S,T$Phosphorylation%T%phospho.svg|phospho.png
5 D$Amidation%O%asparagine.svg|asparagine.png
Y$Phosphorylation%T%phospho.svg|phospho.png
7 !$Acetylation%T%acetyl.svg|acetyl.png
E$Amidation%O%glutamine.svg|glutamine.png

When polyxedit reads the protein-sample.pxm file it will get the sequence of that
protein in the form of a “stream” of monomer codes. Each time it gets a new monomer
code it will check what graphics file it should use to render this monomer graphically. If
a monomer is described as being modified (in the polymer sequence file), it will perform
the graphical operation described by the corresponding line (see lines 4–7 above). Of course
there are implementation specifics that I do not describe that allow to make a tight memory
management.2

Now that we know how polyxmass copes with the flexibility required to handle any
polymer chemistry, we can start thinking of ways to configure it in ways that suit the user’s
needs.

Configurability By The User
Any single bit of information in polyxmass is modifiable by the user. That is a prereq-
uisite for a powerful program designed in the most exquisite GNU tradition. When the
polyxmassdata package is installed, it comes with “default” configuration data3. These
configuration data are simply examples and are not considered ready for publication of sci-
entific work. The user is required to double-check all these example data before considering
for publication any result yielded by the polyxmass software suite.

In the section above, we have seen that all these configuration data are located in the
polyxmass main configuration directory (it was the

/usr/share/polyxmassdata

2By never loading twice in memory the same graphics file, for example (these files use up a lot of memory).
3Here, configuration is intended “at large”, since it refers both to filesystem configuration and to all the

polymer chemistry files which “configure” the chemistry of a polymer, or to the graphics files that “configure”
the way monomers should be rendered graphically in the sequence editor.
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directory). That directory is a subdirectory of the /usr/share system directory, and
the user needs system priviledges to modify files in these directories.

Let’s imagine that the user wants to modify some files to suit her “chemical needs”. Or
that she wants to modify the way some monomers are rendered graphically in the polymer
sequence editor. Unfortunately, it may happen that the user cannot have system priviledges,
so she cannot modify the files that were installed by the system administrator. The solution
is very simple: copy the entire (or part of) polyxmass main data configuration directory
into a location that she owns or can access with modification priviledges. For the sake of
our example, let’s consider that the user’s login is “rusconi” and that his HOME directory is
/home/rusconi . Let’s continue considering that the “rusconi” user wants to duplicate the
polyxmass data configuration filesystem in /home/rusconi/polyxmassdata by issuing
the following command:

bash-2.04 $ cp --rpf /usr/share/polyxmassdata /home/rusconi "

Once this configuration data duplication is done, it is necessary to let the polyxmass
software suite know that when any of its modules is run it should search for configuration
data in her new location and not in the default installation location (described in detail
above).

When the polyxdef, polyxcalc and polyxedit packages belonging to the polyxmass
software suite are installed, their default configuration is stored in a file that is located in
the /usr/etc/polyxmass.d directory.4

When the user runs any one polyxdef, polyxcalc or polyxedit program, the program
in question checks the user’s home directory (/home/rusconi ) for a .polyxmass.d direc-
tory containing the corresponding package’s configuration file (for example, the polyxedit
package has a configuration file named polyxedit.conf ).

If the .polyxmass.d directory is not found, it is created and the

/usr/etc/polyxmass.d/polyxmassdata.conf

file is copied in it. If the package’s configuration file is not found it is copied in the
user’s .polyxmass.d directory straight from /usr/etc/polyxmass.d/ . For example,
when the user “rusconi” runs polyxedit for the first time ever, this program will check the
existence of the

/home/rusconi/.polyxmass.d/polyxedit.conf

file. If this file is not found it is copied straight from the /usr/etc/polyxmass.d/
directory with its default contents.

Now, how does a user tell polyxmass that the configuration data are not to be searched
for in the default directory, but in one user-customized directory? That is simply done by
editing the user’s copy of the polyxmassdata.conf file.

Indeed, when any program of the polyxmass software suite is executed, it first checks
if there is a user’s configuration directory named .polyxmass.d . If it finds that direc-
tory, the program checks if there is a polyxmassdata.conf file in it. If it finds that
file, it reads the configuration directory from it. Since this file is copied from the main
/usr/etc/polyxmass.d directory in the first place, it contains the default data configu-
ration directory, namely the following line:

4Assuming that the packages were installed with the --prefix=/usr option, or with un-modified rpm
packages.
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polyxmassdata=/usr/share/polyxmassdata

But, we know that user “rusconi” wants polyxmass to search the configuration files
not in the default configuration directory, but in /home/rusconi/polyxmassdata . To
achieve this, user “rusconi” would only have to change the line above to:

polyxmassdata=/home/rusconi/polyxmassdata

in the /home/rusconi/.polyxmass.d/polyxmassdata.conf file.
As a summary, I can list the contents of the /home/rusconi/.polyxmass.d directory

after having:

✱ Installed all the rpm packages in the usual order;

✱ Run the polyxdef, polyxcalc and polyxedit programs one after the other.

Here are the contents of this directory:

polyxmassdata.conf
polyxdef.conf
polyxcalc.conf
polyxedit.conf

Let’s now see the contents of each file in this directory:

✱ polyxmassdata.conf

polyxmassdata=/usr/share/polyxmassdata

✱ polyxdef.conf

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<package_conf>

<package_name>polyxdef</package_name>

<gladedir>/usr/share/polyxdef/glade</gladedir>

</package_conf>

✱ polyxcalc.conf

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<package_conf>
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<package_name>polyxcalc</package_name>

<gladedir>/usr/share/polyxcalc/glade</gladedir>

</package_conf>

✱ polyxedit.conf

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<package_conf>

<package_name>polyxedit</package_name>

<gladedir>/usr/share/polyxedit/glade</gladedir>

<numformats>
<numformat_atom>%.10f</numformat_atom>
<numformat_monomer>%.5f</numformat_monomer>
<numformat_oligomer>%.4f</numformat_oligomer>
<numformat_polymer>%.3f</numformat_polymer>
</numformats>

</package_conf>

Note that for the last polyxedit.conf file, the user may wish to configure a special
directory where her polymer sequences are stored. This is performed by adding right after the
<gladedir>/usr/share/polyxedit/glade</gladedir> line the following line, for example:

<datadir>/home/rusconi/laboratory/sequences</datadir>
What this line says it just that the polymer sequences for the user “rusconi” are stored in

the directory that is set between the <datadir></datadir> tags. When the user will either
open, or save, or save..as a polymer sequence, the file selection window will automatically
open with this directory preset. This is merely a convenience feature.

If this line is not configured, then the default location where polyxmass thinks that
polymer sequences are stored is the polseqs directory that is itself located in the data
configuration directory (in our examples it was either

/usr/share/polyxmassdata/polseqs

or the

/home/rusconi/polyxmassdata/polseqs

depending on wether we refer to the default data configuration directory of the one that
user “rusconi” wanted to configure for himself (see above for the whole story).



Appendices

The Protein Chemistry Definition File
<?xml version="1.0" standalone="no"?>
<!DOCTYPE poldefdata SYSTEM

"/usr/share/polyxmassdata/polymer-definition.dtd">

<poldefdata>
<type>protein</type>
<leftcap>+H</leftcap>
<rightcap>+OH</rightcap>
<codelen>1</codelen>
<ionizerule>
<actform>+H</actform>
<charge>1</charge>
<level>1</level>

</ionizerule>
<monomers>
<mnm>
<name>Glycine</name>
<code>G</code>
<formula>C2H3NO</formula>

</mnm>
<mnm>
<name>Alanine</name>
<code>A</code>
<formula>C3H5NO</formula>

</mnm>
<mnm>
<name>Valine</name>
<code>V</code>
<formula>C5H9NO</formula>

</mnm>
<mnm>
<name>Leucine</name>
<code>L</code>
<formula>C6H11NO</formula>

</mnm>
<mnm>
<name>Isoleucine</name>
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<code>I</code>
<formula>C6H11NO</formula>

</mnm>
<mnm>
<name>Serine</name>
<code>S</code>
<formula>C3H5NO2</formula>

</mnm>
<mnm>
<name>Threonine</name>
<code>T</code>
<formula>C4H7NO2</formula>

</mnm>
<mnm>
<name>Cysteine</name>
<code>C</code>
<formula>C3H5NOS</formula>

</mnm>
<mnm>
<name>Methionine</name>
<code>M</code>
<formula>C5H9NOS</formula>

</mnm>
<mnm>
<name>Arginine</name>
<code>R</code>
<formula>C6H12N4O</formula>

</mnm>
<mnm>
<name>Lysine</name>
<code>K</code>
<formula>C6H12N2O</formula>

</mnm>
<mnm>
<name>Aspartate</name>
<code>D</code>
<formula>C4H5NO3</formula>

</mnm>
<mnm>
<name>Glutamate</name>
<code>E</code>
<formula>C5H7NO3</formula>

</mnm>
<mnm>
<name>Asparagine</name>
<code>N</code>
<formula>C4H6N2O2</formula>

</mnm>
<mnm>
<name>Glutamine</name>
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<code>Q</code>
<formula>C5H8N2O2</formula>

</mnm>
<mnm>
<name>Tryptophan</name>
<code>W</code>
<formula>C11H10N2O</formula>

</mnm>
<mnm>
<name>Phenylalanine</name>
<code>F</code>
<formula>C9H9N1O</formula>

</mnm>
<mnm>
<name>Tyrosine</name>
<code>Y</code>
<formula>C9H9N1O2</formula>

</mnm>
<mnm>
<name>Histidine</name>
<code>H</code>
<formula>C6H7N3O</formula>

</mnm>
<mnm>
<name>Proline</name>
<code>P</code>
<formula>C5H7N1O1</formula>

</mnm>
</monomers>
<modifs>
<mdf>
<name>Phosphorylation</name>
<actform>-H+H2PO3</actform>

</mdf>
<mdf>
<name>Acetylation</name>
<actform>-H+C2H3O</actform>

</mdf>
<mdf>
<name>Amidation</name>
<actform>-OH+NH2</actform>

</mdf>
<mdf>
<name>SulfideBond</name>
<actform>-H2</actform>

</mdf>
</modifs>
<cleavespecs>
<cls>
<name>CyanogenBromide</name>
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<pattern>M/</pattern>
<lr-rule>
<re-mnm-code>M</re-mnm-code>
<re-actform>-CH2S+O</re-actform>

</lr-rule>
</cls>
<cls>
<name>Trypsin</name>
<pattern>K/;R/;-K/P</pattern>

</cls>
<cls>
<name>Chymotrypsin</name>
<pattern>W/;V/</pattern>

</cls>
<cls>
<name>EndoLysC</name>
<pattern>K/</pattern>

</cls>
<cls>
<name>EndoAspN</name>
<pattern>/D</pattern>

</cls>
<cls>
<name>GluC</name>
<pattern>E/</pattern>

</cls>
</cleavespecs>
<fragspecs>
<fgs>
<name>a</name>
<end>LE</end>
<actform>-C1O1</actform>
<fgr>
<name>a-fgr-1</name>
<actform>+H200</actform>
<prev-mnm-code>E</prev-mnm-code>
<this-mnm-code>D</this-mnm-code>
<next-mnm-code>F</next-mnm-code>
<comment>comment here!</comment>

</fgr>
<fgr>
<name>a-fgr-2</name>
<actform>+H100</actform>
<prev-mnm-code>F</prev-mnm-code>
<this-mnm-code>D</this-mnm-code>
<next-mnm-code>E</next-mnm-code>
<comment>comment here!</comment>

</fgr>
</fgs>
<fgs>
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<name>b</name>
<end>LE</end>
<actform>-H0</actform>

</fgs>
<fgs>
<name>c</name>
<end>LE</end>
<actform>+N1H2+H1</actform>
<comment>that’s just a comment</comment>

</fgs>
<fgs>
<name>z</name>
<end>RE</end>
<actform>-N1H1</actform>
<comment>Not in CID high En. frag</comment>

</fgs>
<fgs>
<name>y</name>
<end>RE</end>
<actform>+H2</actform>

</fgs>
<fgs>
<name>x</name>
<end>RE</end>
<actform>+C1O1</actform>
<fgr>
<name>x-fgr-1</name>
<actform>+H100</actform>
<prev-mnm-code>E</prev-mnm-code>
<this-mnm-code>D</this-mnm-code>
<next-mnm-code>F</next-mnm-code>
<comment>comment here!</comment>

</fgr>
<fgr>
<name>x-fgr-2</name>
<actform>+H200</actform>
<prev-mnm-code>F</prev-mnm-code>
<this-mnm-code>D</this-mnm-code>
<next-mnm-code>E</next-mnm-code>
<comment>comment here!</comment>

</fgr>
</fgs>
<fgs>
<name>imm</name>
<end>NE</end>
<actform>-C1O1+H1</actform>

</fgs>
</fragspecs>

</poldefdata>
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GNU General Public License

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
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authors’ reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.
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b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
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c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
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infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
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Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
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the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than ‘show w’ and ‘show c’; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.
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GNU Free Documentation License

GNU Free Documentation License
Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
written document "free" in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a
notice placed by the copyright holder saying it can be distributed
under the terms of this License. The "Document", below, refers to any
such manual or work. Any member of the public is a licensee, and is
addressed as "you".

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
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publishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could fall directly
within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup has been designed to thwart or discourage
subsequent modification by readers is not Transparent. A copy that is
not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML designed for human modification. Opaque formats include
PostScript, PDF, proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML produced by some word processors for output
purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work’s title,
preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
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commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100,
and the Document’s license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a publicly-accessible computer-network location containing a complete
Transparent copy of the Document, free of added material, which the
general network-using public has access to download anonymously at no
charge using public-standard network protocols. If you use the latter
option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to
the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.
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4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the
Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications

adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice

giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section entitled "History", and its title, and add to

it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section entitled "History" in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the "History" section.
You may omit a network location for a work that was published at
least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

K. In any section entitled "Acknowledgements" or "Dedications",
preserve the section’s title, and preserve in the section all the
substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers
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or the equivalent are not considered part of the section titles.
M. Delete any section entitled "Endorsements". Such a section

may not be included in the Modified Version.
N. Do not retitle any existing section as "Endorsements"

or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
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Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History"
in the various original documents, forming one section entitled
"History"; likewise combine any sections entitled "Acknowledgements",
and any sections entitled "Dedications". You must delete all sections
entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, does not as a whole count as a Modified Version
of the Document, provided no compilation copyright is claimed for the
compilation. Such a compilation is called an "aggregate", and this
License does not apply to the other self-contained works thus compiled
with the Document, on account of their being thus compiled, if they
are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one quarter
of the entire aggregate, the Document’s Cover Texts may be placed on
covers that surround only the Document within the aggregate.
Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License provided that you also include the
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original English version of this License. In case of a disagreement
between the translation and the original English version of this
License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to
copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such
parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;
with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections"
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instead of saying which ones are invariant. If you have no
Front-Cover Texts, write "no Front-Cover Texts" instead of
"Front-Cover Texts being LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,
to permit their use in free software.
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